File: wlog_examples.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (744 lines) | stat: -rw-r--r-- 34,300 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
(* ========================================================================= *)
(* Examples of using the "without loss of generality" tactics.               *)
(* ========================================================================= *)

needs "Multivariate/wlog.ml";;

(* ------------------------------------------------------------------------- *)
(* Example 1.                                                                *)
(* ------------------------------------------------------------------------- *)

let lemma = prove
 (`(?y. y pow 2 = a) <=> &0 <= a`,
  MESON_TAC[SQRT_POW_2; REAL_LE_SQUARE; REAL_POW_2]);;

let TRUONG_1 = prove
 (`!u1:real^3 u2 p a b.
     ~(u1 = u2) /\
     plane p /\
     {u1,u2} SUBSET p /\
     dist(u1,u2) <= a + b /\
     abs(a - b) < dist(u1,u2) /\
     &0 <= a /\
     &0 <= b
     ==> (?d1 d2.
              {d1, d2} SUBSET p /\
              &1 / &2 % (d1 + d2) IN affine hull {u1, u2} /\
              dist(d1,u1) = a /\
              dist(d1,u2) = b /\
              dist(d2,u1) = a /\
              dist(d2,u2) = b)`,
  (*** First, rotate the plane p to the special case z$3 = &0 ***)

  GEOM_HORIZONTAL_PLANE_TAC `p:real^3->bool` THEN

  (*** Now reshuffle the goal to have explicit restricted quantifiers ***)

  ONCE_REWRITE_TAC[TAUT
   `a /\ b /\ c /\ d ==> e <=> c /\ a /\ b /\ d ==> e`] THEN
  REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN

  (*** Now replace quantifiers over real^3 with those over real^2 ***)

  PAD2D3D_TAC THEN

  (*** Tidy the goal a little ***)

  REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN

  (*** Choose u1 as the origin ***)

  GEOM_ORIGIN_TAC `u1:real^2` THEN

  (*** Rotate the point u2 onto the x-axis ***)

  GEOM_HORIZONTAL_LINE_TAC `u2:real^2` THEN

  (*** Only now introduce coordinates ***)

  X_GEN_TAC `u2:real^2` THEN DISCH_TAC THEN
  MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN
  REWRITE_TAC[dist; VECTOR_SUB_RZERO; VECTOR_SUB_LZERO; NORM_NEG] THEN
  SIMP_TAC[GSYM real_gt; NORM_GT_SQUARE; NORM_EQ_SQUARE; NORM_LE_SQUARE] THEN
  REWRITE_TAC[real_gt; REAL_ARITH `~(abs x < &0)`] THEN
  ASM_SIMP_TAC[DOT_2; REAL_MUL_RZERO; REAL_ADD_RID; CART_EQ; DIMINDEX_2;
               FORALL_2; AFFINE_HULL_2; CART_EQ; VECTOR_MUL_COMPONENT;
               VECTOR_SUB_COMPONENT; VEC_COMPONENT; ARITH; IN_ELIM_THM;
               VECTOR_ADD_COMPONENT; REAL_SUB_RZERO; REAL_ADD_LID;
               REAL_POW2_ABS] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o GSYM) STRIP_ASSUME_TAC) THEN
  REWRITE_TAC[EXISTS_VECTOR_2] THEN
  MATCH_MP_TAC(MESON[]
   `(?x y:real. P x y x (--y)) ==> (?x y x' y'. P x y x' y')`) THEN
  SIMP_TAC[AFFINE_HULL_2; IN_ELIM_THM; CART_EQ; DIMINDEX_2; FORALL_2; VECTOR_2;
        VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VEC_COMPONENT; ARITH] THEN
  ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_LID; REAL_ADD_RINV] THEN
  ASM_SIMP_TAC[REAL_FIELD
   `~(a = &0)
    ==> (u + v = &1 /\ b = v * a <=> u = &1 - b / a /\ v = b / a)`] THEN
  REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  ABBREV_TAC `u = (u2:real^2)$1` THEN
  REWRITE_TAC[REAL_ARITH `x + --y * --y:real = x + y * y`] THEN
  REWRITE_TAC[TAUT `a /\ b /\ a /\ b <=> a /\ b`] THEN

  (*** Now finally dive in and solve the algebraic problem ***)

  ASM_SIMP_TAC[REAL_FIELD
   `~(u = &0)
    ==> (x * x + y * y = a pow 2 /\ (x - u) * (x - u) + y * y = b pow 2 <=>
         x = (u pow 2 + a pow 2 - b pow 2) / (&2 * u) /\
         y pow 2 = b pow 2 - (x - u) pow 2)`] THEN
  REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM2; lemma] THEN
  ASM_SIMP_TAC[REAL_SUB_LE; REAL_FIELD
   `(u pow 2 + a - b) / (&2 * u) - u = (a - b - u pow 2) / (&2 * u)`] THEN
  REWRITE_TAC[GSYM REAL_LE_SQUARE_ABS] THEN
  ASM_SIMP_TAC[REAL_ABS_DIV; REAL_LE_LDIV_EQ;
               REAL_ARITH `~(u = &0) ==> &0 < abs(&2 * u)`] THEN
  REWRITE_TAC[GSYM REAL_ABS_MUL; REAL_LE_SQUARE_ABS] THEN

  (*** Can just use SOS: this proof was found by SOS_RULE ***)

  MAP_EVERY UNDISCH_TAC
   [`u * u <= (a + b) pow 2`; `(a - b) pow 2 < u * u`] THEN
  DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_IMP_LE) THEN
  ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN
  REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LE_MUL) THEN
  REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Definition of "opposite" for example 2, and its invariance theorems.      *)
(* ------------------------------------------------------------------------- *)

let opposite = new_definition
  `opposite a b p <=>
        (&1 / &2 % (a + b)) IN p /\
        (!x y:real^N. {x,y} SUBSET p ==> (x - y) dot (a - b) = &0)`;;

let OPPOSITE_TRANSLATION_EQ = prove
 (`!c a b p. opposite (c + a) (c + b) (IMAGE (\x. c + x) p) <=>
             opposite a b p`,
  REWRITE_TAC[opposite] THEN GEOM_TRANSLATE_TAC[]);;

add_translation_invariants [OPPOSITE_TRANSLATION_EQ];;

let OPPOSITE_LINEAR_IMAGE_EQ = prove
 (`!f a b p. linear f /\ (!x. norm(f x) = norm x)
             ==> (opposite (f a) (f b) (IMAGE f p) <=> opposite a b p)`,
  SIMP_TAC[opposite; INSERT_SUBSET; EMPTY_SUBSET; GSYM orthogonal] THEN
  REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; RIGHT_FORALL_IMP_THM] THEN
  SIMP_TAC[GSYM LINEAR_ADD; GSYM LINEAR_SUB; ORTHOGONAL_LINEAR_IMAGE_EQ] THEN
  SIMP_TAC[GSYM LINEAR_CMUL; IN_IMAGE] THEN
  MESON_TAC[PRESERVES_NORM_INJECTIVE]);;

add_linear_invariants [OPPOSITE_LINEAR_IMAGE_EQ];;

(* ------------------------------------------------------------------------- *)
(* Example 2.                                                                *)
(* ------------------------------------------------------------------------- *)

let AFFINE_PLANE = prove
 (`!p. plane p ==> affine p`,
  SIMP_TAC[plane; LEFT_IMP_EXISTS_THM; AFFINE_AFFINE_HULL]);;

let lemma = prove
 (`!a b:real^2.
        a$2 <= &0 /\ &0 <= b$2 ==> ?x. x IN convex hull {a,b} /\ x$2 = &0`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH
   `a <= &0 /\ &0 <= b ==> a = &0 /\ b = &0 \/ &0 < b - a`))
  THENL
   [EXISTS_TAC `a:real^2` THEN ASM_SIMP_TAC[HULL_INC; IN_INSERT];
    REWRITE_TAC[CONVEX_HULL_2_ALT; EXISTS_IN_GSPEC] THEN
    SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VECTOR_SUB_COMPONENT;
             DIMINDEX_2; ARITH] THEN
    EXISTS_TAC `--(a$2) / ((b:real^2)$2 - (a:real^2)$2)` THEN
    ASM_SIMP_TAC[REAL_LT_IMP_NZ; REAL_DIV_RMUL;
                 REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ] THEN
    ASM_REAL_ARITH_TAC]);;

let TRUONG_OPPOSITE_LEMMA = prove
 (`!p a b bb m x y:real^3.
     plane p /\
     {a, b, bb, m, x, y} SUBSET p /\
     ~(x = y) /\ m IN affine hull {x,y} /\ midpoint(b,bb) = m
     ==> ~(convex hull {a, b} INTER affine hull {x, y} = {}) \/
         ~(convex hull {a, bb} INTER affine hull {x, y} = {})`,

  (*** Make the plane p the xy-plane ***)

  GEOM_HORIZONTAL_PLANE_TAC `p:real^3->bool` THEN

  (*** Rewrite with explicit restricted quantifiers ***)

  REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(K ALL_TAC) THEN

  (*** Now replace quantifiers over real^3 with those over real^2 ***)

  PAD2D3D_TAC THEN

  (*** Let x be the origin, and y on the x-axis ***)

  GEOM_ORIGIN_TAC `x:real^2` THEN
  GEOM_HORIZONTAL_LINE_TAC `y:real^2` THEN

  (*** Make a few simplifications ***)

  GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
  ASM_SIMP_TAC[CART_EQ; DIMINDEX_2; FORALL_2; VEC_COMPONENT] THEN
  DISCH_THEN(ASSUME_TAC o GSYM) THEN
  SIMP_TAC[midpoint; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT;
           DIMINDEX_2; ARITH] THEN

  (*** Show aff{x,y} is now exactly the x-axis ***)

  SUBGOAL_THEN `affine hull {vec 0,y} = {u:real^2 | u$2 = &0}` SUBST1_TAC THENL
   [MATCH_MP_TAC HULL_UNIQUE THEN
    REWRITE_TAC[affine; INSERT_SUBSET; EMPTY_SUBSET; IN_ELIM_THM] THEN
    ASM_SIMP_TAC[VEC_COMPONENT; DIMINDEX_2; ARITH; VECTOR_ADD_COMPONENT;
                 VECTOR_MUL_COMPONENT; REAL_MUL_RZERO; REAL_ADD_RID] THEN
    X_GEN_TAC `s:real^2->bool` THEN STRIP_TAC THEN
    REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN X_GEN_TAC `u:real^2` THEN
    DISCH_TAC THEN
    SUBGOAL_THEN `u = (&1 - u$1 / (y:real^2)$1) % vec 0 +
                  (u$1 / (y:real^2)$1) % y`
    SUBST1_TAC THENL
     [REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN
      ASM_SIMP_TAC[CART_EQ; VECTOR_MUL_COMPONENT; DIMINDEX_2; ARITH;
                   FORALL_2; REAL_MUL_RZERO; REAL_DIV_RMUL];
      FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
      REAL_ARITH_TAC];
    ALL_TAC] THEN

  (*** Simplify a bit more ***)

  SIMP_TAC[IN_ELIM_THM; REAL_ARITH `inv(&2) * (x + y) = &0 <=> y = --x`] THEN
  REPEAT STRIP_TAC THEN

  (*** Finally, make a 4-way case split then apply the lemma to each ***)

  REWRITE_TAC[SET_RULE `~(s INTER t = {}) <=> ?x. x IN s /\ x IN t`] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN
  FIRST_ASSUM(MP_TAC o SPEC `(a:real^2)$2` o MATCH_MP (REAL_ARITH
   `b' = --b ==> !a. a <= &0 /\ &0 <= b \/ a <= &0 /\ &0 <= b' \/
                     b <= &0 /\ &0 <= a \/ b' <= &0 /\ &0 <= a`)) THEN
  MESON_TAC[lemma; SET_RULE `{a,b} = {b,a}`]);;

let TRUONG_OPPOSITE_THM = prove
 (`!a b bb x y:real^3 p.
     ~(x = y) /\
     plane p /\
     {a, b, x, y} SUBSET p /\
     opposite b bb (affine hull {x, y})
     ==> ~(convex hull {a, b} INTER affine hull {x, y} = {}) \/
         ~(convex hull {a, bb} INTER affine hull {x, y} = {})`,
  REWRITE_TAC[opposite; INSERT_SUBSET; EMPTY_SUBSET] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC TRUONG_OPPOSITE_LEMMA THEN
  MAP_EVERY EXISTS_TAC [`p:real^3->bool`; `&1 / &2 % (b + bb):real^3`] THEN
  ASM_REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; midpoint] THEN
  CONJ_TAC THENL [ALL_TAC; VECTOR_ARITH_TAC]  THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_PLANE) THEN
  MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL
   [MATCH_MP_TAC(SET_RULE `!t. x IN t /\ t SUBSET s ==> x IN s`) THEN
    EXISTS_TAC `affine hull {x:real^3,y}` THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC HULL_MINIMAL THEN ASM_SIMP_TAC[INSERT_SUBSET; EMPTY_SUBSET];
    DISCH_TAC THEN SUBST1_TAC(VECTOR_ARITH
      `bb:real^3 = -- &1 % b + &2 % &1 / &2 % (b + bb)`) THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[affine]) THEN
    ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Affsign variants for example 3, and invariance theorems.                  *)
(* ------------------------------------------------------------------------- *)

let lin_combo = new_definition
  `lin_combo V f = vsum V (\v. f v % (v:real^N))`;;

let affsign = new_definition
  `affsign sgn s t (v:real^A) <=>
     (?f. (v = lin_combo (s UNION t) f) /\
          (!w. t w ==> sgn (f w)) /\
          (sum (s UNION t) f = &1))`;;

let sgn_gt = new_definition `sgn_gt = (\t. (&0 < t))`;;
let sgn_ge = new_definition `sgn_ge = (\t. (&0 <= t))`;;
let sgn_lt = new_definition `sgn_lt = (\t. (t < &0))`;;
let sgn_le = new_definition `sgn_le = (\t. (t <= &0))`;;

let aff_gt_def = new_definition `aff_gt = affsign sgn_gt`;;
let aff_ge_def = new_definition `aff_ge = affsign sgn_ge`;;
let aff_lt_def = new_definition `aff_lt = affsign sgn_lt`;;
let aff_le_def = new_definition `aff_le = affsign sgn_le`;;

let AFFSIGN = prove
 (`affsign sgn s t =
        {y | ?f. y = vsum (s UNION t) (\v. f v % v) /\
                (!w. w IN t ==> sgn(f w)) /\
                sum (s UNION t) f = &1}`,
  REWRITE_TAC[FUN_EQ_THM; affsign; lin_combo; IN_ELIM_THM] THEN
  REWRITE_TAC[IN]);;

let AFFSIGN_ALT = prove
 (`affsign sgn s t =
        {y | ?f. (!w. w IN (s UNION t) ==> w IN t ==> sgn(f w)) /\
                 sum (s UNION t) f = &1 /\
                 vsum (s UNION t) (\v. f v % v) = y}`,
  REWRITE_TAC[SET_RULE `(w IN (s UNION t) ==> w IN t ==> P w) <=>
                        (w IN t ==> P w)`] THEN
  REWRITE_TAC[AFFSIGN; EXTENSION; IN_ELIM_THM] THEN MESON_TAC[]);;

let IN_AFFSIGN = prove
 (`y IN affsign sgn s t <=>
        ?u. (!x. x IN t ==> sgn(u x)) /\
            sum (s UNION t) u = &1 /\
            vsum (s UNION t) (\x. u(x) % x) = y`,
  REWRITE_TAC[AFFSIGN; IN_ELIM_THM] THEN SET_TAC[]);;

let AFFSIGN_INJECTIVE_LINEAR_IMAGE = prove
 (`!f:real^M->real^N sgn s t v.
        linear f /\ (!x y. f x = f y ==> x = y)
        ==> (affsign sgn (IMAGE f s) (IMAGE f t) =
             IMAGE f (affsign sgn s t))`,
  let lemma0 = prove
   (`vsum s (\x. u x % x) = vsum {x | x IN s /\ ~(u x = &0)} (\x. u x % x)`,
    MATCH_MP_TAC VSUM_SUPERSET THEN SIMP_TAC[SUBSET; IN_ELIM_THM] THEN
    REWRITE_TAC[TAUT `p /\ ~(p /\ ~q) <=> p /\ q`] THEN
    SIMP_TAC[o_THM; VECTOR_MUL_LZERO]) in
  let lemma1 = prove
   (`!f:real^M->real^N s.
           linear f /\ (!x y. f x = f y ==> x = y)
           ==> (sum(IMAGE f s) u = &1 /\ vsum(IMAGE f s) (\x. u x % x) = y <=>
                sum s (u o f) = &1 /\ f(vsum s (\x. (u o f) x % x)) = y)`,
    REPEAT STRIP_TAC THEN
    W(MP_TAC o PART_MATCH (lhs o rand) SUM_IMAGE o funpow 3 lhand o snd) THEN
    ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC] THEN
    MATCH_MP_TAC(MESON[] `(p ==> z = x) ==> (p /\ x = y <=> p /\ z = y)`) THEN
    DISCH_TAC THEN ONCE_REWRITE_TAC[lemma0] THEN
    SUBGOAL_THEN
     `{y | y IN IMAGE (f:real^M->real^N) s /\ ~(u y = &0)} =
      IMAGE f {x | x IN s /\ ~(u(f x) = &0)}`
    SUBST1_TAC THENL [ASM SET_TAC[]; CONV_TAC SYM_CONV] THEN
    SUBGOAL_THEN `FINITE {x | x IN s /\ ~(u((f:real^M->real^N) x) = &0)}`
    ASSUME_TAC THENL
     [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE
       (LAND_CONV o RATOR_CONV o RATOR_CONV) [sum]) THEN
      ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
      REWRITE_TAC[GSYM sum; support; NEUTRAL_REAL_ADD; o_THM] THEN
      COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_OF_NUM_EQ; ARITH_EQ];
      W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o lhand o snd) THEN
      ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
      DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[o_DEF] THEN
      ASM_SIMP_TAC[LINEAR_VSUM; o_DEF; GSYM LINEAR_CMUL]]) in
  REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[EXTENSION; IN_AFFSIGN] THEN
  REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE; IN_AFFSIGN] THEN
  REWRITE_TAC[GSYM IMAGE_UNION] THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP lemma1 th]) THEN
  X_GEN_TAC `y:real^N` THEN EQ_TAC THENL
   [DISCH_THEN(X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `vsum (s UNION t) (\x. (u o (f:real^M->real^N)) x % x)` THEN
    ASM_REWRITE_TAC[] THEN
    EXISTS_TAC `(u:real^N->real) o (f:real^M->real^N)` THEN
    ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[o_THM];
    MP_TAC(ISPEC `f:real^M->real^N` LINEAR_INJECTIVE_LEFT_INVERSE) THEN
    ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN
    DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^M` STRIP_ASSUME_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `x:real^M`
     (CONJUNCTS_THEN2 SUBST1_TAC MP_TAC)) THEN
    DISCH_THEN(X_CHOOSE_THEN `u:real^M->real` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `(u:real^M->real) o (g:real^N->real^M)` THEN
    ASM_REWRITE_TAC[o_DEF; ETA_AX]]);;

let AFF_GE_INJECTIVE_LINEAR_IMAGE = prove
 (`!f:real^M->real^N s t.
        linear f /\ (!x y. f x = f y ==> x = y)
        ==> aff_ge (IMAGE f s) (IMAGE f t) = IMAGE f (aff_ge s t)`,
  REWRITE_TAC[aff_ge_def; AFFSIGN_INJECTIVE_LINEAR_IMAGE]);;

let AFF_GT_INJECTIVE_LINEAR_IMAGE = prove
 (`!f:real^M->real^N s t.
        linear f /\ (!x y. f x = f y ==> x = y)
        ==> aff_gt (IMAGE f s) (IMAGE f t) = IMAGE f (aff_gt s t)`,
  REWRITE_TAC[aff_gt_def; AFFSIGN_INJECTIVE_LINEAR_IMAGE]);;

let AFF_LE_INJECTIVE_LINEAR_IMAGE = prove
 (`!f:real^M->real^N s t.
        linear f /\ (!x y. f x = f y ==> x = y)
        ==> aff_le (IMAGE f s) (IMAGE f t) = IMAGE f (aff_le s t)`,
  REWRITE_TAC[aff_le_def; AFFSIGN_INJECTIVE_LINEAR_IMAGE]);;

let AFF_LT_INJECTIVE_LINEAR_IMAGE = prove
 (`!f:real^M->real^N s t.
        linear f /\ (!x y. f x = f y ==> x = y)
        ==> aff_lt (IMAGE f s) (IMAGE f t) = IMAGE f (aff_lt s t)`,
  REWRITE_TAC[aff_lt_def; AFFSIGN_INJECTIVE_LINEAR_IMAGE]);;

add_linear_invariants
  [AFFSIGN_INJECTIVE_LINEAR_IMAGE;
   AFF_GE_INJECTIVE_LINEAR_IMAGE;
   AFF_GT_INJECTIVE_LINEAR_IMAGE;
   AFF_LE_INJECTIVE_LINEAR_IMAGE;
   AFF_LT_INJECTIVE_LINEAR_IMAGE];;

let IN_AFFSIGN_TRANSLATION = prove
 (`!sgn s t a v:real^N.
        affsign sgn s t v
        ==> affsign sgn (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) (a + v)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[affsign; lin_combo] THEN
  ONCE_REWRITE_TAC[SET_RULE `(!x. s x ==> p x) <=> (!x. x IN s ==> p x)`] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:real^N->real`
   (CONJUNCTS_THEN2 SUBST_ALL_TAC STRIP_ASSUME_TAC)) THEN
  EXISTS_TAC `\x. (f:real^N->real)(x - a)` THEN
  ASM_REWRITE_TAC[GSYM IMAGE_UNION] THEN REPEAT CONJ_TAC THENL
   [ALL_TAC;
    ASM_REWRITE_TAC[FORALL_IN_IMAGE; ETA_AX;
                    VECTOR_ARITH `(a + x) - a:real^N = x`];
    W(MP_TAC o PART_MATCH (lhs o rand) SUM_IMAGE o lhs o snd) THEN
    SIMP_TAC[VECTOR_ARITH `a + x:real^N = a + y <=> x = y`] THEN
    ASM_REWRITE_TAC[o_DEF; VECTOR_ADD_SUB; ETA_AX]] THEN
  MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
   `a + vsum {x | x IN s UNION t /\ ~(f x = &0)} (\v:real^N. f v % v)` THEN
  CONJ_TAC THENL
   [AP_TERM_TAC THEN MATCH_MP_TAC VSUM_SUPERSET THEN
    REWRITE_TAC[VECTOR_MUL_EQ_0; SUBSET; IN_ELIM_THM] THEN MESON_TAC[];
    ALL_TAC] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `vsum (IMAGE (\x:real^N. a + x)
                          {x | x IN s UNION t /\ ~(f x = &0)})
                   (\v. f(v - a) % v)` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    CONV_TAC SYM_CONV THEN MATCH_MP_TAC VSUM_SUPERSET THEN
    CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN
    ASM_REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; VECTOR_MUL_EQ_0] THEN
    REWRITE_TAC[VECTOR_ADD_SUB] THEN SET_TAC[]] THEN
  SUBGOAL_THEN `FINITE {x:real^N | x IN s UNION t /\ ~(f x = &0)}`
  ASSUME_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE
     (LAND_CONV o RATOR_CONV o RATOR_CONV) [sum]) THEN
    ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
    REWRITE_TAC[GSYM sum; support; NEUTRAL_REAL_ADD] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_OF_NUM_EQ; ARITH_EQ];
    ALL_TAC] THEN
  W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o rhs o snd) THEN
  ASM_SIMP_TAC[VECTOR_ARITH `a + x:real^N = a + y <=> x = y`] THEN
  DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[o_DEF; VECTOR_ADD_SUB] THEN
  ASM_SIMP_TAC[VECTOR_ADD_LDISTRIB; VSUM_ADD] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[VSUM_RMUL] THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM VECTOR_MUL_LID] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
  MATCH_MP_TAC SUM_SUPERSET THEN SET_TAC[]);;

let AFFSIGN_TRANSLATION = prove
 (`!a:real^N sgn s t.
        affsign sgn (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) =
        IMAGE (\x. a + x) (affsign sgn s t)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL
   [REWRITE_TAC[SUBSET; IN] THEN GEN_TAC THEN
    DISCH_THEN(MP_TAC o SPEC `--a:real^N` o
      MATCH_MP IN_AFFSIGN_TRANSLATION) THEN
    REWRITE_TAC[GSYM IMAGE_o; o_DEF; VECTOR_ARITH `--a + a + x:real^N = x`;
                IMAGE_ID] THEN
    DISCH_TAC THEN REWRITE_TAC[IMAGE; IN_ELIM_THM] THEN
    EXISTS_TAC `--a + x:real^N` THEN ASM_REWRITE_TAC[IN] THEN VECTOR_ARITH_TAC;
    REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN GEN_TAC THEN REWRITE_TAC[IN] THEN
    DISCH_THEN(MP_TAC o SPEC `a:real^N` o MATCH_MP IN_AFFSIGN_TRANSLATION) THEN
    REWRITE_TAC[]]);;

let AFF_GE_TRANSLATION = prove
 (`!a:real^N s t.
        aff_ge (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) =
        IMAGE (\x. a + x) (aff_ge s t)`,
  REWRITE_TAC[aff_ge_def; AFFSIGN_TRANSLATION]);;

let AFF_GT_TRANSLATION = prove
 (`!a:real^N s t.
        aff_gt (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) =
        IMAGE (\x. a + x) (aff_gt s t)`,
  REWRITE_TAC[aff_gt_def; AFFSIGN_TRANSLATION]);;

let AFF_LE_TRANSLATION = prove
 (`!a:real^N s t.
        aff_le (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) =
        IMAGE (\x. a + x) (aff_le s t)`,
  REWRITE_TAC[aff_le_def; AFFSIGN_TRANSLATION]);;

let AFF_LT_TRANSLATION = prove
 (`!a:real^N s t.
        aff_lt (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) =
        IMAGE (\x. a + x) (aff_lt s t)`,
  REWRITE_TAC[aff_lt_def; AFFSIGN_TRANSLATION]);;

add_translation_invariants
  [AFFSIGN_TRANSLATION;
   AFF_GE_TRANSLATION;
   AFF_GT_TRANSLATION;
   AFF_LE_TRANSLATION;
   AFF_LT_TRANSLATION];;

(* ------------------------------------------------------------------------- *)
(* Example 3.                                                                *)
(* ------------------------------------------------------------------------- *)

let NOT_COPLANAR_NOT_COLLINEAR = prove
 (`!v1 v2 v3 w:real^N. ~coplanar {v1, v2, v3, w} ==> ~collinear {v1, v2, v3}`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[COLLINEAR_AFFINE_HULL; coplanar; CONTRAPOS_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^N` THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:real^N` THEN
  REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN STRIP_TAC THEN
  EXISTS_TAC `w:real^N` THEN ASM_SIMP_TAC[HULL_INC; IN_INSERT] THEN
  REPEAT CONJ_TAC THEN
  MATCH_MP_TAC(SET_RULE `!t. t SUBSET s /\ x IN t ==> x IN s`) THEN
  EXISTS_TAC `affine hull {x:real^N,y}` THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HULL_MONO THEN SET_TAC[]);;

let AFFSIGN = prove
 (`affsign sgn s t =
        {y | ?f. y = vsum (s UNION t) (\v. f v % v) /\
                (!w. w IN t ==> sgn(f w)) /\
                sum (s UNION t) f = &1}`,
  REWRITE_TAC[FUN_EQ_THM; affsign; lin_combo; IN_ELIM_THM] THEN
  REWRITE_TAC[IN]);;

let IN_AFFSIGN = prove
 (`y IN affsign sgn s t <=>
        ?u. (!x. x IN (s UNION t) ==> x IN t ==> sgn(u x)) /\
            sum (s UNION t) u = &1 /\
            vsum (s UNION t) (\x. u(x) % x) = y`,
  REWRITE_TAC[AFFSIGN; IN_ELIM_THM] THEN SET_TAC[]);;

let LEMMA = prove
 (`!v1 v2 v3 w:real^3 p.
     plane p /\ {v1, v2, v3} SUBSET p /\
     ~coplanar {v1, v2, v3, w}
     ==> (?n n'. norm(n - n') = &1 /\
                (!x. x IN aff_ge {v1, v2, v3} {w} <=>
                     (?xx h.
                          xx IN affine hull {v1, v2, v3} /\
                          &0 <= h /\
                          x - xx = h % (n - n'))) /\
                (!x y.
                     {x, y} SUBSET affine hull {v1, v2, v3}
                     ==> (n - n') dot (x - y) = &0))`,
  GEOM_HORIZONTAL_PLANE_TAC `p:real^3->bool` THEN
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_ELIM_THM] THEN
  MAP_EVERY (fun t ->
   ASM_CASES_TAC t THENL [ASM_REWRITE_TAC[INSERT_AC; COPLANAR_3]; ALL_TAC])
   [`v1:real^3 = v2`; `v1:real^3 = v3`; `v2:real^3 = v3`;
    `v1:real^3 = w`; `v2:real^3 = w`; `v3:real^3 = w`] THEN
  STRIP_TAC THEN
  ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
  EXISTS_TAC `vec 0:real^3` THEN REWRITE_TAC[VECTOR_SUB_RZERO] THEN
  SUBGOAL_THEN `~((w:real^3)$3 = &0)` ASSUME_TAC THENL
   [DISCH_TAC THEN UNDISCH_TAC `~coplanar{v1:real^3,v2,v3,w}` THEN
    REWRITE_TAC[coplanar] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [plane]) THEN
    REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
    DISCH_THEN(SUBST1_TAC o SYM o CONJUNCT2) THEN
    ASM_REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_ELIM_THM];
    ALL_TAC] THEN
  SUBGOAL_THEN `(vec 0:real^3) IN affine hull {v1,v2,v3}` ASSUME_TAC THENL
   [MP_TAC(ISPEC `{v1:real^3,v2,v3}` DEPENDENT_BIGGERSET_GENERAL) THEN
    ANTS_TAC THENL
     [DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[GT] THEN
      MATCH_MP_TAC LET_TRANS THEN EXISTS_TAC `dim {z:real^3 | z$3 = &0}` THEN
      CONJ_TAC THENL [MATCH_MP_TAC DIM_SUBSET THEN ASM SET_TAC[]; ALL_TAC] THEN
      SIMP_TAC[DIM_SPECIAL_HYPERPLANE; DIMINDEX_3; ARITH] THEN
      REWRITE_TAC[GSYM NOT_LE] THEN DISCH_TAC THEN
      FIRST_ASSUM(MP_TAC o MATCH_MP NOT_COPLANAR_NOT_COLLINEAR) THEN
      REWRITE_TAC[] THEN MATCH_MP_TAC COLLINEAR_SMALL THEN
      ASM_REWRITE_TAC[FINITE_INSERT; FINITE_RULES];
      ALL_TAC] THEN
    REWRITE_TAC[DEPENDENT_AFFINE_DEPENDENT_CASES] THEN
    ASM_MESON_TAC[AFFINE_DEPENDENT_IMP_COLLINEAR_3;
                  NOT_COPLANAR_NOT_COLLINEAR];
    ALL_TAC] THEN
  SUBGOAL_THEN `affine hull {v1,v2,v3} = {z:real^3 | z$3 = &0}`
  ASSUME_TAC THENL
   [ASM_SIMP_TAC[AFFINE_HULL_EQ_SPAN] THEN
    MATCH_MP_TAC(SET_RULE
     `!s. t SUBSET u /\ s SUBSET t /\ u SUBSET s ==> t = u`) THEN
    EXISTS_TAC `span {x - v1:real^3 | x IN {v2,v3}}` THEN CONJ_TAC THENL
     [REWRITE_TAC[SUBSET] THEN MATCH_MP_TAC SPAN_INDUCT THEN
      REWRITE_TAC[SET_RULE `(\x. x IN s) = s`] THEN
      SIMP_TAC[SUBSPACE_SPECIAL_HYPERPLANE; DIMINDEX_3; ARITH] THEN
      ASM_SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM];
      ALL_TAC] THEN
    CONJ_TAC THENL
     [GEN_REWRITE_TAC RAND_CONV [GSYM SPAN_SPAN] THEN
      MATCH_MP_TAC SPAN_MONO THEN
      REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
      MESON_TAC[SPAN_SUB; SPAN_INC; IN_INSERT; SUBSET];
      ALL_TAC] THEN
    MATCH_MP_TAC CARD_GE_DIM_INDEPENDENT THEN REPEAT CONJ_TAC THENL
     [REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_ELIM_THM;
                  FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
      ASM_SIMP_TAC[VECTOR_SUB_COMPONENT; DIMINDEX_3; ARITH; REAL_SUB_REFL];
      REWRITE_TAC[independent] THEN
      DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
        DEPENDENT_IMP_AFFINE_DEPENDENT)) THEN
      ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
      ASM_MESON_TAC[AFFINE_DEPENDENT_IMP_COLLINEAR_3;
                    NOT_COPLANAR_NOT_COLLINEAR];
      SIMP_TAC[DIM_SPECIAL_HYPERPLANE; DIMINDEX_3; ARITH] THEN
      ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN
      SIMP_TAC[CARD_IMAGE_INJ; FINITE_INSERT; FINITE_RULES;
               VECTOR_ARITH `x - a:real^N = y - a <=> x = y`] THEN
      ASM_SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_RULES;
                   IN_INSERT; NOT_IN_EMPTY; ARITH]];
    ALL_TAC] THEN
  FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH
   `~(x = &0) ==> &0 < x \/ &0 < --x`))
  THENL
   [EXISTS_TAC `basis 3:real^3`; EXISTS_TAC `--(basis 3):real^3`] THEN
  ASM_SIMP_TAC[NORM_BASIS; DIMINDEX_3; ARITH; IN_ELIM_THM; DOT_BASIS;
               NORM_NEG; DOT_LNEG; DIMINDEX_3; ARITH; VECTOR_SUB_COMPONENT;
               REAL_SUB_REFL; REAL_NEG_0] THEN
  X_GEN_TAC `x:real^3` THEN
  REWRITE_TAC[aff_ge_def; IN_AFFSIGN; sgn_ge] THEN
  REWRITE_TAC[SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`] THEN
  REWRITE_TAC[SET_RULE `x IN {a} <=> a = x`] THEN
  SIMP_TAC[AFFINE_HULL_FINITE_STEP_GEN; REAL_LE_ADD; FINITE_INSERT;
           CONJUNCT1 FINITE_RULES; REAL_ARITH `&0 <= x / &2 <=> &0 <= x`;
           RIGHT_EXISTS_AND_THM] THEN
  ASM_REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
  REWRITE_TAC[REAL_ARITH `x - y:real = z <=> x = y + z`] THEN
  REWRITE_TAC[VECTOR_ARITH `x - y:real^3 = z <=> x = y + z`] THEN
  REWRITE_TAC[VECTOR_ADD_RID; REAL_ADD_RID] THEN
  REWRITE_TAC[REAL_ARITH `&1 = x + y <=> x + y = &1`] THEN
  EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL
   [MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `c:real`; `h:real`] THEN
    STRIP_TAC THEN
    EXISTS_TAC `a % v1 + b % v2 + c % v3 +
                h % ((w:real^3)$1 % basis 1 + w$2 % basis 2):real^3` THEN
    EXISTS_TAC `h * (w:real^3)$3` THEN
    ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE] THEN
    ASM_SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; BASIS_COMPONENT;
                 DIMINDEX_3; ARITH; REAL_MUL_RZERO; REAL_ADD_RID] THEN
    REWRITE_TAC[GSYM VECTOR_MUL_ASSOC; GSYM VECTOR_ADD_LDISTRIB;
                GSYM VECTOR_ADD_ASSOC] THEN
    REPLICATE_TAC 4 AP_TERM_TAC THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM BASIS_EXPANSION] THEN
    REWRITE_TAC[DIMINDEX_3] THEN CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN
    SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; CONJUNCT1 FINITE_RULES] THEN
    REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH_EQ; VECTOR_ADD_RID];

    MAP_EVERY X_GEN_TAC [`y:real^3`; `h:real`] THEN STRIP_TAC THEN
    UNDISCH_TAC `(vec 0:real^3) IN affine hull {v1,v2,v3}` THEN
    SUBGOAL_THEN `(y - h / (w:real^3)$3 % (w$1 % basis 1 + w$2 % basis 2))
                  IN affine hull {v1:real^3,v2,v3}` MP_TAC THENL
     [ASM_SIMP_TAC[IN_ELIM_THM; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT;
            VECTOR_SUB_COMPONENT; BASIS_COMPONENT; ARITH; DIMINDEX_3] THEN
      REAL_ARITH_TAC;
      ALL_TAC] THEN
    SIMP_TAC[AFFINE_HULL_FINITE; FINITE_INSERT; CONJUNCT1 FINITE_RULES;
             AFFINE_HULL_FINITE_STEP; IN_ELIM_THM] THEN
    REWRITE_TAC[REAL_ARITH `x - y:real = z <=> x = y + z`] THEN
    REWRITE_TAC[VECTOR_ARITH `x - y:real^3 = z <=> x = y + z`] THEN
    REWRITE_TAC[VECTOR_ADD_RID; REAL_ADD_RID; LEFT_IMP_EXISTS_THM] THEN
    REWRITE_TAC[REAL_ARITH `&1 = x + y <=> x + y = &1`] THEN
    MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `c:real`] THEN STRIP_TAC THEN
    MAP_EVERY X_GEN_TAC [`a':real`; `b':real`; `c':real`] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o SYM)) THEN
    MAP_EVERY EXISTS_TAC
     [`a + (&1 - (a + b + c + h / (w:real^3)$3)) * a'`;
      `b + (&1 - (a + b + c + h / (w:real^3)$3)) * b'`;
      `c + (&1 - (a + b + c + h / (w:real^3)$3)) * c'`; `h / (w:real^3)$3`] THEN
    ASM_REWRITE_TAC[REAL_ARITH
     `(a + x * a') + (b + x * b') + (c + x * c') + h:real =
      (a + b + c + h) + x * (a' + b' + c')`] THEN
    ASM_SIMP_TAC[REAL_LE_DIV; REAL_LT_IMP_LE] THEN
    CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[VECTOR_ARITH
     `(a + x * a') % v1 + (b + x * b') % v2 + (c + x * c') % v3 + h:real^N =
      (a % v1 + b % v2 + c % v3) + x % (a' % v1 + b' % v2 + c' % v3) + h`] THEN
    ASM_REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN
    REWRITE_TAC[VECTOR_ARITH `(x + a) + y:real^3 = a + z <=> x + y = z`] THEN
    GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM BASIS_EXPANSION] THEN
    REWRITE_TAC[DIMINDEX_3] THEN CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN
    SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; CONJUNCT1 FINITE_RULES] THEN
    REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH_EQ; VECTOR_ADD_RID] THEN
    REWRITE_TAC[VECTOR_ADD_LDISTRIB; GSYM VECTOR_ADD_ASSOC] THEN
    ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_DIV_RMUL; REAL_LT_IMP_NZ];

    MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `c:real`; `h:real`] THEN
    STRIP_TAC THEN
    EXISTS_TAC `a % v1 + b % v2 + c % v3 +
                h % ((w:real^3)$1 % basis 1 + w$2 % basis 2):real^3` THEN
    EXISTS_TAC `h * --((w:real^3)$3)` THEN
    ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE] THEN
    REWRITE_TAC[VECTOR_ARITH `(x * --y) % --z:real^N = (x * y) % z`] THEN
    ASM_SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; BASIS_COMPONENT;
                 DIMINDEX_3; ARITH; REAL_MUL_RZERO; REAL_ADD_RID] THEN
    REWRITE_TAC[GSYM VECTOR_MUL_ASSOC; GSYM VECTOR_ADD_LDISTRIB;
                GSYM VECTOR_ADD_ASSOC] THEN
    REPLICATE_TAC 4 AP_TERM_TAC THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM BASIS_EXPANSION] THEN
    REWRITE_TAC[DIMINDEX_3] THEN CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN
    SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; CONJUNCT1 FINITE_RULES] THEN
    REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH_EQ; VECTOR_ADD_RID];

    MAP_EVERY X_GEN_TAC [`y:real^3`; `h:real`] THEN STRIP_TAC THEN
    UNDISCH_TAC `(vec 0:real^3) IN affine hull {v1,v2,v3}` THEN
    SUBGOAL_THEN `(y - h / --((w:real^3)$3) % (w$1 % basis 1 + w$2 % basis 2))
                  IN affine hull {v1:real^3,v2,v3}` MP_TAC THENL
     [ASM_SIMP_TAC[IN_ELIM_THM; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT;
            VECTOR_SUB_COMPONENT; BASIS_COMPONENT; ARITH; DIMINDEX_3] THEN
      REAL_ARITH_TAC;
      ALL_TAC] THEN
    SIMP_TAC[AFFINE_HULL_FINITE; FINITE_INSERT; CONJUNCT1 FINITE_RULES;
             AFFINE_HULL_FINITE_STEP; IN_ELIM_THM] THEN
    REWRITE_TAC[REAL_ARITH `x - y:real = z <=> x = y + z`] THEN
    REWRITE_TAC[VECTOR_ARITH `x - y:real^3 = z <=> x = y + z`] THEN
    REWRITE_TAC[VECTOR_ADD_RID; REAL_ADD_RID; LEFT_IMP_EXISTS_THM] THEN
    REWRITE_TAC[REAL_ARITH `&1 = x + y <=> x + y = &1`] THEN
    MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `c:real`] THEN STRIP_TAC THEN
    MAP_EVERY X_GEN_TAC [`a':real`; `b':real`; `c':real`] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o SYM)) THEN
    MAP_EVERY EXISTS_TAC
     [`a + (&1 - (a + b + c + h / --((w:real^3)$3))) * a'`;
      `b + (&1 - (a + b + c + h / --((w:real^3)$3))) * b'`;
      `c + (&1 - (a + b + c + h / --((w:real^3)$3))) * c'`;
      `h / --((w:real^3)$3)`] THEN
    ASM_REWRITE_TAC[REAL_ARITH
     `(a + x * a') + (b + x * b') + (c + x * c') + h:real =
      (a + b + c + h) + x * (a' + b' + c')`] THEN
    ASM_SIMP_TAC[REAL_LE_DIV; REAL_LT_IMP_LE] THEN
    CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[VECTOR_ARITH
     `(a + x * a') % v1 + (b + x * b') % v2 + (c + x * c') % v3 + h:real^N =
      (a % v1 + b % v2 + c % v3) + x % (a' % v1 + b' % v2 + c' % v3) + h`] THEN
    ASM_REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN
    REWRITE_TAC[VECTOR_ARITH `(x + a) + y:real^3 = a + z <=> x + y = z`] THEN
    GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM BASIS_EXPANSION] THEN
    REWRITE_TAC[DIMINDEX_3] THEN CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN
    SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; CONJUNCT1 FINITE_RULES] THEN
    REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH_EQ; VECTOR_ADD_RID] THEN
    REWRITE_TAC[VECTOR_ADD_LDISTRIB; GSYM VECTOR_ADD_ASSOC] THEN
    REWRITE_TAC[real_div; REAL_INV_NEG; REAL_MUL_RNEG] THEN
    REWRITE_TAC[VECTOR_MUL_RNEG; VECTOR_MUL_LNEG; GSYM real_div] THEN
    ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_DIV_RMUL; REAL_LT_IMP_NZ]]);;

let THEOREM = prove
 (`!v1 v2 v3 w:real^3.
     ~coplanar {v1, v2, v3, w}
     ==> (?nor. norm nor = &1 /\
                (!x. x IN aff_ge {v1, v2, v3} {w} <=>
                     (?xx h.
                          xx IN affine hull {v1, v2, v3} /\
                          &0 <= h /\
                          x = xx + h % nor)) /\
                (!x y.
                     {x, y} SUBSET affine hull {v1, v2, v3}
                     ==> nor dot (x - y) = &0))`,
  REPEAT STRIP_TAC THEN
  ONCE_REWRITE_TAC[VECTOR_ARITH `x:real^3 = y + h % z <=> x - y = h % z`] THEN
  MATCH_MP_TAC(MESON[] `(?a b. P(a - b)) ==> ?a:real^3. P a`) THEN
  MATCH_MP_TAC LEMMA THEN ASM_REWRITE_TAC[] THEN
  EXISTS_TAC `affine hull {v1:real^3,v2,v3}` THEN
  REWRITE_TAC[HULL_SUBSET; plane] THEN
  ASM_MESON_TAC[NOT_COPLANAR_NOT_COLLINEAR]);;