File: mk_comp_unity.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (551 lines) | stat: -rw-r--r-- 17,054 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
(*---------------------------------------------------------------------------*)
(*
   File:         mk_comp_unity.ml

   Description:  This file proves the unity compositionality theorems and
                 corrollaries valid.

   Author:       (c) Copyright 1989-2008 by Flemming Andersen
   Date:         December 1, 1989
   Last Update:  December 30, 2007
*)
(*---------------------------------------------------------------------------*)

(*---------------------------------------------------------------------------*)
(*
  Theorems
*)
(*---------------------------------------------------------------------------*)

(*
   Prove:
   !p q FPr GPr.
      (p UNLESS q) (APPEND FPr GPr) ==> (p UNLESS q) FPr /\ (p UNLESS q) GPr
*)
let COMP_UNLESS_thm1_lemma_1 = TAC_PROOF
  (([],
   (`!(p:'a->bool) q FPr GPr.
      (p UNLESS q) (APPEND FPr GPr) ==> (p UNLESS q) FPr /\ (p UNLESS q) GPr`)),
   REPEAT GEN_TAC THEN
   SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN
   SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN
   LIST_INDUCT_TAC THENL
     [
      REWRITE_TAC [UNLESS;APPEND]
     ;
      REWRITE_TAC [APPEND] THEN
      REWRITE_TAC [UNLESS] THEN
      REPEAT STRIP_TAC THENL
        [
         ASM_REWRITE_TAC []
        ;
         RES_TAC
        ;
         RES_TAC]]);;

(*
   Prove:
     !p q FPr GPr.
     (p UNLESS q) FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr)
*)
let COMP_UNLESS_thm1_lemma_2 = TAC_PROOF
  (([],
   (`!(p:'a->bool) q FPr GPr.
     (p UNLESS q) FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr)`)),
   REPEAT GEN_TAC THEN
   SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN
   SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN
   LIST_INDUCT_TAC THENL
     [
      REWRITE_TAC [UNLESS;APPEND]
     ;
      REWRITE_TAC [APPEND] THEN
      REWRITE_TAC [UNLESS] THEN
      REPEAT STRIP_TAC THENL
        [
         ASM_REWRITE_TAC []
        ;
         RES_TAC
        ]]);;


(*
   Prove:
     !p q FPr GPr.
      (p UNLESS q) (APPEND FPr GPr) = (p UNLESS q) FPr /\ (p UNLESS q) GPr
*)
let COMP_UNLESS_thm1 = prove_thm
  ("COMP_UNLESS_thm1",
   (`!(p:'a->bool) q FPr GPr.
      (p UNLESS q) (APPEND FPr GPr) <=> (p UNLESS q) FPr /\ (p UNLESS q) GPr`),
   REPEAT GEN_TAC THEN
   STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
                       (SPEC_ALL COMP_UNLESS_thm1_lemma_1)
                       (SPEC_ALL COMP_UNLESS_thm1_lemma_2)));;


(*
   Prove:
   !p q FPr GPr.
    (p ENSURES q) (APPEND FPr GPr) ==> (p ENSURES q) FPr /\ (p UNLESS q) GPr \/
                                       (p ENSURES q) GPr /\ (p UNLESS q) FPr
*)
let COMP_ENSURES_thm1_lemma_1 = TAC_PROOF
  (([],
   (`!(p:'a->bool) q FPr GPr.
    (p ENSURES q) (APPEND FPr GPr) ==> (p ENSURES q) FPr /\ (p UNLESS q) GPr \/
                                       (p ENSURES q) GPr /\ (p UNLESS q) FPr`)),
   REPEAT GEN_TAC THEN
   SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN
   SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN
   LIST_INDUCT_TAC THENL
     [
      REWRITE_TAC [ENSURES;EXIST_TRANSITION;UNLESS;APPEND]
     ;
      GEN_TAC THEN
      REWRITE_TAC [ENSURES;EXIST_TRANSITION;UNLESS;APPEND] THEN
      REPEAT STRIP_TAC THEN
      ASM_REWRITE_TAC [] THENL
        [
         DISJ1_TAC THEN
         ASM_REWRITE_TAC [] THEN
         ASM_REWRITE_TAC [GEN_ALL (SYM (SPEC_ALL COMP_UNLESS_thm1))]
        ;
         ASSUME_TAC (UNDISCH_ALL (SPECL
           [(`((p:'a->bool) UNLESS q)(APPEND t GPr)`);
            (`((p:'a->bool) EXIST_TRANSITION q)(APPEND t GPr)`)]
            AND_INTRO_THM)) THEN
         UNDISCH_TAC (`((p:'a->bool) UNLESS  q)(APPEND t GPr) /\
                       (p EXIST_TRANSITION q)(APPEND t GPr)`) THEN
         REWRITE_TAC [SPECL [(`q:'a->bool`); (`p:'a->bool`); 
			     (`APPEND (t:('a->'a)list) GPr`)]
                             (GEN_ALL (SYM (SPEC_ALL ENSURES)))] THEN
         DISCH_TAC THEN
         RES_TAC THENL
           [
            UNDISCH_TAC (`((p:'a->bool) ENSURES q) t`) THEN
            REWRITE_TAC [ENSURES] THEN
            STRIP_TAC THEN
            ASM_REWRITE_TAC []
           ;
            UNDISCH_TAC (`((p:'a->bool) ENSURES q) GPr`) THEN
            REWRITE_TAC [ENSURES] THEN
            STRIP_TAC THEN
            ASM_REWRITE_TAC []
           ]]]);;

(*
   Prove:
    !p q FPr GPr.
    (p ENSURES q) FPr /\ (p UNLESS q) GPr \/
    (p ENSURES q) GPr /\ (p UNLESS q) FPr ==> (p ENSURES q) (APPEND FPr GPr)
*)
let COMP_ENSURES_thm1_lemma_2 = TAC_PROOF
  (([],
    `!(p:'a->bool) q FPr GPr.
    ((p ENSURES q) FPr /\ (p UNLESS q) GPr \/
     (p ENSURES q) GPr /\ (p UNLESS q) FPr)
           ==> (p ENSURES q) (APPEND FPr GPr)`),
   GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [ENSURES;EXIST_TRANSITION;UNLESS;APPEND] THEN
   REPEAT STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [COMP_UNLESS_thm1;ENSURES;EXIST_TRANSITION;
                    UNLESS;APPEND] THEN
   REWRITE_TAC [UNDISCH_ALL (ONCE_REWRITE_RULE [EXIST_TRANSITION_thm12]
        (SPEC_ALL EXIST_TRANSITION_thm8))] THENL
   [
     REWRITE_TAC
       [ONCE_REWRITE_RULE [EXIST_TRANSITION_thm12] (UNDISCH_ALL (SPECL
          [`p:'a->bool`;`q:'a->bool`;`t:('a->'a)list`;`GPr:('a->'a)list`]
             EXIST_TRANSITION_thm8))]
   ;
     REWRITE_TAC
       [UNDISCH_ALL
          (SPECL [`p:'a->bool`;`q:'a->bool`;`GPr:('a->'a)list`;`t:('a->'a)list`]
             EXIST_TRANSITION_thm8)]
   ]);;

(*
   Prove:
    !p q FPr GPr.
      (p ENSURES q) (APPEND FPr GPr) = (p ENSURES q) FPr /\ (p UNLESS q) GPr \/
                                       (p ENSURES q) GPr /\ (p UNLESS q) FPr
*)
let COMP_ENSURES_thm1 = prove_thm
  ("COMP_ENSURES_thm1",
   (`!(p:'a->bool) q FPr GPr.
      (p ENSURES q) (APPEND FPr GPr) <=>
         ((p ENSURES q) FPr /\ (p UNLESS q) GPr \/
          (p ENSURES q) GPr /\ (p UNLESS q) FPr)`),
   REPEAT GEN_TAC THEN
   STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
                       (SPEC_ALL COMP_ENSURES_thm1_lemma_1)
                       (SPEC_ALL COMP_ENSURES_thm1_lemma_2)));;

(*
   Prove:
    |- !p q FPr GPr.
         (p ENSURES q)FPr /\ (p UNLESS q)GPr ==> (p ENSURES q)(APPEND FPr GPr)
*)
let COMP_ENSURES_cor0 = prove_thm
  ("COMP_ENSURES_cor0",
   (`!(p:'a->bool) q FPr GPr.
      (p ENSURES q) FPr /\ (p UNLESS q) GPr
         ==> (p ENSURES q) (APPEND FPr GPr)`),
   REPEAT STRIP_TAC THEN
   ACCEPT_TAC (REWRITE_RULE
    [ASSUME (`((p:'a->bool) ENSURES q)FPr`);ASSUME (`((p:'a->bool) UNLESS q)GPr`)]
    (SPEC_ALL COMP_ENSURES_thm1)));;


(*
   Prove:
    |- !p q FPr GPr.
         (p ENSURES q)GPr /\ (p UNLESS q)FPr ==> (p ENSURES q)(APPEND FPr GPr)
*)
let COMP_ENSURES_cor1 = prove_thm
  ("COMP_ENSURES_cor1",
   (`!(p:'a->bool) q FPr GPr.
      (p ENSURES q) GPr /\ (p UNLESS q) FPr
         ==> (p ENSURES q) (APPEND FPr GPr)`),
   REPEAT STRIP_TAC THEN
   ACCEPT_TAC (REWRITE_RULE
    [ASSUME (`((p:'a->bool) ENSURES q)GPr`);ASSUME (`((p:'a->bool) UNLESS q)FPr`)]
    (SPEC_ALL COMP_ENSURES_thm1)));;


(*
   Prove:
     !p q FPr GPr.
      (p INVARIANT q) (APPEND FPr GPr) =
          (p INVARIANT q) FPr /\ (p INVARIANT q) GPr
*)
let COMP_UNITY_cor0 = prove_thm
  ("COMP_UNITY_cor0",
   (`!(p0:'a->bool) p FPr GPr.
       (p INVARIANT (p0, APPEND FPr GPr)) =
          (p INVARIANT (p0,FPr) /\ p INVARIANT (p0,GPr))`),
   REWRITE_TAC [INVARIANT;STABLE;COMP_UNLESS_thm1] THEN
   REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN
   RES_TAC THEN ASM_REWRITE_TAC []);;


(*
   Prove:
        !p FPr GPr.
           p STABLE (APPEND FPr GPr) = p STABLE FPr /\ p STABLE GPr
*)
let COMP_UNITY_cor1 = prove_thm
  ("COMP_UNITY_cor1",
   (`!(p:'a->bool) FPr GPr.
           (p STABLE (APPEND FPr GPr)) = (p STABLE FPr /\ p STABLE GPr)`),
   REWRITE_TAC [STABLE;COMP_UNLESS_thm1]);;


(*
   Prove:
        !p q FPr GPr.
         (p UNLESS q) FPr /\ p STABLE GPr ==>(p UNLESS q) (APPEND FPr GPr)
*)
let COMP_UNITY_cor2 = prove_thm
  ("COMP_UNITY_cor2",
   (`!(p:'a->bool) q FPr GPr.
         (p UNLESS q) FPr /\ p STABLE GPr ==>(p UNLESS q) (APPEND FPr GPr)`),
   REWRITE_TAC [STABLE;COMP_UNLESS_thm1] THEN
   REPEAT STRIP_TAC THENL
     [
      ASM_REWRITE_TAC []
     ;
      UNDISCH_TAC (`((p:'a->bool) UNLESS False)GPr`) THEN
      SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN
      LIST_INDUCT_TAC THENL
        [
         REWRITE_TAC [UNLESS]
        ;
         REWRITE_TAC [UNLESS;UNLESS_STMT] THEN
         CONV_TAC (DEPTH_CONV BETA_CONV) THEN
         REPEAT STRIP_TAC THENL
           [
            RES_TAC THEN
            UNDISCH_TAC
               (`~(False:'a->bool) s ==> (p:'a->bool)(h s) \/ False(h s)`) THEN
            REWRITE_TAC [FALSE_def;NOT_CLAUSES;OR_INTRO_THM1]
           ;
            RES_TAC]]]);;


(*
   Prove:
     !p0 p FPr GPr.
       p INVARIANT (p0; FPr) /\ p STABLE GPr
            ==> p INVARIANT (p0; (APPEND FPr GPr))
*)
let COMP_UNITY_cor3 = prove_thm
  ("COMP_UNITY_cor3",
   (`!(p0:'a->bool) p FPr GPr.
       p INVARIANT (p0, FPr) /\ p STABLE GPr ==>
                    p INVARIANT (p0, (APPEND FPr GPr))`),
   REWRITE_TAC [INVARIANT;STABLE;COMP_UNLESS_thm1] THEN
   REPEAT STRIP_TAC THENL
     [
      RES_TAC
     ;
      ASM_REWRITE_TAC []
     ;
      ASM_REWRITE_TAC []]);;


(*
   Prove:
       !p q FPr GPr.
        (p ENSURES q) FPr /\ p STABLE GPr ==> (p ENSURES q) (APPEND FPr GPr)
*)
let COMP_UNITY_cor4 = prove_thm
  ("COMP_UNITY_cor4",
   (`!(p:'a->bool) q FPr GPr.
        (p ENSURES q) FPr /\ p STABLE GPr ==> (p ENSURES q) (APPEND FPr GPr)`),
   REPEAT STRIP_TAC THEN
   ASSUME_TAC (UNDISCH_ALL (SPECL
        [(`p:'a->bool`);(`q:'a->bool`);(`FPr:('a->'a)list`)] ENSURES_cor2)) THEN
   ASSUME_TAC (UNDISCH_ALL (SPECL
        [(`((p:'a->bool) UNLESS q)FPr`);(`(p:'a->bool) STABLE GPr`)]
         AND_INTRO_THM)) THEN
   ASSUME_TAC (UNDISCH_ALL (SPECL
        [(`p:'a->bool`);(`q:'a->bool`);(`FPr:('a->'a)list`);(`GPr:('a->'a)list`)]
         COMP_UNITY_cor2)) THEN
   REWRITE_TAC [ENSURES] THEN
   ASM_REWRITE_TAC [] THEN
   UNDISCH_TAC (`((p:'a->bool) ENSURES q)FPr`) THEN
   REWRITE_TAC [ENSURES] THEN
   STRIP_TAC THEN
   UNDISCH_TAC (`((p:'a->bool) EXIST_TRANSITION q)FPr`) THEN
   SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN
   LIST_INDUCT_TAC THENL
     [
      REWRITE_TAC [EXIST_TRANSITION]
     ;
      REWRITE_TAC [APPEND;EXIST_TRANSITION] THEN
      REPEAT STRIP_TAC THENL
        [
         ASM_REWRITE_TAC []
        ;
         RES_TAC THEN
         ASM_REWRITE_TAC []]]);;

(*
   Prove:
   !p q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) GPr
*)
let COMP_UNITY_cor5 = prove_thm
  ("COMP_UNITY_cor5",
   (`!(p:'a->bool) q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) GPr`),
   REWRITE_TAC [COMP_UNLESS_thm1] THEN
   REPEAT STRIP_TAC);;

(*
   Prove:
    !p q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) FPr
*)
let COMP_UNITY_cor6 = prove_thm
  ("COMP_UNITY_cor6",
   (`!(p:'a->bool) q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) FPr`),
   REWRITE_TAC [COMP_UNLESS_thm1] THEN
   REPEAT STRIP_TAC);;

(*
   Prove:
    !p q st FPr. (p UNLESS q)(CONS st FPr) ==> (p UNLESS q) FPr
*)
let COMP_UNITY_cor7 = prove_thm
  ("COMP_UNITY_cor7",
   (`!(p:'a->bool) q st FPr. (p UNLESS q)(CONS st FPr) ==> (p UNLESS q) FPr`),
   REWRITE_TAC [UNLESS] THEN
   REPEAT STRIP_TAC);;

(*
   Prove:
        !p FPr GPr.
           (p ENSURES (NotX  p)) FPr ==> (p ENSURES (NotX  p)) (APPEND FPr GPr)
*)
let COMP_UNITY_cor8 = prove_thm
  ("COMP_UNITY_cor8",
   (`!(p:'a->bool) FPr GPr.
        (p ENSURES (Not p)) FPr ==> (p ENSURES (Not p)) (APPEND FPr GPr)`),
   GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [APPEND;ENSURES;UNLESS;EXIST_TRANSITION] THEN
   REPEAT STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [UNLESS_thm2] THEN
   REWRITE_TAC [UNDISCH_ALL (ONCE_REWRITE_RULE [EXIST_TRANSITION_thm12] (SPECL
     [`p:'a->bool`;`Not (p:'a->bool)`;`t:('a->'a)list`;`GPr:('a->'a)list`]
       EXIST_TRANSITION_thm8))]);;

(*
   Prove:
        !p q FPr GPr.
           p STABLE FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr)
*)
let COMP_UNITY_cor9 = prove_thm
  ("COMP_UNITY_cor9",
   (`!(p:'a->bool) q FPr GPr.
         p STABLE FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr)`),
   REWRITE_TAC [STABLE;COMP_UNLESS_thm1] THEN
   REPEAT STRIP_TAC THENL
     [
      UNDISCH_TAC (`((p:'a->bool) UNLESS False)FPr`) THEN
      SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN
      LIST_INDUCT_TAC THENL
        [
         REWRITE_TAC [UNLESS]
        ;
         REWRITE_TAC [UNLESS;UNLESS_STMT] THEN
         BETA_TAC THEN
         REPEAT STRIP_TAC THENL
           [
            RES_TAC THEN
            UNDISCH_TAC
               (`~(False:'a->bool) s ==> (p:'a->bool)(h s) \/ False(h s)`) THEN
            REWRITE_TAC [FALSE_def;NOT_CLAUSES;OR_INTRO_THM1]
           ;
            RES_TAC
           ]
        ]
     ;
      ASM_REWRITE_TAC []
     ]);;


(*
   Prove:
    !p q FPr GPr.
         (p UNLESS q) (APPEND FPr GPr) = (p UNLESS q) (APPEND GPr FPr)
*)
let COMP_UNITY_cor10 = prove_thm
  ("COMP_UNITY_cor10",
   (`!(p:'a->bool) q FPr GPr.
         (p UNLESS q) (APPEND FPr GPr) = (p UNLESS q) (APPEND GPr FPr)`),
   REPEAT GEN_TAC THEN
   REWRITE_TAC [COMP_UNLESS_thm1] THEN
   EQ_TAC THEN
   REPEAT STRIP_TAC THEN
   ASM_REWRITE_TAC []);;

(*
   Prove:
    !p q FPr GPr.
         (p ENSURES q) (APPEND FPr GPr) = (p ENSURES q) (APPEND GPr FPr)
*)
let COMP_UNITY_cor11 = prove_thm
  ("COMP_UNITY_cor11",
   (`!(p:'a->bool) q FPr GPr.
         (p ENSURES q) (APPEND FPr GPr) = (p ENSURES q) (APPEND GPr FPr)`),
   REPEAT GEN_TAC THEN
   REWRITE_TAC [COMP_ENSURES_thm1] THEN
   EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;

(*
   Prove:
    !p q FPr GPr.
      (p LEADSTO q) (APPEND FPr GPr) = (p LEADSTO q) (APPEND GPr FPr)
*)

(*
  |- (!p' q'.
     ((p' ENSURES q')(APPEND Pr1 Pr2) ==> (p' LEADSTO q')(APPEND Pr2 Pr1)) /\
     (!r.
       (p' LEADSTO r)(APPEND Pr1 Pr2) /\ (p' LEADSTO r)(APPEND Pr2 Pr1) /\
       (r LEADSTO q')(APPEND Pr1 Pr2) /\ (r LEADSTO q')(APPEND Pr2 Pr1) ==>
       (p' LEADSTO q')(APPEND Pr1 Pr2) ==> (p' LEADSTO q')(APPEND Pr2 Pr1)) /\
     (!P.
       (!i. ((P i) LEADSTO q')(APPEND Pr1 Pr2)) /\
       (!i. ((P i) LEADSTO q')(APPEND Pr2 Pr1)) ==>
          (($ExistsX  P) LEADSTO q')(APPEND Pr1 Pr2) ==>
          (($ExistsX  P) LEADSTO q')(APPEND Pr2 Pr1)))
     ==>
       (p LEADSTO q)(APPEND Pr1 Pr2) ==> (p LEADSTO q)(APPEND Pr2 Pr1)
*)
let COMP_UNITY_cor12_lemma00 = (BETA_RULE (SPECL
  [(`\(p:'a->bool) q. (p LEADSTO q)(APPEND Pr2 Pr1)`);
   (`p:'a->bool`);(`q:'a->bool`);(`APPEND (Pr1:('a->'a)list) Pr2`)] LEADSTO_thm37));;

let COMP_UNITY_cor12_lemma01 = TAC_PROOF
  (([],
   (`!(p':'a->bool) q' Pr1 Pr2.
      (p' ENSURES q')(APPEND Pr1 Pr2) ==> (p' LEADSTO q')(APPEND Pr2 Pr1)`)),
   REPEAT STRIP_TAC THEN
   ASSUME_TAC (ONCE_REWRITE_RULE [COMP_UNITY_cor11] (ASSUME
    (`((p':'a->bool) ENSURES q')(APPEND Pr1 Pr2)`))) THEN
   IMP_RES_TAC LEADSTO_thm0);;

let COMP_UNITY_cor12_lemma02 = TAC_PROOF
  (([],
   (`!(p':'a->bool) q' Pr1 Pr2.
     (!r.
       (p' LEADSTO r)(APPEND Pr1 Pr2) /\ (p' LEADSTO r)(APPEND Pr2 Pr1) /\
       (r LEADSTO q')(APPEND Pr1 Pr2) /\ (r LEADSTO q')(APPEND Pr2 Pr1)
          ==> (p' LEADSTO q')(APPEND Pr2 Pr1))`)),
   REPEAT STRIP_TAC THEN
   IMP_RES_TAC LEADSTO_thm1);;

let COMP_UNITY_cor12_lemma03 = TAC_PROOF
  (([],
   (`!(p':'a->bool) q' Pr1 Pr2.
     (!P:('a->bool)->bool.
       (!p''. p'' In P ==> (p'' LEADSTO q')(APPEND Pr1 Pr2)) /\
       (!p''. p'' In P ==> (p'' LEADSTO q')(APPEND Pr2 Pr1))
            ==> ((LUB P) LEADSTO q')(APPEND Pr2 Pr1))`)),
   REPEAT STRIP_TAC THEN
   IMP_RES_TAC LEADSTO_thm3a);;

(*
  |- !p q Pr1 Pr2.
       (p LEADSTO q)(APPEND Pr1 Pr2) ==> (p LEADSTO q)(APPEND Pr2 Pr1)
*)
let COMP_UNITY_cor12_lemma04 = (GEN_ALL (REWRITE_RULE
   [COMP_UNITY_cor12_lemma01;COMP_UNITY_cor12_lemma02;COMP_UNITY_cor12_lemma03]
    (SPEC_ALL COMP_UNITY_cor12_lemma00)));;

(*
 |- !p q Pr1 Pr2. (p LEADSTO q)(APPEND Pr1 Pr2) = (p LEADSTO q)(APPEND Pr2 Pr1)
*)
let COMP_UNITY_cor12 = prove_thm
  ("COMP_UNITY_cor12",
   (`!(p:'a->bool) q Pr1 Pr2.
       (p LEADSTO q)(APPEND Pr1 Pr2) = (p LEADSTO q)(APPEND Pr2 Pr1)`),
   REPEAT GEN_TAC THEN
   EQ_TAC THEN REWRITE_TAC [COMP_UNITY_cor12_lemma04]);;

(*
  |- !p FPr GPr. p STABLE (APPEND FPr GPr) = p STABLE (APPEND GPr FPr)
*)
let COMP_UNITY_cor13 = prove_thm
  ("COMP_UNITY_cor13",
   (`!(p:'a->bool) FPr GPr.
      (p STABLE (APPEND FPr GPr)) = (p STABLE (APPEND GPr FPr))`),
   REPEAT GEN_TAC THEN
   REWRITE_TAC [STABLE] THEN
   EQ_TAC THEN
   STRIP_TAC THEN
   ONCE_REWRITE_TAC [COMP_UNITY_cor10] THEN
   ASM_REWRITE_TAC []);;


(*
  |- !p0 p FPr GPr.
      p INVARIANT (p0, APPEND FPr GPr) = p INVARIANT (p0, APPEND GPr FPr)
*)
let COMP_UNITY_cor14 = prove_thm
  ("COMP_UNITY_cor14",
   (`!(p0:'a->bool) p FPr GPr.
      (p INVARIANT (p0, (APPEND FPr GPr)))
    =
      (p INVARIANT (p0, (APPEND GPr FPr)))`),
   REPEAT GEN_TAC THEN
   REWRITE_TAC [INVARIANT] THEN
   EQ_TAC THEN
   STRIP_TAC THEN
   ONCE_REWRITE_TAC [COMP_UNITY_cor13] THEN
   ASM_REWRITE_TAC []);;