1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
(*---------------------------------------------------------------------------*)
(*
File: mk_comp_unity.ml
Description: This file proves the unity compositionality theorems and
corrollaries valid.
Author: (c) Copyright 1989-2008 by Flemming Andersen
Date: December 1, 1989
Last Update: December 30, 2007
*)
(*---------------------------------------------------------------------------*)
(*---------------------------------------------------------------------------*)
(*
Theorems
*)
(*---------------------------------------------------------------------------*)
(*
Prove:
!p q FPr GPr.
(p UNLESS q) (APPEND FPr GPr) ==> (p UNLESS q) FPr /\ (p UNLESS q) GPr
*)
let COMP_UNLESS_thm1_lemma_1 = TAC_PROOF
(([],
(`!(p:'a->bool) q FPr GPr.
(p UNLESS q) (APPEND FPr GPr) ==> (p UNLESS q) FPr /\ (p UNLESS q) GPr`)),
REPEAT GEN_TAC THEN
SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN
SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN
LIST_INDUCT_TAC THENL
[
REWRITE_TAC [UNLESS;APPEND]
;
REWRITE_TAC [APPEND] THEN
REWRITE_TAC [UNLESS] THEN
REPEAT STRIP_TAC THENL
[
ASM_REWRITE_TAC []
;
RES_TAC
;
RES_TAC]]);;
(*
Prove:
!p q FPr GPr.
(p UNLESS q) FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr)
*)
let COMP_UNLESS_thm1_lemma_2 = TAC_PROOF
(([],
(`!(p:'a->bool) q FPr GPr.
(p UNLESS q) FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr)`)),
REPEAT GEN_TAC THEN
SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN
SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN
LIST_INDUCT_TAC THENL
[
REWRITE_TAC [UNLESS;APPEND]
;
REWRITE_TAC [APPEND] THEN
REWRITE_TAC [UNLESS] THEN
REPEAT STRIP_TAC THENL
[
ASM_REWRITE_TAC []
;
RES_TAC
]]);;
(*
Prove:
!p q FPr GPr.
(p UNLESS q) (APPEND FPr GPr) = (p UNLESS q) FPr /\ (p UNLESS q) GPr
*)
let COMP_UNLESS_thm1 = prove_thm
("COMP_UNLESS_thm1",
(`!(p:'a->bool) q FPr GPr.
(p UNLESS q) (APPEND FPr GPr) <=> (p UNLESS q) FPr /\ (p UNLESS q) GPr`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL COMP_UNLESS_thm1_lemma_1)
(SPEC_ALL COMP_UNLESS_thm1_lemma_2)));;
(*
Prove:
!p q FPr GPr.
(p ENSURES q) (APPEND FPr GPr) ==> (p ENSURES q) FPr /\ (p UNLESS q) GPr \/
(p ENSURES q) GPr /\ (p UNLESS q) FPr
*)
let COMP_ENSURES_thm1_lemma_1 = TAC_PROOF
(([],
(`!(p:'a->bool) q FPr GPr.
(p ENSURES q) (APPEND FPr GPr) ==> (p ENSURES q) FPr /\ (p UNLESS q) GPr \/
(p ENSURES q) GPr /\ (p UNLESS q) FPr`)),
REPEAT GEN_TAC THEN
SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN
SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN
LIST_INDUCT_TAC THENL
[
REWRITE_TAC [ENSURES;EXIST_TRANSITION;UNLESS;APPEND]
;
GEN_TAC THEN
REWRITE_TAC [ENSURES;EXIST_TRANSITION;UNLESS;APPEND] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC [] THENL
[
DISJ1_TAC THEN
ASM_REWRITE_TAC [] THEN
ASM_REWRITE_TAC [GEN_ALL (SYM (SPEC_ALL COMP_UNLESS_thm1))]
;
ASSUME_TAC (UNDISCH_ALL (SPECL
[(`((p:'a->bool) UNLESS q)(APPEND t GPr)`);
(`((p:'a->bool) EXIST_TRANSITION q)(APPEND t GPr)`)]
AND_INTRO_THM)) THEN
UNDISCH_TAC (`((p:'a->bool) UNLESS q)(APPEND t GPr) /\
(p EXIST_TRANSITION q)(APPEND t GPr)`) THEN
REWRITE_TAC [SPECL [(`q:'a->bool`); (`p:'a->bool`);
(`APPEND (t:('a->'a)list) GPr`)]
(GEN_ALL (SYM (SPEC_ALL ENSURES)))] THEN
DISCH_TAC THEN
RES_TAC THENL
[
UNDISCH_TAC (`((p:'a->bool) ENSURES q) t`) THEN
REWRITE_TAC [ENSURES] THEN
STRIP_TAC THEN
ASM_REWRITE_TAC []
;
UNDISCH_TAC (`((p:'a->bool) ENSURES q) GPr`) THEN
REWRITE_TAC [ENSURES] THEN
STRIP_TAC THEN
ASM_REWRITE_TAC []
]]]);;
(*
Prove:
!p q FPr GPr.
(p ENSURES q) FPr /\ (p UNLESS q) GPr \/
(p ENSURES q) GPr /\ (p UNLESS q) FPr ==> (p ENSURES q) (APPEND FPr GPr)
*)
let COMP_ENSURES_thm1_lemma_2 = TAC_PROOF
(([],
`!(p:'a->bool) q FPr GPr.
((p ENSURES q) FPr /\ (p UNLESS q) GPr \/
(p ENSURES q) GPr /\ (p UNLESS q) FPr)
==> (p ENSURES q) (APPEND FPr GPr)`),
GEN_TAC THEN GEN_TAC THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC [ENSURES;EXIST_TRANSITION;UNLESS;APPEND] THEN
REPEAT STRIP_TAC THEN
RES_TAC THEN
ASM_REWRITE_TAC [COMP_UNLESS_thm1;ENSURES;EXIST_TRANSITION;
UNLESS;APPEND] THEN
REWRITE_TAC [UNDISCH_ALL (ONCE_REWRITE_RULE [EXIST_TRANSITION_thm12]
(SPEC_ALL EXIST_TRANSITION_thm8))] THENL
[
REWRITE_TAC
[ONCE_REWRITE_RULE [EXIST_TRANSITION_thm12] (UNDISCH_ALL (SPECL
[`p:'a->bool`;`q:'a->bool`;`t:('a->'a)list`;`GPr:('a->'a)list`]
EXIST_TRANSITION_thm8))]
;
REWRITE_TAC
[UNDISCH_ALL
(SPECL [`p:'a->bool`;`q:'a->bool`;`GPr:('a->'a)list`;`t:('a->'a)list`]
EXIST_TRANSITION_thm8)]
]);;
(*
Prove:
!p q FPr GPr.
(p ENSURES q) (APPEND FPr GPr) = (p ENSURES q) FPr /\ (p UNLESS q) GPr \/
(p ENSURES q) GPr /\ (p UNLESS q) FPr
*)
let COMP_ENSURES_thm1 = prove_thm
("COMP_ENSURES_thm1",
(`!(p:'a->bool) q FPr GPr.
(p ENSURES q) (APPEND FPr GPr) <=>
((p ENSURES q) FPr /\ (p UNLESS q) GPr \/
(p ENSURES q) GPr /\ (p UNLESS q) FPr)`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL COMP_ENSURES_thm1_lemma_1)
(SPEC_ALL COMP_ENSURES_thm1_lemma_2)));;
(*
Prove:
|- !p q FPr GPr.
(p ENSURES q)FPr /\ (p UNLESS q)GPr ==> (p ENSURES q)(APPEND FPr GPr)
*)
let COMP_ENSURES_cor0 = prove_thm
("COMP_ENSURES_cor0",
(`!(p:'a->bool) q FPr GPr.
(p ENSURES q) FPr /\ (p UNLESS q) GPr
==> (p ENSURES q) (APPEND FPr GPr)`),
REPEAT STRIP_TAC THEN
ACCEPT_TAC (REWRITE_RULE
[ASSUME (`((p:'a->bool) ENSURES q)FPr`);ASSUME (`((p:'a->bool) UNLESS q)GPr`)]
(SPEC_ALL COMP_ENSURES_thm1)));;
(*
Prove:
|- !p q FPr GPr.
(p ENSURES q)GPr /\ (p UNLESS q)FPr ==> (p ENSURES q)(APPEND FPr GPr)
*)
let COMP_ENSURES_cor1 = prove_thm
("COMP_ENSURES_cor1",
(`!(p:'a->bool) q FPr GPr.
(p ENSURES q) GPr /\ (p UNLESS q) FPr
==> (p ENSURES q) (APPEND FPr GPr)`),
REPEAT STRIP_TAC THEN
ACCEPT_TAC (REWRITE_RULE
[ASSUME (`((p:'a->bool) ENSURES q)GPr`);ASSUME (`((p:'a->bool) UNLESS q)FPr`)]
(SPEC_ALL COMP_ENSURES_thm1)));;
(*
Prove:
!p q FPr GPr.
(p INVARIANT q) (APPEND FPr GPr) =
(p INVARIANT q) FPr /\ (p INVARIANT q) GPr
*)
let COMP_UNITY_cor0 = prove_thm
("COMP_UNITY_cor0",
(`!(p0:'a->bool) p FPr GPr.
(p INVARIANT (p0, APPEND FPr GPr)) =
(p INVARIANT (p0,FPr) /\ p INVARIANT (p0,GPr))`),
REWRITE_TAC [INVARIANT;STABLE;COMP_UNLESS_thm1] THEN
REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN
RES_TAC THEN ASM_REWRITE_TAC []);;
(*
Prove:
!p FPr GPr.
p STABLE (APPEND FPr GPr) = p STABLE FPr /\ p STABLE GPr
*)
let COMP_UNITY_cor1 = prove_thm
("COMP_UNITY_cor1",
(`!(p:'a->bool) FPr GPr.
(p STABLE (APPEND FPr GPr)) = (p STABLE FPr /\ p STABLE GPr)`),
REWRITE_TAC [STABLE;COMP_UNLESS_thm1]);;
(*
Prove:
!p q FPr GPr.
(p UNLESS q) FPr /\ p STABLE GPr ==>(p UNLESS q) (APPEND FPr GPr)
*)
let COMP_UNITY_cor2 = prove_thm
("COMP_UNITY_cor2",
(`!(p:'a->bool) q FPr GPr.
(p UNLESS q) FPr /\ p STABLE GPr ==>(p UNLESS q) (APPEND FPr GPr)`),
REWRITE_TAC [STABLE;COMP_UNLESS_thm1] THEN
REPEAT STRIP_TAC THENL
[
ASM_REWRITE_TAC []
;
UNDISCH_TAC (`((p:'a->bool) UNLESS False)GPr`) THEN
SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN
LIST_INDUCT_TAC THENL
[
REWRITE_TAC [UNLESS]
;
REWRITE_TAC [UNLESS;UNLESS_STMT] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THENL
[
RES_TAC THEN
UNDISCH_TAC
(`~(False:'a->bool) s ==> (p:'a->bool)(h s) \/ False(h s)`) THEN
REWRITE_TAC [FALSE_def;NOT_CLAUSES;OR_INTRO_THM1]
;
RES_TAC]]]);;
(*
Prove:
!p0 p FPr GPr.
p INVARIANT (p0; FPr) /\ p STABLE GPr
==> p INVARIANT (p0; (APPEND FPr GPr))
*)
let COMP_UNITY_cor3 = prove_thm
("COMP_UNITY_cor3",
(`!(p0:'a->bool) p FPr GPr.
p INVARIANT (p0, FPr) /\ p STABLE GPr ==>
p INVARIANT (p0, (APPEND FPr GPr))`),
REWRITE_TAC [INVARIANT;STABLE;COMP_UNLESS_thm1] THEN
REPEAT STRIP_TAC THENL
[
RES_TAC
;
ASM_REWRITE_TAC []
;
ASM_REWRITE_TAC []]);;
(*
Prove:
!p q FPr GPr.
(p ENSURES q) FPr /\ p STABLE GPr ==> (p ENSURES q) (APPEND FPr GPr)
*)
let COMP_UNITY_cor4 = prove_thm
("COMP_UNITY_cor4",
(`!(p:'a->bool) q FPr GPr.
(p ENSURES q) FPr /\ p STABLE GPr ==> (p ENSURES q) (APPEND FPr GPr)`),
REPEAT STRIP_TAC THEN
ASSUME_TAC (UNDISCH_ALL (SPECL
[(`p:'a->bool`);(`q:'a->bool`);(`FPr:('a->'a)list`)] ENSURES_cor2)) THEN
ASSUME_TAC (UNDISCH_ALL (SPECL
[(`((p:'a->bool) UNLESS q)FPr`);(`(p:'a->bool) STABLE GPr`)]
AND_INTRO_THM)) THEN
ASSUME_TAC (UNDISCH_ALL (SPECL
[(`p:'a->bool`);(`q:'a->bool`);(`FPr:('a->'a)list`);(`GPr:('a->'a)list`)]
COMP_UNITY_cor2)) THEN
REWRITE_TAC [ENSURES] THEN
ASM_REWRITE_TAC [] THEN
UNDISCH_TAC (`((p:'a->bool) ENSURES q)FPr`) THEN
REWRITE_TAC [ENSURES] THEN
STRIP_TAC THEN
UNDISCH_TAC (`((p:'a->bool) EXIST_TRANSITION q)FPr`) THEN
SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN
LIST_INDUCT_TAC THENL
[
REWRITE_TAC [EXIST_TRANSITION]
;
REWRITE_TAC [APPEND;EXIST_TRANSITION] THEN
REPEAT STRIP_TAC THENL
[
ASM_REWRITE_TAC []
;
RES_TAC THEN
ASM_REWRITE_TAC []]]);;
(*
Prove:
!p q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) GPr
*)
let COMP_UNITY_cor5 = prove_thm
("COMP_UNITY_cor5",
(`!(p:'a->bool) q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) GPr`),
REWRITE_TAC [COMP_UNLESS_thm1] THEN
REPEAT STRIP_TAC);;
(*
Prove:
!p q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) FPr
*)
let COMP_UNITY_cor6 = prove_thm
("COMP_UNITY_cor6",
(`!(p:'a->bool) q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) FPr`),
REWRITE_TAC [COMP_UNLESS_thm1] THEN
REPEAT STRIP_TAC);;
(*
Prove:
!p q st FPr. (p UNLESS q)(CONS st FPr) ==> (p UNLESS q) FPr
*)
let COMP_UNITY_cor7 = prove_thm
("COMP_UNITY_cor7",
(`!(p:'a->bool) q st FPr. (p UNLESS q)(CONS st FPr) ==> (p UNLESS q) FPr`),
REWRITE_TAC [UNLESS] THEN
REPEAT STRIP_TAC);;
(*
Prove:
!p FPr GPr.
(p ENSURES (NotX p)) FPr ==> (p ENSURES (NotX p)) (APPEND FPr GPr)
*)
let COMP_UNITY_cor8 = prove_thm
("COMP_UNITY_cor8",
(`!(p:'a->bool) FPr GPr.
(p ENSURES (Not p)) FPr ==> (p ENSURES (Not p)) (APPEND FPr GPr)`),
GEN_TAC THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC [APPEND;ENSURES;UNLESS;EXIST_TRANSITION] THEN
REPEAT STRIP_TAC THEN
RES_TAC THEN
ASM_REWRITE_TAC [UNLESS_thm2] THEN
REWRITE_TAC [UNDISCH_ALL (ONCE_REWRITE_RULE [EXIST_TRANSITION_thm12] (SPECL
[`p:'a->bool`;`Not (p:'a->bool)`;`t:('a->'a)list`;`GPr:('a->'a)list`]
EXIST_TRANSITION_thm8))]);;
(*
Prove:
!p q FPr GPr.
p STABLE FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr)
*)
let COMP_UNITY_cor9 = prove_thm
("COMP_UNITY_cor9",
(`!(p:'a->bool) q FPr GPr.
p STABLE FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr)`),
REWRITE_TAC [STABLE;COMP_UNLESS_thm1] THEN
REPEAT STRIP_TAC THENL
[
UNDISCH_TAC (`((p:'a->bool) UNLESS False)FPr`) THEN
SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN
LIST_INDUCT_TAC THENL
[
REWRITE_TAC [UNLESS]
;
REWRITE_TAC [UNLESS;UNLESS_STMT] THEN
BETA_TAC THEN
REPEAT STRIP_TAC THENL
[
RES_TAC THEN
UNDISCH_TAC
(`~(False:'a->bool) s ==> (p:'a->bool)(h s) \/ False(h s)`) THEN
REWRITE_TAC [FALSE_def;NOT_CLAUSES;OR_INTRO_THM1]
;
RES_TAC
]
]
;
ASM_REWRITE_TAC []
]);;
(*
Prove:
!p q FPr GPr.
(p UNLESS q) (APPEND FPr GPr) = (p UNLESS q) (APPEND GPr FPr)
*)
let COMP_UNITY_cor10 = prove_thm
("COMP_UNITY_cor10",
(`!(p:'a->bool) q FPr GPr.
(p UNLESS q) (APPEND FPr GPr) = (p UNLESS q) (APPEND GPr FPr)`),
REPEAT GEN_TAC THEN
REWRITE_TAC [COMP_UNLESS_thm1] THEN
EQ_TAC THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []);;
(*
Prove:
!p q FPr GPr.
(p ENSURES q) (APPEND FPr GPr) = (p ENSURES q) (APPEND GPr FPr)
*)
let COMP_UNITY_cor11 = prove_thm
("COMP_UNITY_cor11",
(`!(p:'a->bool) q FPr GPr.
(p ENSURES q) (APPEND FPr GPr) = (p ENSURES q) (APPEND GPr FPr)`),
REPEAT GEN_TAC THEN
REWRITE_TAC [COMP_ENSURES_thm1] THEN
EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
(*
Prove:
!p q FPr GPr.
(p LEADSTO q) (APPEND FPr GPr) = (p LEADSTO q) (APPEND GPr FPr)
*)
(*
|- (!p' q'.
((p' ENSURES q')(APPEND Pr1 Pr2) ==> (p' LEADSTO q')(APPEND Pr2 Pr1)) /\
(!r.
(p' LEADSTO r)(APPEND Pr1 Pr2) /\ (p' LEADSTO r)(APPEND Pr2 Pr1) /\
(r LEADSTO q')(APPEND Pr1 Pr2) /\ (r LEADSTO q')(APPEND Pr2 Pr1) ==>
(p' LEADSTO q')(APPEND Pr1 Pr2) ==> (p' LEADSTO q')(APPEND Pr2 Pr1)) /\
(!P.
(!i. ((P i) LEADSTO q')(APPEND Pr1 Pr2)) /\
(!i. ((P i) LEADSTO q')(APPEND Pr2 Pr1)) ==>
(($ExistsX P) LEADSTO q')(APPEND Pr1 Pr2) ==>
(($ExistsX P) LEADSTO q')(APPEND Pr2 Pr1)))
==>
(p LEADSTO q)(APPEND Pr1 Pr2) ==> (p LEADSTO q)(APPEND Pr2 Pr1)
*)
let COMP_UNITY_cor12_lemma00 = (BETA_RULE (SPECL
[(`\(p:'a->bool) q. (p LEADSTO q)(APPEND Pr2 Pr1)`);
(`p:'a->bool`);(`q:'a->bool`);(`APPEND (Pr1:('a->'a)list) Pr2`)] LEADSTO_thm37));;
let COMP_UNITY_cor12_lemma01 = TAC_PROOF
(([],
(`!(p':'a->bool) q' Pr1 Pr2.
(p' ENSURES q')(APPEND Pr1 Pr2) ==> (p' LEADSTO q')(APPEND Pr2 Pr1)`)),
REPEAT STRIP_TAC THEN
ASSUME_TAC (ONCE_REWRITE_RULE [COMP_UNITY_cor11] (ASSUME
(`((p':'a->bool) ENSURES q')(APPEND Pr1 Pr2)`))) THEN
IMP_RES_TAC LEADSTO_thm0);;
let COMP_UNITY_cor12_lemma02 = TAC_PROOF
(([],
(`!(p':'a->bool) q' Pr1 Pr2.
(!r.
(p' LEADSTO r)(APPEND Pr1 Pr2) /\ (p' LEADSTO r)(APPEND Pr2 Pr1) /\
(r LEADSTO q')(APPEND Pr1 Pr2) /\ (r LEADSTO q')(APPEND Pr2 Pr1)
==> (p' LEADSTO q')(APPEND Pr2 Pr1))`)),
REPEAT STRIP_TAC THEN
IMP_RES_TAC LEADSTO_thm1);;
let COMP_UNITY_cor12_lemma03 = TAC_PROOF
(([],
(`!(p':'a->bool) q' Pr1 Pr2.
(!P:('a->bool)->bool.
(!p''. p'' In P ==> (p'' LEADSTO q')(APPEND Pr1 Pr2)) /\
(!p''. p'' In P ==> (p'' LEADSTO q')(APPEND Pr2 Pr1))
==> ((LUB P) LEADSTO q')(APPEND Pr2 Pr1))`)),
REPEAT STRIP_TAC THEN
IMP_RES_TAC LEADSTO_thm3a);;
(*
|- !p q Pr1 Pr2.
(p LEADSTO q)(APPEND Pr1 Pr2) ==> (p LEADSTO q)(APPEND Pr2 Pr1)
*)
let COMP_UNITY_cor12_lemma04 = (GEN_ALL (REWRITE_RULE
[COMP_UNITY_cor12_lemma01;COMP_UNITY_cor12_lemma02;COMP_UNITY_cor12_lemma03]
(SPEC_ALL COMP_UNITY_cor12_lemma00)));;
(*
|- !p q Pr1 Pr2. (p LEADSTO q)(APPEND Pr1 Pr2) = (p LEADSTO q)(APPEND Pr2 Pr1)
*)
let COMP_UNITY_cor12 = prove_thm
("COMP_UNITY_cor12",
(`!(p:'a->bool) q Pr1 Pr2.
(p LEADSTO q)(APPEND Pr1 Pr2) = (p LEADSTO q)(APPEND Pr2 Pr1)`),
REPEAT GEN_TAC THEN
EQ_TAC THEN REWRITE_TAC [COMP_UNITY_cor12_lemma04]);;
(*
|- !p FPr GPr. p STABLE (APPEND FPr GPr) = p STABLE (APPEND GPr FPr)
*)
let COMP_UNITY_cor13 = prove_thm
("COMP_UNITY_cor13",
(`!(p:'a->bool) FPr GPr.
(p STABLE (APPEND FPr GPr)) = (p STABLE (APPEND GPr FPr))`),
REPEAT GEN_TAC THEN
REWRITE_TAC [STABLE] THEN
EQ_TAC THEN
STRIP_TAC THEN
ONCE_REWRITE_TAC [COMP_UNITY_cor10] THEN
ASM_REWRITE_TAC []);;
(*
|- !p0 p FPr GPr.
p INVARIANT (p0, APPEND FPr GPr) = p INVARIANT (p0, APPEND GPr FPr)
*)
let COMP_UNITY_cor14 = prove_thm
("COMP_UNITY_cor14",
(`!(p0:'a->bool) p FPr GPr.
(p INVARIANT (p0, (APPEND FPr GPr)))
=
(p INVARIANT (p0, (APPEND GPr FPr)))`),
REPEAT GEN_TAC THEN
REWRITE_TAC [INVARIANT] THEN
EQ_TAC THEN
STRIP_TAC THEN
ONCE_REWRITE_TAC [COMP_UNITY_cor13] THEN
ASM_REWRITE_TAC []);;
|