File: mk_ensures.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (710 lines) | stat: -rw-r--r-- 23,557 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
(*---------------------------------------------------------------------------*)
(*
   File:         mk_ensures.sml

   Description:  This file defines ENSURES and the theorems and corrollaries
                 described in [CM88].

   Author:       (c) Copyright 1989-2008 by Flemming Andersen
   Date:         June 29, 1989
   Last Update:  December 30, 2007
*)
(*---------------------------------------------------------------------------*)

(*---------------------------------------------------------------------------*)
(* The definition of ENSURES is based on the definition:

      p ensures q in Pr = <p unless q in Pr /\ (?s in Pr: {p /\ ~q} s {q})>

  where p and q are state dependent first order logic predicates and s
  in the program Pr are conditionally enabled statements transforming
  a state into a new state. ENSURES then requires safety and the
  existance of at least one state transition statement s which makes q
  valid.
*)

let EXIST_TRANSITION_term =
   `(!p q. EXIST_TRANSITION (p:'a->bool) q []         <=> F) /\
    (!p q. EXIST_TRANSITION p q (CONS (st:'a->'a) Pr) <=>
	  ((!s. (p s /\ ~q s) ==> q (st s)) \/ (EXIST_TRANSITION p q Pr)))`;;
let EXIST_TRANSITION = new_recursive_definition
    list_RECURSION EXIST_TRANSITION_term;;
parse_as_infix ( "EXIST_TRANSITION", (TL_FIX, "right") );;

let ENSURES = new_infix_definition
  ("ENSURES", "<=>",
   `!(p:'a->bool) q (Pr:('a->'a)list).
       ENSURES p q Pr = (((p UNLESS q) Pr) /\ ((p EXIST_TRANSITION q) Pr))`,
   TL_FIX);;

let ENSURES_STMT = new_infix_definition
  ("ENSURES_STMT", "<=>",
   `!(p:'a->bool) q (st:'a->'a).
        ENSURES_STMT p q st = (\s. p s /\ ~(q s) ==> q (st s))`,
   TL_FIX);;


(*-------------------------------------------------------------------------*)
(*
  Lemmas
*)
(*-------------------------------------------------------------------------*)

let ENSURES_lemma0 = TAC_PROOF
  (([],
   (`!(p:'a->bool) q r st.
          ((!s. p s /\ ~q s ==> q (st s)) /\ (!s. q s ==> r s)) ==>
           (!s. p s /\ ~r s ==> r (st s))`)),
    REPEAT STRIP_TAC THEN
    ASSUME_TAC (CONTRAPOS (SPEC_ALL (ASSUME (`!s:'a. q s ==> r s`)))) THEN
    ASSUME_TAC (SPEC (`(st:'a->'a) s`) (ASSUME (`!s:'a. q s ==> r s`))) THEN
    RES_TAC THEN
    RES_TAC);;

set_goal([],
   (`!(p:'a->bool) p' q q' h.
     (!s. (p  UNLESS_STMT q)  h s)     ==>
     (!s. (p' UNLESS_STMT q') h s)     ==>
     (!s. p' s /\ ~q' s ==> q' (h s))  ==>
     (!s. (p /\* p') s /\ ~((p /\* q' \/* p' /\* q) \/* q /\* q') s) ==>
     (((p /\* q' \/* p' /\* q) \/* q /\* q') (h s))`)
);;
 
let ENSURES_lemma1 = TAC_PROOF
  (([],
    `!(p:'a->bool) p' q q' h.
      (!s. (p  UNLESS_STMT q)  h s)     ==>
      (!s. (p' UNLESS_STMT q') h s)     ==>
      (!s. p' s /\ ~q' s ==> q' (h s))  ==>
      (!s. (p /\* p') s /\ ~((p /\* q' \/* p' /\* q) \/* q /\* q') s
               ==> ((p /\* q' \/* p' /\* q) \/* q /\* q') (h s))`),
    REWRITE_TAC [UNLESS_STMT; AND_def; OR_def] THEN
    CONV_TAC (DEPTH_CONV BETA_CONV) THEN
    MESON_TAC []);;

let ENSURES_lemma2 = TAC_PROOF
  (([],
   (`!(p:'a->bool) q r st.
       (!s. p s /\ ~q s ==> q (st s)) ==>
         (!s. (p s \/ r s) /\ ~(q s \/ r s) ==> q (st s) \/ r (st s))`)),
     REWRITE_TAC [(GEN_ALL (SYM (SPEC_ALL CONJ_ASSOC)));
                  (SYM (SPEC_ALL DISJ_ASSOC));NOT_CLAUSES;DE_MORGAN_THM] THEN
     REPEAT STRIP_TAC THEN RES_TAC THEN
     ASM_REWRITE_TAC []);;

let ENSURES_lemma3 = TAC_PROOF
  (([],
   (`!(p:'a->bool) q r Pr. (p ENSURES (q \/* r)) Pr ==>
              (((p /\* (Not q)) \/* (p /\* q)) ENSURES (q \/* r)) Pr`)),
   REWRITE_TAC [AND_COMPL_OR_lemma]);;

let ENSURES_lemma4 = TAC_PROOF
  (([],
    `!(p:'a->bool) q r (st:'a->'a).
         (!s. p s /\ ~q s ==> q (st s)) ==>
            (!s. (p \/* r) s /\ ~(q \/* r) s ==> (q \/* r) (st s))`),
    REPEAT GEN_TAC THEN
    REWRITE_TAC [OR_def] THEN
    MESON_TAC []);;

(*---------------------------------------------------------------------------*)
(*
  Theorems about EXIST_TRANSITION
*)
(*---------------------------------------------------------------------------*)

(*
  EXIST_TRANSITION Consequence Weakening Theorem:

               p EXIST_TRANSITION q in Pr; q ==> r
              -------------------------------------
                   p EXIST_TRANSITION r in Pr
*)

let EXIST_TRANSITION_thm1 = prove_thm
 ("EXIST_TRANSITION_thm1",
  (`!(p:'a->bool) q r Pr.
     ((p EXIST_TRANSITION q) Pr /\ (!s. (q s) ==> (r s))) ==>
       ((p EXIST_TRANSITION r) Pr)`),
   GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [EXIST_TRANSITION] THEN
   STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [] THEN
   REWRITE_TAC [REWRITE_RULE
    [ASSUME `!s:'a. p s /\ ~q s ==> q (h s)`; ASSUME `!s:'a. q s ==> r s`]
     (SPECL [`p:'a->bool`;`q:'a->bool`;`r:'a->bool`;`h:'a->'a`] ENSURES_lemma0)]);;

(*
  Impossibility EXIST_TRANSITION Theorem:

               p EXIST_TRANSITION false in Pr
              --------------------------------
                          ~p 
*)
let EXIST_TRANSITION_thm2 = prove_thm
  ("EXIST_TRANSITION_thm2",
   (`!(p:'a->bool) Pr.
     ((p EXIST_TRANSITION False) Pr) ==> !s. (Not p) s`),
   GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [EXIST_TRANSITION; NOT_def1] THEN
   STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [] THENL
   [
     UNDISCH_TAC (`!s:'a. ((p:'a->bool) s) /\ ~(False s)
                          ==> (False ((h:'a->'a) s))`) THEN
     REWRITE_TAC [FALSE_def] THEN
     CONV_TAC (DEPTH_CONV BETA_CONV)
    ;
     UNDISCH_TAC (`!s:'a. (Not (p:'a->bool)) s`) THEN
     REWRITE_TAC [NOT_def1] THEN
     CONV_TAC (DEPTH_CONV BETA_CONV)
   ]);;

(*
  Always EXIST_TRANSITION Theorem:

               false EXIST_TRANSITION p in Pr
*)
let EXIST_TRANSITION_thm3 = prove_thm
  ("EXIST_TRANSITION_thm3",
   (`!(p:'a->bool) st Pr. (False EXIST_TRANSITION p) (CONS st Pr)`),
   REPEAT GEN_TAC THEN
   REWRITE_TAC [EXIST_TRANSITION; FALSE_def]);;

let EXIST_TRANSITION_thm4 = prove_thm
  ("EXIST_TRANSITION_thm4",
   (`!(p:'a->bool) q r Pr.
         (p EXIST_TRANSITION q) Pr ==>
            ((p \/* r) EXIST_TRANSITION (q \/* r)) Pr`),
   GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [EXIST_TRANSITION] THEN
   STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [] THEN
   REWRITE_TAC [REWRITE_RULE 
      [ASSUME `!s:'a. (p:'a->bool) s /\ ~q s ==> q (h s)`] 
        (SPECL [`p:'a->bool`;`q:'a->bool`;`r:'a->bool`;`h:'a->'a`]
            ENSURES_lemma4)]);;

let APPEND_lemma01 = TAC_PROOF
  (([],
   `!(l:('a)list). (APPEND l []) = l`),
   LIST_INDUCT_TAC THEN
   ASM_REWRITE_TAC [APPEND]);;

let EXIST_TRANSITION_thm5 = prove_thm
  ("EXIST_TRANSITION_thm5",
   (`!(p:'a->bool) q st Pr.
       (!s. p s /\ ~q s ==> q (st s))
            ==> (p EXIST_TRANSITION q) (CONS st Pr)`),
   REPEAT GEN_TAC THEN
   REWRITE_TAC [EXIST_TRANSITION] THEN
   STRIP_TAC THEN
   ASM_REWRITE_TAC []);;

let APPEND_lemma02 = TAC_PROOF
  (([],
   `!st (l:('a)list).  (APPEND [st] l) = (CONS st l)`),
   GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [APPEND]);;   

let APPEND_lemma03 = TAC_PROOF
  (([],
   `!st (l1:('a)list) l2. 
       (APPEND (APPEND l1 [st]) l2) = (APPEND l1 (CONS st l2))`),
   GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [APPEND] THEN
   REPEAT STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [APPEND]);;

let APPEND_lemma04 = TAC_PROOF
  (([],
   `!st (l1:('a)list) l2. 
       (APPEND (CONS st l1) l2) = (CONS st (APPEND l1 l2))`),
   GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [APPEND] THEN
   REPEAT STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [APPEND]);;

let EXIST_TRANSITION_thm6 = prove_thm
  ("EXIST_TRANSITION_thm6",
   (`!(p:'a->bool) q st Pr1 Pr2.
       (!s. p s /\ ~q s ==> q (st s))
            ==> (p EXIST_TRANSITION q) (APPEND Pr1 (CONS st Pr2))`),
   GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [EXIST_TRANSITION;APPEND] THEN
   REPEAT STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC []);;

let EXIST_TRANSITION_thm7 = prove_thm
  ("EXIST_TRANSITION_thm7",
   (`!(p:'a->bool) q FPr GPr.
     (p EXIST_TRANSITION q) FPr
              ==> (p EXIST_TRANSITION q) (APPEND FPr GPr)`),
   GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [EXIST_TRANSITION;APPEND] THEN
   REPEAT STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [APPEND_lemma01;EXIST_TRANSITION;APPEND]);;

let EXIST_TRANSITION_thm8 = prove_thm
  ("EXIST_TRANSITION_thm8",
   (`!(p:'a->bool) q FPr GPr.
     (p EXIST_TRANSITION q) FPr
              ==> (p EXIST_TRANSITION q) (APPEND GPr FPr)`),
   GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [APPEND_lemma01;EXIST_TRANSITION;APPEND] THEN
   REPEAT STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [APPEND_lemma01;EXIST_TRANSITION;APPEND] THENL
   [
     REWRITE_TAC [UNDISCH_ALL (SPECL
      [`p:'a->bool`;`q:'a->bool`;`h:'a->'a`;`t':('a->'a)list`;`t:('a->'a)list`]
        EXIST_TRANSITION_thm6)]
    ;
     REWRITE_TAC [REWRITE_RULE [APPEND_lemma03] (SPECL
       [`(APPEND (t':('a->'a)list) [h])`]
        (ASSUME `!GPr:('a->'a)list. (p EXIST_TRANSITION q) (APPEND GPr t)`))]
   ]);;

let EXIST_TRANSITION_thm9 = prove_thm
  ("EXIST_TRANSITION_thm9",
   (`!(p:'a->bool) q st FPr GPr.
     (p EXIST_TRANSITION q) (APPEND FPr GPr)
              ==> (p EXIST_TRANSITION q) (APPEND FPr (CONS st GPr))`),
   GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [APPEND_lemma01;EXIST_TRANSITION;APPEND] THEN
   REPEAT STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [APPEND_lemma01;EXIST_TRANSITION;APPEND]);;

let EXIST_TRANSITION_thm10 = prove_thm
  ("EXIST_TRANSITION_thm10",
   (`!(p:'a->bool) q st Pr.
       (p EXIST_TRANSITION q) Pr ==> (p EXIST_TRANSITION q) (CONS st Pr)`),
   GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   ASM_REWRITE_TAC [APPEND_lemma01;APPEND;EXIST_TRANSITION] THEN
   STRIP_TAC THEN
   ASM_REWRITE_TAC []);;

let EXIST_TRANSITION_thm11 = prove_thm
  ("EXIST_TRANSITION_thm11",
   (`!(p:'a->bool) q st Pr.
      (p EXIST_TRANSITION q) (APPEND [st] Pr) =
      (p EXIST_TRANSITION q) (APPEND  Pr [st])`),
   GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   ASM_REWRITE_TAC [APPEND_lemma01;APPEND;EXIST_TRANSITION] THEN
   EQ_TAC THEN
   STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [APPEND_lemma01;APPEND;EXIST_TRANSITION] THENL
   [
     REWRITE_TAC [REWRITE_RULE [APPEND_lemma02] (SYM (ASSUME
          `(((p:'a->bool) EXIST_TRANSITION q) (APPEND [st] t)) <=>
           ((p EXIST_TRANSITION q) (APPEND t [st]))`))] THEN
     ASM_REWRITE_TAC [EXIST_TRANSITION]
    ;
     REWRITE_TAC [REWRITE_RULE [APPEND_lemma02] (SYM (ASSUME
          `(((p:'a->bool) EXIST_TRANSITION q) (APPEND [st] t)) <=>
           ((p EXIST_TRANSITION q) (APPEND t [st]))`))] THEN
     ASM_REWRITE_TAC [UNDISCH_ALL (SPECL
       [`p:'a->bool`;`q:'a->bool`;`st:'a->'a`;`t:('a->'a)list`]
        EXIST_TRANSITION_thm10)]
    ;
     STRIP_ASSUME_TAC (REWRITE_RULE [APPEND_lemma02;EXIST_TRANSITION]
       (ASSUME `((p:'a->bool) EXIST_TRANSITION q) (APPEND [st] t)`)) THEN
     ASM_REWRITE_TAC []
   ]);;

let EXIST_TRANSITION_thm12a = prove_thm
  ("EXIST_TRANSITION_thm12a",
   (`!(p:'a->bool) q FPr GPr.
      (p EXIST_TRANSITION q) (APPEND FPr GPr) ==>
      (p EXIST_TRANSITION q) (APPEND GPr FPr)`),
   GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   ASM_REWRITE_TAC [APPEND_lemma01;APPEND;EXIST_TRANSITION] THEN
   REPEAT STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [APPEND_lemma01;EXIST_TRANSITION;APPEND] THENL
    [
      REWRITE_TAC [UNDISCH_ALL (SPECL [`p:'a->bool`;`q:'a->bool`;`h:'a->'a`;
              `GPr:('a->'a)list`;`t:('a->'a)list`] EXIST_TRANSITION_thm6)]
     ;
      REWRITE_TAC [UNDISCH_ALL (SPECL [`p:'a->bool`;`q:'a->bool`;`h:'a->'a`;
              `GPr:('a->'a)list`;`t:('a->'a)list`] EXIST_TRANSITION_thm9)]
    ]);;

let EXIST_TRANSITION_thm12b = prove_thm
  ("EXIST_TRANSITION_thm12b",
   (`!(p:'a->bool) q FPr GPr.
      (p EXIST_TRANSITION q) (APPEND GPr FPr) ==>
      (p EXIST_TRANSITION q) (APPEND FPr GPr)`),
   GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   ASM_REWRITE_TAC [APPEND_lemma01;APPEND;EXIST_TRANSITION] THEN
   REPEAT STRIP_TAC THEN
   RES_TAC THEN
   ASM_REWRITE_TAC [APPEND_lemma01;EXIST_TRANSITION;APPEND] THENL
    [
      REWRITE_TAC [UNDISCH_ALL (SPECL [`p:'a->bool`;`q:'a->bool`;`h:'a->'a`;
              `FPr:('a->'a)list`;`t:('a->'a)list`] EXIST_TRANSITION_thm6)]
     ;
      REWRITE_TAC [UNDISCH_ALL (SPECL [`p:'a->bool`;`q:'a->bool`;`h:'a->'a`;
              `FPr:('a->'a)list`;`t:('a->'a)list`] EXIST_TRANSITION_thm9)]
    ]);;

let EXIST_TRANSITION_thm12 = prove_thm
  ("EXIST_TRANSITION_thm12",
   (`!(p:'a->bool) q FPr GPr.
      (p EXIST_TRANSITION q) (APPEND GPr FPr) =
      (p EXIST_TRANSITION q) (APPEND FPr GPr)`),
   REPEAT GEN_TAC THEN
   EQ_TAC THEN
   REPEAT STRIP_TAC THEN
   RES_TAC THEN
   REWRITE_TAC [UNDISCH_ALL (SPEC_ALL EXIST_TRANSITION_thm12a);
                UNDISCH_ALL (SPEC_ALL EXIST_TRANSITION_thm12b)]);;

(*---------------------------------------------------------------------------*)
(*
  Theorems about ENSURES
*)
(*---------------------------------------------------------------------------*)

(*
  Reflexivity Theorem:

               p ensures p in Pr

  The theorem is only valid for non-empty programs
*)
let ENSURES_thm0 = prove_thm
  ("ENSURES_thm0",
   (`!(p:'a->bool) q. (p ENSURES q) [] = F`),
     REWRITE_TAC [ENSURES] THEN
     STRIP_TAC THEN
     REWRITE_TAC [UNLESS;EXIST_TRANSITION]);;

let ENSURES_thm1 = prove_thm
  ("ENSURES_thm1",
   (`!(p:'a->bool) st Pr. (p ENSURES p) (CONS st Pr)`),
     REWRITE_TAC [ENSURES] THEN
     STRIP_TAC THEN
     REWRITE_TAC [UNLESS;EXIST_TRANSITION] THEN
     REWRITE_TAC [UNLESS_thm1;UNLESS_STMT] THEN
     REWRITE_TAC [BETA_CONV (`(\s:'a. (p s /\ ~p s) ==> p (st s))s`)] THEN
     REWRITE_TAC[NOT_AND;IMP_CLAUSES]);;

(*
  Consequence Weakening Theorem:

               p ensures q in Pr; q ==> r
              ----------------------------
                   p ensures r in Pr
*)

let ENSURES_thm2 = prove_thm
  ("ENSURES_thm2",
   (`!(p:'a->bool) q r Pr.
         ((p ENSURES q) Pr /\ (!s:'a. (q s) ==> (r s)))
        ==>
	 ((p ENSURES r) Pr)`),
   REWRITE_TAC [ENSURES] THEN
   REPEAT STRIP_TAC THENL
     [
      ASSUME_TAC (UNDISCH_ALL (SPEC (`!s:'a. q s ==> r s`)
        (SPEC (`((p:'a->bool) UNLESS q) Pr`) AND_INTRO_THM))) THEN
      STRIP_ASSUME_TAC (UNDISCH_ALL (SPEC_ALL UNLESS_thm3))
     ;
      ASSUME_TAC (UNDISCH_ALL (SPEC (`!s:'a. q s ==> r s`)
        (SPEC (`((p:'a->bool) EXIST_TRANSITION q) Pr`) AND_INTRO_THM))) THEN
      STRIP_ASSUME_TAC (UNDISCH_ALL (SPEC_ALL EXIST_TRANSITION_thm1))
     ]);;

(*
  Impossibility Theorem:

               p ensures false in Pr
              ----------------------
                       ~p 
*)

let ENSURES_thm3 = prove_thm
  ("ENSURES_thm3",
   (`!(p:'a->bool) Pr. ((p ENSURES False) Pr) ==> !s. (Not p)s`),
   GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   ASM_REWRITE_TAC [ENSURES; UNLESS; EXIST_TRANSITION] THEN
   STRIP_TAC THEN
   ASM_REWRITE_TAC [] THENL
   [
     UNDISCH_TAC `!s:'a. (p:'a->bool) s /\ ~(False s) ==> False ((h:'a->'a) s)` THEN
     REWRITE_TAC [FALSE_def; NOT_def1] THEN
     CONV_TAC (DEPTH_CONV BETA_CONV)
    ;
     IMP_RES_TAC EXIST_TRANSITION_thm2
   ]);;

(*
  Conjunction Theorem:

                   p unless q in Pr; p' ensures q' in Pr
              -----------------------------------------------
               p/\p' ensures (p/\q')\/(p'/\q)\/(q/\q') in Pr
*)
let ENSURES_thm4 = prove_thm
  ("ENSURES_thm4",
   (`!(p:'a->bool) q p' q' Pr.
    (p UNLESS q) Pr /\ (p' ENSURES q') Pr ==>
      ((p /\* p') ENSURES (((p /\* q') \/*  (p' /\* q)) \/*  (q /\* q')))
        Pr`),
   GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [ENSURES;UNLESS;EXIST_TRANSITION] THEN
   REPEAT STRIP_TAC THEN
   ASM_REWRITE_TAC [] THENL
   [
    REWRITE_TAC
      [REWRITE_RULE [ASSUME `!s:'a. ((p:'a->bool) UNLESS_STMT q)   (h:'a->'a) s`;
                     ASSUME `!s:'a. ((p':'a->bool) UNLESS_STMT q') (h:'a->'a) s`]
        (SPECL [`p:'a->bool`;`q:'a->bool`;`p':'a->bool`;`q':'a->bool`;`h:'a->'a`]
                UNLESS_STMT_thm3)]
   ;
    REWRITE_TAC
      [REWRITE_RULE [ASSUME `((p:'a->bool)  UNLESS q)  (t:('a->'a)list)`;
                     ASSUME `((p':'a->bool) UNLESS q') (t:('a->'a)list)`]
      (SPECL [`p:'a->bool`;`q:'a->bool`;`p':'a->bool`;`q':'a->bool`;`t:('a->'a)list`]
                UNLESS_thm4)]
   ;
    REWRITE_TAC [REWRITE_RULE
         [ASSUME `!s:'a. ((p:'a->bool) UNLESS_STMT q) (h:'a->'a) s`;
          ASSUME `!s:'a. ((p':'a->bool) UNLESS_STMT q') (h:'a->'a) s`;
          ASSUME `!s:'a. (p':'a->bool) s /\ ~(q' s) ==> q' ((h:'a->'a) s)`]
       (SPEC_ALL ENSURES_lemma1)]
   ;
    REWRITE_TAC
      [REWRITE_RULE [ASSUME `!s:'a. ((p:'a->bool) UNLESS_STMT q)   (h:'a->'a) s`;
                     ASSUME `!s:'a. ((p':'a->bool) UNLESS_STMT q') (h:'a->'a) s`]
        (SPECL [`p:'a->bool`;`q:'a->bool`;`p':'a->bool`;`q':'a->bool`;`h:'a->'a`]
                UNLESS_STMT_thm3)]
   ;
    UNDISCH_TAC `((p:'a->bool) UNLESS q) t /\ (p' ENSURES q') (t:('a->'a)list)
       ==> (p /\* p' ENSURES (p /\* q' \/* p' /\* q) \/* q /\* q') t` THEN
    ASM_REWRITE_TAC [ENSURES] THEN
    STRIP_TAC THEN
    ASM_REWRITE_TAC []
   ;
    UNDISCH_TAC `((p:'a->bool) UNLESS q) t /\ (p' ENSURES q') (t:('a->'a)list)
       ==> (p /\* p' ENSURES (p /\* q' \/* p' /\* q) \/* q /\* q') t` THEN
    ASM_REWRITE_TAC [ENSURES] THEN
    STRIP_TAC THEN
    ASM_REWRITE_TAC []
  ]);;

(*
  Conjunction Theorem:

                   p ensures q in Pr
              -------------------------
               p\/r ensures q\/r in Pr
*)

let ENSURES_thm5 = prove_thm
  ("ENSURES_thm5",
   (`!(p:'a->bool) q r Pr.
      ((p ENSURES q) Pr) ==> (((p \/* r) ENSURES (q \/* r)) Pr)`),
   GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
   LIST_INDUCT_TAC THEN
   REWRITE_TAC [ENSURES;UNLESS;EXIST_TRANSITION] THEN
   REPEAT STRIP_TAC THEN
   ASM_REWRITE_TAC [] THENL
   [
     IMP_RES_TAC UNLESS_STMT_thm6 THEN
     ASM_REWRITE_TAC []
    ;
     IMP_RES_TAC UNLESS_cor23 THEN
     ASM_REWRITE_TAC []
    ;
     REWRITE_TAC [REWRITE_RULE 
      [ASSUME `!s:'a. (p:'a->bool) s /\ ~q s ==> q (h s)`] 
        (SPECL [`p:'a->bool`;`q:'a->bool`;`r:'a->bool`;`h:'a->'a`]
            ENSURES_lemma4)]
    ;
     IMP_RES_TAC UNLESS_STMT_thm6 THEN
     ASM_REWRITE_TAC []
    ;
     IMP_RES_TAC UNLESS_cor23 THEN
     ASM_REWRITE_TAC []
    ;
     IMP_RES_TAC EXIST_TRANSITION_thm4 THEN
     ASM_REWRITE_TAC []
   ]);;

(*
 -----------------------------------------------------------------------------
  Corollaries about ENSURES
 -----------------------------------------------------------------------------
*)

(*
  Implies Corollary:

                   p => q
              -------------------
               p ensures q in Pr

  This corollary is only valid for non-empty programs.
*)

let ENSURES_cor1 = prove_thm
  ("ENSURES_cor1",
   (`!(p:'a->bool) q st Pr.
    (!s. p s ==> q s) ==> (p ENSURES q) (CONS st Pr)`),
   REPEAT GEN_TAC THEN
   DISCH_TAC THEN
   ASSUME_TAC (SPEC_ALL ENSURES_thm1) THEN
   ASSUME_TAC (UNDISCH_ALL (SPECL
     [(`((p:'a->bool) ENSURES p)(CONS st Pr)`);(`!s:'a. p s ==> q s`)]
      AND_INTRO_THM)) THEN
   STRIP_ASSUME_TAC (UNDISCH_ALL (SPECL
     [(`p:'a->bool`);(`p:'a->bool`);(`q:'a->bool`);
      (`CONS (st:'a->'a) Pr`)]
      ENSURES_thm2)));;

let ENSURES_cor2 = prove_thm
  ("ENSURES_cor2",
   (`!(p:'a->bool) q Pr. (p ENSURES q) Pr ==> (p UNLESS q) Pr`),
   REWRITE_TAC [ENSURES] THEN
   REPEAT STRIP_TAC);;

let ENSURES_cor3 = prove_thm
  ("ENSURES_cor3",
   (`!(p:'a->bool) q r Pr.
        ((p \/*  q) ENSURES r)Pr ==> (p ENSURES (q \/*  r))Pr`),
   REPEAT GEN_TAC THEN
   DISCH_TAC THEN
   ASSUME_TAC (UNDISCH_ALL (SPECL
     [(`((p:'a->bool) \/*  q)`);(`r:'a->bool`);
      (`Pr:('a->'a)list`)] ENSURES_cor2)) THEN
   ASSUME_TAC (UNDISCH_ALL (SPECL
     [(`p:'a->bool`);(`q:'a->bool`);(`r:'a->bool`);
      (`Pr:('a->'a)list`)] UNLESS_cor4)) THEN
   ASSUME_TAC (UNDISCH_ALL (SPECL
     [(`((p:'a->bool) UNLESS (q \/*  r))Pr`);
      (`(((p:'a->bool) \/*  q) ENSURES r)Pr`)]
      AND_INTRO_THM)) THEN
   ASSUME_TAC (UNDISCH_ALL (SPECL
     [(`p:'a->bool`);(`((q:'a->bool) \/*  r)`);
      (`((p:'a->bool) \/*  q)`);(`r:'a->bool`);
      (`Pr:('a->'a)list`)] ENSURES_thm4)) THEN
   UNDISCH_TAC (`(((p:'a->bool) /\* (p \/*  q)) ENSURES
                (((p /\* r) \/*  ((p \/*  q) /\* (q \/*  r))) \/* 
                 ((q \/*  r) /\* r))) Pr`) THEN
   REWRITE_TAC [AND_OR_EQ_lemma] THEN
   REWRITE_TAC [OR_ASSOC_lemma;AND_ASSOC_lemma] THEN
   PURE_ONCE_REWRITE_TAC [SPECL
         [(`((q:'a->bool) \/*  r)`);
	  (`r:'a->bool`)] AND_COMM_lemma] THEN
   ONCE_REWRITE_TAC [AND_OR_EQ_AND_COMM_OR_lemma] THEN
   REWRITE_TAC [AND_OR_EQ_lemma] THEN
   DISCH_TAC THEN
   ASSUME_TAC (SPECL [(`p:'a->bool`);(`q:'a->bool`);(`r:'a->bool`)]
                           IMPLY_WEAK_lemma5) THEN
   ASSUME_TAC (UNDISCH_ALL (SPECL
    [(`((p:'a->bool) ENSURES
      ((p /\* r) \/*  (((p \/*  q) /\* (q \/*  r)) \/*  r)))Pr`);
     (`!s:'a. ((p /\* r) \/*  (((p \/*  q) /\* (q \/*  r)) \/* r))s ==>
	 (q \/*  r)s`)]
     AND_INTRO_THM)) THEN
   STRIP_ASSUME_TAC (UNDISCH_ALL (SPECL
    [(`p:'a->bool`);
     (`(((p:'a->bool) /\* r) \/* (((p \/*  q) /\* (q \/*  r)) \/* r))`);
     (`((q:'a->bool) \/*  r)`);(`Pr:('a->'a)list`)]
     ENSURES_thm2)));;

let ENSURES_cor4 = prove_thm
  ("ENSURES_cor4",
   (`!(p:'a->bool) q r Pr. (p ENSURES (q \/*  r)) Pr ==>
              ((p /\* (Not  q)) ENSURES (q \/*  r)) Pr`),
   REPEAT STRIP_TAC THEN
   ASSUME_TAC (UNDISCH_ALL (SPEC_ALL ENSURES_lemma3)) THEN
   ASSUME_TAC (UNDISCH_ALL (SPECL
     [(`((p:'a->bool) /\* (Not  q))`);(`((p:'a->bool) /\* q)`);
      (`((q:'a->bool) \/* r)`);(`Pr:('a->'a)list`)] ENSURES_cor3)) THEN
   UNDISCH_TAC
     (`(((p:'a->bool) /\* (Not  q)) ENSURES
	  ((p /\* q) \/* (q \/* r)))Pr`) THEN
   REWRITE_TAC [GEN_ALL (SYM (SPEC_ALL OR_ASSOC_lemma))] THEN
   REWRITE_TAC [P_AND_Q_OR_Q_lemma]);;

(*
  Consequence Weakening Corollary:

                  p ensures q in Pr
              -------------------------
               p ensures (q \/ r) in Pr
*)

let ENSURES_cor5 = prove_thm
 ("ENSURES_cor5",
   (`!(p:'a->bool) q r Pr.
         (p ENSURES q) Pr ==> (p ENSURES (q \/*  r)) Pr`),
   REPEAT STRIP_TAC THEN
   ASSUME_TAC (SPECL [(`q:'a->bool`);(`r:'a->bool`)]
	       IMPLY_WEAK_lemma_b) THEN
   ASSUME_TAC (SPECL
     [(`p:'a->bool`);(`q:'a->bool`);(`(q:'a->bool) \/* r`)]
	       ENSURES_thm2) THEN
   RES_TAC);;

(*
  Always Corollary:

                  false ensures p in Pr
*)

let ENSURES_cor6 = prove_thm
  ("ENSURES_cor6",
   (`!(p:'a->bool) st Pr. (False ENSURES p) (CONS st Pr)`),
   REWRITE_TAC [ENSURES;UNLESS_cor7;EXIST_TRANSITION_thm3]);;

let ENSURES_cor7 = prove_thm
  ("ENSURES_cor7",
   (`!(p:'a->bool) q r Pr.
        (p ENSURES q) Pr /\ (r STABLE Pr)
       ==>
	((p /\* r) ENSURES (q /\*
 r))Pr`),
   REPEAT GEN_TAC THEN
   REWRITE_TAC [STABLE] THEN
   REPEAT STRIP_TAC THEN
   IMP_RES_TAC (ONCE_REWRITE_RULE [AND_COMM_lemma]
      (REWRITE_RULE [AND_False_lemma;OR_False_lemma] 
        (ONCE_REWRITE_RULE [OR_AND_COMM_lemma] 
          (REWRITE_RULE [AND_False_lemma;OR_False_lemma] (SPECL
            [(`r:'a->bool`);(`False:'a->bool`);
	     (`p:'a->bool`);(`q:'a->bool`);
             (`Pr:('a->'a)list`)] ENSURES_thm4))))));;