1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
(* ========================================================================= *)
(* Definition of finite Cartesian product types. *)
(* *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "iterate.ml";;
(* ------------------------------------------------------------------------- *)
(* Association of a number with an indexing type. *)
(* ------------------------------------------------------------------------- *)
let dimindex = new_definition
`dimindex(s:A->bool) = if FINITE(:A) then CARD(:A) else 1`;;
let DIMINDEX_NONZERO = prove
(`!s:A->bool. ~(dimindex(s) = 0)`,
GEN_TAC THEN REWRITE_TAC[dimindex] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[CARD_EQ_0; ARITH] THEN SET_TAC[]);;
let DIMINDEX_GE_1 = prove
(`!s:A->bool. 1 <= dimindex(s)`,
REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`; DIMINDEX_NONZERO]);;
let DIMINDEX_UNIV = prove
(`!s. dimindex(s:A->bool) = dimindex(:A)`,
REWRITE_TAC[dimindex]);;
let DIMINDEX_UNIQUE = prove
(`(:A) HAS_SIZE n ==> dimindex(:A) = n`,
MESON_TAC[dimindex; HAS_SIZE]);;
(* ------------------------------------------------------------------------- *)
(* An indexing type with that size, parametrized by base type. *)
(* ------------------------------------------------------------------------- *)
let finite_image_tybij =
new_type_definition "finite_image" ("finite_index","dest_finite_image")
(prove
(`?x. x IN 1..dimindex(:A)`,
EXISTS_TAC `1` THEN REWRITE_TAC[IN_NUMSEG; LE_REFL; DIMINDEX_GE_1]));;
let FINITE_IMAGE_IMAGE = prove
(`UNIV:(A)finite_image->bool = IMAGE finite_index (1..dimindex(:A))`,
REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN
MESON_TAC[finite_image_tybij]);;
(* ------------------------------------------------------------------------- *)
(* Dimension of such a type, and indexing over it. *)
(* ------------------------------------------------------------------------- *)
let HAS_SIZE_FINITE_IMAGE = prove
(`!s. (UNIV:(A)finite_image->bool) HAS_SIZE dimindex(s:A->bool)`,
GEN_TAC THEN SIMP_TAC[FINITE_IMAGE_IMAGE] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
ONCE_REWRITE_TAC[DIMINDEX_UNIV] THEN REWRITE_TAC[HAS_SIZE_NUMSEG_1] THEN
MESON_TAC[finite_image_tybij]);;
let CARD_FINITE_IMAGE = prove
(`!s. CARD(UNIV:(A)finite_image->bool) = dimindex(s:A->bool)`,
MESON_TAC[HAS_SIZE_FINITE_IMAGE; HAS_SIZE]);;
let FINITE_FINITE_IMAGE = prove
(`FINITE(UNIV:(A)finite_image->bool)`,
MESON_TAC[HAS_SIZE_FINITE_IMAGE; HAS_SIZE]);;
let DIMINDEX_FINITE_IMAGE = prove
(`!s t. dimindex(s:(A)finite_image->bool) = dimindex(t:A->bool)`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [dimindex] THEN
MP_TAC(ISPEC `t:A->bool` HAS_SIZE_FINITE_IMAGE) THEN
SIMP_TAC[FINITE_FINITE_IMAGE; HAS_SIZE]);;
let FINITE_INDEX_WORKS = prove
(`!i:(A)finite_image.
?!n. 1 <= n /\ n <= dimindex(:A) /\ (finite_index n = i)`,
REWRITE_TAC[CONJ_ASSOC; GSYM IN_NUMSEG] THEN MESON_TAC[finite_image_tybij]);;
let FINITE_INDEX_INJ = prove
(`!i j. 1 <= i /\ i <= dimindex(:A) /\
1 <= j /\ j <= dimindex(:A)
==> ((finite_index i :A finite_image = finite_index j) <=>
(i = j))`,
MESON_TAC[FINITE_INDEX_WORKS]);;
let FORALL_FINITE_INDEX = prove
(`(!k:(N)finite_image. P k) =
(!i. 1 <= i /\ i <= dimindex(:N) ==> P(finite_index i))`,
MESON_TAC[FINITE_INDEX_WORKS]);;
(* ------------------------------------------------------------------------- *)
(* Hence finite Cartesian products, with indexing and lambdas. *)
(* ------------------------------------------------------------------------- *)
let cart_tybij =
new_type_definition "cart" ("mk_cart","dest_cart")
(prove(`?f:(B)finite_image->A. T`,REWRITE_TAC[]));;
parse_as_infix("$",(25,"left"));;
let finite_index = new_definition
`x$i = dest_cart x (finite_index i)`;;
let CART_EQ = prove
(`!x:A^B y.
(x = y) <=> !i. 1 <= i /\ i <= dimindex(:B) ==> (x$i = y$i)`,
REPEAT GEN_TAC THEN REWRITE_TAC[finite_index; GSYM FORALL_FINITE_INDEX] THEN
REWRITE_TAC[GSYM FUN_EQ_THM; ETA_AX] THEN MESON_TAC[cart_tybij]);;
parse_as_binder "lambda";;
let lambda = new_definition
`(lambda) g =
@f:A^B. !i. 1 <= i /\ i <= dimindex(:B) ==> (f$i = g i)`;;
let LAMBDA_BETA = prove
(`!i. 1 <= i /\ i <= dimindex(:B)
==> (((lambda) g:A^B) $i = g i)`,
REWRITE_TAC[lambda] THEN CONV_TAC SELECT_CONV THEN
EXISTS_TAC `mk_cart(\k. g(@i. 1 <= i /\ i <= dimindex(:B) /\
(finite_index i = k))):A^B` THEN
REWRITE_TAC[finite_index; REWRITE_RULE[] cart_tybij] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SELECT_UNIQUE THEN
GEN_TAC THEN REWRITE_TAC[] THEN
ASM_MESON_TAC[FINITE_INDEX_INJ; DIMINDEX_FINITE_IMAGE]);;
let LAMBDA_UNIQUE = prove
(`!f:A^B g.
(!i. 1 <= i /\ i <= dimindex(:B) ==> (f$i = g i)) <=>
((lambda) g = f)`,
SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN MESON_TAC[]);;
let LAMBDA_ETA = prove
(`!g. (lambda i. g$i) = g`,
REWRITE_TAC[CART_EQ; LAMBDA_BETA]);;
(* ------------------------------------------------------------------------- *)
(* For some purposes we can avoid side-conditions on the index. *)
(* ------------------------------------------------------------------------- *)
let FINITE_INDEX_INRANGE = prove
(`!i. ?k. 1 <= k /\ k <= dimindex(:N) /\ !x:A^N. x$i = x$k`,
REWRITE_TAC[finite_index] THEN MESON_TAC[FINITE_INDEX_WORKS]);;
let FINITE_INDEX_INRANGE_2 = prove
(`!i. ?k. 1 <= k /\ k <= dimindex(:N) /\
(!x:A^N. x$i = x$k) /\ (!y:B^N. y$i = y$k)`,
REWRITE_TAC[finite_index] THEN MESON_TAC[FINITE_INDEX_WORKS]);;
let CART_EQ_FULL = prove
(`!x y:A^N. x = y <=> !i. x$i = y$i`,
REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN SIMP_TAC[CART_EQ]);;
(* ------------------------------------------------------------------------- *)
(* We need a non-standard sum to "paste" together Cartesian products. *)
(* ------------------------------------------------------------------------- *)
let finite_sum_tybij =
let th = prove
(`?x. x IN 1..(dimindex(:A) + dimindex(:B))`,
EXISTS_TAC `1` THEN SIMP_TAC[IN_NUMSEG; LE_REFL; DIMINDEX_GE_1;
ARITH_RULE `1 <= a ==> 1 <= a + b`]) in
new_type_definition "finite_sum" ("mk_finite_sum","dest_finite_sum") th;;
let pastecart = new_definition
`(pastecart:A^M->A^N->A^(M,N)finite_sum) f g =
lambda i. if i <= dimindex(:M) then f$i
else g$(i - dimindex(:M))`;;
let fstcart = new_definition
`(fstcart:A^(M,N)finite_sum->A^M) f = lambda i. f$i`;;
let sndcart = new_definition
`(sndcart:A^(M,N)finite_sum->A^N) f =
lambda i. f$(i + dimindex(:M))`;;
let FINITE_SUM_IMAGE = prove
(`UNIV:(A,B)finite_sum->bool =
IMAGE mk_finite_sum (1..(dimindex(:A)+dimindex(:B)))`,
REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN
MESON_TAC[finite_sum_tybij]);;
let DIMINDEX_HAS_SIZE_FINITE_SUM = prove
(`(UNIV:(M,N)finite_sum->bool) HAS_SIZE (dimindex(:M) + dimindex(:N))`,
SIMP_TAC[FINITE_SUM_IMAGE] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
ONCE_REWRITE_TAC[DIMINDEX_UNIV] THEN REWRITE_TAC[HAS_SIZE_NUMSEG_1] THEN
MESON_TAC[finite_sum_tybij]);;
let DIMINDEX_FINITE_SUM = prove
(`dimindex(:(M,N)finite_sum) = dimindex(:M) + dimindex(:N)`,
GEN_REWRITE_TAC LAND_CONV [dimindex] THEN
REWRITE_TAC[REWRITE_RULE[HAS_SIZE] DIMINDEX_HAS_SIZE_FINITE_SUM]);;
let FSTCART_PASTECART = prove
(`!x y. fstcart(pastecart (x:A^M) (y:A^N)) = x`,
SIMP_TAC[pastecart; fstcart; CART_EQ; LAMBDA_BETA; DIMINDEX_FINITE_SUM;
ARITH_RULE `a <= b ==> a <= b + c`]);;
let SNDCART_PASTECART = prove
(`!x y. sndcart(pastecart (x:A^M) (y:A^N)) = y`,
SIMP_TAC[pastecart; sndcart; CART_EQ; LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN
W(fun (_,w) -> MP_TAC (PART_MATCH (lhs o rand) LAMBDA_BETA (lhand w))) THEN
ANTS_TAC THENL
[REWRITE_TAC[DIMINDEX_FINITE_SUM] THEN MATCH_MP_TAC
(ARITH_RULE `1 <= i /\ i <= b ==> 1 <= i + a /\ i + a <= a + b`) THEN
ASM_REWRITE_TAC[];
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[] THEN
ASM_SIMP_TAC[ADD_SUB; ARITH_RULE `1 <= i ==> ~(i + a <= a)`]]);;
let PASTECART_FST_SND = prove
(`!z. pastecart (fstcart z) (sndcart z) = z`,
SIMP_TAC[pastecart; fstcart; sndcart; CART_EQ; LAMBDA_BETA] THEN
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[DIMINDEX_FINITE_SUM; LAMBDA_BETA;
ARITH_RULE `i <= a + b ==> i - a <= b`;
ARITH_RULE `~(i <= a) ==> 1 <= i - a`;
ARITH_RULE `~(i <= a) ==> ((i - a) + a = i)`]);;
let PASTECART_EQ = prove
(`!x y. (x = y) <=> (fstcart x = fstcart y) /\ (sndcart x = sndcart y)`,
MESON_TAC[PASTECART_FST_SND]);;
let FORALL_PASTECART = prove
(`(!p. P p) <=> !x y. P (pastecart x y)`,
MESON_TAC[PASTECART_FST_SND; FSTCART_PASTECART; SNDCART_PASTECART]);;
let EXISTS_PASTECART = prove
(`(?p. P p) <=> ?x y. P (pastecart x y)`,
MESON_TAC[PASTECART_FST_SND; FSTCART_PASTECART; SNDCART_PASTECART]);;
let PASTECART_INJ = prove
(`!x:real^M y:real^N w z. pastecart x y = pastecart w z <=> x = w /\ y = z`,
REWRITE_TAC[PASTECART_EQ; FSTCART_PASTECART; SNDCART_PASTECART]);;
(* ------------------------------------------------------------------------- *)
(* Likewise a "subtraction" function on type indices. *)
(* ------------------------------------------------------------------------- *)
let finite_diff_tybij =
let th = prove
(`?x. x IN 1..(if dimindex(:B) < dimindex(:A)
then dimindex(:A) - dimindex(:B) else 1)`,
EXISTS_TAC `1` THEN REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC) in
new_type_definition "finite_diff" ("mk_finite_diff","dest_finite_diff") th;;
let FINITE_DIFF_IMAGE = prove
(`UNIV:(A,B)finite_diff->bool =
IMAGE mk_finite_diff
(1..(if dimindex(:B) < dimindex(:A)
then dimindex(:A) - dimindex(:B) else 1))`,
REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN
MESON_TAC[finite_diff_tybij]);;
let DIMINDEX_HAS_SIZE_FINITE_DIFF = prove
(`(UNIV:(M,N)finite_diff->bool) HAS_SIZE
(if dimindex(:N) < dimindex(:M) then dimindex(:M) - dimindex(:N) else 1)`,
SIMP_TAC[FINITE_DIFF_IMAGE] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
ONCE_REWRITE_TAC[DIMINDEX_UNIV] THEN REWRITE_TAC[HAS_SIZE_NUMSEG_1] THEN
MESON_TAC[finite_diff_tybij]);;
let DIMINDEX_FINITE_DIFF = prove
(`dimindex(:(M,N)finite_diff) =
if dimindex(:N) < dimindex(:M) then dimindex(:M) - dimindex(:N) else 1`,
GEN_REWRITE_TAC LAND_CONV [dimindex] THEN
REWRITE_TAC[REWRITE_RULE[HAS_SIZE] DIMINDEX_HAS_SIZE_FINITE_DIFF]);;
(* ------------------------------------------------------------------------- *)
(* And a finite-forcing "multiplication" on type indices. *)
(* ------------------------------------------------------------------------- *)
let finite_prod_tybij =
let th = prove
(`?x. x IN 1..(dimindex(:A) * dimindex(:B))`,
EXISTS_TAC `1` THEN REWRITE_TAC[IN_NUMSEG; LE_REFL] THEN
MESON_TAC[LE_1; DIMINDEX_GE_1; MULT_EQ_0]) in
new_type_definition "finite_prod" ("mk_finite_prod","dest_finite_prod") th;;
let FINITE_PROD_IMAGE = prove
(`UNIV:(A,B)finite_prod->bool =
IMAGE mk_finite_prod (1..(dimindex(:A)*dimindex(:B)))`,
REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN
MESON_TAC[finite_prod_tybij]);;
let DIMINDEX_HAS_SIZE_FINITE_PROD = prove
(`(UNIV:(M,N)finite_prod->bool) HAS_SIZE (dimindex(:M) * dimindex(:N))`,
SIMP_TAC[FINITE_PROD_IMAGE] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
ONCE_REWRITE_TAC[DIMINDEX_UNIV] THEN REWRITE_TAC[HAS_SIZE_NUMSEG_1] THEN
MESON_TAC[finite_prod_tybij]);;
let DIMINDEX_FINITE_PROD = prove
(`dimindex(:(M,N)finite_prod) = dimindex(:M) * dimindex(:N)`,
GEN_REWRITE_TAC LAND_CONV [dimindex] THEN
REWRITE_TAC[REWRITE_RULE[HAS_SIZE] DIMINDEX_HAS_SIZE_FINITE_PROD]);;
(* ------------------------------------------------------------------------- *)
(* Automatically define a type of size n. *)
(* ------------------------------------------------------------------------- *)
let define_finite_type =
let lemma_pre = prove
(`~(n = 0) ==> ?x. x IN 1..n`,
DISCH_TAC THEN EXISTS_TAC `1` THEN REWRITE_TAC[IN_NUMSEG] THEN
POP_ASSUM MP_TAC THEN ARITH_TAC)
and lemma_post = prove
(`(!a:A. mk(dest a) = a) /\ (!r. r IN 1..n <=> dest(mk r) = r)
==> (:A) HAS_SIZE n`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `(:A) = IMAGE mk (1..n)` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNIV];
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ] THEN
ASM_MESON_TAC[HAS_SIZE_NUMSEG_1]) in
let POST_RULE = MATCH_MP lemma_post and n_tm = `n:num` in
fun n ->
let ns = string_of_int n in
let ns' = "auto_define_finite_type_"^ns in
let th0 = INST [mk_small_numeral n,n_tm] lemma_pre in
let th1 = MP th0 (EQF_ELIM(NUM_EQ_CONV(rand(lhand(concl th0))))) in
POST_RULE(new_type_definition ns ("mk_"^ns',"dest_"^ns') th1);;
(* ------------------------------------------------------------------------- *)
(* Predefine the cases 2, 3 and 4, which are especially useful for real^N. *)
(* ------------------------------------------------------------------------- *)
let HAS_SIZE_1 = prove
(`(:1) HAS_SIZE 1`,
SUBGOAL_THEN `(:1) = {one}` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_UNIV; IN_SING] THEN MESON_TAC[one];
SIMP_TAC[NOT_IN_EMPTY; HAS_SIZE; FINITE_RULES; CARD_CLAUSES; ARITH]]);;
let HAS_SIZE_2 = define_finite_type 2;;
let HAS_SIZE_3 = define_finite_type 3;;
let HAS_SIZE_4 = define_finite_type 4;;
let DIMINDEX_1 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_1;;
let DIMINDEX_2 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_2;;
let DIMINDEX_3 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_3;;
let DIMINDEX_4 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_4;;
(* ------------------------------------------------------------------------- *)
(* Finiteness lemma. *)
(* ------------------------------------------------------------------------- *)
let FINITE_CART = prove
(`!P. (!i. 1 <= i /\ i <= dimindex(:N) ==> FINITE {x | P i x})
==> FINITE {v:A^N | !i. 1 <= i /\ i <= dimindex(:N) ==> P i (v$i)}`,
GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN
`!n. n <= dimindex(:N)
==> FINITE {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n
==> P i (v$i)) /\
(!i. 1 <= i /\ i <= dimindex(:N) /\ n < i
==> v$i = @x. F)}`
(MP_TAC o SPEC `dimindex(:N)`) THEN REWRITE_TAC[LE_REFL; LET_ANTISYM] THEN
INDUCT_TAC THENL
[REWRITE_TAC[ARITH_RULE `1 <= i /\ i <= n /\ i <= 0 <=> F`] THEN
SIMP_TAC[ARITH_RULE `1 <= i /\ i <= n /\ 0 < i <=> 1 <= i /\ i <= n`] THEN
SUBGOAL_THEN
`{v | !i. 1 <= i /\ i <= dimindex (:N) ==> v$i = (@x. F)} =
{(lambda i. @x. F):A^N}`
(fun th -> SIMP_TAC[FINITE_RULES;th]) THEN
SIMP_TAC[EXTENSION; IN_SING; IN_ELIM_THM; CART_EQ; LAMBDA_BETA];
ALL_TAC] THEN
DISCH_TAC THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC
`IMAGE (\(x:A,v:A^N). (lambda i. if i = SUC n then x else v$i):A^N)
{x,v | x IN {x:A | P (SUC n) x} /\
v IN {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n
==> P i (v$i)) /\
(!i. 1 <= i /\ i <= dimindex (:N) /\ n < i
==> v$i = (@x. F))}}` THEN
CONJ_TAC THENL
[MATCH_MP_TAC FINITE_IMAGE THEN
ASM_SIMP_TAC[FINITE_PRODUCT; ARITH_RULE `1 <= SUC n`;
ARITH_RULE `SUC n <= m ==> n <= m`];
ALL_TAC] THEN
REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_PAIR_THM; EXISTS_PAIR_THM] THEN
X_GEN_TAC `v:A^N` THEN REWRITE_TAC[IN_ELIM_THM] THEN
STRIP_TAC THEN EXISTS_TAC `(v:A^N)$(SUC n)` THEN
EXISTS_TAC `(lambda i. if i = SUC n then @x. F else (v:A^N)$i):A^N` THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA; ARITH_RULE `i <= n ==> ~(i = SUC n)`] THEN
ASM_MESON_TAC[LE; ARITH_RULE `1 <= SUC n`;
ARITH_RULE `n < i /\ ~(i = SUC n) ==> SUC n < i`]);;
(* ------------------------------------------------------------------------- *)
(* More cardinality results for whole universe. *)
(* ------------------------------------------------------------------------- *)
let HAS_SIZE_CART_UNIV = prove
(`!m. (:A) HAS_SIZE m ==> (:A^N) HAS_SIZE m EXP (dimindex(:N))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(:(N)finite_image->A) HAS_SIZE m EXP (dimindex(:N))`
MP_TAC THENL
[ASM_SIMP_TAC[HAS_SIZE_FUNSPACE_UNIV; HAS_SIZE_FINITE_IMAGE];
DISCH_THEN(MP_TAC o ISPEC `mk_cart:((N)finite_image->A)->A^N` o
MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] HAS_SIZE_IMAGE_INJ)) THEN
REWRITE_TAC[IN_UNIV] THEN
ANTS_TAC THENL [MESON_TAC[cart_tybij]; MATCH_MP_TAC EQ_IMP] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_UNIV] THEN MESON_TAC[cart_tybij]]);;
let CARD_CART_UNIV = prove
(`FINITE(:A) ==> CARD(:A^N) = CARD(:A) EXP dimindex(:N)`,
MESON_TAC[HAS_SIZE_CART_UNIV; HAS_SIZE]);;
let FINITE_CART_UNIV = prove
(`FINITE(:A) ==> FINITE(:A^N)`,
MESON_TAC[HAS_SIZE_CART_UNIV; HAS_SIZE]);;
(* ------------------------------------------------------------------------- *)
(* Explicit construction of a vector from a list of components. *)
(* ------------------------------------------------------------------------- *)
let vector = new_definition
`(vector l):A^N = lambda i. EL (i - 1) l`;;
(* ------------------------------------------------------------------------- *)
(* Convenient set membership elimination theorem. *)
(* ------------------------------------------------------------------------- *)
let IN_ELIM_PASTECART_THM = prove
(`!P a b. pastecart a b IN {pastecart x y | P x y} <=> P a b`,
REWRITE_TAC[IN_ELIM_THM; PASTECART_EQ;
FSTCART_PASTECART; SNDCART_PASTECART] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Variant of product types using pasting of vectors. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("PCROSS",(22,"right"));;
let PCROSS = new_definition
`s PCROSS t = {pastecart (x:A^M) (y:A^N) | x IN s /\ y IN t}`;;
let FORALL_IN_PCROSS = prove
(`(!z. z IN s PCROSS t ==> P z) <=>
(!x y. x IN s /\ y IN t ==> P(pastecart x y))`,
REWRITE_TAC[PCROSS; FORALL_IN_GSPEC]);;
let EXISTS_IN_PCROSS = prove
(`(?z. z IN s PCROSS t /\ P z) <=>
(?x y. x IN s /\ y IN t /\ P(pastecart x y))`,
REWRITE_TAC[PCROSS; EXISTS_IN_GSPEC; CONJ_ASSOC]);;
let PASTECART_IN_PCROSS = prove
(`!s t x y. (pastecart x y) IN (s PCROSS t) <=> x IN s /\ y IN t`,
REWRITE_TAC[PCROSS; IN_ELIM_PASTECART_THM]);;
let PCROSS_EQ_EMPTY = prove
(`!s t. s PCROSS t = {} <=> s = {} \/ t = {}`,
REWRITE_TAC[PCROSS] THEN SET_TAC[]);;
let PCROSS_EMPTY = prove
(`(!s. s PCROSS {} = {}) /\ (!t. {} PCROSS t = {})`,
REWRITE_TAC[PCROSS_EQ_EMPTY]);;
let SUBSET_PCROSS = prove
(`!s t s' t'. s PCROSS t SUBSET s' PCROSS t' <=>
s = {} \/ t = {} \/ s SUBSET s' /\ t SUBSET t'`,
SIMP_TAC[PCROSS; EXTENSION; IN_ELIM_PASTECART_THM; SUBSET;
FORALL_PASTECART; PASTECART_IN_PCROSS; NOT_IN_EMPTY] THEN MESON_TAC[]);;
let PCROSS_MONO = prove
(`!s t s' t'. s SUBSET s' /\ t SUBSET t' ==> s PCROSS t SUBSET s' PCROSS t'`,
SIMP_TAC[SUBSET_PCROSS]);;
let PCROSS_EQ = prove
(`!s s':real^M->bool t t':real^N->bool.
s PCROSS t = s' PCROSS t' <=>
(s = {} \/ t = {}) /\ (s' = {} \/ t' = {}) \/ s = s' /\ t = t'`,
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET_PCROSS] THEN SET_TAC[]);;
let UNIV_PCROSS_UNIV = prove
(`(:A^M) PCROSS (:A^N) = (:A^(M,N)finite_sum)`,
REWRITE_TAC[EXTENSION; FORALL_PASTECART; PASTECART_IN_PCROSS; IN_UNIV]);;
let HAS_SIZE_PCROSS = prove
(`!(s:A^M->bool) (t:A^N->bool) m n.
s HAS_SIZE m /\ t HAS_SIZE n ==> (s PCROSS t) HAS_SIZE (m * n)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP HAS_SIZE_PRODUCT) THEN
MATCH_MP_TAC EQ_IMP THEN SPEC_TAC(`m * n:num`,`k:num`) THEN
MATCH_MP_TAC BIJECTIONS_HAS_SIZE_EQ THEN
EXISTS_TAC `\(x:A^M,y:A^N). pastecart x y` THEN
EXISTS_TAC `\z:A^(M,N)finite_sum. fstcart z,sndcart z` THEN
REWRITE_TAC[FORALL_IN_GSPEC; PASTECART_IN_PCROSS] THEN
REWRITE_TAC[IN_ELIM_PAIR_THM; PASTECART_FST_SND] THEN
REWRITE_TAC[FORALL_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART]);;
let FINITE_PCROSS = prove
(`!(s:A^M->bool) (t:A^N->bool).
FINITE s /\ FINITE t ==> FINITE(s PCROSS t)`,
MESON_TAC[REWRITE_RULE[HAS_SIZE] HAS_SIZE_PCROSS]);;
let FINITE_PCROSS_EQ = prove
(`!(s:A^M->bool) (t:A^N->bool).
FINITE(s PCROSS t) <=> s = {} \/ t = {} \/ FINITE s /\ FINITE t`,
REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC [`s:A^M->bool = {}`; `t:A^N->bool = {}`] THEN
ASM_REWRITE_TAC[PCROSS_EMPTY; FINITE_EMPTY] THEN
EQ_TAC THEN SIMP_TAC[FINITE_PCROSS] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC FINITE_SUBSET THENL
[EXISTS_TAC `IMAGE fstcart ((s PCROSS t):A^(M,N)finite_sum->bool)`;
EXISTS_TAC `IMAGE sndcart ((s PCROSS t):A^(M,N)finite_sum->bool)`] THEN
ASM_SIMP_TAC[FINITE_IMAGE; SUBSET; IN_IMAGE; EXISTS_PASTECART] THEN
REWRITE_TAC[PASTECART_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART] THEN
ASM SET_TAC[]);;
let IMAGE_FSTCART_PCROSS = prove
(`!s:real^M->bool t:real^N->bool.
IMAGE fstcart (s PCROSS t) = if t = {} then {} else s`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[PCROSS_EMPTY; IMAGE_CLAUSES] THEN
REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[EXISTS_IN_PCROSS; FSTCART_PASTECART] THEN ASM SET_TAC[]);;
let IMAGE_SNDCART_PCROSS = prove
(`!s:real^M->bool t:real^N->bool.
IMAGE sndcart (s PCROSS t) = if s = {} then {} else t`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[PCROSS_EMPTY; IMAGE_CLAUSES] THEN
REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[EXISTS_IN_PCROSS; SNDCART_PASTECART] THEN ASM SET_TAC[]);;
let PCROSS_INTER = prove
(`(!s t u. s PCROSS (t INTER u) = (s PCROSS t) INTER (s PCROSS u)) /\
(!s t u. (s INTER t) PCROSS u = (s PCROSS u) INTER (t PCROSS u))`,
REWRITE_TAC[EXTENSION; FORALL_PASTECART; IN_INTER; PASTECART_IN_PCROSS] THEN
REPEAT STRIP_TAC THEN CONV_TAC TAUT);;
let PCROSS_UNION = prove
(`(!s t u. s PCROSS (t UNION u) = (s PCROSS t) UNION (s PCROSS u)) /\
(!s t u. (s UNION t) PCROSS u = (s PCROSS u) UNION (t PCROSS u))`,
REWRITE_TAC[EXTENSION; FORALL_PASTECART; IN_UNION; PASTECART_IN_PCROSS] THEN
REPEAT STRIP_TAC THEN CONV_TAC TAUT);;
let PCROSS_DIFF = prove
(`(!s t u. s PCROSS (t DIFF u) = (s PCROSS t) DIFF (s PCROSS u)) /\
(!s t u. (s DIFF t) PCROSS u = (s PCROSS u) DIFF (t PCROSS u))`,
REWRITE_TAC[EXTENSION; FORALL_PASTECART; IN_DIFF; PASTECART_IN_PCROSS] THEN
REPEAT STRIP_TAC THEN CONV_TAC TAUT);;
let INTER_PCROSS = prove
(`!s s' t t'.
(s PCROSS t) INTER (s' PCROSS t') = (s INTER s') PCROSS (t INTER t')`,
REWRITE_TAC[EXTENSION; IN_INTER; FORALL_PASTECART; PASTECART_IN_PCROSS] THEN
CONV_TAC TAUT);;
let PCROSS_UNIONS_UNIONS,PCROSS_UNIONS = (CONJ_PAIR o prove)
(`(!f g. (UNIONS f) PCROSS (UNIONS g) =
UNIONS {s PCROSS t | s IN f /\ t IN g}) /\
(!s f. s PCROSS (UNIONS f) = UNIONS {s PCROSS t | t IN f}) /\
(!f t. (UNIONS f) PCROSS t = UNIONS {s PCROSS t | s IN f})`,
REWRITE_TAC[UNIONS_GSPEC; EXTENSION; FORALL_PASTECART; IN_ELIM_THM;
PASTECART_IN_PCROSS] THEN
SET_TAC[]);;
let PCROSS_INTERS_INTERS,PCROSS_INTERS = (CONJ_PAIR o prove)
(`(!f g. (INTERS f) PCROSS (INTERS g) =
if f = {} then INTERS {UNIV PCROSS t | t IN g}
else if g = {} then INTERS {s PCROSS UNIV | s IN f}
else INTERS {s PCROSS t | s IN f /\ t IN g}) /\
(!s f. s PCROSS (INTERS f) =
if f = {} then s PCROSS UNIV else INTERS {s PCROSS t | t IN f}) /\
(!f t. (INTERS f) PCROSS t =
if f = {} then UNIV PCROSS t else INTERS {s PCROSS t | s IN f})`,
REPEAT STRIP_TAC THEN REPEAT (COND_CASES_TAC THEN REWRITE_TAC[]) THEN
ASM_REWRITE_TAC[INTERS_GSPEC; EXTENSION; FORALL_PASTECART; IN_ELIM_THM;
PASTECART_IN_PCROSS; NOT_IN_EMPTY] THEN
ASM SET_TAC[]);;
|