1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
(* ========================================================================= *)
(* Basic equality reasoning including conversionals. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "printer.ml";;
(* ------------------------------------------------------------------------- *)
(* Type abbreviation for conversions. *)
(* ------------------------------------------------------------------------- *)
type conv = term->thm;;
(* ------------------------------------------------------------------------- *)
(* A bit more syntax. *)
(* ------------------------------------------------------------------------- *)
let lhand = rand o rator;;
let lhs = fst o dest_eq;;
let rhs = snd o dest_eq;;
(* ------------------------------------------------------------------------- *)
(* Similar to variant, but even avoids constants, and ignores types. *)
(* ------------------------------------------------------------------------- *)
let mk_primed_var =
let rec svariant avoid s =
if mem s avoid || (can get_const_type s && not(is_hidden s)) then
svariant avoid (s^"'")
else s in
fun avoid v ->
let s,ty = dest_var v in
let s' = svariant (mapfilter (fst o dest_var) avoid) s in
mk_var(s',ty);;
(* ------------------------------------------------------------------------- *)
(* General case of beta-conversion. *)
(* ------------------------------------------------------------------------- *)
let BETA_CONV tm =
try BETA tm with Failure _ ->
try let f,arg = dest_comb tm in
let v = bndvar f in
INST [arg,v] (BETA (mk_comb(f,v)))
with Failure _ -> failwith "BETA_CONV: Not a beta-redex";;
(* ------------------------------------------------------------------------- *)
(* A few very basic derived equality rules. *)
(* ------------------------------------------------------------------------- *)
let AP_TERM tm =
let rth = REFL tm in
fun th -> try MK_COMB(rth,th)
with Failure _ -> failwith "AP_TERM";;
let AP_THM th tm =
try MK_COMB(th,REFL tm)
with Failure _ -> failwith "AP_THM";;
let SYM th =
let tm = concl th in
let l,r = dest_eq tm in
let lth = REFL l in
EQ_MP (MK_COMB(AP_TERM (rator (rator tm)) th,lth)) lth;;
let ALPHA tm1 tm2 =
try TRANS (REFL tm1) (REFL tm2)
with Failure _ -> failwith "ALPHA";;
let ALPHA_CONV v tm =
let res = alpha v tm in
ALPHA tm res;;
let GEN_ALPHA_CONV v tm =
if is_abs tm then ALPHA_CONV v tm else
let b,abs = dest_comb tm in
AP_TERM b (ALPHA_CONV v abs);;
let MK_BINOP op =
let afn = AP_TERM op in
fun (lth,rth) -> MK_COMB(afn lth,rth);;
(* ------------------------------------------------------------------------- *)
(* Terminal conversion combinators. *)
(* ------------------------------------------------------------------------- *)
let (NO_CONV:conv) = fun tm -> failwith "NO_CONV";;
let (ALL_CONV:conv) = REFL;;
(* ------------------------------------------------------------------------- *)
(* Combinators for sequencing, trying, repeating etc. conversions. *)
(* ------------------------------------------------------------------------- *)
let ((THENC):conv -> conv -> conv) =
fun conv1 conv2 t ->
let th1 = conv1 t in
let th2 = conv2 (rand(concl th1)) in
TRANS th1 th2;;
let ((ORELSEC):conv -> conv -> conv) =
fun conv1 conv2 t ->
try conv1 t with Failure _ -> conv2 t;;
let (FIRST_CONV:conv list -> conv) = end_itlist (fun c1 c2 -> c1 ORELSEC c2);;
let (EVERY_CONV:conv list -> conv) =
fun l -> itlist (fun c1 c2 -> c1 THENC c2) l ALL_CONV;;
let REPEATC =
let rec REPEATC conv t =
((conv THENC (REPEATC conv)) ORELSEC ALL_CONV) t in
(REPEATC:conv->conv);;
let (CHANGED_CONV:conv->conv) =
fun conv tm ->
let th = conv tm in
let l,r = dest_eq (concl th) in
if aconv l r then failwith "CHANGED_CONV" else th;;
let TRY_CONV conv = conv ORELSEC ALL_CONV;;
(* ------------------------------------------------------------------------- *)
(* Subterm conversions. *)
(* ------------------------------------------------------------------------- *)
let (RATOR_CONV:conv->conv) =
fun conv tm ->
match tm with
Comb(l,r) -> AP_THM (conv l) r
| _ -> failwith "RATOR_CONV: Not a combination";;
let (RAND_CONV:conv->conv) =
fun conv tm ->
match tm with
Comb(l,r) -> MK_COMB(REFL l,conv r)
| _ -> failwith "RAND_CONV: Not a combination";;
let LAND_CONV = RATOR_CONV o RAND_CONV;;
let (COMB2_CONV: conv->conv->conv) =
fun lconv rconv tm ->
match tm with
Comb(l,r) -> MK_COMB(lconv l,rconv r)
| _ -> failwith "COMB2_CONV: Not a combination";;
let COMB_CONV = W COMB2_CONV;;
let (ABS_CONV:conv->conv) =
fun conv tm ->
let v,bod = dest_abs tm in
let th = conv bod in
try ABS v th with Failure _ ->
let gv = genvar(type_of v) in
let gbod = vsubst[gv,v] bod in
let gth = ABS gv (conv gbod) in
let gtm = concl gth in
let l,r = dest_eq gtm in
let v' = variant (frees gtm) v in
let l' = alpha v' l and r' = alpha v' r in
EQ_MP (ALPHA gtm (mk_eq(l',r'))) gth;;
let BINDER_CONV conv tm =
if is_abs tm then ABS_CONV conv tm
else RAND_CONV(ABS_CONV conv) tm;;
let SUB_CONV conv tm =
match tm with
Comb(_,_) -> COMB_CONV conv tm
| Abs(_,_) -> ABS_CONV conv tm
| _ -> REFL tm;;
let BINOP_CONV conv tm =
let lop,r = dest_comb tm in
let op,l = dest_comb lop in
MK_COMB(AP_TERM op (conv l),conv r);;
(* ------------------------------------------------------------------------- *)
(* Depth conversions; internal use of a failure-propagating `Boultonized' *)
(* version to avoid a great deal of reuilding of terms. *)
(* ------------------------------------------------------------------------- *)
let (ONCE_DEPTH_CONV: conv->conv),
(DEPTH_CONV: conv->conv),
(REDEPTH_CONV: conv->conv),
(TOP_DEPTH_CONV: conv->conv),
(TOP_SWEEP_CONV: conv->conv) =
let THENQC conv1 conv2 tm =
try let th1 = conv1 tm in
try let th2 = conv2(rand(concl th1)) in TRANS th1 th2
with Failure _ -> th1
with Failure _ -> conv2 tm
and THENCQC conv1 conv2 tm =
let th1 = conv1 tm in
try let th2 = conv2(rand(concl th1)) in TRANS th1 th2
with Failure _ -> th1
and COMB_QCONV conv tm =
match tm with
Comb(l,r) ->
(try let th1 = conv l in
try let th2 = conv r in MK_COMB(th1,th2)
with Failure _ -> AP_THM th1 r
with Failure _ -> AP_TERM l (conv r))
| _ -> failwith "COMB_QCONV: Not a combination" in
let rec REPEATQC conv tm = THENCQC conv (REPEATQC conv) tm in
let SUB_QCONV conv tm =
match tm with
Abs(_,_) -> ABS_CONV conv tm
| _ -> COMB_QCONV conv tm in
let rec ONCE_DEPTH_QCONV conv tm =
(conv ORELSEC (SUB_QCONV (ONCE_DEPTH_QCONV conv))) tm
and DEPTH_QCONV conv tm =
THENQC (SUB_QCONV (DEPTH_QCONV conv))
(REPEATQC conv) tm
and REDEPTH_QCONV conv tm =
THENQC (SUB_QCONV (REDEPTH_QCONV conv))
(THENCQC conv (REDEPTH_QCONV conv)) tm
and TOP_DEPTH_QCONV conv tm =
THENQC (REPEATQC conv)
(THENCQC (SUB_QCONV (TOP_DEPTH_QCONV conv))
(THENCQC conv (TOP_DEPTH_QCONV conv))) tm
and TOP_SWEEP_QCONV conv tm =
THENQC (REPEATQC conv)
(SUB_QCONV (TOP_SWEEP_QCONV conv)) tm in
(fun c -> TRY_CONV (ONCE_DEPTH_QCONV c)),
(fun c -> TRY_CONV (DEPTH_QCONV c)),
(fun c -> TRY_CONV (REDEPTH_QCONV c)),
(fun c -> TRY_CONV (TOP_DEPTH_QCONV c)),
(fun c -> TRY_CONV (TOP_SWEEP_QCONV c));;
(* ------------------------------------------------------------------------- *)
(* Apply at leaves of op-tree; NB any failures at leaves cause failure. *)
(* ------------------------------------------------------------------------- *)
let rec DEPTH_BINOP_CONV op conv tm =
match tm with
Comb(Comb(op',l),r) when Pervasives.compare op' op = 0 ->
let l,r = dest_binop op tm in
let lth = DEPTH_BINOP_CONV op conv l
and rth = DEPTH_BINOP_CONV op conv r in
MK_COMB(AP_TERM op' lth,rth)
| _ -> conv tm;;
(* ------------------------------------------------------------------------- *)
(* Follow a path. *)
(* ------------------------------------------------------------------------- *)
let PATH_CONV =
let rec path_conv s cnv =
match s with
[] -> cnv
| "l"::t -> RATOR_CONV (path_conv t cnv)
| "r"::t -> RAND_CONV (path_conv t cnv)
| _::t -> ABS_CONV (path_conv t cnv) in
fun s cnv -> path_conv (explode s) cnv;;
(* ------------------------------------------------------------------------- *)
(* Follow a pattern *)
(* ------------------------------------------------------------------------- *)
let PAT_CONV =
let rec PCONV xs pat conv =
if mem pat xs then conv
else if not(exists (fun x -> free_in x pat) xs) then ALL_CONV
else if is_comb pat then
COMB2_CONV (PCONV xs (rator pat) conv) (PCONV xs (rand pat) conv)
else
ABS_CONV (PCONV xs (body pat) conv) in
fun pat -> let xs,pbod = strip_abs pat in PCONV xs pbod;;
(* ------------------------------------------------------------------------- *)
(* Symmetry conversion. *)
(* ------------------------------------------------------------------------- *)
let SYM_CONV tm =
try let th1 = SYM(ASSUME tm) in
let tm' = concl th1 in
let th2 = SYM(ASSUME tm') in
DEDUCT_ANTISYM_RULE th2 th1
with Failure _ -> failwith "SYM_CONV";;
(* ------------------------------------------------------------------------- *)
(* Conversion to a rule. *)
(* ------------------------------------------------------------------------- *)
let CONV_RULE (conv:conv) th =
EQ_MP (conv(concl th)) th;;
(* ------------------------------------------------------------------------- *)
(* Substitution conversion. *)
(* ------------------------------------------------------------------------- *)
let SUBS_CONV ths tm =
try if ths = [] then REFL tm else
let lefts = map (lhand o concl) ths in
let gvs = map (genvar o type_of) lefts in
let pat = subst (zip gvs lefts) tm in
let abs = list_mk_abs(gvs,pat) in
let th = rev_itlist
(fun y x -> CONV_RULE (RAND_CONV BETA_CONV THENC LAND_CONV BETA_CONV)
(MK_COMB(x,y))) ths (REFL abs) in
if rand(concl th) = tm then REFL tm else th
with Failure _ -> failwith "SUBS_CONV";;
(* ------------------------------------------------------------------------- *)
(* Get a few rules. *)
(* ------------------------------------------------------------------------- *)
let BETA_RULE = CONV_RULE(REDEPTH_CONV BETA_CONV);;
let GSYM = CONV_RULE(ONCE_DEPTH_CONV SYM_CONV);;
let SUBS ths = CONV_RULE (SUBS_CONV ths);;
(* ------------------------------------------------------------------------- *)
(* A cacher for conversions. *)
(* ------------------------------------------------------------------------- *)
let CACHE_CONV =
let ALPHA_HACK th =
let tm' = lhand(concl th) in
fun tm -> if tm' = tm then th else TRANS (ALPHA tm tm') th in
fun conv ->
let net = ref empty_net in
fun tm -> try tryfind (fun f -> f tm) (lookup tm (!net))
with Failure _ ->
let th = conv tm in
(net := enter [] (tm,ALPHA_HACK th) (!net); th);;
|