1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
|
(* ========================================================================= *)
(* Convenient library functions. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
let fail() = failwith "";;
(* ------------------------------------------------------------------------- *)
(* Combinators. *)
(* ------------------------------------------------------------------------- *)
let curry f x y = f(x,y);;
let uncurry f(x,y) = f x y;;
let I x = x;;
let K x y = x;;
let C f x y = f y x;;
let W f x = f x x;;
let (o) = fun f g x -> f(g x);;
let (F_F) = fun f g (x,y) -> (f x,g y);;
(* ------------------------------------------------------------------------- *)
(* List basics. *)
(* ------------------------------------------------------------------------- *)
let hd l =
match l with
h::t -> h
| _ -> failwith "hd";;
let tl l =
match l with
h::t -> t
| _ -> failwith "tl";;
let map f =
let rec mapf l =
match l with
[] -> []
| (x::t) -> let y = f x in y::(mapf t) in
mapf;;
let rec last l =
match l with
[x] -> x
| (h::t) -> last t
| [] -> failwith "last";;
let rec butlast l =
match l with
[_] -> []
| (h::t) -> h::(butlast t)
| [] -> failwith "butlast";;
let rec el n l =
if n = 0 then hd l else el (n - 1) (tl l);;
let rev =
let rec rev_append acc l =
match l with
[] -> acc
| h::t -> rev_append (h::acc) t in
fun l -> rev_append [] l;;
let rec map2 f l1 l2 =
match (l1,l2) with
[],[] -> []
| (h1::t1),(h2::t2) -> let h = f h1 h2 in h::(map2 f t1 t2)
| _ -> failwith "map2: length mismatch";;
(* ------------------------------------------------------------------------- *)
(* Attempting function or predicate applications. *)
(* ------------------------------------------------------------------------- *)
let can f x = try (f x; true) with Failure _ -> false;;
let check p x = if p x then x else failwith "check";;
(* ------------------------------------------------------------------------- *)
(* Repetition of a function. *)
(* ------------------------------------------------------------------------- *)
let rec funpow n f x =
if n < 1 then x else funpow (n-1) f (f x);;
let rec repeat f x =
try let y = f x in repeat f y with Failure _ -> x;;
(* ------------------------------------------------------------------------- *)
(* To avoid consing in various situations, we propagate this exception. *)
(* I should probably eliminate this and use pointer EQ tests instead. *)
(* ------------------------------------------------------------------------- *)
exception Unchanged;;
(* ------------------------------------------------------------------------- *)
(* Various versions of list iteration. *)
(* ------------------------------------------------------------------------- *)
let rec itlist f l b =
match l with
[] -> b
| (h::t) -> f h (itlist f t b);;
let rec rev_itlist f l b =
match l with
[] -> b
| (h::t) -> rev_itlist f t (f h b);;
let rec end_itlist f l =
match l with
[] -> failwith "end_itlist"
| [x] -> x
| (h::t) -> f h (end_itlist f t);;
let rec itlist2 f l1 l2 b =
match (l1,l2) with
([],[]) -> b
| (h1::t1,h2::t2) -> f h1 h2 (itlist2 f t1 t2 b)
| _ -> failwith "itlist2";;
let rec rev_itlist2 f l1 l2 b =
match (l1,l2) with
([],[]) -> b
| (h1::t1,h2::t2) -> rev_itlist2 f t1 t2 (f h1 h2 b)
| _ -> failwith "rev_itlist2";;
(* ------------------------------------------------------------------------- *)
(* Iterative splitting (list) and stripping (tree) via destructor. *)
(* ------------------------------------------------------------------------- *)
let rec splitlist dest x =
try let l,r = dest x in
let ls,res = splitlist dest r in
(l::ls,res)
with Failure _ -> ([],x);;
let rev_splitlist dest =
let rec rsplist ls x =
try let l,r = dest x in
rsplist (r::ls) l
with Failure _ -> (x,ls) in
fun x -> rsplist [] x;;
let striplist dest =
let rec strip x acc =
try let l,r = dest x in
strip l (strip r acc)
with Failure _ -> x::acc in
fun x -> strip x [];;
(* ------------------------------------------------------------------------- *)
(* Apply a destructor as many times as elements in list. *)
(* ------------------------------------------------------------------------- *)
let rec nsplit dest clist x =
if clist = [] then [],x else
let l,r = dest x in
let ll,y = nsplit dest (tl clist) r in
l::ll,y;;
(* ------------------------------------------------------------------------- *)
(* Replication and sequences. *)
(* ------------------------------------------------------------------------- *)
let rec replicate x n =
if n < 1 then []
else x::(replicate x (n - 1));;
let rec (--) = fun m n -> if m > n then [] else m::((m + 1) -- n);;
(* ------------------------------------------------------------------------- *)
(* Various useful list operations. *)
(* ------------------------------------------------------------------------- *)
let rec forall p l =
match l with
[] -> true
| h::t -> p(h) && forall p t;;
let rec forall2 p l1 l2 =
match (l1,l2) with
[],[] -> true
| (h1::t1,h2::t2) -> p h1 h2 && forall2 p t1 t2
| _ -> false;;
let rec exists p l =
match l with
[] -> false
| h::t -> p(h) || exists p t;;
let length =
let rec len k l =
if l = [] then k else len (k + 1) (tl l) in
fun l -> len 0 l;;
let rec filter p l =
match l with
[] -> l
| h::t -> let t' = filter p t in
if p(h) then if t'==t then l else h::t'
else t';;
let rec partition p l =
match l with
[] -> [],l
| h::t -> let yes,no = partition p t in
if p(h) then (if yes == t then l,[] else h::yes,no)
else (if no == t then [],l else yes,h::no);;
let rec mapfilter f l =
match l with
[] -> []
| (h::t) -> let rest = mapfilter f t in
try (f h)::rest with Failure _ -> rest;;
let rec find p l =
match l with
[] -> failwith "find"
| (h::t) -> if p(h) then h else find p t;;
let rec tryfind f l =
match l with
[] -> failwith "tryfind"
| (h::t) -> try f h with Failure _ -> tryfind f t;;
let flat l = itlist (@) l [];;
let rec remove p l =
match l with
[] -> failwith "remove"
| (h::t) -> if p(h) then h,t else
let y,n = remove p t in y,h::n;;
let rec chop_list n l =
if n = 0 then [],l else
try let m,l' = chop_list (n-1) (tl l) in (hd l)::m,l'
with Failure _ -> failwith "chop_list";;
let index x =
let rec ind n l =
match l with
[] -> failwith "index"
| (h::t) -> if Pervasives.compare x h = 0 then n else ind (n + 1) t in
ind 0;;
(* ------------------------------------------------------------------------- *)
(* "Set" operations on lists. *)
(* ------------------------------------------------------------------------- *)
let rec mem x lis =
match lis with
[] -> false
| (h::t) -> Pervasives.compare x h = 0 || mem x t;;
let insert x l =
if mem x l then l else x::l;;
let union l1 l2 = itlist insert l1 l2;;
let unions l = itlist union l [];;
let intersect l1 l2 = filter (fun x -> mem x l2) l1;;
let subtract l1 l2 = filter (fun x -> not (mem x l2)) l1;;
let subset l1 l2 = forall (fun t -> mem t l2) l1;;
let set_eq l1 l2 = subset l1 l2 && subset l2 l1;;
(* ------------------------------------------------------------------------- *)
(* Association lists. *)
(* ------------------------------------------------------------------------- *)
let rec assoc a l =
match l with
(x,y)::t -> if Pervasives.compare x a = 0 then y else assoc a t
| [] -> failwith "find";;
let rec rev_assoc a l =
match l with
(x,y)::t -> if Pervasives.compare y a = 0 then x else rev_assoc a t
| [] -> failwith "find";;
(* ------------------------------------------------------------------------- *)
(* Zipping, unzipping etc. *)
(* ------------------------------------------------------------------------- *)
let rec zip l1 l2 =
match (l1,l2) with
([],[]) -> []
| (h1::t1,h2::t2) -> (h1,h2)::(zip t1 t2)
| _ -> failwith "zip";;
let rec unzip =
function [] -> [],[]
| ((a,b)::rest) -> let alist,blist = unzip rest in
(a::alist,b::blist);;
(* ------------------------------------------------------------------------- *)
(* Sharing out a list according to pattern in list-of-lists. *)
(* ------------------------------------------------------------------------- *)
let rec shareout pat all =
if pat = [] then [] else
let l,r = chop_list (length (hd pat)) all in
l::(shareout (tl pat) r);;
(* ------------------------------------------------------------------------- *)
(* Iterating functions over lists. *)
(* ------------------------------------------------------------------------- *)
let rec do_list f l =
match l with
[] -> ()
| (h::t) -> (f h; do_list f t);;
(* ------------------------------------------------------------------------- *)
(* Sorting. *)
(* ------------------------------------------------------------------------- *)
let rec sort cmp lis =
match lis with
[] -> []
| piv::rest ->
let r,l = partition (cmp piv) rest in
(sort cmp l) @ (piv::(sort cmp r));;
(* ------------------------------------------------------------------------- *)
(* Removing adjacent (NB!) equal elements from list. *)
(* ------------------------------------------------------------------------- *)
let rec uniq l =
match l with
x::(y::_ as t) -> let t' = uniq t in
if Pervasives.compare x y = 0 then t' else
if t'==t then l else x::t'
| _ -> l;;
(* ------------------------------------------------------------------------- *)
(* Convert list into set by eliminating duplicates. *)
(* ------------------------------------------------------------------------- *)
let setify s = uniq (sort (fun x y -> Pervasives.compare x y <= 0) s);;
(* ------------------------------------------------------------------------- *)
(* String operations (surely there is a better way...) *)
(* ------------------------------------------------------------------------- *)
let implode l = itlist (^) l "";;
let explode s =
let rec exap n l =
if n < 0 then l else
exap (n - 1) ((String.sub s n 1)::l) in
exap (String.length s - 1) [];;
(* ------------------------------------------------------------------------- *)
(* Greatest common divisor. *)
(* ------------------------------------------------------------------------- *)
let gcd =
let rec gxd x y =
if y = 0 then x else gxd y (x mod y) in
fun x y -> let x' = abs x and y' = abs y in
if x' < y' then gxd y' x' else gxd x' y';;
(* ------------------------------------------------------------------------- *)
(* Some useful functions on "num" type. *)
(* ------------------------------------------------------------------------- *)
let num_0 = Int 0
and num_1 = Int 1
and num_2 = Int 2
and num_10 = Int 10;;
let pow2 n = power_num num_2 (Int n);;
let pow10 n = power_num num_10 (Int n);;
let numdom r =
let r' = Ratio.normalize_ratio (ratio_of_num r) in
num_of_big_int(Ratio.numerator_ratio r'),
num_of_big_int(Ratio.denominator_ratio r');;
let numerator = fst o numdom
and denominator = snd o numdom;;
let gcd_num n1 n2 =
num_of_big_int(Big_int.gcd_big_int (big_int_of_num n1) (big_int_of_num n2));;
let lcm_num x y =
if x =/ num_0 && y =/ num_0 then num_0
else abs_num((x */ y) // gcd_num x y);;
(* ------------------------------------------------------------------------- *)
(* All pairs arising from applying a function over two lists. *)
(* ------------------------------------------------------------------------- *)
let rec allpairs f l1 l2 =
match l1 with
h1::t1 -> itlist (fun x a -> f h1 x :: a) l2 (allpairs f t1 l2)
| [] -> [];;
(* ------------------------------------------------------------------------- *)
(* Issue a report with a newline. *)
(* ------------------------------------------------------------------------- *)
let report s =
Format.print_string s; Format.print_newline();;
(* ------------------------------------------------------------------------- *)
(* Convenient function for issuing a warning. *)
(* ------------------------------------------------------------------------- *)
let warn cond s =
if cond then report ("Warning: "^s) else ();;
(* ------------------------------------------------------------------------- *)
(* Flags to switch on verbose mode. *)
(* ------------------------------------------------------------------------- *)
let verbose = ref true;;
let report_timing = ref true;;
(* ------------------------------------------------------------------------- *)
(* Switchable version of "report". *)
(* ------------------------------------------------------------------------- *)
let remark s =
if !verbose then report s else ();;
(* ------------------------------------------------------------------------- *)
(* Time a function. *)
(* ------------------------------------------------------------------------- *)
let time f x =
if not (!report_timing) then f x else
let start_time = Sys.time() in
try let result = f x in
let finish_time = Sys.time() in
report("CPU time (user): "^(string_of_float(finish_time -. start_time)));
result
with e ->
let finish_time = Sys.time() in
Format.print_string("Failed after (user) CPU time of "^
(string_of_float(finish_time -. start_time))^": ");
raise e;;
(* ------------------------------------------------------------------------- *)
(* Versions of assoc and rev_assoc with default rather than failure. *)
(* ------------------------------------------------------------------------- *)
let rec assocd a l d =
match l with
[] -> d
| (x,y)::t -> if Pervasives.compare x a = 0 then y else assocd a t d;;
let rec rev_assocd a l d =
match l with
[] -> d
| (x,y)::t -> if Pervasives.compare y a = 0 then x else rev_assocd a t d;;
(* ------------------------------------------------------------------------- *)
(* Version of map that avoids rebuilding unchanged subterms. *)
(* ------------------------------------------------------------------------- *)
let rec qmap f l =
match l with
h::t -> let h' = f h and t' = qmap f t in
if h' == h && t' == t then l else h'::t'
| _ -> l;;
(* ------------------------------------------------------------------------- *)
(* Merging and bottom-up mergesort. *)
(* ------------------------------------------------------------------------- *)
let rec merge ord l1 l2 =
match l1 with
[] -> l2
| h1::t1 -> match l2 with
[] -> l1
| h2::t2 -> if ord h1 h2 then h1::(merge ord t1 l2)
else h2::(merge ord l1 t2);;
let mergesort ord =
let rec mergepairs l1 l2 =
match (l1,l2) with
([s],[]) -> s
| (l,[]) -> mergepairs [] l
| (l,[s1]) -> mergepairs (s1::l) []
| (l,(s1::s2::ss)) -> mergepairs ((merge ord s1 s2)::l) ss in
fun l -> if l = [] then [] else mergepairs [] (map (fun x -> [x]) l);;
(* ------------------------------------------------------------------------- *)
(* Common measure predicates to use with "sort". *)
(* ------------------------------------------------------------------------- *)
let increasing f x y = Pervasives.compare (f x) (f y) < 0;;
let decreasing f x y = Pervasives.compare (f x) (f y) > 0;;
(* ------------------------------------------------------------------------- *)
(* Polymorphic finite partial functions via Patricia trees. *)
(* *)
(* The point of this strange representation is that it is canonical (equal *)
(* functions have the same encoding) yet reasonably efficient on average. *)
(* *)
(* Idea due to Diego Olivier Fernandez Pons (OCaml list, 2003/11/10). *)
(* ------------------------------------------------------------------------- *)
type ('a,'b)func =
Empty
| Leaf of int * ('a*'b)list
| Branch of int * int * ('a,'b)func * ('a,'b)func;;
(* ------------------------------------------------------------------------- *)
(* Undefined function. *)
(* ------------------------------------------------------------------------- *)
let undefined = Empty;;
(* ------------------------------------------------------------------------- *)
(* In case of equality comparison worries, better use this. *)
(* ------------------------------------------------------------------------- *)
let is_undefined f =
match f with
Empty -> true
| _ -> false;;
(* ------------------------------------------------------------------------- *)
(* Operation analagous to "map" for lists. *)
(* ------------------------------------------------------------------------- *)
let mapf =
let rec map_list f l =
match l with
[] -> []
| (x,y)::t -> (x,f(y))::(map_list f t) in
let rec mapf f t =
match t with
Empty -> Empty
| Leaf(h,l) -> Leaf(h,map_list f l)
| Branch(p,b,l,r) -> Branch(p,b,mapf f l,mapf f r) in
mapf;;
(* ------------------------------------------------------------------------- *)
(* Operations analogous to "fold" for lists. *)
(* ------------------------------------------------------------------------- *)
let foldl =
let rec foldl_list f a l =
match l with
[] -> a
| (x,y)::t -> foldl_list f (f a x y) t in
let rec foldl f a t =
match t with
Empty -> a
| Leaf(h,l) -> foldl_list f a l
| Branch(p,b,l,r) -> foldl f (foldl f a l) r in
foldl;;
let foldr =
let rec foldr_list f l a =
match l with
[] -> a
| (x,y)::t -> f x y (foldr_list f t a) in
let rec foldr f t a =
match t with
Empty -> a
| Leaf(h,l) -> foldr_list f l a
| Branch(p,b,l,r) -> foldr f l (foldr f r a) in
foldr;;
(* ------------------------------------------------------------------------- *)
(* Mapping to sorted-list representation of the graph, domain and range. *)
(* ------------------------------------------------------------------------- *)
let graph f = setify (foldl (fun a x y -> (x,y)::a) [] f);;
let dom f = setify(foldl (fun a x y -> x::a) [] f);;
let ran f = setify(foldl (fun a x y -> y::a) [] f);;
(* ------------------------------------------------------------------------- *)
(* Application. *)
(* ------------------------------------------------------------------------- *)
let applyd =
let rec apply_listd l d x =
match l with
(a,b)::t -> let c = Pervasives.compare x a in
if c = 0 then b else if c > 0 then apply_listd t d x else d x
| [] -> d x in
fun f d x ->
let k = Hashtbl.hash x in
let rec look t =
match t with
Leaf(h,l) when h = k -> apply_listd l d x
| Branch(p,b,l,r) when (k lxor p) land (b - 1) = 0
-> look (if k land b = 0 then l else r)
| _ -> d x in
look f;;
let apply f = applyd f (fun x -> failwith "apply");;
let tryapplyd f a d = applyd f (fun x -> d) a;;
let defined f x = try apply f x; true with Failure _ -> false;;
(* ------------------------------------------------------------------------- *)
(* Undefinition. *)
(* ------------------------------------------------------------------------- *)
let undefine =
let rec undefine_list x l =
match l with
(a,b as ab)::t ->
let c = Pervasives.compare x a in
if c = 0 then t
else if c < 0 then l else
let t' = undefine_list x t in
if t' == t then l else ab::t'
| [] -> [] in
fun x ->
let k = Hashtbl.hash x in
let rec und t =
match t with
Leaf(h,l) when h = k ->
let l' = undefine_list x l in
if l' == l then t
else if l' = [] then Empty
else Leaf(h,l')
| Branch(p,b,l,r) when k land (b - 1) = p ->
if k land b = 0 then
let l' = und l in
if l' == l then t
else (match l' with Empty -> r | _ -> Branch(p,b,l',r))
else
let r' = und r in
if r' == r then t
else (match r' with Empty -> l | _ -> Branch(p,b,l,r'))
| _ -> t in
und;;
(* ------------------------------------------------------------------------- *)
(* Redefinition and combination. *)
(* ------------------------------------------------------------------------- *)
let (|->),combine =
let newbranch p1 t1 p2 t2 =
let zp = p1 lxor p2 in
let b = zp land (-zp) in
let p = p1 land (b - 1) in
if p1 land b = 0 then Branch(p,b,t1,t2)
else Branch(p,b,t2,t1) in
let rec define_list (x,y as xy) l =
match l with
(a,b as ab)::t ->
let c = Pervasives.compare x a in
if c = 0 then xy::t
else if c < 0 then xy::l
else ab::(define_list xy t)
| [] -> [xy]
and combine_list op z l1 l2 =
match (l1,l2) with
[],_ -> l2
| _,[] -> l1
| ((x1,y1 as xy1)::t1,(x2,y2 as xy2)::t2) ->
let c = Pervasives.compare x1 x2 in
if c < 0 then xy1::(combine_list op z t1 l2)
else if c > 0 then xy2::(combine_list op z l1 t2) else
let y = op y1 y2 and l = combine_list op z t1 t2 in
if z(y) then l else (x1,y)::l in
let (|->) x y =
let k = Hashtbl.hash x in
let rec upd t =
match t with
Empty -> Leaf (k,[x,y])
| Leaf(h,l) ->
if h = k then Leaf(h,define_list (x,y) l)
else newbranch h t k (Leaf(k,[x,y]))
| Branch(p,b,l,r) ->
if k land (b - 1) <> p then newbranch p t k (Leaf(k,[x,y]))
else if k land b = 0 then Branch(p,b,upd l,r)
else Branch(p,b,l,upd r) in
upd in
let rec combine op z t1 t2 =
match (t1,t2) with
Empty,_ -> t2
| _,Empty -> t1
| Leaf(h1,l1),Leaf(h2,l2) ->
if h1 = h2 then
let l = combine_list op z l1 l2 in
if l = [] then Empty else Leaf(h1,l)
else newbranch h1 t1 h2 t2
| (Leaf(k,lis) as lf),(Branch(p,b,l,r) as br) ->
if k land (b - 1) = p then
if k land b = 0 then
(match combine op z lf l with
Empty -> r | l' -> Branch(p,b,l',r))
else
(match combine op z lf r with
Empty -> l | r' -> Branch(p,b,l,r'))
else
newbranch k lf p br
| (Branch(p,b,l,r) as br),(Leaf(k,lis) as lf) ->
if k land (b - 1) = p then
if k land b = 0 then
(match combine op z l lf with
Empty -> r | l' -> Branch(p,b,l',r))
else
(match combine op z r lf with
Empty -> l | r' -> Branch(p,b,l,r'))
else
newbranch p br k lf
| Branch(p1,b1,l1,r1),Branch(p2,b2,l2,r2) ->
if b1 < b2 then
if p2 land (b1 - 1) <> p1 then newbranch p1 t1 p2 t2
else if p2 land b1 = 0 then
(match combine op z l1 t2 with
Empty -> r1 | l -> Branch(p1,b1,l,r1))
else
(match combine op z r1 t2 with
Empty -> l1 | r -> Branch(p1,b1,l1,r))
else if b2 < b1 then
if p1 land (b2 - 1) <> p2 then newbranch p1 t1 p2 t2
else if p1 land b2 = 0 then
(match combine op z t1 l2 with
Empty -> r2 | l -> Branch(p2,b2,l,r2))
else
(match combine op z t1 r2 with
Empty -> l2 | r -> Branch(p2,b2,l2,r))
else if p1 = p2 then
(match (combine op z l1 l2,combine op z r1 r2) with
(Empty,r) -> r | (l,Empty) -> l | (l,r) -> Branch(p1,b1,l,r))
else
newbranch p1 t1 p2 t2 in
(|->),combine;;
(* ------------------------------------------------------------------------- *)
(* Special case of point function. *)
(* ------------------------------------------------------------------------- *)
let (|=>) = fun x y -> (x |-> y) undefined;;
(* ------------------------------------------------------------------------- *)
(* Grab an arbitrary element. *)
(* ------------------------------------------------------------------------- *)
let rec choose t =
match t with
Empty -> failwith "choose: completely undefined function"
| Leaf(h,l) -> hd l
| Branch(b,p,t1,t2) -> choose t1;;
(* ------------------------------------------------------------------------- *)
(* Install a trivial printer for the general polymorphic case. *)
(* ------------------------------------------------------------------------- *)
let print_fpf (f:('a,'b)func) = Format.print_string "<func>";;
#install_printer print_fpf;;
(* ------------------------------------------------------------------------- *)
(* Set operations parametrized by equality (from Steven Obua). *)
(* ------------------------------------------------------------------------- *)
let rec mem' eq =
let rec mem x lis =
match lis with
[] -> false
| (h::t) -> eq x h || mem x t
in mem;;
let insert' eq x l =
if mem' eq x l then l else x::l;;
let union' eq l1 l2 = itlist (insert' eq) l1 l2;;
let unions' eq l = itlist (union' eq) l [];;
let subtract' eq l1 l2 = filter (fun x -> not (mem' eq x l2)) l1;;
(* ------------------------------------------------------------------------- *)
(* Accepts decimal, hex or binary numeral, using C notation 0x... for hex *)
(* and analogous 0b... for binary. *)
(* ------------------------------------------------------------------------- *)
let num_of_string =
let values =
["0",0; "1",1; "2",2; "3",3; "4",4;
"5",5; "6",6; "7",7; "8",8; "9",9;
"a",10; "A",10; "b",11; "B",11;
"c",12; "C",12; "d",13; "D",13;
"e",14; "E",14; "f",15; "F",15] in
let valof b s =
let v = Int(assoc s values) in
if v </ b then v else failwith "num_of_string: invalid digit for base"
and two = num_2 and ten = num_10 and sixteen = Int 16 in
let rec num_of_stringlist b l =
match l with
[] -> failwith "num_of_string: no digits after base indicator"
| [h] -> valof b h
| h::t -> valof b h +/ b */ num_of_stringlist b t in
fun s ->
match explode(s) with
[] -> failwith "num_of_string: no digits"
| "0"::"x"::hexdigits -> num_of_stringlist sixteen (rev hexdigits)
| "0"::"b"::bindigits -> num_of_stringlist two (rev bindigits)
| decdigits -> num_of_stringlist ten (rev decdigits);;
(* ------------------------------------------------------------------------- *)
(* Convenient conversion between files and (lists of) strings. *)
(* ------------------------------------------------------------------------- *)
let strings_of_file filename =
let fd = try Pervasives.open_in filename
with Sys_error _ ->
failwith("strings_of_file: can't open "^filename) in
let rec suck_lines acc =
try let l = Pervasives.input_line fd in
suck_lines (l::acc)
with End_of_file -> rev acc in
let data = suck_lines [] in
(Pervasives.close_in fd; data);;
let string_of_file filename =
end_itlist (fun s t -> s^"\n"^t) (strings_of_file filename);;
let file_of_string filename s =
let fd = Pervasives.open_out filename in
output_string fd s; close_out fd;;
|