1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
(* ========================================================================= *)
(* Theory of lists, plus characters and strings as lists of characters. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* (c) Copyright, Marco Maggesi 2014 *)
(* ========================================================================= *)
needs "ind_types.ml";;
(* ------------------------------------------------------------------------- *)
(* Standard tactic for list induction using MATCH_MP_TAC list_INDUCT *)
(* ------------------------------------------------------------------------- *)
let LIST_INDUCT_TAC =
let list_INDUCT = prove
(`!P:(A)list->bool. P [] /\ (!h t. P t ==> P (CONS h t)) ==> !l. P l`,
MATCH_ACCEPT_TAC list_INDUCT) in
MATCH_MP_TAC list_INDUCT THEN
CONJ_TAC THENL [ALL_TAC; GEN_TAC THEN GEN_TAC THEN DISCH_TAC];;
(* ------------------------------------------------------------------------- *)
(* Basic definitions. *)
(* ------------------------------------------------------------------------- *)
let HD = new_recursive_definition list_RECURSION
`HD(CONS (h:A) t) = h`;;
let TL = new_recursive_definition list_RECURSION
`TL(CONS (h:A) t) = t`;;
let APPEND = new_recursive_definition list_RECURSION
`(!l:(A)list. APPEND [] l = l) /\
(!h t l. APPEND (CONS h t) l = CONS h (APPEND t l))`;;
let REVERSE = new_recursive_definition list_RECURSION
`(REVERSE [] = []) /\
(REVERSE (CONS (x:A) l) = APPEND (REVERSE l) [x])`;;
let LENGTH = new_recursive_definition list_RECURSION
`(LENGTH [] = 0) /\
(!h:A. !t. LENGTH (CONS h t) = SUC (LENGTH t))`;;
let MAP = new_recursive_definition list_RECURSION
`(!f:A->B. MAP f NIL = NIL) /\
(!f h t. MAP f (CONS h t) = CONS (f h) (MAP f t))`;;
let LAST = new_recursive_definition list_RECURSION
`LAST (CONS (h:A) t) = if t = [] then h else LAST t`;;
let BUTLAST = new_recursive_definition list_RECURSION
`(BUTLAST [] = []) /\
(BUTLAST (CONS h t) = if t = [] then [] else CONS h (BUTLAST t))`;;
let REPLICATE = new_recursive_definition num_RECURSION
`(REPLICATE 0 x = []) /\
(REPLICATE (SUC n) x = CONS x (REPLICATE n x))`;;
let NULL = new_recursive_definition list_RECURSION
`(NULL [] = T) /\
(NULL (CONS h t) = F)`;;
let ALL = new_recursive_definition list_RECURSION
`(ALL P [] = T) /\
(ALL P (CONS h t) <=> P h /\ ALL P t)`;;
let EX = new_recursive_definition list_RECURSION
`(EX P [] = F) /\
(EX P (CONS h t) <=> P h \/ EX P t)`;;
let ITLIST = new_recursive_definition list_RECURSION
`(ITLIST f [] b = b) /\
(ITLIST f (CONS h t) b = f h (ITLIST f t b))`;;
let MEM = new_recursive_definition list_RECURSION
`(MEM x [] <=> F) /\
(MEM x (CONS h t) <=> (x = h) \/ MEM x t)`;;
let ALL2_DEF = new_recursive_definition list_RECURSION
`(ALL2 P [] l2 <=> (l2 = [])) /\
(ALL2 P (CONS h1 t1) l2 <=>
if l2 = [] then F
else P h1 (HD l2) /\ ALL2 P t1 (TL l2))`;;
let ALL2 = prove
(`(ALL2 P [] [] <=> T) /\
(ALL2 P (CONS h1 t1) [] <=> F) /\
(ALL2 P [] (CONS h2 t2) <=> F) /\
(ALL2 P (CONS h1 t1) (CONS h2 t2) <=> P h1 h2 /\ ALL2 P t1 t2)`,
REWRITE_TAC[distinctness "list"; ALL2_DEF; HD; TL]);;
let MAP2_DEF = new_recursive_definition list_RECURSION
`(MAP2 f [] l = []) /\
(MAP2 f (CONS h1 t1) l = CONS (f h1 (HD l)) (MAP2 f t1 (TL l)))`;;
let MAP2 = prove
(`(MAP2 f [] [] = []) /\
(MAP2 f (CONS h1 t1) (CONS h2 t2) = CONS (f h1 h2) (MAP2 f t1 t2))`,
REWRITE_TAC[MAP2_DEF; HD; TL]);;
let EL = new_recursive_definition num_RECURSION
`(EL 0 l = HD l) /\
(EL (SUC n) l = EL n (TL l))`;;
let FILTER = new_recursive_definition list_RECURSION
`(FILTER P [] = []) /\
(FILTER P (CONS h t) = if P h then CONS h (FILTER P t) else FILTER P t)`;;
let ASSOC = new_recursive_definition list_RECURSION
`ASSOC a (CONS h t) = if FST h = a then SND h else ASSOC a t`;;
let ITLIST2_DEF = new_recursive_definition list_RECURSION
`(ITLIST2 f [] l2 b = b) /\
(ITLIST2 f (CONS h1 t1) l2 b = f h1 (HD l2) (ITLIST2 f t1 (TL l2) b))`;;
let ITLIST2 = prove
(`(ITLIST2 f [] [] b = b) /\
(ITLIST2 f (CONS h1 t1) (CONS h2 t2) b = f h1 h2 (ITLIST2 f t1 t2 b))`,
REWRITE_TAC[ITLIST2_DEF; HD; TL]);;
let ZIP_DEF = new_recursive_definition list_RECURSION
`(ZIP [] l2 = []) /\
(ZIP (CONS h1 t1) l2 = CONS (h1,HD l2) (ZIP t1 (TL l2)))`;;
let ZIP = prove
(`(ZIP [] [] = []) /\
(ZIP (CONS h1 t1) (CONS h2 t2) = CONS (h1,h2) (ZIP t1 t2))`,
REWRITE_TAC[ZIP_DEF; HD; TL]);;
let PAIRWISE = new_recursive_definition list_RECURSION
`(PAIRWISE (r:A->A->bool) [] <=> T) /\
(PAIRWISE (r:A->A->bool) (CONS h t) <=> ALL (r h) t /\ PAIRWISE r t)`;;
let list_of_seq = new_recursive_definition num_RECURSION
`list_of_seq (s:num->A) 0 = [] /\
list_of_seq s (SUC n) = APPEND (list_of_seq s n) [s n]`;;
(* ------------------------------------------------------------------------- *)
(* Various trivial theorems. *)
(* ------------------------------------------------------------------------- *)
let NOT_CONS_NIL = prove
(`!(h:A) t. ~(CONS h t = [])`,
REWRITE_TAC[distinctness "list"]);;
let LAST_CLAUSES = prove
(`(LAST [h:A] = h) /\
(LAST (CONS h (CONS k t)) = LAST (CONS k t))`,
REWRITE_TAC[LAST; NOT_CONS_NIL]);;
let APPEND_NIL = prove
(`!l:A list. APPEND l [] = l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND]);;
let APPEND_ASSOC = prove
(`!(l:A list) m n. APPEND l (APPEND m n) = APPEND (APPEND l m) n`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND]);;
let REVERSE_APPEND = prove
(`!(l:A list) m. REVERSE (APPEND l m) = APPEND (REVERSE m) (REVERSE l)`,
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[APPEND; REVERSE; APPEND_NIL; APPEND_ASSOC]);;
let REVERSE_REVERSE = prove
(`!l:A list. REVERSE(REVERSE l) = l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[REVERSE; REVERSE_APPEND; APPEND]);;
let CONS_11 = prove
(`!(h1:A) h2 t1 t2. (CONS h1 t1 = CONS h2 t2) <=> (h1 = h2) /\ (t1 = t2)`,
REWRITE_TAC[injectivity "list"]);;
let list_CASES = prove
(`!l:(A)list. (l = []) \/ ?h t. l = CONS h t`,
LIST_INDUCT_TAC THEN REWRITE_TAC[CONS_11; NOT_CONS_NIL] THEN
MESON_TAC[]);;
let LIST_EQ = prove
(`!l1 l2:A list.
l1 = l2 <=>
LENGTH l1 = LENGTH l2 /\ !n. n < LENGTH l2 ==> EL n l1 = EL n l2`,
REPEAT LIST_INDUCT_TAC THEN
REWRITE_TAC[NOT_CONS_NIL; CONS_11; LENGTH; CONJUNCT1 LT; NOT_SUC] THEN
ASM_REWRITE_TAC[SUC_INJ] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV)
[MESON[num_CASES] `(!n. P n) <=> P 0 /\ (!n. P(SUC n))`] THEN
REWRITE_TAC[EL; HD; TL; LT_0; LT_SUC; CONJ_ACI]);;
let LENGTH_APPEND = prove
(`!(l:A list) m. LENGTH(APPEND l m) = LENGTH l + LENGTH m`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND; LENGTH; ADD_CLAUSES]);;
let MAP_APPEND = prove
(`!f:A->B. !l1 l2. MAP f (APPEND l1 l2) = APPEND (MAP f l1) (MAP f l2)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP; APPEND]);;
let LENGTH_MAP = prove
(`!l. !f:A->B. LENGTH (MAP f l) = LENGTH l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP; LENGTH]);;
let LENGTH_EQ_NIL = prove
(`!l:A list. (LENGTH l = 0) <=> (l = [])`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_CONS_NIL; NOT_SUC]);;
let LENGTH_EQ_CONS = prove
(`!l n. (LENGTH l = SUC n) <=> ?h t. (l = CONS h t) /\ (LENGTH t = n)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC; NOT_CONS_NIL] THEN
ASM_REWRITE_TAC[SUC_INJ; CONS_11] THEN MESON_TAC[]);;
let MAP_o = prove
(`!f:A->B. !g:B->C. !l. MAP (g o f) l = MAP g (MAP f l)`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MAP; o_THM]);;
let MAP_EQ = prove
(`!f g l. ALL (\x. f x = g x) l ==> (MAP f l = MAP g l)`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[MAP; ALL] THEN ASM_MESON_TAC[]);;
let ALL_IMP = prove
(`!P Q l. (!x. MEM x l /\ P x ==> Q x) /\ ALL P l ==> ALL Q l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[MEM; ALL] THEN ASM_MESON_TAC[]);;
let NOT_EX = prove
(`!P l. ~(EX P l) <=> ALL (\x. ~(P x)) l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[EX; ALL; DE_MORGAN_THM]);;
let NOT_ALL = prove
(`!P l. ~(ALL P l) <=> EX (\x. ~(P x)) l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[EX; ALL; DE_MORGAN_THM]);;
let ALL_MAP = prove
(`!P f l. ALL P (MAP f l) <=> ALL (P o f) l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[ALL; MAP; o_THM]);;
let ALL_T = prove
(`!l. ALL (\x. T) l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL]);;
let MAP_EQ_ALL2 = prove
(`!l m. ALL2 (\x y. f x = f y) l m ==> (MAP f l = MAP f m)`,
REPEAT LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP; ALL2; CONS_11] THEN
ASM_MESON_TAC[]);;
let ALL2_MAP = prove
(`!P f l. ALL2 P (MAP f l) l <=> ALL (\a. P (f a) a) l`,
GEN_TAC THEN GEN_TAC THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2; MAP; ALL]);;
let MAP_EQ_DEGEN = prove
(`!l f. ALL (\x. f(x) = x) l ==> (MAP f l = l)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; CONS_11] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
let ALL2_AND_RIGHT = prove
(`!l m P Q. ALL2 (\x y. P x /\ Q x y) l m <=> ALL P l /\ ALL2 Q l m`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL; ALL2] THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL; ALL2] THEN
REWRITE_TAC[CONJ_ACI]);;
let ITLIST_APPEND = prove
(`!f a l1 l2. ITLIST f (APPEND l1 l2) a = ITLIST f l1 (ITLIST f l2 a)`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[ITLIST; APPEND]);;
let ITLIST_EXTRA = prove
(`!l. ITLIST f (APPEND l [a]) b = ITLIST f l (f a b)`,
REWRITE_TAC[ITLIST_APPEND; ITLIST]);;
let ALL_MP = prove
(`!P Q l. ALL (\x. P x ==> Q x) l /\ ALL P l ==> ALL Q l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ALL] THEN ASM_MESON_TAC[]);;
let AND_ALL = prove
(`!l. ALL P l /\ ALL Q l <=> ALL (\x. P x /\ Q x) l`,
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL; CONJ_ACI]);;
let EX_IMP = prove
(`!P Q l. (!x. MEM x l /\ P x ==> Q x) /\ EX P l ==> EX Q l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[MEM; EX] THEN ASM_MESON_TAC[]);;
let ALL_MEM = prove
(`!P l. (!x. MEM x l ==> P x) <=> ALL P l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MEM] THEN
ASM_MESON_TAC[]);;
let LENGTH_REPLICATE = prove
(`!n x. LENGTH(REPLICATE n x) = n`,
INDUCT_TAC THEN ASM_REWRITE_TAC[LENGTH; REPLICATE]);;
let EX_MAP = prove
(`!P f l. EX P (MAP f l) <=> EX (P o f) l`,
GEN_TAC THEN GEN_TAC THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP; EX; o_THM]);;
let EXISTS_EX = prove
(`!P l. (?x. EX (P x) l) <=> EX (\s. ?x. P x s) l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[EX] THEN
ASM_MESON_TAC[]);;
let FORALL_ALL = prove
(`!P l. (!x. ALL (P x) l) <=> ALL (\s. !x. P x s) l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN
ASM_MESON_TAC[]);;
let MEM_APPEND = prove
(`!x l1 l2. MEM x (APPEND l1 l2) <=> MEM x l1 \/ MEM x l2`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; APPEND; DISJ_ACI]);;
let MEM_MAP = prove
(`!f y l. MEM y (MAP f l) <=> ?x. MEM x l /\ (y = f x)`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MEM; MAP] THEN MESON_TAC[]);;
let FILTER_APPEND = prove
(`!P l1 l2. FILTER P (APPEND l1 l2) = APPEND (FILTER P l1) (FILTER P l2)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[FILTER; APPEND] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[APPEND]);;
let FILTER_MAP = prove
(`!P f l. FILTER P (MAP f l) = MAP f (FILTER (P o f) l)`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MAP; FILTER; o_THM] THEN COND_CASES_TAC THEN
REWRITE_TAC[MAP]);;
let MEM_FILTER = prove
(`!P l x. MEM x (FILTER P l) <=> P x /\ MEM x l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; FILTER] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[MEM] THEN
ASM_MESON_TAC[]);;
let EX_MEM = prove
(`!P l. (?x. P x /\ MEM x l) <=> EX P l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[EX; MEM] THEN
ASM_MESON_TAC[]);;
let MAP_FST_ZIP = prove
(`!l1 l2. (LENGTH l1 = LENGTH l2) ==> (MAP FST (ZIP l1 l2) = l1)`,
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[LENGTH; SUC_INJ; MAP; FST; ZIP; NOT_SUC]);;
let MAP_SND_ZIP = prove
(`!l1 l2. (LENGTH l1 = LENGTH l2) ==> (MAP SND (ZIP l1 l2) = l2)`,
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[LENGTH; SUC_INJ; MAP; FST; ZIP; NOT_SUC]);;
let LENGTH_ZIP = prove
(`!l1 l2. LENGTH l1 = LENGTH l2 ==> LENGTH(ZIP l1 l2) = LENGTH l2`,
REPEAT(LIST_INDUCT_TAC ORELSE GEN_TAC) THEN
ASM_SIMP_TAC[LENGTH; NOT_SUC; ZIP; SUC_INJ]);;
let MEM_ASSOC = prove
(`!l x. MEM (x,ASSOC x l) l <=> MEM x (MAP FST l)`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; MAP; ASSOC] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[PAIR; FST]);;
let ALL_APPEND = prove
(`!P l1 l2. ALL P (APPEND l1 l2) <=> ALL P l1 /\ ALL P l2`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[ALL; APPEND; GSYM CONJ_ASSOC]);;
let MEM_EL = prove
(`!l n. n < LENGTH l ==> MEM (EL n l) l`,
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; CONJUNCT1 LT; LENGTH] THEN
INDUCT_TAC THEN ASM_SIMP_TAC[EL; HD; LT_SUC; TL]);;
let MEM_EXISTS_EL = prove
(`!l x. MEM x l <=> ?i. i < LENGTH l /\ x = EL i l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LENGTH; EL; MEM; CONJUNCT1 LT] THEN
GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV
[MESON[num_CASES] `(?i. P i) <=> P 0 \/ (?i. P(SUC i))`] THEN
REWRITE_TAC[LT_SUC; LT_0; EL; HD; TL]);;
let ALL_EL = prove
(`!P l. (!i. i < LENGTH l ==> P (EL i l)) <=> ALL P l`,
REWRITE_TAC[GSYM ALL_MEM; MEM_EXISTS_EL] THEN MESON_TAC[]);;
let ALL2_MAP2 = prove
(`!l m. ALL2 P (MAP f l) (MAP g m) = ALL2 (\x y. P (f x) (g y)) l m`,
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2; MAP]);;
let AND_ALL2 = prove
(`!P Q l m. ALL2 P l m /\ ALL2 Q l m <=> ALL2 (\x y. P x y /\ Q x y) l m`,
GEN_TAC THEN GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2] THEN
REWRITE_TAC[CONJ_ACI]);;
let ALL2_ALL = prove
(`!P l. ALL2 P l l <=> ALL (\x. P x x) l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[ALL2; ALL]);;
let APPEND_EQ_NIL = prove
(`!l m. (APPEND l m = []) <=> (l = []) /\ (m = [])`,
REWRITE_TAC[GSYM LENGTH_EQ_NIL; LENGTH_APPEND; ADD_EQ_0]);;
let APPEND_LCANCEL = prove
(`!l1 l2 l3:A list. APPEND l1 l2 = APPEND l1 l3 <=> l2 = l3`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND; CONS_11]);;
let APPEND_RCANCEL = prove
(`!l1 l2 l3:A list. APPEND l1 l3 = APPEND l2 l3 <=> l1 = l2`,
ONCE_REWRITE_TAC[MESON[REVERSE_REVERSE]
`l = l' <=> REVERSE l = REVERSE l'`] THEN
REWRITE_TAC[REVERSE_APPEND; APPEND_LCANCEL]);;
let LENGTH_MAP2 = prove
(`!f l m. (LENGTH l = LENGTH m) ==> (LENGTH(MAP2 f l m) = LENGTH m)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[LENGTH; NOT_CONS_NIL; NOT_SUC; MAP2; SUC_INJ]);;
let MAP_EQ_NIL = prove
(`!f l. MAP f l = [] <=> l = []`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; NOT_CONS_NIL]);;
let INJECTIVE_MAP = prove
(`!f:A->B. (!l m. MAP f l = MAP f m ==> l = m) <=>
(!x y. f x = f y ==> x = y)`,
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`[x:A]`; `[y:A]`]) THEN
ASM_REWRITE_TAC[MAP; CONS_11];
REPEAT LIST_INDUCT_TAC THEN ASM_SIMP_TAC[MAP; NOT_CONS_NIL; CONS_11] THEN
ASM_MESON_TAC[]]);;
let SURJECTIVE_MAP = prove
(`!f:A->B. (!m. ?l. MAP f l = m) <=> (!y. ?x. f x = y)`,
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[X_GEN_TAC `y:B` THEN FIRST_X_ASSUM(MP_TAC o SPEC `[y:B]`) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; CONS_11; NOT_CONS_NIL; MAP_EQ_NIL];
MATCH_MP_TAC list_INDUCT] THEN
ASM_MESON_TAC[MAP]);;
let MAP_ID = prove
(`!l. MAP (\x. x) l = l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP]);;
let MAP_I = prove
(`MAP I = I`,
REWRITE_TAC[FUN_EQ_THM; I_DEF; MAP_ID]);;
let BUTLAST_APPEND = prove
(`!l m:A list. BUTLAST(APPEND l m) =
if m = [] then BUTLAST l else APPEND l (BUTLAST m)`,
SIMP_TAC[COND_RAND; APPEND_NIL; MESON[]
`(if p then T else q) <=> ~p ==> q`] THEN
LIST_INDUCT_TAC THEN ASM_SIMP_TAC[APPEND; BUTLAST; APPEND_EQ_NIL]);;
let APPEND_BUTLAST_LAST = prove
(`!l. ~(l = []) ==> APPEND (BUTLAST l) [LAST l] = l`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LAST; BUTLAST; NOT_CONS_NIL] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[APPEND]);;
let LAST_APPEND = prove
(`!p q. LAST(APPEND p q) = if q = [] then LAST p else LAST q`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND; LAST; APPEND_EQ_NIL] THEN
MESON_TAC[]);;
let LENGTH_TL = prove
(`!l. ~(l = []) ==> LENGTH(TL l) = LENGTH l - 1`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; TL; ARITH; SUC_SUB1]);;
let EL_APPEND = prove
(`!k l m. EL k (APPEND l m) = if k < LENGTH l then EL k l
else EL (k - LENGTH l) m`,
INDUCT_TAC THEN REWRITE_TAC[EL] THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC[HD; APPEND; LENGTH; SUB_0; EL; LT_0; CONJUNCT1 LT] THEN
ASM_REWRITE_TAC[TL; LT_SUC; SUB_SUC]);;
let EL_TL = prove
(`!n. EL n (TL l) = EL (n + 1) l`,
REWRITE_TAC[GSYM ADD1; EL]);;
let EL_CONS = prove
(`!n h t. EL n (CONS h t) = if n = 0 then h else EL (n - 1) t`,
INDUCT_TAC THEN REWRITE_TAC[EL; HD; TL; NOT_SUC; SUC_SUB1]);;
let LAST_EL = prove
(`!l. ~(l = []) ==> LAST l = EL (LENGTH l - 1) l`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LAST; LENGTH; SUC_SUB1] THEN
DISCH_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[LENGTH; EL; HD; EL_CONS; LENGTH_EQ_NIL]);;
let HD_APPEND = prove
(`!l m:A list. HD(APPEND l m) = if l = [] then HD m else HD l`,
LIST_INDUCT_TAC THEN REWRITE_TAC[HD; APPEND; NOT_CONS_NIL]);;
let CONS_HD_TL = prove
(`!l. ~(l = []) ==> l = CONS (HD l) (TL l)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[NOT_CONS_NIL;HD;TL]);;
let EL_MAP = prove
(`!f n l. n < LENGTH l ==> EL n (MAP f l) = f(EL n l)`,
GEN_TAC THEN INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[LENGTH; CONJUNCT1 LT; LT_0; EL; HD; TL; MAP; LT_SUC]);;
let MAP_REVERSE = prove
(`!f l. REVERSE(MAP f l) = MAP f (REVERSE l)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MAP; REVERSE; MAP_APPEND]);;
let ALL_FILTER = prove
(`!P Q l:A list. ALL P (FILTER Q l) <=> ALL (\x. Q x ==> P x) l`,
GEN_TAC THEN GEN_TAC THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; FILTER] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ALL]);;
let APPEND_SING = prove
(`!h t. APPEND [h] t = CONS h t`,
REWRITE_TAC[APPEND]);;
let MEM_APPEND_DECOMPOSE_LEFT = prove
(`!x:A l. MEM x l <=> ?l1 l2. ~(MEM x l1) /\ l = APPEND l1 (CONS x l2)`,
REWRITE_TAC[TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; MEM_APPEND; MEM] THEN X_GEN_TAC `x:A` THEN
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[MEM] THEN
MAP_EVERY X_GEN_TAC [`y:A`; `l:A list`] THEN
ASM_CASES_TAC `x:A = y` THEN ASM_MESON_TAC[MEM; APPEND]);;
let MEM_APPEND_DECOMPOSE = prove
(`!x:A l. MEM x l <=> ?l1 l2. l = APPEND l1 (CONS x l2)`,
REWRITE_TAC[TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; MEM_APPEND; MEM] THEN
ONCE_REWRITE_TAC[MEM_APPEND_DECOMPOSE_LEFT] THEN MESON_TAC[]);;
let PAIRWISE_APPEND = prove
(`!R:A->A->bool l m.
PAIRWISE R (APPEND l m) <=>
PAIRWISE R l /\ PAIRWISE R m /\ (!x y. MEM x l /\ MEM y m ==> R x y)`,
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[APPEND; PAIRWISE; MEM; ALL_APPEND; GSYM ALL_MEM] THEN
MESON_TAC[]);;
let PAIRWISE_MAP = prove
(`!R f:A->B l.
PAIRWISE R (MAP f l) <=> PAIRWISE (\x y. R (f x) (f y)) l`,
GEN_TAC THEN GEN_TAC THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[PAIRWISE; MAP; ALL_MAP; o_DEF]);;
let PAIRWISE_IMPLIES = prove
(`!R:A->A->bool R' l.
PAIRWISE R l /\ (!x y. MEM x l /\ MEM y l /\ R x y ==> R' x y)
==> PAIRWISE R' l`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[PAIRWISE; GSYM ALL_MEM; MEM] THEN MESON_TAC[]);;
let PAIRWISE_TRANSITIVE = prove
(`!R x y:A l.
(!x y z. R x y /\ R y z ==> R x z)
==> (PAIRWISE R (CONS x (CONS y l)) <=> R x y /\ PAIRWISE R (CONS y l))`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[PAIRWISE; ALL; GSYM CONJ_ASSOC;
TAUT `(p /\ q /\ r /\ s <=> p /\ r /\ s) <=>
p /\ s ==> r ==> q`] THEN
STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN
ASM_MESON_TAC[]);;
let LENGTH_LIST_OF_SEQ = prove
(`!s:num->A n. LENGTH(list_of_seq s n) = n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[list_of_seq; LENGTH; LENGTH_APPEND; ADD_CLAUSES]);;
let EL_LIST_OF_SEQ = prove
(`!s:num->A m n. m < n ==> EL m (list_of_seq s n) = s m`,
GEN_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
INDUCT_TAC THEN
REWRITE_TAC[list_of_seq; LT; EL_APPEND; LENGTH_LIST_OF_SEQ] THEN
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SUB_REFL; EL; HD; LT_REFL]);;
let LIST_OF_SEQ_EQ_NIL = prove
(`!s:num->A n. list_of_seq s n = [] <=> n = 0`,
REWRITE_TAC[GSYM LENGTH_EQ_NIL; LENGTH_LIST_OF_SEQ; LENGTH]);;
(* ------------------------------------------------------------------------- *)
(* Syntax. *)
(* ------------------------------------------------------------------------- *)
let mk_cons h t =
try let cons = mk_const("CONS",[type_of h,aty]) in
mk_comb(mk_comb(cons,h),t)
with Failure _ -> failwith "mk_cons";;
let mk_list (tms,ty) =
try let nil = mk_const("NIL",[ty,aty]) in
if tms = [] then nil else
let cons = mk_const("CONS",[ty,aty]) in
itlist (mk_binop cons) tms nil
with Failure _ -> failwith "mk_list";;
let mk_flist tms =
try mk_list(tms,type_of(hd tms))
with Failure _ -> failwith "mk_flist";;
(* ------------------------------------------------------------------------- *)
(* Extra monotonicity theorems for inductive definitions. *)
(* ------------------------------------------------------------------------- *)
let MONO_ALL = prove
(`(!x:A. P x ==> Q x) ==> ALL P l ==> ALL Q l`,
DISCH_TAC THEN SPEC_TAC(`l:A list`,`l:A list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN ASM_MESON_TAC[]);;
let MONO_ALL2 = prove
(`(!x y. (P:A->B->bool) x y ==> Q x y) ==> ALL2 P l l' ==> ALL2 Q l l'`,
DISCH_TAC THEN
SPEC_TAC(`l':B list`,`l':B list`) THEN SPEC_TAC(`l:A list`,`l:A list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL2_DEF] THEN
GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
monotonicity_theorems := [MONO_ALL; MONO_ALL2] @ !monotonicity_theorems;;
(* ------------------------------------------------------------------------- *)
(* Apply a conversion down a list. *)
(* ------------------------------------------------------------------------- *)
let rec LIST_CONV conv tm =
if is_cons tm then
COMB2_CONV (RAND_CONV conv) (LIST_CONV conv) tm
else if fst(dest_const tm) = "NIL" then REFL tm
else failwith "LIST_CONV";;
(* ------------------------------------------------------------------------- *)
(* Type of characters, like the HOL88 "ascii" type, with syntax *)
(* constructors and equality conversions for chars and strings. *)
(* ------------------------------------------------------------------------- *)
let char_INDUCT,char_RECURSION = define_type
"char = ASCII bool bool bool bool bool bool bool bool";;
new_type_abbrev("string",`:char list`);;
let dest_char,mk_char,dest_string,mk_string,CHAR_EQ_CONV,STRING_EQ_CONV =
let bool_of_term t =
match t with
Const("T",_) -> true
| Const("F",_) -> false
| _ -> failwith "bool_of_term" in
let code_of_term t =
let f,tms = strip_comb t in
if not(is_const f && fst(dest_const f) = "ASCII")
|| not(length tms = 8) then failwith "code_of_term"
else
itlist (fun b f -> if b then 1 + 2 * f else 2 * f)
(map bool_of_term (rev tms)) 0 in
let char_of_term = Char.chr o code_of_term in
let dest_string tm =
try let tms = dest_list tm in
if fst(dest_type(hd(snd(dest_type(type_of tm))))) <> "char"
then fail() else
let ccs = map (String.make 1 o char_of_term) tms in
String.escaped (implode ccs)
with Failure _ -> failwith "dest_string" in
let mk_bool b =
let true_tm,false_tm = `T`,`F` in
if b then true_tm else false_tm in
let mk_code =
let ascii_tm = `ASCII` in
let mk_code c =
let lis = map (fun i -> mk_bool((c / (1 lsl i)) mod 2 = 1)) (0--7) in
itlist (fun x y -> mk_comb(y,x)) lis ascii_tm in
let codes = Array.map mk_code (Array.of_list (0--255)) in
fun c -> Array.get codes c in
let mk_char = mk_code o Char.code in
let mk_string s =
let ns = map (fun i -> Char.code(String.get s i))
(0--(String.length s - 1)) in
mk_list(map mk_code ns,`:char`) in
let CHAR_DISTINCTNESS =
let avars,bvars,cvars =
[`a0:bool`;`a1:bool`;`a2:bool`;`a3:bool`;`a4:bool`;`a5:bool`;`a6:bool`],
[`b1:bool`;`b2:bool`;`b3:bool`;`b4:bool`;`b5:bool`;`b6:bool`;`b7:bool`],
[`c1:bool`;`c2:bool`;`c3:bool`;`c4:bool`;`c5:bool`;`c6:bool`;`c7:bool`] in
let ASCII_NEQS_FT = (map EQF_INTRO o CONJUNCTS o prove)
(`~(ASCII F b1 b2 b3 b4 b5 b6 b7 = ASCII T c1 c2 c3 c4 c5 c6 c7) /\
~(ASCII a0 F b2 b3 b4 b5 b6 b7 = ASCII a0 T c2 c3 c4 c5 c6 c7) /\
~(ASCII a0 a1 F b3 b4 b5 b6 b7 = ASCII a0 a1 T c3 c4 c5 c6 c7) /\
~(ASCII a0 a1 a2 F b4 b5 b6 b7 = ASCII a0 a1 a2 T c4 c5 c6 c7) /\
~(ASCII a0 a1 a2 a3 F b5 b6 b7 = ASCII a0 a1 a2 a3 T c5 c6 c7) /\
~(ASCII a0 a1 a2 a3 a4 F b6 b7 = ASCII a0 a1 a2 a3 a4 T c6 c7) /\
~(ASCII a0 a1 a2 a3 a4 a5 F b7 = ASCII a0 a1 a2 a3 a4 a5 T c7) /\
~(ASCII a0 a1 a2 a3 a4 a5 a6 F = ASCII a0 a1 a2 a3 a4 a5 a6 T)`,
REWRITE_TAC[injectivity "char"]) in
let ASCII_NEQS_TF =
let ilist = zip bvars cvars @ zip cvars bvars in
let f = EQF_INTRO o INST ilist o GSYM o EQF_ELIM in
map f ASCII_NEQS_FT in
let rec prefix n l =
if n = 0 then [] else
match l with
h::t -> h :: prefix (n-1) t
| _ -> l in
let rec findneq n prefix a b =
match a,b with
b1::a, b2::b -> if b1 <> b2 then n,rev prefix,bool_of_term b2,a,b else
findneq (n+1) (b1 :: prefix) a b
| _, _ -> fail() in
fun c1 c2 ->
let _,a = strip_comb c1
and _,b = strip_comb c2 in
let n,p,b,s1,s2 = findneq 0 [] a b in
let ss1 = funpow n tl bvars
and ss2 = funpow n tl cvars in
let pp = prefix n avars in
let pth = if b then ASCII_NEQS_FT else ASCII_NEQS_TF in
INST (zip p pp @ zip s1 ss1 @ zip s2 ss2) (el n pth) in
let rec STRING_DISTINCTNESS =
let xtm,xstm = `x:char`,`xs:string`
and ytm,ystm = `y:char`,`ys:string`
and niltm = `[]:string` in
let NIL_EQ_THM = EQT_INTRO (REFL niltm)
and CONS_EQ_THM,CONS_NEQ_THM = (CONJ_PAIR o prove)
(`(CONS x xs:string = CONS x ys <=> xs = ys) /\
((x = y <=> F) ==> (CONS x xs:string = CONS y ys <=> F))`,
REWRITE_TAC[CONS_11] THEN MESON_TAC[])
and NIL_NEQ_CONS,CONS_NEQ_NIL = (CONJ_PAIR o prove)
(`(NIL:string = CONS x xs <=> F) /\
(CONS x xs:string = NIL <=> F)`,
REWRITE_TAC[NOT_CONS_NIL]) in
fun s1 s2 ->
if s1 = niltm
then if s2 = niltm then NIL_EQ_THM
else let c2,s2 = rand (rator s2),rand s2 in
INST [c2,xtm;s2,xstm] NIL_NEQ_CONS
else let c1,s1 = rand (rator s1),rand s1 in
if s2 = niltm then INST [c1,xtm;s1,xstm] CONS_NEQ_NIL
else let c2,s2 = rand (rator s2),rand s2 in
if c1 = c2
then let th1 = INST [c1,xtm; s1,xstm; s2,ystm] CONS_EQ_THM
and th2 = STRING_DISTINCTNESS s1 s2 in
TRANS th1 th2
else let ilist = [c1,xtm; c2,ytm; s1,xstm; s2,ystm] in
let itm = INST ilist CONS_NEQ_THM in
MP itm (CHAR_DISTINCTNESS c1 c2) in
let CHAR_EQ_CONV : conv =
fun tm ->
let c1,c2 = dest_eq tm in
if compare c1 c2 = 0 then EQT_INTRO (REFL c1) else
CHAR_DISTINCTNESS c1 c2
and STRING_EQ_CONV tm =
let ltm,rtm = dest_eq tm in
if compare ltm rtm = 0 then EQT_INTRO (REFL ltm) else
STRING_DISTINCTNESS ltm rtm in
char_of_term,mk_char,dest_string,mk_string,CHAR_EQ_CONV,STRING_EQ_CONV;;
|