File: real.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (1511 lines) | stat: -rw-r--r-- 49,724 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
(* ========================================================================= *)
(* More basic properties of the reals.                                       *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(*              (c) Copyright, Valentina Bruno 2010                          *)
(* ========================================================================= *)

needs "realarith.ml";;

(* ------------------------------------------------------------------------- *)
(* Additional commutativity properties of the inclusion map.                 *)
(* ------------------------------------------------------------------------- *)

let REAL_OF_NUM_LT = prove
 (`!m n. &m < &n <=> m < n`,
  REWRITE_TAC[real_lt; GSYM NOT_LE; REAL_OF_NUM_LE]);;

let REAL_OF_NUM_GE = prove
 (`!m n. &m >= &n <=> m >= n`,
  REWRITE_TAC[GE; real_ge; REAL_OF_NUM_LE]);;

let REAL_OF_NUM_GT = prove
 (`!m n. &m > &n <=> m > n`,
  REWRITE_TAC[GT; real_gt; REAL_OF_NUM_LT]);;

let REAL_OF_NUM_MAX = prove
 (`!m n. max (&m) (&n) = &(MAX m n)`,
  REWRITE_TAC[REAL_OF_NUM_LE; MAX; real_max; GSYM COND_RAND]);;

let REAL_OF_NUM_MIN = prove
 (`!m n. min (&m) (&n) = &(MIN m n)`,
  REWRITE_TAC[REAL_OF_NUM_LE; MIN; real_min; GSYM COND_RAND]);;

let REAL_OF_NUM_SUC = prove
 (`!n. &n + &1 = &(SUC n)`,
  REWRITE_TAC[ADD1; REAL_OF_NUM_ADD]);;

let REAL_OF_NUM_SUB = prove
 (`!m n. m <= n ==> (&n - &m = &(n - m))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[ADD_SUB2] THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
  ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
  REWRITE_TAC[real_sub; GSYM REAL_ADD_ASSOC] THEN
  MESON_TAC[REAL_ADD_LINV; REAL_ADD_SYM; REAL_ADD_LID]);;

let REAL_OF_NUM_SUB_CASES = prove
 (`!m n. &m - &n = if n <= m then &(m - n) else -- &(n - m)`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_OF_NUM_SUB] THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM REAL_NEG_SUB] THEN AP_TERM_TAC THEN
  MATCH_MP_TAC REAL_OF_NUM_SUB THEN ASM_MESON_TAC[LE_CASES]);;

(* ------------------------------------------------------------------------- *)
(* A few theorems we need to prove explicitly for later.                     *)
(* ------------------------------------------------------------------------- *)

let REAL_MUL_AC = prove
 (`(m * n = n * m) /\
   ((m * n) * p = m * (n * p)) /\
   (m * (n * p) = n * (m * p))`,
  REWRITE_TAC[REAL_MUL_ASSOC; EQT_INTRO(SPEC_ALL REAL_MUL_SYM)] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_ACCEPT_TAC REAL_MUL_SYM);;

let REAL_ADD_RDISTRIB = prove
 (`!x y z. (x + y) * z = x * z + y * z`,
  MESON_TAC[REAL_MUL_SYM; REAL_ADD_LDISTRIB]);;

let REAL_LT_LADD_IMP = prove
 (`!x y z. y < z ==> x + y < x + z`,
  REPEAT GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN
  REWRITE_TAC[real_lt] THEN
  DISCH_THEN(MP_TAC o MATCH_MP REAL_LE_LADD_IMP) THEN
  DISCH_THEN(MP_TAC o SPEC `--x`) THEN
  REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID]);;

let REAL_LT_MUL = prove
 (`!x y. &0 < x /\ &0 < y ==> &0 < x * y`,
  REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LT_LE] THEN
  CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[REAL_ENTIRE] THEN
  MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Tactic version of REAL_ARITH.                                             *)
(* ------------------------------------------------------------------------- *)

let REAL_ARITH_TAC = CONV_TAC REAL_ARITH;;

(* ------------------------------------------------------------------------- *)
(* Prove all the linear theorems we can blow away automatically.             *)
(* ------------------------------------------------------------------------- *)

let REAL_EQ_ADD_LCANCEL_0 = prove
 (`!x y. (x + y = x) <=> (y = &0)`,
  REAL_ARITH_TAC);;

let REAL_EQ_ADD_RCANCEL_0 = prove
 (`!x y. (x + y = y) <=> (x = &0)`,
  REAL_ARITH_TAC);;

let REAL_LNEG_UNIQ = prove
 (`!x y. (x + y = &0) <=> (x = --y)`,
  REAL_ARITH_TAC);;

let REAL_RNEG_UNIQ = prove
 (`!x y. (x + y = &0) <=> (y = --x)`,
  REAL_ARITH_TAC);;

let REAL_NEG_LMUL = prove
 (`!x y. --(x * y) = (--x) * y`,
  REAL_ARITH_TAC);;

let REAL_NEG_RMUL = prove
 (`!x y. --(x * y) = x * (--y)`,
  REAL_ARITH_TAC);;

let REAL_NEGNEG = prove
 (`!x. --(--x) = x`,
  REAL_ARITH_TAC);;

let REAL_NEG_MUL2 = prove
 (`!x y. (--x) * (--y) = x * y`,
  REAL_ARITH_TAC);;

let REAL_LT_LADD = prove
 (`!x y z. (x + y) < (x + z) <=> y < z`,
  REAL_ARITH_TAC);;

let REAL_LT_RADD = prove
 (`!x y z. (x + z) < (y + z) <=> x < y`,
  REAL_ARITH_TAC);;

let REAL_LT_ANTISYM = prove
 (`!x y. ~(x < y /\ y < x)`,
  REAL_ARITH_TAC);;

let REAL_LT_GT = prove
 (`!x y. x < y ==> ~(y < x)`,
  REAL_ARITH_TAC);;

let REAL_NOT_EQ = prove
 (`!x y. ~(x = y) <=> x < y \/ y < x`,
  REAL_ARITH_TAC);;

let REAL_NOT_LE = prove
 (`!x y. ~(x <= y) <=> y < x`,
  REAL_ARITH_TAC);;

let REAL_LET_ANTISYM = prove
 (`!x y. ~(x <= y /\ y < x)`,
  REAL_ARITH_TAC);;

let REAL_NEG_LT0 = prove
 (`!x. (--x) < &0 <=> &0 < x`,
  REAL_ARITH_TAC);;

let REAL_NEG_GT0 = prove
 (`!x. &0 < (--x) <=> x < &0`,
  REAL_ARITH_TAC);;

let REAL_NEG_LE0 = prove
 (`!x. (--x) <= &0 <=> &0 <= x`,
  REAL_ARITH_TAC);;

let REAL_NEG_GE0 = prove
 (`!x. &0 <= (--x) <=> x <= &0`,
  REAL_ARITH_TAC);;

let REAL_LT_TOTAL = prove
 (`!x y. (x = y) \/ x < y \/ y < x`,
  REAL_ARITH_TAC);;

let REAL_LT_NEGTOTAL = prove
 (`!x. (x = &0) \/ (&0 < x) \/ (&0 < --x)`,
  REAL_ARITH_TAC);;

let REAL_LE_01 = prove
 (`&0 <= &1`,
  REAL_ARITH_TAC);;

let REAL_LT_01 = prove
 (`&0 < &1`,
  REAL_ARITH_TAC);;

let REAL_LE_LADD = prove
 (`!x y z. (x + y) <= (x + z) <=> y <= z`,
  REAL_ARITH_TAC);;

let REAL_LE_RADD = prove
 (`!x y z. (x + z) <= (y + z) <=> x <= y`,
  REAL_ARITH_TAC);;

let REAL_LT_ADD2 = prove
 (`!w x y z. w < x /\ y < z ==> (w + y) < (x + z)`,
  REAL_ARITH_TAC);;

let REAL_LE_ADD2 = prove
 (`!w x y z. w <= x /\ y <= z ==> (w + y) <= (x + z)`,
  REAL_ARITH_TAC);;

let REAL_LT_LNEG = prove
 (`!x y. --x < y <=> &0 < x + y`,
  REWRITE_TAC[real_lt; REAL_LE_RNEG; REAL_ADD_AC]);;

let REAL_LT_RNEG = prove
 (`!x y. x < --y <=> x + y < &0`,
  REWRITE_TAC[real_lt; REAL_LE_LNEG; REAL_ADD_AC]);;

let REAL_LT_ADDNEG = prove
 (`!x y z. y < (x + (--z)) <=> (y + z) < x`,
  REAL_ARITH_TAC);;

let REAL_LT_ADDNEG2 = prove
 (`!x y z. (x + (--y)) < z <=> x < (z + y)`,
  REAL_ARITH_TAC);;

let REAL_LT_ADD1 = prove
 (`!x y. x <= y ==> x < (y + &1)`,
  REAL_ARITH_TAC);;

let REAL_SUB_ADD = prove
 (`!x y. (x - y) + y = x`,
  REAL_ARITH_TAC);;

let REAL_SUB_ADD2 = prove
 (`!x y. y + (x - y) = x`,
  REAL_ARITH_TAC);;

let REAL_SUB_REFL = prove
 (`!x. x - x = &0`,
  REAL_ARITH_TAC);;

let REAL_LE_DOUBLE = prove
 (`!x. &0 <= x + x <=> &0 <= x`,
  REAL_ARITH_TAC);;

let REAL_LE_NEGL = prove
 (`!x. (--x <= x) <=> (&0 <= x)`,
  REAL_ARITH_TAC);;

let REAL_LE_NEGR = prove
 (`!x. (x <= --x) <=> (x <= &0)`,
  REAL_ARITH_TAC);;

let REAL_NEG_EQ_0 = prove
 (`!x. (--x = &0) <=> (x = &0)`,
  REAL_ARITH_TAC);;

let REAL_ADD_SUB = prove
 (`!x y. (x + y) - x = y`,
  REAL_ARITH_TAC);;

let REAL_NEG_EQ = prove
 (`!x y. (--x = y) <=> (x = --y)`,
  REAL_ARITH_TAC);;

let REAL_NEG_MINUS1 = prove
 (`!x. --x = (--(&1)) * x`,
  REAL_ARITH_TAC);;

let REAL_LT_IMP_NE = prove
 (`!x y. x < y ==> ~(x = y)`,
  REAL_ARITH_TAC);;

let REAL_LE_ADDR = prove
 (`!x y. x <= x + y <=> &0 <= y`,
  REAL_ARITH_TAC);;

let REAL_LE_ADDL = prove
 (`!x y. y <= x + y <=> &0 <= x`,
  REAL_ARITH_TAC);;

let REAL_LT_ADDR = prove
 (`!x y. x < x + y <=> &0 < y`,
  REAL_ARITH_TAC);;

let REAL_LT_ADDL = prove
 (`!x y. y < x + y <=> &0 < x`,
  REAL_ARITH_TAC);;

let REAL_SUB_SUB = prove
 (`!x y. (x - y) - x = --y`,
  REAL_ARITH_TAC);;

let REAL_LT_ADD_SUB = prove
 (`!x y z. (x + y) < z <=> x < (z - y)`,
  REAL_ARITH_TAC);;

let REAL_LT_SUB_RADD = prove
 (`!x y z. (x - y) < z <=> x < z + y`,
  REAL_ARITH_TAC);;

let REAL_LT_SUB_LADD = prove
 (`!x y z. x < (y - z) <=> (x + z) < y`,
  REAL_ARITH_TAC);;

let REAL_LE_SUB_LADD = prove
 (`!x y z. x <= (y - z) <=> (x + z) <= y`,
  REAL_ARITH_TAC);;

let REAL_LE_SUB_RADD = prove
 (`!x y z. (x - y) <= z <=> x <= z + y`,
  REAL_ARITH_TAC);;

let REAL_LT_NEG = prove
 (`!x y. --x < --y <=> y < x`,
  REAL_ARITH_TAC);;

let REAL_LE_NEG = prove
 (`!x y. --x <= --y <=> y <= x`,
  REAL_ARITH_TAC);;

let REAL_ADD2_SUB2 = prove
 (`!a b c d. (a + b) - (c + d) = (a - c) + (b - d)`,
  REAL_ARITH_TAC);;

let REAL_SUB_LZERO = prove
 (`!x. &0 - x = --x`,
  REAL_ARITH_TAC);;

let REAL_SUB_RZERO = prove
 (`!x. x - &0 = x`,
  REAL_ARITH_TAC);;

let REAL_LET_ADD2 = prove
 (`!w x y z. w <= x /\ y < z ==> (w + y) < (x + z)`,
  REAL_ARITH_TAC);;

let REAL_LTE_ADD2 = prove
 (`!w x y z. w < x /\ y <= z ==> w + y < x + z`,
  REAL_ARITH_TAC);;

let REAL_SUB_LNEG = prove
 (`!x y. (--x) - y = --(x + y)`,
  REAL_ARITH_TAC);;

let REAL_SUB_RNEG = prove
 (`!x y. x - (--y) = x + y`,
  REAL_ARITH_TAC);;

let REAL_SUB_NEG2 = prove
 (`!x y. (--x) - (--y) = y - x`,
  REAL_ARITH_TAC);;

let REAL_SUB_TRIANGLE = prove
 (`!a b c. (a - b) + (b - c) = a - c`,
  REAL_ARITH_TAC);;

let REAL_EQ_SUB_LADD = prove
 (`!x y z. (x = y - z) <=> (x + z = y)`,
  REAL_ARITH_TAC);;

let REAL_EQ_SUB_RADD = prove
 (`!x y z. (x - y = z) <=> (x = z + y)`,
  REAL_ARITH_TAC);;

let REAL_SUB_SUB2 = prove
 (`!x y. x - (x - y) = y`,
  REAL_ARITH_TAC);;

let REAL_ADD_SUB2 = prove
 (`!x y. x - (x + y) = --y`,
  REAL_ARITH_TAC);;

let REAL_EQ_IMP_LE = prove
 (`!x y. (x = y) ==> x <= y`,
  REAL_ARITH_TAC);;

let REAL_POS_NZ = prove
 (`!x. &0 < x ==> ~(x = &0)`,
  REAL_ARITH_TAC);;

let REAL_DIFFSQ = prove
 (`!x y. (x + y) * (x - y) = (x * x) - (y * y)`,
  REAL_ARITH_TAC);;

let REAL_EQ_NEG2 = prove
 (`!x y. (--x = --y) <=> (x = y)`,
  REAL_ARITH_TAC);;

let REAL_LT_NEG2 = prove
 (`!x y. --x < --y <=> y < x`,
  REAL_ARITH_TAC);;

let REAL_SUB_LDISTRIB = prove
 (`!x y z. x * (y - z) = x * y - x * z`,
  REAL_ARITH_TAC);;

let REAL_SUB_RDISTRIB = prove
 (`!x y z. (x - y) * z = x * z - y * z`,
  REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Theorems about "abs".                                                     *)
(* ------------------------------------------------------------------------- *)

let REAL_ABS_ZERO = prove
 (`!x. (abs(x) = &0) <=> (x = &0)`,
  REAL_ARITH_TAC);;

let REAL_ABS_0 = prove
 (`abs(&0) = &0`,
  REAL_ARITH_TAC);;

let REAL_ABS_1 = prove
 (`abs(&1) = &1`,
  REAL_ARITH_TAC);;

let REAL_ABS_TRIANGLE = prove
 (`!x y. abs(x + y) <= abs(x) + abs(y)`,
  REAL_ARITH_TAC);;

let REAL_ABS_TRIANGLE_LE = prove
 (`!x y z.abs(x) + abs(y - x) <= z ==> abs(y) <= z`,
  REAL_ARITH_TAC);;

let REAL_ABS_TRIANGLE_LT = prove
 (`!x y z.abs(x) + abs(y - x) < z ==> abs(y) < z`,
  REAL_ARITH_TAC);;

let REAL_ABS_POS = prove
 (`!x. &0 <= abs(x)`,
  REAL_ARITH_TAC);;

let REAL_ABS_SUB = prove
 (`!x y. abs(x - y) = abs(y - x)`,
  REAL_ARITH_TAC);;

let REAL_ABS_NZ = prove
 (`!x. ~(x = &0) <=> &0 < abs(x)`,
  REAL_ARITH_TAC);;

let REAL_ABS_ABS = prove
 (`!x. abs(abs(x)) = abs(x)`,
  REAL_ARITH_TAC);;

let REAL_ABS_LE = prove
 (`!x. x <= abs(x)`,
  REAL_ARITH_TAC);;

let REAL_ABS_REFL = prove
 (`!x. (abs(x) = x) <=> &0 <= x`,
  REAL_ARITH_TAC);;

let REAL_ABS_BETWEEN = prove
 (`!x y d. &0 < d /\ ((x - d) < y) /\ (y < (x + d)) <=> abs(y - x) < d`,
  REAL_ARITH_TAC);;

let REAL_ABS_BOUND = prove
 (`!x y d. abs(x - y) < d ==> y < (x + d)`,
  REAL_ARITH_TAC);;

let REAL_ABS_STILLNZ = prove
 (`!x y. abs(x - y) < abs(y) ==> ~(x = &0)`,
  REAL_ARITH_TAC);;

let REAL_ABS_CASES = prove
 (`!x. (x = &0) \/ &0 < abs(x)`,
  REAL_ARITH_TAC);;

let REAL_ABS_BETWEEN1 = prove
 (`!x y z. x < z /\ (abs(y - x)) < (z - x) ==> y < z`,
  REAL_ARITH_TAC);;

let REAL_ABS_SIGN = prove
 (`!x y. abs(x - y) < y ==> &0 < x`,
  REAL_ARITH_TAC);;

let REAL_ABS_SIGN2 = prove
 (`!x y. abs(x - y) < --y ==> x < &0`,
  REAL_ARITH_TAC);;

let REAL_ABS_CIRCLE = prove
 (`!x y h. abs(h) < (abs(y) - abs(x)) ==> abs(x + h) < abs(y)`,
  REAL_ARITH_TAC);;

let REAL_SUB_ABS = prove
 (`!x y. (abs(x) - abs(y)) <= abs(x - y)`,
  REAL_ARITH_TAC);;

let REAL_ABS_SUB_ABS = prove
 (`!x y. abs(abs(x) - abs(y)) <= abs(x - y)`,
  REAL_ARITH_TAC);;

let REAL_ABS_BETWEEN2 = prove
 (`!x0 x y0 y. x0 < y0 /\ &2 * abs(x - x0) < (y0 - x0) /\
                          &2 * abs(y - y0) < (y0 - x0)
        ==> x < y`,
  REAL_ARITH_TAC);;

let REAL_ABS_BOUNDS = prove
 (`!x k. abs(x) <= k <=> --k <= x /\ x <= k`,
  REAL_ARITH_TAC);;

let REAL_BOUNDS_LE = prove
 (`!x k. --k <= x /\ x <= k <=> abs(x) <= k`,
  REAL_ARITH_TAC);;

let REAL_BOUNDS_LT = prove
 (`!x k. --k < x /\ x < k <=> abs(x) < k`,
  REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Theorems about max and min.                                               *)
(* ------------------------------------------------------------------------- *)

let REAL_MIN_MAX = prove
 (`!x y. min x y = --(max (--x) (--y))`,
  REAL_ARITH_TAC);;

let REAL_MAX_MIN = prove
 (`!x y. max x y = --(min (--x) (--y))`,
  REAL_ARITH_TAC);;

let REAL_MAX_MAX = prove
 (`!x y. x <= max x y /\ y <= max x y`,
  REAL_ARITH_TAC);;

let REAL_MIN_MIN = prove
 (`!x y. min x y <= x /\ min x y <= y`,
  REAL_ARITH_TAC);;

let REAL_MAX_SYM = prove
 (`!x y. max x y = max y x`,
  REAL_ARITH_TAC);;

let REAL_MIN_SYM = prove
 (`!x y. min x y = min y x`,
  REAL_ARITH_TAC);;

let REAL_LE_MAX = prove
 (`!x y z. z <= max x y <=> z <= x \/ z <= y`,
  REAL_ARITH_TAC);;

let REAL_LE_MIN = prove
 (`!x y z. z <= min x y <=> z <= x /\ z <= y`,
  REAL_ARITH_TAC);;

let REAL_LT_MAX = prove
 (`!x y z. z < max x y <=> z < x \/ z < y`,
  REAL_ARITH_TAC);;

let REAL_LT_MIN = prove
 (`!x y z. z < min x y <=> z < x /\ z < y`,
  REAL_ARITH_TAC);;

let REAL_MAX_LE = prove
 (`!x y z. max x y <= z <=> x <= z /\ y <= z`,
  REAL_ARITH_TAC);;

let REAL_MIN_LE = prove
 (`!x y z. min x y <= z <=> x <= z \/ y <= z`,
  REAL_ARITH_TAC);;

let REAL_MAX_LT = prove
 (`!x y z. max x y < z <=> x < z /\ y < z`,
  REAL_ARITH_TAC);;

let REAL_MIN_LT = prove
 (`!x y z. min x y < z <=> x < z \/ y < z`,
  REAL_ARITH_TAC);;

let REAL_MAX_ASSOC = prove
 (`!x y z. max x (max y z) = max (max x y) z`,
  REAL_ARITH_TAC);;

let REAL_MIN_ASSOC = prove
 (`!x y z. min x (min y z) = min (min x y) z`,
  REAL_ARITH_TAC);;

let REAL_MAX_ACI = prove
 (`(max x y = max y x) /\
   (max (max x y) z = max x (max y z)) /\
   (max x (max y z) = max y (max x z)) /\
   (max x x = x) /\
   (max x (max x y) = max x y)`,
  REAL_ARITH_TAC);;

let REAL_MIN_ACI = prove
 (`(min x y = min y x) /\
   (min (min x y) z = min x (min y z)) /\
   (min x (min y z) = min y (min x z)) /\
   (min x x = x) /\
   (min x (min x y) = min x y)`,
  REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* To simplify backchaining, just as in the natural number case.             *)
(* ------------------------------------------------------------------------- *)

let REAL_LE_IMP =
  let pth = PURE_ONCE_REWRITE_RULE[IMP_CONJ] REAL_LE_TRANS in
  fun th -> GEN_ALL(MATCH_MP pth (SPEC_ALL th));;

let REAL_LET_IMP =
  let pth = PURE_ONCE_REWRITE_RULE[IMP_CONJ] REAL_LET_TRANS in
  fun th -> GEN_ALL(MATCH_MP pth (SPEC_ALL th));;

(* ------------------------------------------------------------------------- *)
(* Now a bit of nonlinear stuff.                                             *)
(* ------------------------------------------------------------------------- *)

let REAL_ABS_MUL = prove
 (`!x y. abs(x * y) = abs(x) * abs(y)`,
  REPEAT GEN_TAC THEN
  DISJ_CASES_TAC (SPEC `x:real` REAL_LE_NEGTOTAL) THENL
   [ALL_TAC;
    GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM REAL_ABS_NEG]] THEN
  (DISJ_CASES_TAC (SPEC `y:real` REAL_LE_NEGTOTAL) THENL
    [ALL_TAC;
     GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_ABS_NEG]]) THEN
  ASSUM_LIST(MP_TAC o MATCH_MP REAL_LE_MUL o end_itlist CONJ o rev) THEN
  REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN DISCH_TAC THENL
   [ALL_TAC;
    GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ABS_NEG];
    GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ABS_NEG];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[real_abs; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);;

let REAL_POW_LE = prove
 (`!x n. &0 <= x ==> &0 <= x pow n`,
  REPEAT STRIP_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN
  INDUCT_TAC THEN REWRITE_TAC[real_pow; REAL_POS] THEN
  MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]);;

let REAL_POW_LT = prove
 (`!x n. &0 < x ==> &0 < x pow n`,
  REPEAT STRIP_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN
  INDUCT_TAC THEN REWRITE_TAC[real_pow; REAL_LT_01] THEN
  MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[]);;

let REAL_ABS_POW = prove
 (`!x n. abs(x pow n) = abs(x) pow n`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[real_pow; REAL_ABS_NUM; REAL_ABS_MUL]);;

let REAL_LE_LMUL = prove
 (`!x y z. &0 <= x /\ y <= z ==> x * y <= x * z`,
  ONCE_REWRITE_TAC[REAL_ARITH `x <= y <=> &0 <= y - x`] THEN
  REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_SUB_RZERO; REAL_LE_MUL]);;

let REAL_LE_RMUL = prove
 (`!x y z. x <= y /\ &0 <= z ==> x * z <= y * z`,
  MESON_TAC[REAL_MUL_SYM; REAL_LE_LMUL]);;

let REAL_LT_LMUL = prove
 (`!x y z. &0 < x /\ y < z ==> x * y < x * z`,
  ONCE_REWRITE_TAC[REAL_ARITH `x < y <=> &0 < y - x`] THEN
  REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_SUB_RZERO; REAL_LT_MUL]);;

let REAL_LT_RMUL = prove
 (`!x y z. x < y /\ &0 < z ==> x * z < y * z`,
  MESON_TAC[REAL_MUL_SYM; REAL_LT_LMUL]);;

let REAL_EQ_MUL_LCANCEL = prove
 (`!x y z. (x * y = x * z) <=> (x = &0) \/ (y = z)`,
  REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[REAL_ARITH `(x = y) <=> (x - y = &0)`] THEN
  REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_ENTIRE; REAL_SUB_RZERO]);;

let REAL_EQ_MUL_RCANCEL = prove
 (`!x y z. (x * z = y * z) <=> (x = y) \/ (z = &0)`,
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  REWRITE_TAC[REAL_EQ_MUL_LCANCEL] THEN
  MESON_TAC[]);;

let REAL_MUL_LINV_UNIQ = prove
 (`!x y. (x * y = &1) ==> (inv(y) = x)`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `y = &0` THEN
  ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_OF_NUM_EQ; ARITH_EQ] THEN
  FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP REAL_MUL_LINV) THEN
  ASM_REWRITE_TAC[REAL_EQ_MUL_RCANCEL] THEN
  DISCH_THEN(ACCEPT_TAC o SYM));;

let REAL_MUL_RINV_UNIQ = prove
 (`!x y. (x * y = &1) ==> (inv(x) = y)`,
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  MATCH_ACCEPT_TAC REAL_MUL_LINV_UNIQ);;

let REAL_INV_INV = prove
 (`!x. inv(inv x) = x`,
  GEN_TAC THEN ASM_CASES_TAC `x = &0` THEN
  ASM_REWRITE_TAC[REAL_INV_0] THEN
  MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN
  MATCH_MP_TAC REAL_MUL_LINV THEN
  ASM_REWRITE_TAC[]);;

let REAL_EQ_INV2 = prove
 (`!x y. inv(x) = inv(y) <=> x = y`,
  MESON_TAC[REAL_INV_INV]);;

let REAL_INV_EQ_0 = prove
 (`!x. inv(x) = &0 <=> x = &0`,
  GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[REAL_INV_0] THEN
  ONCE_REWRITE_TAC[GSYM REAL_INV_INV] THEN ASM_REWRITE_TAC[REAL_INV_0]);;

let REAL_LT_INV = prove
 (`!x. &0 < x ==> &0 < inv(x)`,
  GEN_TAC THEN
  REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC `inv(x)` REAL_LT_NEGTOTAL) THEN
  ASM_REWRITE_TAC[] THENL
   [RULE_ASSUM_TAC(REWRITE_RULE[REAL_INV_EQ_0]) THEN ASM_REWRITE_TAC[];
    DISCH_TAC THEN SUBGOAL_THEN `&0 < --(inv x) * x` MP_TAC THENL
     [MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[];
      REWRITE_TAC[REAL_MUL_LNEG]]] THEN
  SUBGOAL_THEN `inv(x) * x = &1` SUBST1_TAC THENL
   [MATCH_MP_TAC REAL_MUL_LINV THEN
    UNDISCH_TAC `&0 < x` THEN REAL_ARITH_TAC;
    REWRITE_TAC[REAL_LT_RNEG; REAL_ADD_LID; REAL_OF_NUM_LT; ARITH]]);;

let REAL_LT_INV_EQ = prove
 (`!x. &0 < inv x <=> &0 < x`,
  GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[REAL_LT_INV] THEN
  GEN_REWRITE_TAC (funpow 2 RAND_CONV) [GSYM REAL_INV_INV] THEN
  REWRITE_TAC[REAL_LT_INV]);;

let REAL_INV_NEG = prove
 (`!x. inv(--x) = --(inv x)`,
  GEN_TAC THEN ASM_CASES_TAC `x = &0` THEN
  ASM_REWRITE_TAC[REAL_NEG_0; REAL_INV_0] THEN
  MATCH_MP_TAC REAL_MUL_LINV_UNIQ THEN
  REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN
  MATCH_MP_TAC REAL_MUL_LINV THEN ASM_REWRITE_TAC[]);;

let REAL_LE_INV_EQ = prove
 (`!x. &0 <= inv x <=> &0 <= x`,
  REWRITE_TAC[REAL_LE_LT; REAL_LT_INV_EQ; REAL_INV_EQ_0] THEN
  MESON_TAC[REAL_INV_EQ_0]);;

let REAL_LE_INV = prove
 (`!x. &0 <= x ==> &0 <= inv(x)`,
  REWRITE_TAC[REAL_LE_INV_EQ]);;

let REAL_MUL_RINV = prove
 (`!x. ~(x = &0) ==> (x * inv(x) = &1)`,
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  REWRITE_TAC[REAL_MUL_LINV]);;

let REAL_INV_1 = prove
 (`inv(&1) = &1`,
  MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN
  REWRITE_TAC[REAL_MUL_LID]);;

let REAL_INV_EQ_1 = prove
 (`!x. inv(x) = &1 <=> x = &1`,
  MESON_TAC[REAL_INV_INV; REAL_INV_1]);;

let REAL_DIV_1 = prove
 (`!x. x / &1 = x`,
  REWRITE_TAC[real_div; REAL_INV_1; REAL_MUL_RID]);;

let REAL_DIV_REFL = prove
 (`!x. ~(x = &0) ==> (x / x = &1)`,
  GEN_TAC THEN REWRITE_TAC[real_div; REAL_MUL_RINV]);;

let REAL_DIV_RMUL = prove
 (`!x y. ~(y = &0) ==> ((x / y) * y = x)`,
  SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_RID]);;

let REAL_DIV_LMUL = prove
 (`!x y. ~(y = &0) ==> (y * (x / y) = x)`,
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_DIV_RMUL]);;

let REAL_ABS_INV = prove
 (`!x. abs(inv x) = inv(abs x)`,
  GEN_TAC THEN CONV_TAC SYM_CONV THEN
  ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[REAL_INV_0; REAL_ABS_0] THEN
  MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN
  REWRITE_TAC[GSYM REAL_ABS_MUL] THEN
  POP_ASSUM(SUBST1_TAC o MATCH_MP REAL_MUL_RINV) THEN
  REWRITE_TAC[REAL_ABS_1]);;

let REAL_ABS_DIV = prove
 (`!x y. abs(x / y) = abs(x) / abs(y)`,
  REWRITE_TAC[real_div; REAL_ABS_INV; REAL_ABS_MUL]);;

let REAL_INV_MUL = prove
 (`!x y. inv(x * y) = inv(x) * inv(y)`,
  REPEAT GEN_TAC THEN
  MAP_EVERY ASM_CASES_TAC [`x = &0`; `y = &0`] THEN
  ASM_REWRITE_TAC[REAL_INV_0; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
  MATCH_MP_TAC REAL_MUL_LINV_UNIQ THEN
  ONCE_REWRITE_TAC[AC REAL_MUL_AC `(a * b) * (c * d) = (a * c) * (b * d)`] THEN
  EVERY_ASSUM(SUBST1_TAC o MATCH_MP REAL_MUL_LINV) THEN
  REWRITE_TAC[REAL_MUL_LID]);;

let REAL_INV_DIV = prove
 (`!x y. inv(x / y) = y / x`,
  REWRITE_TAC[real_div; REAL_INV_INV; REAL_INV_MUL] THEN
  MATCH_ACCEPT_TAC REAL_MUL_SYM);;

let REAL_POW_MUL = prove
 (`!x y n. (x * y) pow n = (x pow n) * (y pow n)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[real_pow; REAL_MUL_LID; REAL_MUL_AC]);;

let REAL_POW_INV = prove
 (`!x n. (inv x) pow n = inv(x pow n)`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[real_pow; REAL_INV_1; REAL_INV_MUL]);;

let REAL_INV_POW = prove
 (`!x n. inv(x pow n) = (inv x) pow n`,
  REWRITE_TAC[REAL_POW_INV]);;

let REAL_POW_DIV = prove
 (`!x y n. (x / y) pow n = (x pow n) / (y pow n)`,
  REWRITE_TAC[real_div; REAL_POW_MUL; REAL_POW_INV]);;

let REAL_DIV_EQ_0 = prove
 (`!x y. x / y = &0 <=> x = &0 \/ y = &0`,
  REWRITE_TAC[real_div; REAL_INV_EQ_0; REAL_ENTIRE]);;

let REAL_POW_ADD = prove
 (`!x m n. x pow (m + n) = x pow m * x pow n`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[ADD_CLAUSES; real_pow; REAL_MUL_LID; REAL_MUL_ASSOC]);;

let REAL_POW_NZ = prove
 (`!x n. ~(x = &0) ==> ~(x pow n = &0)`,
  GEN_TAC THEN INDUCT_TAC THEN
  REWRITE_TAC[real_pow; REAL_OF_NUM_EQ; ARITH] THEN
  ASM_MESON_TAC[REAL_ENTIRE]);;

let REAL_POW_SUB = prove
 (`!x m n. ~(x = &0) /\ m <= n ==> (x pow (n - m) = x pow n / x pow m)`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  REWRITE_TAC[LE_EXISTS] THEN
  DISCH_THEN(CHOOSE_THEN SUBST1_TAC) THEN
  REWRITE_TAC[ADD_SUB2] THEN REWRITE_TAC[REAL_POW_ADD] THEN
  REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN
  REWRITE_TAC[REAL_MUL_ASSOC] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MUL_LINV THEN
  MATCH_MP_TAC REAL_POW_NZ THEN ASM_REWRITE_TAC[]);;

let REAL_LT_IMP_NZ = prove
 (`!x. &0 < x ==> ~(x = &0)`,
  REAL_ARITH_TAC);;

let REAL_LT_LCANCEL_IMP = prove
 (`!x y z. &0 < x /\ x * y < x * z ==> y < z`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN DISCH_THEN
   (MP_TAC o uncurry CONJ o (MATCH_MP REAL_LT_INV F_F I) o CONJ_PAIR) THEN
  DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_LMUL) THEN
  POP_ASSUM(ASSUME_TAC o MATCH_MP REAL_MUL_LINV o MATCH_MP REAL_LT_IMP_NZ) THEN
  ASM_REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_LID]);;

let REAL_LT_RCANCEL_IMP = prove
 (`!x y z. &0 < z /\ x * z < y * z ==> x < y`,
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_LT_LCANCEL_IMP]);;

let REAL_LE_LCANCEL_IMP = prove
 (`!x y z. &0 < x /\ x * y <= x * z ==> y <= z`,
  REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LE_LT; REAL_EQ_MUL_LCANCEL] THEN
  ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[REAL_LT_REFL] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN DISJ1_TAC THEN
  MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN
  EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]);;

let REAL_LE_RCANCEL_IMP = prove
 (`!x y z. &0 < z /\ x * z <= y * z ==> x <= y`,
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_LE_LCANCEL_IMP]);;

let REAL_LE_RMUL_EQ = prove
 (`!x y z. &0 < z ==> (x * z <= y * z <=> x <= y)`,
  MESON_TAC[REAL_LE_RMUL; REAL_LE_RCANCEL_IMP; REAL_LT_IMP_LE]);;

let REAL_LE_LMUL_EQ = prove
 (`!x y z. &0 < z ==> (z * x <= z * y <=> x <= y)`,
  MESON_TAC[REAL_LE_RMUL_EQ; REAL_MUL_SYM]);;

let REAL_LT_RMUL_EQ = prove
 (`!x y z. &0 < z ==> (x * z < y * z <=> x < y)`,
  SIMP_TAC[GSYM REAL_NOT_LE; REAL_LE_RMUL_EQ]);;

let REAL_LT_LMUL_EQ = prove
 (`!x y z. &0 < z ==> (z * x < z * y <=> x < y)`,
  SIMP_TAC[GSYM REAL_NOT_LE; REAL_LE_LMUL_EQ]);;

let REAL_LE_MUL_EQ = prove
 (`(!x y. &0 < x ==> (&0 <= x * y <=> &0 <= y)) /\
   (!x y. &0 < y ==> (&0 <= x * y <=> &0 <= x))`,
  MESON_TAC[REAL_LE_LMUL_EQ; REAL_LE_RMUL_EQ; REAL_MUL_LZERO; REAL_MUL_RZERO]);;

let REAL_LT_MUL_EQ = prove
 (`(!x y. &0 < x ==> (&0 < x * y <=> &0 < y)) /\
   (!x y. &0 < y ==> (&0 < x * y <=> &0 < x))`,
  MESON_TAC[REAL_LT_LMUL_EQ; REAL_LT_RMUL_EQ; REAL_MUL_LZERO; REAL_MUL_RZERO]);;

let REAL_MUL_POS_LT = prove
 (`!x y. &0 < x * y <=> &0 < x /\ &0 < y \/ x < &0 /\ y < &0`,
  REPEAT STRIP_TAC THEN
  STRIP_ASSUME_TAC(SPEC `x:real` REAL_LT_NEGTOTAL) THEN
  STRIP_ASSUME_TAC(SPEC `y:real` REAL_LT_NEGTOTAL) THEN
  ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_LT_REFL] THEN
  ASSUM_LIST(MP_TAC o MATCH_MP REAL_LT_MUL o end_itlist CONJ) THEN
  REPEAT(POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC);;

let REAL_MUL_POS_LE = prove
 (`!x y. &0 <= x * y <=>
         x = &0 \/ y = &0 \/ &0 < x /\ &0 < y \/ x < &0 /\ y < &0`,
  REWRITE_TAC[REAL_ARITH `&0 <= x <=> x = &0 \/ &0 < x`] THEN
  REWRITE_TAC[REAL_MUL_POS_LT; REAL_ENTIRE] THEN REAL_ARITH_TAC);;

let REAL_LE_RDIV_EQ = prove
 (`!x y z. &0 < z ==> (x <= y / z <=> x * z <= y)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(fun th ->
    GEN_REWRITE_TAC LAND_CONV [GSYM(MATCH_MP REAL_LE_RMUL_EQ th)]) THEN
  ASM_SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_MUL_LINV;
               REAL_MUL_RID; REAL_LT_IMP_NZ]);;

let REAL_LE_LDIV_EQ = prove
 (`!x y z. &0 < z ==> (x / z <= y <=> x <= y * z)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(fun th ->
    GEN_REWRITE_TAC LAND_CONV [GSYM(MATCH_MP REAL_LE_RMUL_EQ th)]) THEN
  ASM_SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_MUL_LINV;
               REAL_MUL_RID; REAL_LT_IMP_NZ]);;

let REAL_LT_RDIV_EQ = prove
 (`!x y z. &0 < z ==> (x < y / z <=> x * z < y)`,
  SIMP_TAC[GSYM REAL_NOT_LE; REAL_LE_LDIV_EQ]);;

let REAL_LT_LDIV_EQ = prove
 (`!x y z. &0 < z ==> (x / z < y <=> x < y * z)`,
  SIMP_TAC[GSYM REAL_NOT_LE; REAL_LE_RDIV_EQ]);;

let REAL_EQ_RDIV_EQ = prove
 (`!x y z. &0 < z ==> ((x = y / z) <=> (x * z = y))`,
  REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN
  SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ]);;

let REAL_EQ_LDIV_EQ = prove
 (`!x y z. &0 < z ==> ((x / z = y) <=> (x = y * z))`,
  REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN
  SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ]);;

let REAL_LT_DIV2_EQ = prove
 (`!x y z. &0 < z ==> (x / z < y / z <=> x < y)`,
  SIMP_TAC[real_div; REAL_LT_RMUL_EQ; REAL_LT_INV_EQ]);;

let REAL_LE_DIV2_EQ = prove
 (`!x y z. &0 < z ==> (x / z <= y / z <=> x <= y)`,
  SIMP_TAC[real_div; REAL_LE_RMUL_EQ; REAL_LT_INV_EQ]);;

let REAL_MUL_2 = prove
 (`!x. &2 * x = x + x`,
  REAL_ARITH_TAC);;

let REAL_POW_EQ_0 = prove
 (`!x n. (x pow n = &0) <=> (x = &0) /\ ~(n = 0)`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[NOT_SUC; real_pow; REAL_ENTIRE] THENL
   [REAL_ARITH_TAC;
    CONV_TAC TAUT]);;

let REAL_LE_MUL2 = prove
 (`!w x y z. &0 <= w /\ w <= x /\ &0 <= y /\ y <= z
             ==> w * y <= x * z`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `w * z` THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LE_LMUL; MATCH_MP_TAC REAL_LE_RMUL] THEN
  ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `y:real` THEN
  ASM_REWRITE_TAC[]);;

let REAL_LT_MUL2 = prove
 (`!w x y z. &0 <= w /\ w < x /\ &0 <= y /\ y < z
             ==> w * y < x * z`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `w * z` THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LE_LMUL; MATCH_MP_TAC REAL_LT_RMUL] THEN
  ASM_REWRITE_TAC[] THENL
   [MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
    MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `y:real` THEN
    ASM_REWRITE_TAC[]]);;

let REAL_LT_SQUARE = prove
 (`!x. (&0 < x * x) <=> ~(x = &0)`,
  GEN_TAC THEN REWRITE_TAC[REAL_LT_LE; REAL_LE_SQUARE] THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [EQ_SYM_EQ] THEN
  REWRITE_TAC[REAL_ENTIRE]);;

let REAL_POW_1 = prove
 (`!x. x pow 1 = x`,
  REWRITE_TAC[num_CONV `1`] THEN
  REWRITE_TAC[real_pow; REAL_MUL_RID]);;

let REAL_POW_ONE = prove
 (`!n. &1 pow n = &1`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[real_pow; REAL_MUL_LID]);;

let REAL_LT_INV2 = prove
 (`!x y. &0 < x /\ x < y ==> inv(y) < inv(x)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LT_RCANCEL_IMP THEN
  EXISTS_TAC `x * y` THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LT_MUL THEN
    POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC;
    SUBGOAL_THEN `(inv x * x = &1) /\ (inv y * y = &1)` ASSUME_TAC THENL
     [CONJ_TAC THEN MATCH_MP_TAC REAL_MUL_LINV THEN
      POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC;
      ASM_REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_LID] THEN
      GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [REAL_MUL_SYM] THEN
      ASM_REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_RID]]]);;

let REAL_LE_INV2 = prove
 (`!x y. &0 < x /\ x <= y ==> inv(y) <= inv(x)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LE_LT] THEN
  ASM_CASES_TAC `x:real = y` THEN ASM_REWRITE_TAC[] THEN
  STRIP_TAC THEN DISJ1_TAC THEN MATCH_MP_TAC REAL_LT_INV2 THEN
  ASM_REWRITE_TAC[]);;

let REAL_LT_LINV = prove
 (`!x y. &0 < y /\ inv y < x ==> inv x < y`,
  REPEAT STRIP_TAC THEN MP_TAC (SPEC `y:real` REAL_LT_INV) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  MP_TAC (SPECL [`(inv y:real)`; `x:real`] REAL_LT_INV2) THEN
  ASM_REWRITE_TAC[REAL_INV_INV]);;

let REAL_LT_RINV = prove
 (`!x y. &0 < x /\ x < inv y ==> y < inv x`,
  REPEAT STRIP_TAC THEN MP_TAC (SPEC `x:real` REAL_LT_INV) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  MP_TAC (SPECL [`x:real`; `inv y:real`] REAL_LT_INV2) THEN
  ASM_REWRITE_TAC[REAL_INV_INV]);;

let REAL_LE_LINV = prove
 (`!x y. &0 < y /\ inv y <= x ==> inv x <= y`,
  REPEAT STRIP_TAC THEN MP_TAC (SPEC `y:real` REAL_LT_INV) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  MP_TAC (SPECL [`(inv y:real)`; `x:real`] REAL_LE_INV2) THEN
  ASM_REWRITE_TAC[REAL_INV_INV]);;

let REAL_LE_RINV = prove
 (`!x y. &0 < x /\ x <= inv y ==> y <= inv x`,
  REPEAT STRIP_TAC THEN MP_TAC (SPEC `x:real` REAL_LT_INV) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  MP_TAC (SPECL [`x:real`; `inv y:real`] REAL_LE_INV2) THEN
  ASM_REWRITE_TAC[REAL_INV_INV]);;

let REAL_INV_LE_1 = prove
 (`!x. &1 <= x ==> inv(x) <= &1`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_INV_1] THEN
  MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_LT_01]);;

let REAL_INV_1_LE = prove
 (`!x. &0 < x /\ x <= &1 ==> &1 <= inv(x)`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_INV_1] THEN
  MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_LT_01]);;

let REAL_INV_LT_1 = prove
 (`!x. &1 < x ==> inv(x) < &1`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_INV_1] THEN
  MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[REAL_LT_01]);;

let REAL_INV_1_LT = prove
 (`!x. &0 < x /\ x < &1 ==> &1 < inv(x)`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_INV_1] THEN
  MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[REAL_LT_01]);;

let REAL_SUB_INV = prove
 (`!x y. ~(x = &0) /\ ~(y = &0) ==> (inv(x) - inv(y) = (y - x) / (x * y))`,
  REWRITE_TAC[real_div; REAL_SUB_RDISTRIB; REAL_INV_MUL] THEN
  SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_RINV; REAL_MUL_LID] THEN
  REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN
  SIMP_TAC[REAL_DIV_LMUL]);;

let REAL_DOWN = prove
 (`!d. &0 < d ==> ?e. &0 < e /\ e < d`,
  GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `d / &2` THEN
  ASSUME_TAC(REAL_ARITH `&0 < &2`) THEN
  ASSUME_TAC(MATCH_MP REAL_MUL_LINV (REAL_ARITH `~(&2 = &0)`)) THEN
  CONJ_TAC THEN MATCH_MP_TAC REAL_LT_RCANCEL_IMP THEN EXISTS_TAC `&2` THEN
  ASM_REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_MUL_RID] THEN
  UNDISCH_TAC `&0 < d` THEN REAL_ARITH_TAC);;

let REAL_DOWN2 = prove
 (`!d1 d2. &0 < d1 /\ &0 < d2 ==> ?e. &0 < e /\ e < d1 /\ e < d2`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  DISJ_CASES_TAC(SPECL [`d1:real`; `d2:real`] REAL_LE_TOTAL) THENL
   [MP_TAC(SPEC `d1:real` REAL_DOWN);
    MP_TAC(SPEC `d2:real` REAL_DOWN)] THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `e:real` THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
  REAL_ARITH_TAC);;

let REAL_POW_LE2 = prove
 (`!n x y. &0 <= x /\ x <= y ==> x pow n <= y pow n`,
  INDUCT_TAC THEN REWRITE_TAC[real_pow; REAL_LE_REFL] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN
  ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_POW_LE THEN ASM_REWRITE_TAC[];
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;

let REAL_POW_LE_1 = prove
 (`!n x. &1 <= x ==> &1 <= x pow n`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`n:num`; `&1`; `x:real`] REAL_POW_LE2) THEN
  ASM_REWRITE_TAC[REAL_POW_ONE; REAL_POS]);;

let REAL_POW_1_LE = prove
 (`!n x. &0 <= x /\ x <= &1 ==> x pow n <= &1`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`n:num`; `x:real`; `&1`] REAL_POW_LE2) THEN
  ASM_REWRITE_TAC[REAL_POW_ONE]);;

let REAL_POW_MONO = prove
 (`!m n x. &1 <= x /\ m <= n ==> x pow m <= x pow n`,
  REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
  REWRITE_TAC[REAL_POW_ADD] THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
  MATCH_MP_TAC REAL_LE_LMUL THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&1` THEN
    REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN
    MATCH_MP_TAC REAL_POW_LE_1 THEN ASM_REWRITE_TAC[];
    MATCH_MP_TAC REAL_POW_LE_1 THEN ASM_REWRITE_TAC[]]);;

let REAL_POW_LT2 = prove
 (`!n x y. ~(n = 0) /\ &0 <= x /\ x < y ==> x pow n < y pow n`,
  INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; real_pow] THEN REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[real_pow; REAL_MUL_RID] THEN
  MATCH_MP_TAC REAL_LT_MUL2 THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_POW_LE THEN ASM_REWRITE_TAC[];
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;

let REAL_POW_LT_1 = prove
 (`!n x. ~(n = 0) /\ &1 < x ==> &1 < x pow n`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`n:num`; `&1`; `x:real`] REAL_POW_LT2) THEN
  ASM_REWRITE_TAC[REAL_POW_ONE; REAL_POS]);;

let REAL_POW_1_LT = prove
 (`!n x. ~(n = 0) /\ &0 <= x /\ x < &1 ==> x pow n < &1`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`n:num`; `x:real`; `&1`] REAL_POW_LT2) THEN
  ASM_REWRITE_TAC[REAL_POW_ONE]);;

let REAL_POW_MONO_LT = prove
 (`!m n x. &1 < x /\ m < n ==> x pow m < x pow n`,
  REPEAT GEN_TAC THEN REWRITE_TAC[LT_EXISTS] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN
  REWRITE_TAC[REAL_POW_ADD] THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
  MATCH_MP_TAC REAL_LT_LMUL THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_POW_LT THEN
    MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `&1` THEN
    ASM_REWRITE_TAC[REAL_OF_NUM_LT; ARITH];
    SPEC_TAC(`d:num`,`d:num`) THEN
    INDUCT_TAC THEN ONCE_REWRITE_TAC[real_pow] THENL
     [ASM_REWRITE_TAC[real_pow; REAL_MUL_RID]; ALL_TAC] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN
    MATCH_MP_TAC REAL_LT_MUL2 THEN
    ASM_REWRITE_TAC[REAL_OF_NUM_LE; ARITH]]);;

let REAL_POW_POW = prove
 (`!x m n. (x pow m) pow n = x pow (m * n)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[real_pow; MULT_CLAUSES; REAL_POW_ADD]);;

let REAL_EQ_RCANCEL_IMP = prove
 (`!x y z. ~(z = &0) /\ (x * z = y * z) ==> (x = y)`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
  REWRITE_TAC[REAL_SUB_RZERO; GSYM REAL_SUB_RDISTRIB; REAL_ENTIRE] THEN
  CONV_TAC TAUT);;

let REAL_EQ_LCANCEL_IMP = prove
 (`!x y z. ~(z = &0) /\ (z * x = z * y) ==> (x = y)`,
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_EQ_RCANCEL_IMP);;

let REAL_LT_DIV = prove
 (`!x y. &0 < x /\ &0 < y ==> &0 < x / y`,
  SIMP_TAC[REAL_LT_MUL; REAL_LT_INV_EQ; real_div]);;

let REAL_LE_DIV = prove
 (`!x y. &0 <= x /\ &0 <= y ==> &0 <= x / y`,
  SIMP_TAC[REAL_LE_MUL; REAL_LE_INV_EQ; real_div]);;

let REAL_DIV_POW2 = prove
 (`!x m n. ~(x = &0)
           ==> (x pow m / x pow n = if n <= m then x pow (m - n)
                                    else inv(x pow (n - m)))`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  ASM_SIMP_TAC[REAL_POW_SUB] THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM REAL_INV_INV] THEN
  AP_TERM_TAC THEN REWRITE_TAC[REAL_INV_DIV] THEN
  UNDISCH_TAC `~(n:num <= m)` THEN REWRITE_TAC[NOT_LE] THEN
  DISCH_THEN(MP_TAC o MATCH_MP LT_IMP_LE) THEN
  ASM_SIMP_TAC[REAL_POW_SUB]);;

let REAL_DIV_POW2_ALT = prove
 (`!x m n. ~(x = &0)
           ==> (x pow m / x pow n = if n < m then x pow (m - n)
                                    else inv(x pow (n - m)))`,
  REPEAT STRIP_TAC THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM REAL_INV_INV] THEN
  ONCE_REWRITE_TAC[REAL_INV_DIV] THEN
  ASM_SIMP_TAC[GSYM NOT_LE; REAL_DIV_POW2] THEN
  ASM_CASES_TAC `m <= n:num` THEN
  ASM_REWRITE_TAC[REAL_INV_INV]);;

let REAL_LT_POW2 = prove
 (`!n. &0 < &2 pow n`,
  SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; ARITH]);;

let REAL_LE_POW2 = prove
 (`!n. &1 <= &2 pow n`,
  GEN_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 pow 0` THEN
  SIMP_TAC[REAL_POW_MONO; LE_0; REAL_OF_NUM_LE; ARITH] THEN
  REWRITE_TAC[real_pow; REAL_LE_REFL]);;

let REAL_POW2_ABS = prove
 (`!x. abs(x) pow 2 = x pow 2`,
  GEN_TAC THEN REWRITE_TAC[real_abs] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_POW_NEG; ARITH_EVEN]);;

let REAL_LE_SQUARE_ABS = prove
 (`!x y. abs(x) <= abs(y) <=> x pow 2 <= y pow 2`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN
  MESON_TAC[REAL_POW_LE2; REAL_ABS_POS; NUM_EQ_CONV `2 = 0`;
            REAL_POW_LT2; REAL_NOT_LE]);;

let REAL_LT_SQUARE_ABS = prove
 (`!x y. abs(x) < abs(y) <=> x pow 2 < y pow 2`,
  REWRITE_TAC[GSYM REAL_NOT_LE; REAL_LE_SQUARE_ABS]);;

let REAL_EQ_SQUARE_ABS = prove
 (`!x y. abs x = abs y <=> x pow 2 = y pow 2`,
  REWRITE_TAC[GSYM REAL_LE_ANTISYM; REAL_LE_SQUARE_ABS]);;

let REAL_LE_POW_2 = prove
 (`!x. &0 <= x pow 2`,
  REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE]);;

let REAL_LT_POW_2 = prove
 (`!x. &0 < x pow 2 <=> ~(x = &0)`,
  REWRITE_TAC[REAL_LE_POW_2; REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
  REWRITE_TAC[REAL_POW_EQ_0; ARITH]);;

let REAL_SOS_EQ_0 = prove
 (`!x y. x pow 2 + y pow 2 = &0 <=> x = &0 /\ y = &0`,
  REPEAT GEN_TAC THEN EQ_TAC THEN
  SIMP_TAC[REAL_POW_2; REAL_MUL_LZERO; REAL_ADD_LID] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
   `x + y = &0 ==> &0 <= x /\ &0 <= y ==> x = &0 /\ y = &0`)) THEN
  REWRITE_TAC[REAL_LE_SQUARE; REAL_ENTIRE]);;

let REAL_POW_ZERO = prove
 (`!n. &0 pow n = if n = 0 then &1 else &0`,
  INDUCT_TAC THEN REWRITE_TAC[real_pow; NOT_SUC; REAL_MUL_LZERO]);;

let REAL_POW_MONO_INV = prove
 (`!m n x. &0 <= x /\ x <= &1 /\ n <= m ==> x pow m <= x pow n`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `x = &0` THENL
   [ASM_REWRITE_TAC[REAL_POW_ZERO] THEN
    REPEAT(COND_CASES_TAC THEN REWRITE_TAC[REAL_POS; REAL_LE_REFL]) THEN
    UNDISCH_TAC `n:num <= m` THEN ASM_REWRITE_TAC[LE];
    GEN_REWRITE_TAC BINOP_CONV [GSYM REAL_INV_INV] THEN
    MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[GSYM REAL_POW_INV] THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC REAL_POW_LT THEN REWRITE_TAC[REAL_LT_INV_EQ];
      MATCH_MP_TAC REAL_POW_MONO THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC REAL_INV_1_LE] THEN
    ASM_REWRITE_TAC[REAL_LT_LE]]);;

let REAL_POW_LE2_REV = prove
 (`!n x y. ~(n = 0) /\ &0 <= y /\ x pow n <= y pow n ==> x <= y`,
  MESON_TAC[REAL_POW_LT2; REAL_NOT_LE]);;

let REAL_POW_LT2_REV = prove
 (`!n x y. &0 <= y /\ x pow n < y pow n ==> x < y`,
  MESON_TAC[REAL_POW_LE2; REAL_NOT_LE]);;

let REAL_POW_EQ = prove
 (`!n x y. ~(n = 0) /\ &0 <= x /\ &0 <= y /\ x pow n = y pow n ==> x = y`,
  REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN MESON_TAC[REAL_POW_LE2_REV]);;

let REAL_POW_EQ_ABS = prove
 (`!n x y. ~(n = 0) /\ x pow n = y pow n ==> abs x = abs y`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_POW_EQ THEN EXISTS_TAC `n:num` THEN
  ASM_REWRITE_TAC[REAL_ABS_POS; GSYM REAL_ABS_POW]);;

let REAL_POW_EQ_1_IMP = prove
 (`!x n. ~(n = 0) /\ x pow n = &1 ==> abs(x) = &1`,
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_ABS_NUM] THEN
  MATCH_MP_TAC REAL_POW_EQ_ABS THEN EXISTS_TAC `n:num` THEN
  ASM_REWRITE_TAC[REAL_POW_ONE]);;

let REAL_POW_EQ_1 = prove
 (`!x n. x pow n = &1 <=> abs(x) = &1 /\ (x < &0 ==> EVEN(n)) \/ n = 0`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[real_pow] THEN
  ASM_CASES_TAC `abs(x) = &1` THENL
   [ALL_TAC; ASM_MESON_TAC[REAL_POW_EQ_1_IMP]] THEN
  ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(DISJ_CASES_THEN SUBST1_TAC o MATCH_MP (REAL_ARITH
   `abs x = a ==> x = a \/ x = --a`)) THEN
  ASM_REWRITE_TAC[REAL_POW_NEG; REAL_POW_ONE] THEN
  REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;

let REAL_POW_LT2_ODD = prove
 (`!n x y. x < y /\ ODD n ==> x pow n < y pow n`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[ARITH] THEN STRIP_TAC THEN
  DISJ_CASES_TAC(SPEC `y:real` REAL_LE_NEGTOTAL) THENL
   [DISJ_CASES_TAC(REAL_ARITH `&0 <= x \/ &0 < --x`) THEN
    ASM_SIMP_TAC[REAL_POW_LT2] THEN
    SUBGOAL_THEN `&0 < --x pow n /\ &0 <= y pow n` MP_TAC THENL
     [ASM_SIMP_TAC[REAL_POW_LE; REAL_POW_LT];
      ASM_REWRITE_TAC[REAL_POW_NEG; GSYM NOT_ODD] THEN REAL_ARITH_TAC];
    SUBGOAL_THEN `--y pow n < --x pow n` MP_TAC THENL
     [MATCH_MP_TAC REAL_POW_LT2 THEN ASM_REWRITE_TAC[];
      ASM_REWRITE_TAC[REAL_POW_NEG; GSYM NOT_ODD]] THEN
    REPEAT(POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC]);;

let REAL_POW_LE2_ODD = prove
 (`!n x y. x <= y /\ ODD n ==> x pow n <= y pow n`,
  REWRITE_TAC[REAL_LE_LT] THEN REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[REAL_POW_LT2_ODD]);;

let REAL_POW_LT2_ODD_EQ = prove
 (`!n x y. ODD n ==> (x pow n < y pow n <=> x < y)`,
  MESON_TAC[REAL_POW_LT2_ODD; REAL_POW_LE2_ODD; REAL_NOT_LE]);;

let REAL_POW_LE2_ODD_EQ = prove
 (`!n x y. ODD n ==> (x pow n <= y pow n <=> x <= y)`,
  MESON_TAC[REAL_POW_LT2_ODD; REAL_POW_LE2_ODD; REAL_NOT_LE]);;

let REAL_POW_EQ_ODD_EQ = prove
 (`!n x y. ODD n ==> (x pow n = y pow n <=> x = y)`,
  SIMP_TAC[GSYM REAL_LE_ANTISYM; REAL_POW_LE2_ODD_EQ]);;

let REAL_POW_EQ_ODD = prove
 (`!n x y. ODD n /\ x pow n = y pow n ==> x = y`,
  MESON_TAC[REAL_POW_EQ_ODD_EQ]);;

let REAL_POW_EQ_EQ = prove
 (`!n x y. x pow n = y pow n <=>
           if EVEN n then n = 0 \/ abs x = abs y else x = y`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[real_pow; ARITH] THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[REAL_POW_EQ_ODD_EQ; GSYM NOT_EVEN] THEN
  EQ_TAC THENL [ASM_MESON_TAC[REAL_POW_EQ_ABS]; ALL_TAC] THEN
  REWRITE_TAC[REAL_EQ_SQUARE_ABS] THEN DISCH_TAC THEN
  FIRST_X_ASSUM(X_CHOOSE_THEN `m:num` SUBST1_TAC o
    REWRITE_RULE[EVEN_EXISTS]) THEN ASM_REWRITE_TAC[GSYM REAL_POW_POW]);;

(* ------------------------------------------------------------------------- *)
(* Some basic forms of the Archimedian property.                             *)
(* ------------------------------------------------------------------------- *)

let REAL_ARCH_SIMPLE = prove
 (`!x. ?n. x <= &n`,
  let lemma = prove(`(!x. (?n. x = &n) ==> P x) <=> !n. P(&n)`,MESON_TAC[]) in
  MP_TAC(SPEC `\y. ?n. y = &n` REAL_COMPLETE) THEN REWRITE_TAC[lemma] THEN
  MESON_TAC[REAL_LE_SUB_LADD; REAL_OF_NUM_ADD; REAL_LE_TOTAL;
            REAL_ARITH `~(M <= M - &1)`]);;

let REAL_ARCH_LT = prove
 (`!x. ?n. x < &n`,
  MESON_TAC[REAL_ARCH_SIMPLE; REAL_OF_NUM_ADD;
            REAL_ARITH `x <= n ==> x < n + &1`]);;

let REAL_ARCH = prove
 (`!x. &0 < x ==> !y. ?n. y < &n * x`,
  MESON_TAC[REAL_ARCH_LT; REAL_LT_LDIV_EQ]);;

(* ------------------------------------------------------------------------- *)
(* The sign of a real number, as a real number.                              *)
(* ------------------------------------------------------------------------- *)

let real_sgn = new_definition
 `(real_sgn:real->real) x =
        if &0 < x then &1 else if x < &0 then -- &1 else &0`;;

let REAL_SGN_0 = prove
 (`real_sgn(&0) = &0`,
  REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;

let REAL_SGN_NEG = prove
 (`!x. real_sgn(--x) = --(real_sgn x)`,
  REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;

let REAL_SGN_ABS = prove
 (`!x. real_sgn(x) * abs(x) = x`,
  REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;

let REAL_SGN_ABS_ALT = prove
 (`!x. real_sgn x * x = abs x`,
  GEN_TAC THEN REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;

let REAL_EQ_SGN_ABS = prove
 (`!x y:real. x = y <=> real_sgn x = real_sgn y /\ abs x = abs y`,
  MESON_TAC[REAL_SGN_ABS]);;

let REAL_ABS_SGN = prove
 (`!x. abs(real_sgn x) = real_sgn(abs x)`,
  REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;

let REAL_SGN = prove
 (`!x. real_sgn x = x / abs x`,
  GEN_TAC THEN ASM_CASES_TAC `x = &0` THENL
   [ASM_REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_SGN_0];
    GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM REAL_SGN_ABS] THEN
    ASM_SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_ABS_ZERO;
                 REAL_MUL_RINV; REAL_MUL_RID]]);;

let REAL_SGN_MUL = prove
 (`!x y. real_sgn(x * y) = real_sgn(x) * real_sgn(y)`,
  REWRITE_TAC[REAL_SGN; REAL_ABS_MUL; real_div; REAL_INV_MUL] THEN
  REAL_ARITH_TAC);;

let REAL_SGN_INV = prove
 (`!x. real_sgn(inv x) = real_sgn x`,
  REWRITE_TAC[real_sgn; REAL_LT_INV_EQ; GSYM REAL_INV_NEG;
              REAL_ARITH `x < &0 <=> &0 < --x`]);;

let REAL_SGN_DIV = prove
 (`!x y. real_sgn(x / y) = real_sgn(x) / real_sgn(y)`,
  REWRITE_TAC[REAL_SGN; REAL_ABS_DIV] THEN
  REWRITE_TAC[real_div; REAL_INV_MUL; REAL_INV_INV] THEN
  REAL_ARITH_TAC);;

let REAL_SGN_EQ = prove
 (`(!x. real_sgn x = &0 <=> x = &0) /\
   (!x. real_sgn x = &1 <=> x > &0) /\
   (!x. real_sgn x = -- &1 <=> x < &0)`,
  REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;

let REAL_SGN_CASES = prove
 (`!x. real_sgn x = &0 \/ real_sgn x = &1 \/ real_sgn x = -- &1`,
  REWRITE_TAC[real_sgn] THEN MESON_TAC[]);;

let REAL_SGN_INEQS = prove
 (`(!x. &0 <= real_sgn x <=> &0 <= x) /\
   (!x. &0 < real_sgn x <=> &0 < x) /\
   (!x. &0 >= real_sgn x <=> &0 >= x) /\
   (!x. &0 > real_sgn x <=> &0 > x) /\
   (!x. &0 = real_sgn x <=> &0 = x) /\
   (!x. real_sgn x <= &0 <=> x <= &0) /\
   (!x. real_sgn x < &0 <=> x < &0) /\
   (!x. real_sgn x >= &0 <=> x >= &0) /\
   (!x. real_sgn x > &0 <=> x > &0) /\
   (!x. real_sgn x = &0 <=> x = &0)`,
  REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;

let REAL_SGN_POW = prove
 (`!x n. real_sgn(x pow n) = real_sgn(x) pow n`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[REAL_SGN_MUL; real_pow] THEN
  REWRITE_TAC[real_sgn; REAL_LT_01]);;

let REAL_SGN_POW_2 = prove
 (`!x. real_sgn(x pow 2) = real_sgn(abs x)`,
  REWRITE_TAC[real_sgn] THEN
  SIMP_TAC[GSYM REAL_NOT_LE; REAL_ABS_POS; REAL_LE_POW_2;
           REAL_ARITH `&0 <= x ==> (x <= &0 <=> x = &0)`] THEN
  REWRITE_TAC[REAL_POW_EQ_0; REAL_ABS_ZERO; ARITH]);;

let REAL_SGN_REAL_SGN = prove
 (`!x. real_sgn(real_sgn x) = real_sgn x`,
  REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;

let REAL_INV_SGN = prove
 (`!x. real_inv(real_sgn x) = real_sgn x`,
  GEN_TAC THEN REWRITE_TAC[real_sgn] THEN
  REPEAT COND_CASES_TAC THEN
  REWRITE_TAC[REAL_INV_0; REAL_INV_1; REAL_INV_NEG]);;

let REAL_SGN_EQ_INEQ = prove
 (`!x y. real_sgn x = real_sgn y <=>
         x = y \/ abs(x - y) < max (abs x) (abs y)`,
  REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;

let REAL_SGNS_EQ = prove
 (`!x y. real_sgn x = real_sgn y <=>
         (x = &0 <=> y = &0) /\
         (x > &0 <=> y > &0) /\
         (x < &0 <=> y < &0)`,
  REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;

let REAL_SGNS_EQ_ALT = prove
 (`!x y. real_sgn x = real_sgn y <=>
         (x = &0 ==> y = &0) /\
         (x > &0 ==> y > &0) /\
         (x < &0 ==> y < &0)`,
  REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Useful "without loss of generality" lemmas.                               *)
(* ------------------------------------------------------------------------- *)

let REAL_WLOG_LE = prove
 (`(!x y. P x y <=> P y x) /\ (!x y. x <= y ==> P x y) ==> !x y. P x y`,
  MESON_TAC[REAL_LE_TOTAL]);;

let REAL_WLOG_LT = prove
 (`(!x. P x x) /\ (!x y. P x y <=> P y x) /\ (!x y. x < y ==> P x y)
   ==> !x y. P x y`,
  MESON_TAC[REAL_LT_TOTAL]);;