1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
|
(* ========================================================================= *)
(* More basic properties of the reals. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* (c) Copyright, Valentina Bruno 2010 *)
(* ========================================================================= *)
needs "realarith.ml";;
(* ------------------------------------------------------------------------- *)
(* Additional commutativity properties of the inclusion map. *)
(* ------------------------------------------------------------------------- *)
let REAL_OF_NUM_LT = prove
(`!m n. &m < &n <=> m < n`,
REWRITE_TAC[real_lt; GSYM NOT_LE; REAL_OF_NUM_LE]);;
let REAL_OF_NUM_GE = prove
(`!m n. &m >= &n <=> m >= n`,
REWRITE_TAC[GE; real_ge; REAL_OF_NUM_LE]);;
let REAL_OF_NUM_GT = prove
(`!m n. &m > &n <=> m > n`,
REWRITE_TAC[GT; real_gt; REAL_OF_NUM_LT]);;
let REAL_OF_NUM_MAX = prove
(`!m n. max (&m) (&n) = &(MAX m n)`,
REWRITE_TAC[REAL_OF_NUM_LE; MAX; real_max; GSYM COND_RAND]);;
let REAL_OF_NUM_MIN = prove
(`!m n. min (&m) (&n) = &(MIN m n)`,
REWRITE_TAC[REAL_OF_NUM_LE; MIN; real_min; GSYM COND_RAND]);;
let REAL_OF_NUM_SUC = prove
(`!n. &n + &1 = &(SUC n)`,
REWRITE_TAC[ADD1; REAL_OF_NUM_ADD]);;
let REAL_OF_NUM_SUB = prove
(`!m n. m <= n ==> (&n - &m = &(n - m))`,
REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[ADD_SUB2] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
REWRITE_TAC[real_sub; GSYM REAL_ADD_ASSOC] THEN
MESON_TAC[REAL_ADD_LINV; REAL_ADD_SYM; REAL_ADD_LID]);;
let REAL_OF_NUM_SUB_CASES = prove
(`!m n. &m - &n = if n <= m then &(m - n) else -- &(n - m)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_OF_NUM_SUB] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_NEG_SUB] THEN AP_TERM_TAC THEN
MATCH_MP_TAC REAL_OF_NUM_SUB THEN ASM_MESON_TAC[LE_CASES]);;
(* ------------------------------------------------------------------------- *)
(* A few theorems we need to prove explicitly for later. *)
(* ------------------------------------------------------------------------- *)
let REAL_MUL_AC = prove
(`(m * n = n * m) /\
((m * n) * p = m * (n * p)) /\
(m * (n * p) = n * (m * p))`,
REWRITE_TAC[REAL_MUL_ASSOC; EQT_INTRO(SPEC_ALL REAL_MUL_SYM)] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_ACCEPT_TAC REAL_MUL_SYM);;
let REAL_ADD_RDISTRIB = prove
(`!x y z. (x + y) * z = x * z + y * z`,
MESON_TAC[REAL_MUL_SYM; REAL_ADD_LDISTRIB]);;
let REAL_LT_LADD_IMP = prove
(`!x y z. y < z ==> x + y < x + z`,
REPEAT GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN
REWRITE_TAC[real_lt] THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_LE_LADD_IMP) THEN
DISCH_THEN(MP_TAC o SPEC `--x`) THEN
REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID]);;
let REAL_LT_MUL = prove
(`!x y. &0 < x /\ &0 < y ==> &0 < x * y`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LT_LE] THEN
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
STRIP_TAC THEN ASM_REWRITE_TAC[REAL_ENTIRE] THEN
MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Tactic version of REAL_ARITH. *)
(* ------------------------------------------------------------------------- *)
let REAL_ARITH_TAC = CONV_TAC REAL_ARITH;;
(* ------------------------------------------------------------------------- *)
(* Prove all the linear theorems we can blow away automatically. *)
(* ------------------------------------------------------------------------- *)
let REAL_EQ_ADD_LCANCEL_0 = prove
(`!x y. (x + y = x) <=> (y = &0)`,
REAL_ARITH_TAC);;
let REAL_EQ_ADD_RCANCEL_0 = prove
(`!x y. (x + y = y) <=> (x = &0)`,
REAL_ARITH_TAC);;
let REAL_LNEG_UNIQ = prove
(`!x y. (x + y = &0) <=> (x = --y)`,
REAL_ARITH_TAC);;
let REAL_RNEG_UNIQ = prove
(`!x y. (x + y = &0) <=> (y = --x)`,
REAL_ARITH_TAC);;
let REAL_NEG_LMUL = prove
(`!x y. --(x * y) = (--x) * y`,
REAL_ARITH_TAC);;
let REAL_NEG_RMUL = prove
(`!x y. --(x * y) = x * (--y)`,
REAL_ARITH_TAC);;
let REAL_NEGNEG = prove
(`!x. --(--x) = x`,
REAL_ARITH_TAC);;
let REAL_NEG_MUL2 = prove
(`!x y. (--x) * (--y) = x * y`,
REAL_ARITH_TAC);;
let REAL_LT_LADD = prove
(`!x y z. (x + y) < (x + z) <=> y < z`,
REAL_ARITH_TAC);;
let REAL_LT_RADD = prove
(`!x y z. (x + z) < (y + z) <=> x < y`,
REAL_ARITH_TAC);;
let REAL_LT_ANTISYM = prove
(`!x y. ~(x < y /\ y < x)`,
REAL_ARITH_TAC);;
let REAL_LT_GT = prove
(`!x y. x < y ==> ~(y < x)`,
REAL_ARITH_TAC);;
let REAL_NOT_EQ = prove
(`!x y. ~(x = y) <=> x < y \/ y < x`,
REAL_ARITH_TAC);;
let REAL_NOT_LE = prove
(`!x y. ~(x <= y) <=> y < x`,
REAL_ARITH_TAC);;
let REAL_LET_ANTISYM = prove
(`!x y. ~(x <= y /\ y < x)`,
REAL_ARITH_TAC);;
let REAL_NEG_LT0 = prove
(`!x. (--x) < &0 <=> &0 < x`,
REAL_ARITH_TAC);;
let REAL_NEG_GT0 = prove
(`!x. &0 < (--x) <=> x < &0`,
REAL_ARITH_TAC);;
let REAL_NEG_LE0 = prove
(`!x. (--x) <= &0 <=> &0 <= x`,
REAL_ARITH_TAC);;
let REAL_NEG_GE0 = prove
(`!x. &0 <= (--x) <=> x <= &0`,
REAL_ARITH_TAC);;
let REAL_LT_TOTAL = prove
(`!x y. (x = y) \/ x < y \/ y < x`,
REAL_ARITH_TAC);;
let REAL_LT_NEGTOTAL = prove
(`!x. (x = &0) \/ (&0 < x) \/ (&0 < --x)`,
REAL_ARITH_TAC);;
let REAL_LE_01 = prove
(`&0 <= &1`,
REAL_ARITH_TAC);;
let REAL_LT_01 = prove
(`&0 < &1`,
REAL_ARITH_TAC);;
let REAL_LE_LADD = prove
(`!x y z. (x + y) <= (x + z) <=> y <= z`,
REAL_ARITH_TAC);;
let REAL_LE_RADD = prove
(`!x y z. (x + z) <= (y + z) <=> x <= y`,
REAL_ARITH_TAC);;
let REAL_LT_ADD2 = prove
(`!w x y z. w < x /\ y < z ==> (w + y) < (x + z)`,
REAL_ARITH_TAC);;
let REAL_LE_ADD2 = prove
(`!w x y z. w <= x /\ y <= z ==> (w + y) <= (x + z)`,
REAL_ARITH_TAC);;
let REAL_LT_LNEG = prove
(`!x y. --x < y <=> &0 < x + y`,
REWRITE_TAC[real_lt; REAL_LE_RNEG; REAL_ADD_AC]);;
let REAL_LT_RNEG = prove
(`!x y. x < --y <=> x + y < &0`,
REWRITE_TAC[real_lt; REAL_LE_LNEG; REAL_ADD_AC]);;
let REAL_LT_ADDNEG = prove
(`!x y z. y < (x + (--z)) <=> (y + z) < x`,
REAL_ARITH_TAC);;
let REAL_LT_ADDNEG2 = prove
(`!x y z. (x + (--y)) < z <=> x < (z + y)`,
REAL_ARITH_TAC);;
let REAL_LT_ADD1 = prove
(`!x y. x <= y ==> x < (y + &1)`,
REAL_ARITH_TAC);;
let REAL_SUB_ADD = prove
(`!x y. (x - y) + y = x`,
REAL_ARITH_TAC);;
let REAL_SUB_ADD2 = prove
(`!x y. y + (x - y) = x`,
REAL_ARITH_TAC);;
let REAL_SUB_REFL = prove
(`!x. x - x = &0`,
REAL_ARITH_TAC);;
let REAL_LE_DOUBLE = prove
(`!x. &0 <= x + x <=> &0 <= x`,
REAL_ARITH_TAC);;
let REAL_LE_NEGL = prove
(`!x. (--x <= x) <=> (&0 <= x)`,
REAL_ARITH_TAC);;
let REAL_LE_NEGR = prove
(`!x. (x <= --x) <=> (x <= &0)`,
REAL_ARITH_TAC);;
let REAL_NEG_EQ_0 = prove
(`!x. (--x = &0) <=> (x = &0)`,
REAL_ARITH_TAC);;
let REAL_ADD_SUB = prove
(`!x y. (x + y) - x = y`,
REAL_ARITH_TAC);;
let REAL_NEG_EQ = prove
(`!x y. (--x = y) <=> (x = --y)`,
REAL_ARITH_TAC);;
let REAL_NEG_MINUS1 = prove
(`!x. --x = (--(&1)) * x`,
REAL_ARITH_TAC);;
let REAL_LT_IMP_NE = prove
(`!x y. x < y ==> ~(x = y)`,
REAL_ARITH_TAC);;
let REAL_LE_ADDR = prove
(`!x y. x <= x + y <=> &0 <= y`,
REAL_ARITH_TAC);;
let REAL_LE_ADDL = prove
(`!x y. y <= x + y <=> &0 <= x`,
REAL_ARITH_TAC);;
let REAL_LT_ADDR = prove
(`!x y. x < x + y <=> &0 < y`,
REAL_ARITH_TAC);;
let REAL_LT_ADDL = prove
(`!x y. y < x + y <=> &0 < x`,
REAL_ARITH_TAC);;
let REAL_SUB_SUB = prove
(`!x y. (x - y) - x = --y`,
REAL_ARITH_TAC);;
let REAL_LT_ADD_SUB = prove
(`!x y z. (x + y) < z <=> x < (z - y)`,
REAL_ARITH_TAC);;
let REAL_LT_SUB_RADD = prove
(`!x y z. (x - y) < z <=> x < z + y`,
REAL_ARITH_TAC);;
let REAL_LT_SUB_LADD = prove
(`!x y z. x < (y - z) <=> (x + z) < y`,
REAL_ARITH_TAC);;
let REAL_LE_SUB_LADD = prove
(`!x y z. x <= (y - z) <=> (x + z) <= y`,
REAL_ARITH_TAC);;
let REAL_LE_SUB_RADD = prove
(`!x y z. (x - y) <= z <=> x <= z + y`,
REAL_ARITH_TAC);;
let REAL_LT_NEG = prove
(`!x y. --x < --y <=> y < x`,
REAL_ARITH_TAC);;
let REAL_LE_NEG = prove
(`!x y. --x <= --y <=> y <= x`,
REAL_ARITH_TAC);;
let REAL_ADD2_SUB2 = prove
(`!a b c d. (a + b) - (c + d) = (a - c) + (b - d)`,
REAL_ARITH_TAC);;
let REAL_SUB_LZERO = prove
(`!x. &0 - x = --x`,
REAL_ARITH_TAC);;
let REAL_SUB_RZERO = prove
(`!x. x - &0 = x`,
REAL_ARITH_TAC);;
let REAL_LET_ADD2 = prove
(`!w x y z. w <= x /\ y < z ==> (w + y) < (x + z)`,
REAL_ARITH_TAC);;
let REAL_LTE_ADD2 = prove
(`!w x y z. w < x /\ y <= z ==> w + y < x + z`,
REAL_ARITH_TAC);;
let REAL_SUB_LNEG = prove
(`!x y. (--x) - y = --(x + y)`,
REAL_ARITH_TAC);;
let REAL_SUB_RNEG = prove
(`!x y. x - (--y) = x + y`,
REAL_ARITH_TAC);;
let REAL_SUB_NEG2 = prove
(`!x y. (--x) - (--y) = y - x`,
REAL_ARITH_TAC);;
let REAL_SUB_TRIANGLE = prove
(`!a b c. (a - b) + (b - c) = a - c`,
REAL_ARITH_TAC);;
let REAL_EQ_SUB_LADD = prove
(`!x y z. (x = y - z) <=> (x + z = y)`,
REAL_ARITH_TAC);;
let REAL_EQ_SUB_RADD = prove
(`!x y z. (x - y = z) <=> (x = z + y)`,
REAL_ARITH_TAC);;
let REAL_SUB_SUB2 = prove
(`!x y. x - (x - y) = y`,
REAL_ARITH_TAC);;
let REAL_ADD_SUB2 = prove
(`!x y. x - (x + y) = --y`,
REAL_ARITH_TAC);;
let REAL_EQ_IMP_LE = prove
(`!x y. (x = y) ==> x <= y`,
REAL_ARITH_TAC);;
let REAL_POS_NZ = prove
(`!x. &0 < x ==> ~(x = &0)`,
REAL_ARITH_TAC);;
let REAL_DIFFSQ = prove
(`!x y. (x + y) * (x - y) = (x * x) - (y * y)`,
REAL_ARITH_TAC);;
let REAL_EQ_NEG2 = prove
(`!x y. (--x = --y) <=> (x = y)`,
REAL_ARITH_TAC);;
let REAL_LT_NEG2 = prove
(`!x y. --x < --y <=> y < x`,
REAL_ARITH_TAC);;
let REAL_SUB_LDISTRIB = prove
(`!x y z. x * (y - z) = x * y - x * z`,
REAL_ARITH_TAC);;
let REAL_SUB_RDISTRIB = prove
(`!x y z. (x - y) * z = x * z - y * z`,
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Theorems about "abs". *)
(* ------------------------------------------------------------------------- *)
let REAL_ABS_ZERO = prove
(`!x. (abs(x) = &0) <=> (x = &0)`,
REAL_ARITH_TAC);;
let REAL_ABS_0 = prove
(`abs(&0) = &0`,
REAL_ARITH_TAC);;
let REAL_ABS_1 = prove
(`abs(&1) = &1`,
REAL_ARITH_TAC);;
let REAL_ABS_TRIANGLE = prove
(`!x y. abs(x + y) <= abs(x) + abs(y)`,
REAL_ARITH_TAC);;
let REAL_ABS_TRIANGLE_LE = prove
(`!x y z.abs(x) + abs(y - x) <= z ==> abs(y) <= z`,
REAL_ARITH_TAC);;
let REAL_ABS_TRIANGLE_LT = prove
(`!x y z.abs(x) + abs(y - x) < z ==> abs(y) < z`,
REAL_ARITH_TAC);;
let REAL_ABS_POS = prove
(`!x. &0 <= abs(x)`,
REAL_ARITH_TAC);;
let REAL_ABS_SUB = prove
(`!x y. abs(x - y) = abs(y - x)`,
REAL_ARITH_TAC);;
let REAL_ABS_NZ = prove
(`!x. ~(x = &0) <=> &0 < abs(x)`,
REAL_ARITH_TAC);;
let REAL_ABS_ABS = prove
(`!x. abs(abs(x)) = abs(x)`,
REAL_ARITH_TAC);;
let REAL_ABS_LE = prove
(`!x. x <= abs(x)`,
REAL_ARITH_TAC);;
let REAL_ABS_REFL = prove
(`!x. (abs(x) = x) <=> &0 <= x`,
REAL_ARITH_TAC);;
let REAL_ABS_BETWEEN = prove
(`!x y d. &0 < d /\ ((x - d) < y) /\ (y < (x + d)) <=> abs(y - x) < d`,
REAL_ARITH_TAC);;
let REAL_ABS_BOUND = prove
(`!x y d. abs(x - y) < d ==> y < (x + d)`,
REAL_ARITH_TAC);;
let REAL_ABS_STILLNZ = prove
(`!x y. abs(x - y) < abs(y) ==> ~(x = &0)`,
REAL_ARITH_TAC);;
let REAL_ABS_CASES = prove
(`!x. (x = &0) \/ &0 < abs(x)`,
REAL_ARITH_TAC);;
let REAL_ABS_BETWEEN1 = prove
(`!x y z. x < z /\ (abs(y - x)) < (z - x) ==> y < z`,
REAL_ARITH_TAC);;
let REAL_ABS_SIGN = prove
(`!x y. abs(x - y) < y ==> &0 < x`,
REAL_ARITH_TAC);;
let REAL_ABS_SIGN2 = prove
(`!x y. abs(x - y) < --y ==> x < &0`,
REAL_ARITH_TAC);;
let REAL_ABS_CIRCLE = prove
(`!x y h. abs(h) < (abs(y) - abs(x)) ==> abs(x + h) < abs(y)`,
REAL_ARITH_TAC);;
let REAL_SUB_ABS = prove
(`!x y. (abs(x) - abs(y)) <= abs(x - y)`,
REAL_ARITH_TAC);;
let REAL_ABS_SUB_ABS = prove
(`!x y. abs(abs(x) - abs(y)) <= abs(x - y)`,
REAL_ARITH_TAC);;
let REAL_ABS_BETWEEN2 = prove
(`!x0 x y0 y. x0 < y0 /\ &2 * abs(x - x0) < (y0 - x0) /\
&2 * abs(y - y0) < (y0 - x0)
==> x < y`,
REAL_ARITH_TAC);;
let REAL_ABS_BOUNDS = prove
(`!x k. abs(x) <= k <=> --k <= x /\ x <= k`,
REAL_ARITH_TAC);;
let REAL_BOUNDS_LE = prove
(`!x k. --k <= x /\ x <= k <=> abs(x) <= k`,
REAL_ARITH_TAC);;
let REAL_BOUNDS_LT = prove
(`!x k. --k < x /\ x < k <=> abs(x) < k`,
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Theorems about max and min. *)
(* ------------------------------------------------------------------------- *)
let REAL_MIN_MAX = prove
(`!x y. min x y = --(max (--x) (--y))`,
REAL_ARITH_TAC);;
let REAL_MAX_MIN = prove
(`!x y. max x y = --(min (--x) (--y))`,
REAL_ARITH_TAC);;
let REAL_MAX_MAX = prove
(`!x y. x <= max x y /\ y <= max x y`,
REAL_ARITH_TAC);;
let REAL_MIN_MIN = prove
(`!x y. min x y <= x /\ min x y <= y`,
REAL_ARITH_TAC);;
let REAL_MAX_SYM = prove
(`!x y. max x y = max y x`,
REAL_ARITH_TAC);;
let REAL_MIN_SYM = prove
(`!x y. min x y = min y x`,
REAL_ARITH_TAC);;
let REAL_LE_MAX = prove
(`!x y z. z <= max x y <=> z <= x \/ z <= y`,
REAL_ARITH_TAC);;
let REAL_LE_MIN = prove
(`!x y z. z <= min x y <=> z <= x /\ z <= y`,
REAL_ARITH_TAC);;
let REAL_LT_MAX = prove
(`!x y z. z < max x y <=> z < x \/ z < y`,
REAL_ARITH_TAC);;
let REAL_LT_MIN = prove
(`!x y z. z < min x y <=> z < x /\ z < y`,
REAL_ARITH_TAC);;
let REAL_MAX_LE = prove
(`!x y z. max x y <= z <=> x <= z /\ y <= z`,
REAL_ARITH_TAC);;
let REAL_MIN_LE = prove
(`!x y z. min x y <= z <=> x <= z \/ y <= z`,
REAL_ARITH_TAC);;
let REAL_MAX_LT = prove
(`!x y z. max x y < z <=> x < z /\ y < z`,
REAL_ARITH_TAC);;
let REAL_MIN_LT = prove
(`!x y z. min x y < z <=> x < z \/ y < z`,
REAL_ARITH_TAC);;
let REAL_MAX_ASSOC = prove
(`!x y z. max x (max y z) = max (max x y) z`,
REAL_ARITH_TAC);;
let REAL_MIN_ASSOC = prove
(`!x y z. min x (min y z) = min (min x y) z`,
REAL_ARITH_TAC);;
let REAL_MAX_ACI = prove
(`(max x y = max y x) /\
(max (max x y) z = max x (max y z)) /\
(max x (max y z) = max y (max x z)) /\
(max x x = x) /\
(max x (max x y) = max x y)`,
REAL_ARITH_TAC);;
let REAL_MIN_ACI = prove
(`(min x y = min y x) /\
(min (min x y) z = min x (min y z)) /\
(min x (min y z) = min y (min x z)) /\
(min x x = x) /\
(min x (min x y) = min x y)`,
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* To simplify backchaining, just as in the natural number case. *)
(* ------------------------------------------------------------------------- *)
let REAL_LE_IMP =
let pth = PURE_ONCE_REWRITE_RULE[IMP_CONJ] REAL_LE_TRANS in
fun th -> GEN_ALL(MATCH_MP pth (SPEC_ALL th));;
let REAL_LET_IMP =
let pth = PURE_ONCE_REWRITE_RULE[IMP_CONJ] REAL_LET_TRANS in
fun th -> GEN_ALL(MATCH_MP pth (SPEC_ALL th));;
(* ------------------------------------------------------------------------- *)
(* Now a bit of nonlinear stuff. *)
(* ------------------------------------------------------------------------- *)
let REAL_ABS_MUL = prove
(`!x y. abs(x * y) = abs(x) * abs(y)`,
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPEC `x:real` REAL_LE_NEGTOTAL) THENL
[ALL_TAC;
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM REAL_ABS_NEG]] THEN
(DISJ_CASES_TAC (SPEC `y:real` REAL_LE_NEGTOTAL) THENL
[ALL_TAC;
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_ABS_NEG]]) THEN
ASSUM_LIST(MP_TAC o MATCH_MP REAL_LE_MUL o end_itlist CONJ o rev) THEN
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN DISCH_TAC THENL
[ALL_TAC;
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ABS_NEG];
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ABS_NEG];
ALL_TAC] THEN
ASM_REWRITE_TAC[real_abs; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);;
let REAL_POW_LE = prove
(`!x n. &0 <= x ==> &0 <= x pow n`,
REPEAT STRIP_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[real_pow; REAL_POS] THEN
MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]);;
let REAL_POW_LT = prove
(`!x n. &0 < x ==> &0 < x pow n`,
REPEAT STRIP_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[real_pow; REAL_LT_01] THEN
MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[]);;
let REAL_ABS_POW = prove
(`!x n. abs(x pow n) = abs(x) pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[real_pow; REAL_ABS_NUM; REAL_ABS_MUL]);;
let REAL_LE_LMUL = prove
(`!x y z. &0 <= x /\ y <= z ==> x * y <= x * z`,
ONCE_REWRITE_TAC[REAL_ARITH `x <= y <=> &0 <= y - x`] THEN
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_SUB_RZERO; REAL_LE_MUL]);;
let REAL_LE_RMUL = prove
(`!x y z. x <= y /\ &0 <= z ==> x * z <= y * z`,
MESON_TAC[REAL_MUL_SYM; REAL_LE_LMUL]);;
let REAL_LT_LMUL = prove
(`!x y z. &0 < x /\ y < z ==> x * y < x * z`,
ONCE_REWRITE_TAC[REAL_ARITH `x < y <=> &0 < y - x`] THEN
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_SUB_RZERO; REAL_LT_MUL]);;
let REAL_LT_RMUL = prove
(`!x y z. x < y /\ &0 < z ==> x * z < y * z`,
MESON_TAC[REAL_MUL_SYM; REAL_LT_LMUL]);;
let REAL_EQ_MUL_LCANCEL = prove
(`!x y z. (x * y = x * z) <=> (x = &0) \/ (y = z)`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH `(x = y) <=> (x - y = &0)`] THEN
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_ENTIRE; REAL_SUB_RZERO]);;
let REAL_EQ_MUL_RCANCEL = prove
(`!x y z. (x * z = y * z) <=> (x = y) \/ (z = &0)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[REAL_EQ_MUL_LCANCEL] THEN
MESON_TAC[]);;
let REAL_MUL_LINV_UNIQ = prove
(`!x y. (x * y = &1) ==> (inv(y) = x)`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `y = &0` THEN
ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_OF_NUM_EQ; ARITH_EQ] THEN
FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP REAL_MUL_LINV) THEN
ASM_REWRITE_TAC[REAL_EQ_MUL_RCANCEL] THEN
DISCH_THEN(ACCEPT_TAC o SYM));;
let REAL_MUL_RINV_UNIQ = prove
(`!x y. (x * y = &1) ==> (inv(x) = y)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MATCH_ACCEPT_TAC REAL_MUL_LINV_UNIQ);;
let REAL_INV_INV = prove
(`!x. inv(inv x) = x`,
GEN_TAC THEN ASM_CASES_TAC `x = &0` THEN
ASM_REWRITE_TAC[REAL_INV_0] THEN
MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN
MATCH_MP_TAC REAL_MUL_LINV THEN
ASM_REWRITE_TAC[]);;
let REAL_EQ_INV2 = prove
(`!x y. inv(x) = inv(y) <=> x = y`,
MESON_TAC[REAL_INV_INV]);;
let REAL_INV_EQ_0 = prove
(`!x. inv(x) = &0 <=> x = &0`,
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[REAL_INV_0] THEN
ONCE_REWRITE_TAC[GSYM REAL_INV_INV] THEN ASM_REWRITE_TAC[REAL_INV_0]);;
let REAL_LT_INV = prove
(`!x. &0 < x ==> &0 < inv(x)`,
GEN_TAC THEN
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC `inv(x)` REAL_LT_NEGTOTAL) THEN
ASM_REWRITE_TAC[] THENL
[RULE_ASSUM_TAC(REWRITE_RULE[REAL_INV_EQ_0]) THEN ASM_REWRITE_TAC[];
DISCH_TAC THEN SUBGOAL_THEN `&0 < --(inv x) * x` MP_TAC THENL
[MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_LNEG]]] THEN
SUBGOAL_THEN `inv(x) * x = &1` SUBST1_TAC THENL
[MATCH_MP_TAC REAL_MUL_LINV THEN
UNDISCH_TAC `&0 < x` THEN REAL_ARITH_TAC;
REWRITE_TAC[REAL_LT_RNEG; REAL_ADD_LID; REAL_OF_NUM_LT; ARITH]]);;
let REAL_LT_INV_EQ = prove
(`!x. &0 < inv x <=> &0 < x`,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[REAL_LT_INV] THEN
GEN_REWRITE_TAC (funpow 2 RAND_CONV) [GSYM REAL_INV_INV] THEN
REWRITE_TAC[REAL_LT_INV]);;
let REAL_INV_NEG = prove
(`!x. inv(--x) = --(inv x)`,
GEN_TAC THEN ASM_CASES_TAC `x = &0` THEN
ASM_REWRITE_TAC[REAL_NEG_0; REAL_INV_0] THEN
MATCH_MP_TAC REAL_MUL_LINV_UNIQ THEN
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN
MATCH_MP_TAC REAL_MUL_LINV THEN ASM_REWRITE_TAC[]);;
let REAL_LE_INV_EQ = prove
(`!x. &0 <= inv x <=> &0 <= x`,
REWRITE_TAC[REAL_LE_LT; REAL_LT_INV_EQ; REAL_INV_EQ_0] THEN
MESON_TAC[REAL_INV_EQ_0]);;
let REAL_LE_INV = prove
(`!x. &0 <= x ==> &0 <= inv(x)`,
REWRITE_TAC[REAL_LE_INV_EQ]);;
let REAL_MUL_RINV = prove
(`!x. ~(x = &0) ==> (x * inv(x) = &1)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[REAL_MUL_LINV]);;
let REAL_INV_1 = prove
(`inv(&1) = &1`,
MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN
REWRITE_TAC[REAL_MUL_LID]);;
let REAL_INV_EQ_1 = prove
(`!x. inv(x) = &1 <=> x = &1`,
MESON_TAC[REAL_INV_INV; REAL_INV_1]);;
let REAL_DIV_1 = prove
(`!x. x / &1 = x`,
REWRITE_TAC[real_div; REAL_INV_1; REAL_MUL_RID]);;
let REAL_DIV_REFL = prove
(`!x. ~(x = &0) ==> (x / x = &1)`,
GEN_TAC THEN REWRITE_TAC[real_div; REAL_MUL_RINV]);;
let REAL_DIV_RMUL = prove
(`!x y. ~(y = &0) ==> ((x / y) * y = x)`,
SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_RID]);;
let REAL_DIV_LMUL = prove
(`!x y. ~(y = &0) ==> (y * (x / y) = x)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_DIV_RMUL]);;
let REAL_ABS_INV = prove
(`!x. abs(inv x) = inv(abs x)`,
GEN_TAC THEN CONV_TAC SYM_CONV THEN
ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[REAL_INV_0; REAL_ABS_0] THEN
MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN
REWRITE_TAC[GSYM REAL_ABS_MUL] THEN
POP_ASSUM(SUBST1_TAC o MATCH_MP REAL_MUL_RINV) THEN
REWRITE_TAC[REAL_ABS_1]);;
let REAL_ABS_DIV = prove
(`!x y. abs(x / y) = abs(x) / abs(y)`,
REWRITE_TAC[real_div; REAL_ABS_INV; REAL_ABS_MUL]);;
let REAL_INV_MUL = prove
(`!x y. inv(x * y) = inv(x) * inv(y)`,
REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC [`x = &0`; `y = &0`] THEN
ASM_REWRITE_TAC[REAL_INV_0; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
MATCH_MP_TAC REAL_MUL_LINV_UNIQ THEN
ONCE_REWRITE_TAC[AC REAL_MUL_AC `(a * b) * (c * d) = (a * c) * (b * d)`] THEN
EVERY_ASSUM(SUBST1_TAC o MATCH_MP REAL_MUL_LINV) THEN
REWRITE_TAC[REAL_MUL_LID]);;
let REAL_INV_DIV = prove
(`!x y. inv(x / y) = y / x`,
REWRITE_TAC[real_div; REAL_INV_INV; REAL_INV_MUL] THEN
MATCH_ACCEPT_TAC REAL_MUL_SYM);;
let REAL_POW_MUL = prove
(`!x y n. (x * y) pow n = (x pow n) * (y pow n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[real_pow; REAL_MUL_LID; REAL_MUL_AC]);;
let REAL_POW_INV = prove
(`!x n. (inv x) pow n = inv(x pow n)`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[real_pow; REAL_INV_1; REAL_INV_MUL]);;
let REAL_INV_POW = prove
(`!x n. inv(x pow n) = (inv x) pow n`,
REWRITE_TAC[REAL_POW_INV]);;
let REAL_POW_DIV = prove
(`!x y n. (x / y) pow n = (x pow n) / (y pow n)`,
REWRITE_TAC[real_div; REAL_POW_MUL; REAL_POW_INV]);;
let REAL_DIV_EQ_0 = prove
(`!x y. x / y = &0 <=> x = &0 \/ y = &0`,
REWRITE_TAC[real_div; REAL_INV_EQ_0; REAL_ENTIRE]);;
let REAL_POW_ADD = prove
(`!x m n. x pow (m + n) = x pow m * x pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[ADD_CLAUSES; real_pow; REAL_MUL_LID; REAL_MUL_ASSOC]);;
let REAL_POW_NZ = prove
(`!x n. ~(x = &0) ==> ~(x pow n = &0)`,
GEN_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[real_pow; REAL_OF_NUM_EQ; ARITH] THEN
ASM_MESON_TAC[REAL_ENTIRE]);;
let REAL_POW_SUB = prove
(`!x m n. ~(x = &0) /\ m <= n ==> (x pow (n - m) = x pow n / x pow m)`,
REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[LE_EXISTS] THEN
DISCH_THEN(CHOOSE_THEN SUBST1_TAC) THEN
REWRITE_TAC[ADD_SUB2] THEN REWRITE_TAC[REAL_POW_ADD] THEN
REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MUL_LINV THEN
MATCH_MP_TAC REAL_POW_NZ THEN ASM_REWRITE_TAC[]);;
let REAL_LT_IMP_NZ = prove
(`!x. &0 < x ==> ~(x = &0)`,
REAL_ARITH_TAC);;
let REAL_LT_LCANCEL_IMP = prove
(`!x y z. &0 < x /\ x * y < x * z ==> y < z`,
REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN DISCH_THEN
(MP_TAC o uncurry CONJ o (MATCH_MP REAL_LT_INV F_F I) o CONJ_PAIR) THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_LMUL) THEN
POP_ASSUM(ASSUME_TAC o MATCH_MP REAL_MUL_LINV o MATCH_MP REAL_LT_IMP_NZ) THEN
ASM_REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_LID]);;
let REAL_LT_RCANCEL_IMP = prove
(`!x y z. &0 < z /\ x * z < y * z ==> x < y`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_LT_LCANCEL_IMP]);;
let REAL_LE_LCANCEL_IMP = prove
(`!x y z. &0 < x /\ x * y <= x * z ==> y <= z`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LE_LT; REAL_EQ_MUL_LCANCEL] THEN
ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[REAL_LT_REFL] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN DISJ1_TAC THEN
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN
EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]);;
let REAL_LE_RCANCEL_IMP = prove
(`!x y z. &0 < z /\ x * z <= y * z ==> x <= y`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_LE_LCANCEL_IMP]);;
let REAL_LE_RMUL_EQ = prove
(`!x y z. &0 < z ==> (x * z <= y * z <=> x <= y)`,
MESON_TAC[REAL_LE_RMUL; REAL_LE_RCANCEL_IMP; REAL_LT_IMP_LE]);;
let REAL_LE_LMUL_EQ = prove
(`!x y z. &0 < z ==> (z * x <= z * y <=> x <= y)`,
MESON_TAC[REAL_LE_RMUL_EQ; REAL_MUL_SYM]);;
let REAL_LT_RMUL_EQ = prove
(`!x y z. &0 < z ==> (x * z < y * z <=> x < y)`,
SIMP_TAC[GSYM REAL_NOT_LE; REAL_LE_RMUL_EQ]);;
let REAL_LT_LMUL_EQ = prove
(`!x y z. &0 < z ==> (z * x < z * y <=> x < y)`,
SIMP_TAC[GSYM REAL_NOT_LE; REAL_LE_LMUL_EQ]);;
let REAL_LE_MUL_EQ = prove
(`(!x y. &0 < x ==> (&0 <= x * y <=> &0 <= y)) /\
(!x y. &0 < y ==> (&0 <= x * y <=> &0 <= x))`,
MESON_TAC[REAL_LE_LMUL_EQ; REAL_LE_RMUL_EQ; REAL_MUL_LZERO; REAL_MUL_RZERO]);;
let REAL_LT_MUL_EQ = prove
(`(!x y. &0 < x ==> (&0 < x * y <=> &0 < y)) /\
(!x y. &0 < y ==> (&0 < x * y <=> &0 < x))`,
MESON_TAC[REAL_LT_LMUL_EQ; REAL_LT_RMUL_EQ; REAL_MUL_LZERO; REAL_MUL_RZERO]);;
let REAL_MUL_POS_LT = prove
(`!x y. &0 < x * y <=> &0 < x /\ &0 < y \/ x < &0 /\ y < &0`,
REPEAT STRIP_TAC THEN
STRIP_ASSUME_TAC(SPEC `x:real` REAL_LT_NEGTOTAL) THEN
STRIP_ASSUME_TAC(SPEC `y:real` REAL_LT_NEGTOTAL) THEN
ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_LT_REFL] THEN
ASSUM_LIST(MP_TAC o MATCH_MP REAL_LT_MUL o end_itlist CONJ) THEN
REPEAT(POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC);;
let REAL_MUL_POS_LE = prove
(`!x y. &0 <= x * y <=>
x = &0 \/ y = &0 \/ &0 < x /\ &0 < y \/ x < &0 /\ y < &0`,
REWRITE_TAC[REAL_ARITH `&0 <= x <=> x = &0 \/ &0 < x`] THEN
REWRITE_TAC[REAL_MUL_POS_LT; REAL_ENTIRE] THEN REAL_ARITH_TAC);;
let REAL_LE_RDIV_EQ = prove
(`!x y z. &0 < z ==> (x <= y / z <=> x * z <= y)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(fun th ->
GEN_REWRITE_TAC LAND_CONV [GSYM(MATCH_MP REAL_LE_RMUL_EQ th)]) THEN
ASM_SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_MUL_LINV;
REAL_MUL_RID; REAL_LT_IMP_NZ]);;
let REAL_LE_LDIV_EQ = prove
(`!x y z. &0 < z ==> (x / z <= y <=> x <= y * z)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(fun th ->
GEN_REWRITE_TAC LAND_CONV [GSYM(MATCH_MP REAL_LE_RMUL_EQ th)]) THEN
ASM_SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_MUL_LINV;
REAL_MUL_RID; REAL_LT_IMP_NZ]);;
let REAL_LT_RDIV_EQ = prove
(`!x y z. &0 < z ==> (x < y / z <=> x * z < y)`,
SIMP_TAC[GSYM REAL_NOT_LE; REAL_LE_LDIV_EQ]);;
let REAL_LT_LDIV_EQ = prove
(`!x y z. &0 < z ==> (x / z < y <=> x < y * z)`,
SIMP_TAC[GSYM REAL_NOT_LE; REAL_LE_RDIV_EQ]);;
let REAL_EQ_RDIV_EQ = prove
(`!x y z. &0 < z ==> ((x = y / z) <=> (x * z = y))`,
REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN
SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ]);;
let REAL_EQ_LDIV_EQ = prove
(`!x y z. &0 < z ==> ((x / z = y) <=> (x = y * z))`,
REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN
SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ]);;
let REAL_LT_DIV2_EQ = prove
(`!x y z. &0 < z ==> (x / z < y / z <=> x < y)`,
SIMP_TAC[real_div; REAL_LT_RMUL_EQ; REAL_LT_INV_EQ]);;
let REAL_LE_DIV2_EQ = prove
(`!x y z. &0 < z ==> (x / z <= y / z <=> x <= y)`,
SIMP_TAC[real_div; REAL_LE_RMUL_EQ; REAL_LT_INV_EQ]);;
let REAL_MUL_2 = prove
(`!x. &2 * x = x + x`,
REAL_ARITH_TAC);;
let REAL_POW_EQ_0 = prove
(`!x n. (x pow n = &0) <=> (x = &0) /\ ~(n = 0)`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[NOT_SUC; real_pow; REAL_ENTIRE] THENL
[REAL_ARITH_TAC;
CONV_TAC TAUT]);;
let REAL_LE_MUL2 = prove
(`!w x y z. &0 <= w /\ w <= x /\ &0 <= y /\ y <= z
==> w * y <= x * z`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `w * z` THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_LMUL; MATCH_MP_TAC REAL_LE_RMUL] THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `y:real` THEN
ASM_REWRITE_TAC[]);;
let REAL_LT_MUL2 = prove
(`!w x y z. &0 <= w /\ w < x /\ &0 <= y /\ y < z
==> w * y < x * z`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN
EXISTS_TAC `w * z` THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_LMUL; MATCH_MP_TAC REAL_LT_RMUL] THEN
ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `y:real` THEN
ASM_REWRITE_TAC[]]);;
let REAL_LT_SQUARE = prove
(`!x. (&0 < x * x) <=> ~(x = &0)`,
GEN_TAC THEN REWRITE_TAC[REAL_LT_LE; REAL_LE_SQUARE] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [EQ_SYM_EQ] THEN
REWRITE_TAC[REAL_ENTIRE]);;
let REAL_POW_1 = prove
(`!x. x pow 1 = x`,
REWRITE_TAC[num_CONV `1`] THEN
REWRITE_TAC[real_pow; REAL_MUL_RID]);;
let REAL_POW_ONE = prove
(`!n. &1 pow n = &1`,
INDUCT_TAC THEN ASM_REWRITE_TAC[real_pow; REAL_MUL_LID]);;
let REAL_LT_INV2 = prove
(`!x y. &0 < x /\ x < y ==> inv(y) < inv(x)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LT_RCANCEL_IMP THEN
EXISTS_TAC `x * y` THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_LT_MUL THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC;
SUBGOAL_THEN `(inv x * x = &1) /\ (inv y * y = &1)` ASSUME_TAC THENL
[CONJ_TAC THEN MATCH_MP_TAC REAL_MUL_LINV THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_LID] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [REAL_MUL_SYM] THEN
ASM_REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_RID]]]);;
let REAL_LE_INV2 = prove
(`!x y. &0 < x /\ x <= y ==> inv(y) <= inv(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LE_LT] THEN
ASM_CASES_TAC `x:real = y` THEN ASM_REWRITE_TAC[] THEN
STRIP_TAC THEN DISJ1_TAC THEN MATCH_MP_TAC REAL_LT_INV2 THEN
ASM_REWRITE_TAC[]);;
let REAL_LT_LINV = prove
(`!x y. &0 < y /\ inv y < x ==> inv x < y`,
REPEAT STRIP_TAC THEN MP_TAC (SPEC `y:real` REAL_LT_INV) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
MP_TAC (SPECL [`(inv y:real)`; `x:real`] REAL_LT_INV2) THEN
ASM_REWRITE_TAC[REAL_INV_INV]);;
let REAL_LT_RINV = prove
(`!x y. &0 < x /\ x < inv y ==> y < inv x`,
REPEAT STRIP_TAC THEN MP_TAC (SPEC `x:real` REAL_LT_INV) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
MP_TAC (SPECL [`x:real`; `inv y:real`] REAL_LT_INV2) THEN
ASM_REWRITE_TAC[REAL_INV_INV]);;
let REAL_LE_LINV = prove
(`!x y. &0 < y /\ inv y <= x ==> inv x <= y`,
REPEAT STRIP_TAC THEN MP_TAC (SPEC `y:real` REAL_LT_INV) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
MP_TAC (SPECL [`(inv y:real)`; `x:real`] REAL_LE_INV2) THEN
ASM_REWRITE_TAC[REAL_INV_INV]);;
let REAL_LE_RINV = prove
(`!x y. &0 < x /\ x <= inv y ==> y <= inv x`,
REPEAT STRIP_TAC THEN MP_TAC (SPEC `x:real` REAL_LT_INV) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
MP_TAC (SPECL [`x:real`; `inv y:real`] REAL_LE_INV2) THEN
ASM_REWRITE_TAC[REAL_INV_INV]);;
let REAL_INV_LE_1 = prove
(`!x. &1 <= x ==> inv(x) <= &1`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_INV_1] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_LT_01]);;
let REAL_INV_1_LE = prove
(`!x. &0 < x /\ x <= &1 ==> &1 <= inv(x)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_INV_1] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_LT_01]);;
let REAL_INV_LT_1 = prove
(`!x. &1 < x ==> inv(x) < &1`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_INV_1] THEN
MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[REAL_LT_01]);;
let REAL_INV_1_LT = prove
(`!x. &0 < x /\ x < &1 ==> &1 < inv(x)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_INV_1] THEN
MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[REAL_LT_01]);;
let REAL_SUB_INV = prove
(`!x y. ~(x = &0) /\ ~(y = &0) ==> (inv(x) - inv(y) = (y - x) / (x * y))`,
REWRITE_TAC[real_div; REAL_SUB_RDISTRIB; REAL_INV_MUL] THEN
SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_RINV; REAL_MUL_LID] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN
SIMP_TAC[REAL_DIV_LMUL]);;
let REAL_DOWN = prove
(`!d. &0 < d ==> ?e. &0 < e /\ e < d`,
GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `d / &2` THEN
ASSUME_TAC(REAL_ARITH `&0 < &2`) THEN
ASSUME_TAC(MATCH_MP REAL_MUL_LINV (REAL_ARITH `~(&2 = &0)`)) THEN
CONJ_TAC THEN MATCH_MP_TAC REAL_LT_RCANCEL_IMP THEN EXISTS_TAC `&2` THEN
ASM_REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_MUL_RID] THEN
UNDISCH_TAC `&0 < d` THEN REAL_ARITH_TAC);;
let REAL_DOWN2 = prove
(`!d1 d2. &0 < d1 /\ &0 < d2 ==> ?e. &0 < e /\ e < d1 /\ e < d2`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
DISJ_CASES_TAC(SPECL [`d1:real`; `d2:real`] REAL_LE_TOTAL) THENL
[MP_TAC(SPEC `d1:real` REAL_DOWN);
MP_TAC(SPEC `d2:real` REAL_DOWN)] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `e:real` THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
REAL_ARITH_TAC);;
let REAL_POW_LE2 = prove
(`!n x y. &0 <= x /\ x <= y ==> x pow n <= y pow n`,
INDUCT_TAC THEN REWRITE_TAC[real_pow; REAL_LE_REFL] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_POW_LE THEN ASM_REWRITE_TAC[];
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
let REAL_POW_LE_1 = prove
(`!n x. &1 <= x ==> &1 <= x pow n`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`n:num`; `&1`; `x:real`] REAL_POW_LE2) THEN
ASM_REWRITE_TAC[REAL_POW_ONE; REAL_POS]);;
let REAL_POW_1_LE = prove
(`!n x. &0 <= x /\ x <= &1 ==> x pow n <= &1`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`n:num`; `x:real`; `&1`] REAL_POW_LE2) THEN
ASM_REWRITE_TAC[REAL_POW_ONE]);;
let REAL_POW_MONO = prove
(`!m n x. &1 <= x /\ m <= n ==> x pow m <= x pow n`,
REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
REWRITE_TAC[REAL_POW_ADD] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&1` THEN
REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN
MATCH_MP_TAC REAL_POW_LE_1 THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_POW_LE_1 THEN ASM_REWRITE_TAC[]]);;
let REAL_POW_LT2 = prove
(`!n x y. ~(n = 0) /\ &0 <= x /\ x < y ==> x pow n < y pow n`,
INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; real_pow] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[real_pow; REAL_MUL_RID] THEN
MATCH_MP_TAC REAL_LT_MUL2 THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_POW_LE THEN ASM_REWRITE_TAC[];
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
let REAL_POW_LT_1 = prove
(`!n x. ~(n = 0) /\ &1 < x ==> &1 < x pow n`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`n:num`; `&1`; `x:real`] REAL_POW_LT2) THEN
ASM_REWRITE_TAC[REAL_POW_ONE; REAL_POS]);;
let REAL_POW_1_LT = prove
(`!n x. ~(n = 0) /\ &0 <= x /\ x < &1 ==> x pow n < &1`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`n:num`; `x:real`; `&1`] REAL_POW_LT2) THEN
ASM_REWRITE_TAC[REAL_POW_ONE]);;
let REAL_POW_MONO_LT = prove
(`!m n x. &1 < x /\ m < n ==> x pow m < x pow n`,
REPEAT GEN_TAC THEN REWRITE_TAC[LT_EXISTS] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN
REWRITE_TAC[REAL_POW_ADD] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC REAL_LT_LMUL THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_POW_LT THEN
MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `&1` THEN
ASM_REWRITE_TAC[REAL_OF_NUM_LT; ARITH];
SPEC_TAC(`d:num`,`d:num`) THEN
INDUCT_TAC THEN ONCE_REWRITE_TAC[real_pow] THENL
[ASM_REWRITE_TAC[real_pow; REAL_MUL_RID]; ALL_TAC] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN
MATCH_MP_TAC REAL_LT_MUL2 THEN
ASM_REWRITE_TAC[REAL_OF_NUM_LE; ARITH]]);;
let REAL_POW_POW = prove
(`!x m n. (x pow m) pow n = x pow (m * n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[real_pow; MULT_CLAUSES; REAL_POW_ADD]);;
let REAL_EQ_RCANCEL_IMP = prove
(`!x y z. ~(z = &0) /\ (x * z = y * z) ==> (x = y)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
REWRITE_TAC[REAL_SUB_RZERO; GSYM REAL_SUB_RDISTRIB; REAL_ENTIRE] THEN
CONV_TAC TAUT);;
let REAL_EQ_LCANCEL_IMP = prove
(`!x y z. ~(z = &0) /\ (z * x = z * y) ==> (x = y)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_EQ_RCANCEL_IMP);;
let REAL_LT_DIV = prove
(`!x y. &0 < x /\ &0 < y ==> &0 < x / y`,
SIMP_TAC[REAL_LT_MUL; REAL_LT_INV_EQ; real_div]);;
let REAL_LE_DIV = prove
(`!x y. &0 <= x /\ &0 <= y ==> &0 <= x / y`,
SIMP_TAC[REAL_LE_MUL; REAL_LE_INV_EQ; real_div]);;
let REAL_DIV_POW2 = prove
(`!x m n. ~(x = &0)
==> (x pow m / x pow n = if n <= m then x pow (m - n)
else inv(x pow (n - m)))`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[REAL_POW_SUB] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_INV_INV] THEN
AP_TERM_TAC THEN REWRITE_TAC[REAL_INV_DIV] THEN
UNDISCH_TAC `~(n:num <= m)` THEN REWRITE_TAC[NOT_LE] THEN
DISCH_THEN(MP_TAC o MATCH_MP LT_IMP_LE) THEN
ASM_SIMP_TAC[REAL_POW_SUB]);;
let REAL_DIV_POW2_ALT = prove
(`!x m n. ~(x = &0)
==> (x pow m / x pow n = if n < m then x pow (m - n)
else inv(x pow (n - m)))`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_INV_INV] THEN
ONCE_REWRITE_TAC[REAL_INV_DIV] THEN
ASM_SIMP_TAC[GSYM NOT_LE; REAL_DIV_POW2] THEN
ASM_CASES_TAC `m <= n:num` THEN
ASM_REWRITE_TAC[REAL_INV_INV]);;
let REAL_LT_POW2 = prove
(`!n. &0 < &2 pow n`,
SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; ARITH]);;
let REAL_LE_POW2 = prove
(`!n. &1 <= &2 pow n`,
GEN_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 pow 0` THEN
SIMP_TAC[REAL_POW_MONO; LE_0; REAL_OF_NUM_LE; ARITH] THEN
REWRITE_TAC[real_pow; REAL_LE_REFL]);;
let REAL_POW2_ABS = prove
(`!x. abs(x) pow 2 = x pow 2`,
GEN_TAC THEN REWRITE_TAC[real_abs] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_POW_NEG; ARITH_EVEN]);;
let REAL_LE_SQUARE_ABS = prove
(`!x y. abs(x) <= abs(y) <=> x pow 2 <= y pow 2`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN
MESON_TAC[REAL_POW_LE2; REAL_ABS_POS; NUM_EQ_CONV `2 = 0`;
REAL_POW_LT2; REAL_NOT_LE]);;
let REAL_LT_SQUARE_ABS = prove
(`!x y. abs(x) < abs(y) <=> x pow 2 < y pow 2`,
REWRITE_TAC[GSYM REAL_NOT_LE; REAL_LE_SQUARE_ABS]);;
let REAL_EQ_SQUARE_ABS = prove
(`!x y. abs x = abs y <=> x pow 2 = y pow 2`,
REWRITE_TAC[GSYM REAL_LE_ANTISYM; REAL_LE_SQUARE_ABS]);;
let REAL_LE_POW_2 = prove
(`!x. &0 <= x pow 2`,
REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE]);;
let REAL_LT_POW_2 = prove
(`!x. &0 < x pow 2 <=> ~(x = &0)`,
REWRITE_TAC[REAL_LE_POW_2; REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
REWRITE_TAC[REAL_POW_EQ_0; ARITH]);;
let REAL_SOS_EQ_0 = prove
(`!x y. x pow 2 + y pow 2 = &0 <=> x = &0 /\ y = &0`,
REPEAT GEN_TAC THEN EQ_TAC THEN
SIMP_TAC[REAL_POW_2; REAL_MUL_LZERO; REAL_ADD_LID] THEN
DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
`x + y = &0 ==> &0 <= x /\ &0 <= y ==> x = &0 /\ y = &0`)) THEN
REWRITE_TAC[REAL_LE_SQUARE; REAL_ENTIRE]);;
let REAL_POW_ZERO = prove
(`!n. &0 pow n = if n = 0 then &1 else &0`,
INDUCT_TAC THEN REWRITE_TAC[real_pow; NOT_SUC; REAL_MUL_LZERO]);;
let REAL_POW_MONO_INV = prove
(`!m n x. &0 <= x /\ x <= &1 /\ n <= m ==> x pow m <= x pow n`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `x = &0` THENL
[ASM_REWRITE_TAC[REAL_POW_ZERO] THEN
REPEAT(COND_CASES_TAC THEN REWRITE_TAC[REAL_POS; REAL_LE_REFL]) THEN
UNDISCH_TAC `n:num <= m` THEN ASM_REWRITE_TAC[LE];
GEN_REWRITE_TAC BINOP_CONV [GSYM REAL_INV_INV] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[GSYM REAL_POW_INV] THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_POW_LT THEN REWRITE_TAC[REAL_LT_INV_EQ];
MATCH_MP_TAC REAL_POW_MONO THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_INV_1_LE] THEN
ASM_REWRITE_TAC[REAL_LT_LE]]);;
let REAL_POW_LE2_REV = prove
(`!n x y. ~(n = 0) /\ &0 <= y /\ x pow n <= y pow n ==> x <= y`,
MESON_TAC[REAL_POW_LT2; REAL_NOT_LE]);;
let REAL_POW_LT2_REV = prove
(`!n x y. &0 <= y /\ x pow n < y pow n ==> x < y`,
MESON_TAC[REAL_POW_LE2; REAL_NOT_LE]);;
let REAL_POW_EQ = prove
(`!n x y. ~(n = 0) /\ &0 <= x /\ &0 <= y /\ x pow n = y pow n ==> x = y`,
REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN MESON_TAC[REAL_POW_LE2_REV]);;
let REAL_POW_EQ_ABS = prove
(`!n x y. ~(n = 0) /\ x pow n = y pow n ==> abs x = abs y`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_POW_EQ THEN EXISTS_TAC `n:num` THEN
ASM_REWRITE_TAC[REAL_ABS_POS; GSYM REAL_ABS_POW]);;
let REAL_POW_EQ_1_IMP = prove
(`!x n. ~(n = 0) /\ x pow n = &1 ==> abs(x) = &1`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_ABS_NUM] THEN
MATCH_MP_TAC REAL_POW_EQ_ABS THEN EXISTS_TAC `n:num` THEN
ASM_REWRITE_TAC[REAL_POW_ONE]);;
let REAL_POW_EQ_1 = prove
(`!x n. x pow n = &1 <=> abs(x) = &1 /\ (x < &0 ==> EVEN(n)) \/ n = 0`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[real_pow] THEN
ASM_CASES_TAC `abs(x) = &1` THENL
[ALL_TAC; ASM_MESON_TAC[REAL_POW_EQ_1_IMP]] THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(DISJ_CASES_THEN SUBST1_TAC o MATCH_MP (REAL_ARITH
`abs x = a ==> x = a \/ x = --a`)) THEN
ASM_REWRITE_TAC[REAL_POW_NEG; REAL_POW_ONE] THEN
REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let REAL_POW_LT2_ODD = prove
(`!n x y. x < y /\ ODD n ==> x pow n < y pow n`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[ARITH] THEN STRIP_TAC THEN
DISJ_CASES_TAC(SPEC `y:real` REAL_LE_NEGTOTAL) THENL
[DISJ_CASES_TAC(REAL_ARITH `&0 <= x \/ &0 < --x`) THEN
ASM_SIMP_TAC[REAL_POW_LT2] THEN
SUBGOAL_THEN `&0 < --x pow n /\ &0 <= y pow n` MP_TAC THENL
[ASM_SIMP_TAC[REAL_POW_LE; REAL_POW_LT];
ASM_REWRITE_TAC[REAL_POW_NEG; GSYM NOT_ODD] THEN REAL_ARITH_TAC];
SUBGOAL_THEN `--y pow n < --x pow n` MP_TAC THENL
[MATCH_MP_TAC REAL_POW_LT2 THEN ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[REAL_POW_NEG; GSYM NOT_ODD]] THEN
REPEAT(POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC]);;
let REAL_POW_LE2_ODD = prove
(`!n x y. x <= y /\ ODD n ==> x pow n <= y pow n`,
REWRITE_TAC[REAL_LE_LT] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[REAL_POW_LT2_ODD]);;
let REAL_POW_LT2_ODD_EQ = prove
(`!n x y. ODD n ==> (x pow n < y pow n <=> x < y)`,
MESON_TAC[REAL_POW_LT2_ODD; REAL_POW_LE2_ODD; REAL_NOT_LE]);;
let REAL_POW_LE2_ODD_EQ = prove
(`!n x y. ODD n ==> (x pow n <= y pow n <=> x <= y)`,
MESON_TAC[REAL_POW_LT2_ODD; REAL_POW_LE2_ODD; REAL_NOT_LE]);;
let REAL_POW_EQ_ODD_EQ = prove
(`!n x y. ODD n ==> (x pow n = y pow n <=> x = y)`,
SIMP_TAC[GSYM REAL_LE_ANTISYM; REAL_POW_LE2_ODD_EQ]);;
let REAL_POW_EQ_ODD = prove
(`!n x y. ODD n /\ x pow n = y pow n ==> x = y`,
MESON_TAC[REAL_POW_EQ_ODD_EQ]);;
let REAL_POW_EQ_EQ = prove
(`!n x y. x pow n = y pow n <=>
if EVEN n then n = 0 \/ abs x = abs y else x = y`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[real_pow; ARITH] THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[REAL_POW_EQ_ODD_EQ; GSYM NOT_EVEN] THEN
EQ_TAC THENL [ASM_MESON_TAC[REAL_POW_EQ_ABS]; ALL_TAC] THEN
REWRITE_TAC[REAL_EQ_SQUARE_ABS] THEN DISCH_TAC THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `m:num` SUBST1_TAC o
REWRITE_RULE[EVEN_EXISTS]) THEN ASM_REWRITE_TAC[GSYM REAL_POW_POW]);;
(* ------------------------------------------------------------------------- *)
(* Some basic forms of the Archimedian property. *)
(* ------------------------------------------------------------------------- *)
let REAL_ARCH_SIMPLE = prove
(`!x. ?n. x <= &n`,
let lemma = prove(`(!x. (?n. x = &n) ==> P x) <=> !n. P(&n)`,MESON_TAC[]) in
MP_TAC(SPEC `\y. ?n. y = &n` REAL_COMPLETE) THEN REWRITE_TAC[lemma] THEN
MESON_TAC[REAL_LE_SUB_LADD; REAL_OF_NUM_ADD; REAL_LE_TOTAL;
REAL_ARITH `~(M <= M - &1)`]);;
let REAL_ARCH_LT = prove
(`!x. ?n. x < &n`,
MESON_TAC[REAL_ARCH_SIMPLE; REAL_OF_NUM_ADD;
REAL_ARITH `x <= n ==> x < n + &1`]);;
let REAL_ARCH = prove
(`!x. &0 < x ==> !y. ?n. y < &n * x`,
MESON_TAC[REAL_ARCH_LT; REAL_LT_LDIV_EQ]);;
(* ------------------------------------------------------------------------- *)
(* The sign of a real number, as a real number. *)
(* ------------------------------------------------------------------------- *)
let real_sgn = new_definition
`(real_sgn:real->real) x =
if &0 < x then &1 else if x < &0 then -- &1 else &0`;;
let REAL_SGN_0 = prove
(`real_sgn(&0) = &0`,
REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;
let REAL_SGN_NEG = prove
(`!x. real_sgn(--x) = --(real_sgn x)`,
REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;
let REAL_SGN_ABS = prove
(`!x. real_sgn(x) * abs(x) = x`,
REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;
let REAL_SGN_ABS_ALT = prove
(`!x. real_sgn x * x = abs x`,
GEN_TAC THEN REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;
let REAL_EQ_SGN_ABS = prove
(`!x y:real. x = y <=> real_sgn x = real_sgn y /\ abs x = abs y`,
MESON_TAC[REAL_SGN_ABS]);;
let REAL_ABS_SGN = prove
(`!x. abs(real_sgn x) = real_sgn(abs x)`,
REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;
let REAL_SGN = prove
(`!x. real_sgn x = x / abs x`,
GEN_TAC THEN ASM_CASES_TAC `x = &0` THENL
[ASM_REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_SGN_0];
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM REAL_SGN_ABS] THEN
ASM_SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_ABS_ZERO;
REAL_MUL_RINV; REAL_MUL_RID]]);;
let REAL_SGN_MUL = prove
(`!x y. real_sgn(x * y) = real_sgn(x) * real_sgn(y)`,
REWRITE_TAC[REAL_SGN; REAL_ABS_MUL; real_div; REAL_INV_MUL] THEN
REAL_ARITH_TAC);;
let REAL_SGN_INV = prove
(`!x. real_sgn(inv x) = real_sgn x`,
REWRITE_TAC[real_sgn; REAL_LT_INV_EQ; GSYM REAL_INV_NEG;
REAL_ARITH `x < &0 <=> &0 < --x`]);;
let REAL_SGN_DIV = prove
(`!x y. real_sgn(x / y) = real_sgn(x) / real_sgn(y)`,
REWRITE_TAC[REAL_SGN; REAL_ABS_DIV] THEN
REWRITE_TAC[real_div; REAL_INV_MUL; REAL_INV_INV] THEN
REAL_ARITH_TAC);;
let REAL_SGN_EQ = prove
(`(!x. real_sgn x = &0 <=> x = &0) /\
(!x. real_sgn x = &1 <=> x > &0) /\
(!x. real_sgn x = -- &1 <=> x < &0)`,
REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;
let REAL_SGN_CASES = prove
(`!x. real_sgn x = &0 \/ real_sgn x = &1 \/ real_sgn x = -- &1`,
REWRITE_TAC[real_sgn] THEN MESON_TAC[]);;
let REAL_SGN_INEQS = prove
(`(!x. &0 <= real_sgn x <=> &0 <= x) /\
(!x. &0 < real_sgn x <=> &0 < x) /\
(!x. &0 >= real_sgn x <=> &0 >= x) /\
(!x. &0 > real_sgn x <=> &0 > x) /\
(!x. &0 = real_sgn x <=> &0 = x) /\
(!x. real_sgn x <= &0 <=> x <= &0) /\
(!x. real_sgn x < &0 <=> x < &0) /\
(!x. real_sgn x >= &0 <=> x >= &0) /\
(!x. real_sgn x > &0 <=> x > &0) /\
(!x. real_sgn x = &0 <=> x = &0)`,
REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;
let REAL_SGN_POW = prove
(`!x n. real_sgn(x pow n) = real_sgn(x) pow n`,
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[REAL_SGN_MUL; real_pow] THEN
REWRITE_TAC[real_sgn; REAL_LT_01]);;
let REAL_SGN_POW_2 = prove
(`!x. real_sgn(x pow 2) = real_sgn(abs x)`,
REWRITE_TAC[real_sgn] THEN
SIMP_TAC[GSYM REAL_NOT_LE; REAL_ABS_POS; REAL_LE_POW_2;
REAL_ARITH `&0 <= x ==> (x <= &0 <=> x = &0)`] THEN
REWRITE_TAC[REAL_POW_EQ_0; REAL_ABS_ZERO; ARITH]);;
let REAL_SGN_REAL_SGN = prove
(`!x. real_sgn(real_sgn x) = real_sgn x`,
REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;
let REAL_INV_SGN = prove
(`!x. real_inv(real_sgn x) = real_sgn x`,
GEN_TAC THEN REWRITE_TAC[real_sgn] THEN
REPEAT COND_CASES_TAC THEN
REWRITE_TAC[REAL_INV_0; REAL_INV_1; REAL_INV_NEG]);;
let REAL_SGN_EQ_INEQ = prove
(`!x y. real_sgn x = real_sgn y <=>
x = y \/ abs(x - y) < max (abs x) (abs y)`,
REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;
let REAL_SGNS_EQ = prove
(`!x y. real_sgn x = real_sgn y <=>
(x = &0 <=> y = &0) /\
(x > &0 <=> y > &0) /\
(x < &0 <=> y < &0)`,
REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;
let REAL_SGNS_EQ_ALT = prove
(`!x y. real_sgn x = real_sgn y <=>
(x = &0 ==> y = &0) /\
(x > &0 ==> y > &0) /\
(x < &0 ==> y < &0)`,
REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Useful "without loss of generality" lemmas. *)
(* ------------------------------------------------------------------------- *)
let REAL_WLOG_LE = prove
(`(!x y. P x y <=> P y x) /\ (!x y. x <= y ==> P x y) ==> !x y. P x y`,
MESON_TAC[REAL_LE_TOTAL]);;
let REAL_WLOG_LT = prove
(`(!x. P x x) /\ (!x y. P x y <=> P y x) /\ (!x y. x < y ==> P x y)
==> !x y. P x y`,
MESON_TAC[REAL_LT_TOTAL]);;
|