File: sets.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (3780 lines) | stat: -rw-r--r-- 151,471 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
(* ========================================================================= *)
(* Very basic set theory (using predicates as sets).                         *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(*              (c) Copyright, Marco Maggesi 2012-2015                       *)
(* ========================================================================= *)

needs "int.ml";;

(* ------------------------------------------------------------------------- *)
(* Infix symbols for set operations.                                         *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("IN",(11,"right"));;
parse_as_infix("SUBSET",(12,"right"));;
parse_as_infix("PSUBSET",(12,"right"));;
parse_as_infix("INTER",(20,"right"));;
parse_as_infix("UNION",(16,"right"));;
parse_as_infix("DIFF",(18,"left"));;
parse_as_infix("INSERT",(21,"right"));;
parse_as_infix("DELETE",(21,"left"));;

parse_as_infix("HAS_SIZE",(12,"right"));;
parse_as_infix("<=_c",(12,"right"));;
parse_as_infix("<_c",(12,"right"));;
parse_as_infix(">=_c",(12,"right"));;
parse_as_infix(">_c",(12,"right"));;
parse_as_infix("=_c",(12,"right"));;

(* ------------------------------------------------------------------------- *)
(* Set membership.                                                           *)
(* ------------------------------------------------------------------------- *)

let IN = new_definition
  `!P:A->bool. !x. x IN P <=> P x`;;

(* ------------------------------------------------------------------------- *)
(* Axiom of extensionality in this framework.                                *)
(* ------------------------------------------------------------------------- *)

let EXTENSION = prove
 (`!s t. (s = t) <=> !x:A. x IN s <=> x IN t`,
  REWRITE_TAC[IN; FUN_EQ_THM]);;

(* ------------------------------------------------------------------------- *)
(* General specification.                                                    *)
(* ------------------------------------------------------------------------- *)

let GSPEC = new_definition
  `GSPEC (p:A->bool) = p`;;

let SETSPEC = new_definition
  `SETSPEC v P t <=> P /\ (v = t)`;;

(* ------------------------------------------------------------------------- *)
(* Rewrite rule for eliminating set-comprehension membership assertions.     *)
(* ------------------------------------------------------------------------- *)

let IN_ELIM_THM = prove
 (`(!P x. x IN GSPEC (\v. P (SETSPEC v)) <=> P (\p t. p /\ (x = t))) /\
   (!p x. x IN GSPEC (\v. ?y. SETSPEC v (p y) y) <=> p x) /\
   (!P x. GSPEC (\v. P (SETSPEC v)) x <=> P (\p t. p /\ (x = t))) /\
   (!p x. GSPEC (\v. ?y. SETSPEC v (p y) y) x <=> p x) /\
   (!p x. x IN (\y. p y) <=> p x)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[IN; GSPEC] THEN
  TRY(AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM]) THEN
  REWRITE_TAC[SETSPEC] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* These two definitions are needed first, for the parsing of enumerations.  *)
(* ------------------------------------------------------------------------- *)

let EMPTY = new_definition
  `EMPTY = (\x:A. F)`;;

let INSERT_DEF = new_definition
  `x INSERT s = \y:A. y IN s \/ (y = x)`;;

(* ------------------------------------------------------------------------- *)
(* The other basic operations.                                               *)
(* ------------------------------------------------------------------------- *)

let UNIV = new_definition
  `UNIV = (\x:A. T)`;;

let UNION = new_definition
  `s UNION t = {x:A | x IN s \/ x IN t}`;;

let UNIONS = new_definition
  `UNIONS s = {x:A | ?u. u IN s /\ x IN u}`;;

let INTER = new_definition
  `s INTER t = {x:A | x IN s /\ x IN t}`;;

let INTERS = new_definition
  `INTERS s = {x:A | !u. u IN s ==> x IN u}`;;

let DIFF = new_definition
  `s DIFF t =  {x:A | x IN s /\ ~(x IN t)}`;;

let INSERT = prove
 (`x INSERT s = {y:A | y IN s \/ (y = x)}`,
  REWRITE_TAC[EXTENSION; INSERT_DEF; IN_ELIM_THM]);;

let DELETE = new_definition
  `s DELETE x = {y:A | y IN s /\ ~(y = x)}`;;

(* ------------------------------------------------------------------------- *)
(* Other basic predicates.                                                   *)
(* ------------------------------------------------------------------------- *)

let SUBSET = new_definition
  `s SUBSET t <=> !x:A. x IN s ==> x IN t`;;

let PSUBSET = new_definition
  `(s:A->bool) PSUBSET t <=> s SUBSET t /\ ~(s = t)`;;

let DISJOINT = new_definition
  `DISJOINT (s:A->bool) t <=> (s INTER t = EMPTY)`;;

let SING = new_definition
  `SING s = ?x:A. s = {x}`;;

(* ------------------------------------------------------------------------- *)
(* Finiteness.                                                               *)
(* ------------------------------------------------------------------------- *)

let FINITE_RULES,FINITE_INDUCT,FINITE_CASES =
  new_inductive_definition
    `FINITE (EMPTY:A->bool) /\
     !(x:A) s. FINITE s ==> FINITE (x INSERT s)`;;

let INFINITE = new_definition
  `INFINITE (s:A->bool) <=> ~(FINITE s)`;;

(* ------------------------------------------------------------------------- *)
(* Stuff concerned with functions.                                           *)
(* ------------------------------------------------------------------------- *)

let IMAGE = new_definition
  `IMAGE (f:A->B) s = { y | ?x. x IN s /\ (y = f x)}`;;

let INJ = new_definition
  `INJ (f:A->B) s t <=>
     (!x. x IN s ==> (f x) IN t) /\
     (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y))`;;

let SURJ = new_definition
  `SURJ (f:A->B) s t <=>
     (!x. x IN s ==> (f x) IN t) /\
     (!x. (x IN t) ==> ?y. y IN s /\ (f y = x))`;;

let BIJ = new_definition
  `BIJ (f:A->B) s t <=> INJ f s t /\ SURJ f s t`;;

(* ------------------------------------------------------------------------- *)
(* Another funny thing.                                                      *)
(* ------------------------------------------------------------------------- *)

let CHOICE = new_definition
  `CHOICE s = @x:A. x IN s`;;

let REST = new_definition
  `REST (s:A->bool) = s DELETE (CHOICE s)`;;

(* ------------------------------------------------------------------------- *)
(* Basic membership properties.                                              *)
(* ------------------------------------------------------------------------- *)

let NOT_IN_EMPTY = prove
 (`!x:A. ~(x IN EMPTY)`,
  REWRITE_TAC[IN; EMPTY]);;

let IN_UNIV = prove
 (`!x:A. x IN UNIV`,
  REWRITE_TAC[UNIV; IN]);;

let IN_UNION = prove
 (`!s t (x:A). x IN (s UNION t) <=> x IN s \/ x IN t`,
  REWRITE_TAC[IN_ELIM_THM; UNION]);;

let IN_UNIONS = prove
 (`!s (x:A). x IN (UNIONS s) <=> ?t. t IN s /\ x IN t`,
  REWRITE_TAC[IN_ELIM_THM; UNIONS]);;

let IN_INTER = prove
 (`!s t (x:A). x IN (s INTER t) <=> x IN s /\ x IN t`,
  REWRITE_TAC[IN_ELIM_THM; INTER]);;

let IN_INTERS = prove
 (`!s (x:A). x IN (INTERS s) <=> !t. t IN s ==> x IN t`,
  REWRITE_TAC[IN_ELIM_THM; INTERS]);;

let IN_DIFF = prove
 (`!(s:A->bool) t x. x IN (s DIFF t) <=> x IN s /\ ~(x IN t)`,
  REWRITE_TAC[IN_ELIM_THM; DIFF]);;

let IN_INSERT = prove
 (`!x:A. !y s. x IN (y INSERT s) <=> (x = y) \/ x IN s`,
  ONCE_REWRITE_TAC[DISJ_SYM] THEN REWRITE_TAC[IN_ELIM_THM; INSERT]);;

let IN_DELETE = prove
 (`!s. !x:A. !y. x IN (s DELETE y) <=> x IN s /\ ~(x = y)`,
  REWRITE_TAC[IN_ELIM_THM; DELETE]);;

let IN_SING = prove
 (`!x y. x IN {y:A} <=> (x = y)`,
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY]);;

let IN_IMAGE = prove
 (`!y:B. !s f. (y IN (IMAGE f s)) <=> ?x:A. (y = f x) /\ x IN s`,
  ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[IN_ELIM_THM; IMAGE]);;

let IN_REST = prove
 (`!x:A. !s. x IN (REST s) <=> x IN s /\ ~(x = CHOICE s)`,
  REWRITE_TAC[REST; IN_DELETE]);;

let FORALL_IN_INSERT = prove
 (`!P a s. (!x. x IN (a INSERT s) ==> P x) <=> P a /\ (!x. x IN s ==> P x)`,
  REWRITE_TAC[IN_INSERT] THEN MESON_TAC[]);;

let EXISTS_IN_INSERT = prove
 (`!P a s. (?x. x IN (a INSERT s) /\ P x) <=> P a \/ ?x. x IN s /\ P x`,
  REWRITE_TAC[IN_INSERT] THEN MESON_TAC[]);;

let FORALL_IN_UNION = prove
 (`!P s t:A->bool.
        (!x. x IN s UNION t ==> P x) <=>
        (!x. x IN s ==> P x) /\ (!x. x IN t ==> P x)`,
  REWRITE_TAC[IN_UNION] THEN MESON_TAC[]);;

let EXISTS_IN_UNION = prove
 (`!P s t:A->bool.
        (?x. x IN s UNION t /\ P x) <=>
        (?x. x IN s /\ P x) \/ (?x. x IN t /\ P x)`,
  REWRITE_TAC[IN_UNION] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Basic property of the choice function.                                    *)
(* ------------------------------------------------------------------------- *)

let CHOICE_DEF = prove
 (`!s:A->bool. ~(s = EMPTY) ==> (CHOICE s) IN s`,
  REWRITE_TAC[CHOICE; EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM; EXISTS_THM]);;

(* ------------------------------------------------------------------------- *)
(* Tactic to automate some routine set theory by reduction to FOL.           *)
(* ------------------------------------------------------------------------- *)

let SET_TAC =
  let PRESET_TAC =
    POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT COND_CASES_TAC THEN
    REWRITE_TAC[EXTENSION; SUBSET; PSUBSET; DISJOINT; SING] THEN
    REWRITE_TAC[NOT_IN_EMPTY; IN_UNIV; IN_UNION; IN_INTER; IN_DIFF; IN_INSERT;
                IN_DELETE; IN_REST; IN_INTERS; IN_UNIONS; IN_IMAGE;
                IN_ELIM_THM; IN] in
  fun ths ->
    (if ths = [] then ALL_TAC else MP_TAC(end_itlist CONJ ths)) THEN
    PRESET_TAC THEN
    MESON_TAC[];;

let SET_RULE tm = prove(tm,SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Misc. theorems.                                                           *)
(* ------------------------------------------------------------------------- *)

let NOT_EQUAL_SETS = prove
 (`!s:A->bool. !t. ~(s = t) <=> ?x. x IN t <=> ~(x IN s)`,
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* The empty set.                                                            *)
(* ------------------------------------------------------------------------- *)

let MEMBER_NOT_EMPTY = prove
 (`!s:A->bool. (?x. x IN s) <=> ~(s = EMPTY)`,
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* The universal set.                                                        *)
(* ------------------------------------------------------------------------- *)

let UNIV_NOT_EMPTY = prove
 (`~(UNIV:A->bool = EMPTY)`,
  SET_TAC[]);;

let EMPTY_NOT_UNIV = prove
 (`~(EMPTY:A->bool = UNIV)`,
  SET_TAC[]);;

let EQ_UNIV = prove
 (`(!x:A. x IN s) <=> (s = UNIV)`,
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Set inclusion.                                                            *)
(* ------------------------------------------------------------------------- *)

let SUBSET_TRANS = prove
 (`!(s:A->bool) t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u`,
  SET_TAC[]);;

let SUBSET_REFL = prove
 (`!s:A->bool. s SUBSET s`,
  SET_TAC[]);;

let SUBSET_ANTISYM = prove
 (`!(s:A->bool) t. s SUBSET t /\ t SUBSET s ==> s = t`,
  SET_TAC[]);;

let SUBSET_ANTISYM_EQ = prove
 (`!(s:A->bool) t. s SUBSET t /\ t SUBSET s <=> s = t`,
  SET_TAC[]);;

let EMPTY_SUBSET = prove
 (`!s:A->bool. EMPTY SUBSET s`,
  SET_TAC[]);;

let SUBSET_EMPTY = prove
 (`!s:A->bool. s SUBSET EMPTY <=> (s = EMPTY)`,
  SET_TAC[]);;

let SUBSET_UNIV = prove
 (`!s:A->bool. s SUBSET UNIV`,
  SET_TAC[]);;

let UNIV_SUBSET = prove
 (`!s:A->bool. UNIV SUBSET s <=> (s = UNIV)`,
  SET_TAC[]);;

let SING_SUBSET = prove
 (`!s x. {x} SUBSET s <=> x IN s`,
  SET_TAC[]);;

let SUBSET_RESTRICT = prove
 (`!s P. {x | x IN s /\ P x} SUBSET s`,
  SIMP_TAC[SUBSET; IN_ELIM_THM]);;

(* ------------------------------------------------------------------------- *)
(* Proper subset.                                                            *)
(* ------------------------------------------------------------------------- *)

let PSUBSET_TRANS = prove
 (`!(s:A->bool) t u. s PSUBSET t /\ t PSUBSET u ==> s PSUBSET u`,
  SET_TAC[]);;

let PSUBSET_SUBSET_TRANS = prove
 (`!(s:A->bool) t u. s PSUBSET t /\ t SUBSET u ==> s PSUBSET u`,
  SET_TAC[]);;

let SUBSET_PSUBSET_TRANS = prove
 (`!(s:A->bool) t u. s SUBSET t /\ t PSUBSET u ==> s PSUBSET u`,
  SET_TAC[]);;

let PSUBSET_IRREFL = prove
 (`!s:A->bool. ~(s PSUBSET s)`,
  SET_TAC[]);;

let NOT_PSUBSET_EMPTY = prove
 (`!s:A->bool. ~(s PSUBSET EMPTY)`,
  SET_TAC[]);;

let NOT_UNIV_PSUBSET = prove
 (`!s:A->bool. ~(UNIV PSUBSET s)`,
  SET_TAC[]);;

let PSUBSET_UNIV = prove
 (`!s:A->bool. s PSUBSET UNIV <=> ?x. ~(x IN s)`,
  SET_TAC[]);;

let PSUBSET_ALT = prove
 (`!s t:A->bool. s PSUBSET t <=> s SUBSET t /\ (?a. a IN t /\ ~(a IN s))`,
  REWRITE_TAC[PSUBSET] THEN SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Union.                                                                    *)
(* ------------------------------------------------------------------------- *)

let UNION_ASSOC = prove
 (`!(s:A->bool) t u. (s UNION t) UNION u = s UNION (t UNION u)`,
  SET_TAC[]);;

let UNION_IDEMPOT = prove
 (`!s:A->bool. s UNION s = s`,
  SET_TAC[]);;

let UNION_COMM = prove
 (`!(s:A->bool) t. s UNION t = t UNION s`,
  SET_TAC[]);;

let SUBSET_UNION = prove
 (`(!s:A->bool. !t. s SUBSET (s UNION t)) /\
   (!s:A->bool. !t. s SUBSET (t UNION s))`,
  SET_TAC[]);;

let SUBSET_UNION_ABSORPTION = prove
 (`!s:A->bool. !t. s SUBSET t <=> (s UNION t = t)`,
  SET_TAC[]);;

let UNION_EMPTY = prove
 (`(!s:A->bool. EMPTY UNION s = s) /\
   (!s:A->bool. s UNION EMPTY = s)`,
  SET_TAC[]);;

let UNION_UNIV = prove
 (`(!s:A->bool. UNIV UNION s = UNIV) /\
   (!s:A->bool. s UNION UNIV = UNIV)`,
  SET_TAC[]);;

let EMPTY_UNION = prove
 (`!s:A->bool. !t. (s UNION t = EMPTY) <=> (s = EMPTY) /\ (t = EMPTY)`,
  SET_TAC[]);;

let UNION_SUBSET = prove
 (`!s t u. (s UNION t) SUBSET u <=> s SUBSET u /\ t SUBSET u`,
  SET_TAC[]);;

let FORALL_SUBSET_UNION = prove
 (`!t u:A->bool.
        (!s. s SUBSET t UNION u ==> P s) <=>
        (!t' u'. t' SUBSET t /\ u' SUBSET u ==> P(t' UNION u'))`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[];
    DISCH_TAC THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o SPECL [`s INTER t:A->bool`; `s INTER u:A->bool`]) THEN
    ANTS_TAC THENL [ALL_TAC; MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC] THEN
    ASM SET_TAC[]]);;

let EXISTS_SUBSET_UNION = prove
 (`!t u:A->bool.
        (?s. s SUBSET t UNION u /\ P s) <=>
        (?t' u'. t' SUBSET t /\ u' SUBSET u /\ P(t' UNION u'))`,
  REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN
  REWRITE_TAC[FORALL_SUBSET_UNION] THEN MESON_TAC[]);;

let FORALL_SUBSET_INSERT = prove
 (`!a:A t. (!s. s SUBSET a INSERT t ==> P s) <=>
           (!s. s SUBSET t ==> P s /\ P (a INSERT s))`,
  REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[SET_RULE `a INSERT s = {a} UNION s`] THEN
  REWRITE_TAC[FORALL_SUBSET_UNION; SET_RULE
   `s SUBSET {a} <=> s = {} \/ s = {a}`] THEN
  MESON_TAC[UNION_EMPTY]);;

let EXISTS_SUBSET_INSERT = prove
 (`!a:A t. (?s. s SUBSET a INSERT t /\ P s) <=>
           (?s. s SUBSET t /\ (P s \/ P (a INSERT s)))`,
  REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN
  REWRITE_TAC[FORALL_SUBSET_INSERT] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Intersection.                                                             *)
(* ------------------------------------------------------------------------- *)

let INTER_ASSOC = prove
 (`!(s:A->bool) t u. (s INTER t) INTER u = s INTER (t INTER u)`,
  SET_TAC[]);;

let INTER_IDEMPOT = prove
 (`!s:A->bool. s INTER s = s`,
  SET_TAC[]);;

let INTER_COMM = prove
 (`!(s:A->bool) t. s INTER t = t INTER s`,
  SET_TAC[]);;

let INTER_SUBSET = prove
 (`(!s:A->bool. !t. (s INTER t) SUBSET s) /\
   (!s:A->bool. !t. (t INTER s) SUBSET s)`,
  SET_TAC[]);;

let SUBSET_INTER_ABSORPTION = prove
 (`!s:A->bool. !t. s SUBSET t <=> (s INTER t = s)`,
  SET_TAC[]);;

let INTER_EMPTY = prove
 (`(!s:A->bool. EMPTY INTER s = EMPTY) /\
   (!s:A->bool. s INTER EMPTY = EMPTY)`,
  SET_TAC[]);;

let INTER_UNIV = prove
 (`(!s:A->bool. UNIV INTER s = s) /\
   (!s:A->bool. s INTER UNIV = s)`,
  SET_TAC[]);;

let SUBSET_INTER = prove
 (`!s t u. s SUBSET (t INTER u) <=> s SUBSET t /\ s SUBSET u`,
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Distributivity.                                                           *)
(* ------------------------------------------------------------------------- *)

let UNION_OVER_INTER = prove
 (`!s:A->bool. !t u. s INTER (t UNION u) = (s INTER t) UNION (s INTER u)`,
  SET_TAC[]);;

let INTER_OVER_UNION = prove
 (`!s:A->bool. !t u. s UNION (t INTER u) = (s UNION t) INTER (s UNION u)`,
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Disjoint sets.                                                            *)
(* ------------------------------------------------------------------------- *)

let IN_DISJOINT = prove
 (`!s:A->bool. !t. DISJOINT s t <=> ~(?x. x IN s /\ x IN t)`,
  SET_TAC[]);;

let DISJOINT_SYM = prove
 (`!s:A->bool. !t. DISJOINT s t <=> DISJOINT t s`,
  SET_TAC[]);;

let DISJOINT_EMPTY = prove
 (`!s:A->bool. DISJOINT EMPTY s /\ DISJOINT s EMPTY`,
  SET_TAC[]);;

let DISJOINT_EMPTY_REFL = prove
 (`!s:A->bool. (s = EMPTY) <=> (DISJOINT s s)`,
  SET_TAC[]);;

let DISJOINT_UNION = prove
 (`!s:A->bool. !t u. DISJOINT (s UNION t) u <=> DISJOINT s u /\ DISJOINT t u`,
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Set difference.                                                           *)
(* ------------------------------------------------------------------------- *)

let DIFF_EMPTY = prove
 (`!s:A->bool. s DIFF EMPTY = s`,
  SET_TAC[]);;

let EMPTY_DIFF = prove
 (`!s:A->bool. EMPTY DIFF s = EMPTY`,
  SET_TAC[]);;

let DIFF_UNIV = prove
 (`!s:A->bool. s DIFF UNIV = EMPTY`,
  SET_TAC[]);;

let DIFF_DIFF = prove
 (`!s:A->bool. !t. (s DIFF t) DIFF t = s DIFF t`,
  SET_TAC[]);;

let DIFF_EQ_EMPTY = prove
 (`!s:A->bool. s DIFF s = EMPTY`,
  SET_TAC[]);;

let SUBSET_DIFF = prove
 (`!s t. (s DIFF t) SUBSET s`,
  SET_TAC[]);;

let COMPL_COMPL = prove
 (`!s. (:A) DIFF ((:A) DIFF s) = s`,
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Insertion and deletion.                                                   *)
(* ------------------------------------------------------------------------- *)

let COMPONENT = prove
 (`!x:A. !s. x IN (x INSERT s)`,
  SET_TAC[]);;

let DECOMPOSITION = prove
 (`!s:A->bool. !x. x IN s <=> ?t. (s = x INSERT t) /\ ~(x IN t)`,
  REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[IN_INSERT] THEN EXISTS_TAC `s DELETE x:A` THEN
  POP_ASSUM MP_TAC THEN SET_TAC[]);;

let SET_CASES = prove
 (`!s:A->bool. (s = EMPTY) \/ ?x:A. ?t. (s = x INSERT t) /\ ~(x IN t)`,
  MESON_TAC[MEMBER_NOT_EMPTY; DECOMPOSITION]);;

let ABSORPTION = prove
 (`!x:A. !s. x IN s <=> (x INSERT s = s)`,
  SET_TAC[]);;

let INSERT_INSERT = prove
 (`!x:A. !s. x INSERT (x INSERT s) = x INSERT s`,
  SET_TAC[]);;

let INSERT_COMM = prove
 (`!x:A. !y s. x INSERT (y INSERT s) = y INSERT (x INSERT s)`,
  SET_TAC[]);;

let INSERT_UNIV = prove
 (`!x:A. x INSERT UNIV = UNIV`,
  SET_TAC[]);;

let NOT_INSERT_EMPTY = prove
 (`!x:A. !s. ~(x INSERT s = EMPTY)`,
  SET_TAC[]);;

let NOT_EMPTY_INSERT = prove
 (`!x:A. !s. ~(EMPTY = x INSERT s)`,
  SET_TAC[]);;

let INSERT_UNION = prove
 (`!x:A. !s t. (x INSERT s) UNION t =
               if x IN t then s UNION t else x INSERT (s UNION t)`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  POP_ASSUM MP_TAC THEN SET_TAC[]);;

let INSERT_UNION_EQ = prove
 (`!x:A. !s t. (x INSERT s) UNION t = x INSERT (s UNION t)`,
  SET_TAC[]);;

let INSERT_INTER = prove
 (`!x:A. !s t. (x INSERT s) INTER t =
               if x IN t then x INSERT (s INTER t) else s INTER t`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  POP_ASSUM MP_TAC THEN SET_TAC[]);;

let DISJOINT_INSERT = prove
 (`!(x:A) s t. DISJOINT (x INSERT s) t <=> (DISJOINT s t) /\ ~(x IN t)`,
  SET_TAC[]);;

let INSERT_SUBSET = prove
 (`!x:A. !s t. (x INSERT s) SUBSET t <=> (x IN t /\ s SUBSET t)`,
  SET_TAC[]);;

let SUBSET_INSERT = prove
 (`!x:A. !s. ~(x IN s) ==> !t. s SUBSET (x INSERT t) <=> s SUBSET t`,
  SET_TAC[]);;

let INSERT_DIFF = prove
 (`!s t. !x:A. (x INSERT s) DIFF t =
               if x IN t then s DIFF t else x INSERT (s DIFF t)`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  POP_ASSUM MP_TAC THEN SET_TAC[]);;

let INSERT_AC = prove
 (`(x INSERT (y INSERT s) = y INSERT (x INSERT s)) /\
   (x INSERT (x INSERT s) = x INSERT s)`,
  REWRITE_TAC[INSERT_COMM; INSERT_INSERT]);;

let INTER_ACI = prove
 (`(p INTER q = q INTER p) /\
   ((p INTER q) INTER r = p INTER q INTER r) /\
   (p INTER q INTER r = q INTER p INTER r) /\
   (p INTER p = p) /\
   (p INTER p INTER q = p INTER q)`,
  SET_TAC[]);;

let UNION_ACI = prove
 (`(p UNION q = q UNION p) /\
   ((p UNION q) UNION r = p UNION q UNION r) /\
   (p UNION q UNION r = q UNION p UNION r) /\
   (p UNION p = p) /\
   (p UNION p UNION q = p UNION q)`,
  SET_TAC[]);;

let DELETE_NON_ELEMENT = prove
 (`!x:A. !s. ~(x IN s) <=> (s DELETE x = s)`,
  SET_TAC[]);;

let IN_DELETE_EQ = prove
 (`!s x. !x':A.
     (x IN s <=> x' IN s) <=> (x IN (s DELETE x') <=> x' IN (s DELETE x))`,
  SET_TAC[]);;

let EMPTY_DELETE = prove
 (`!x:A. EMPTY DELETE x = EMPTY`,
  SET_TAC[]);;

let DELETE_DELETE = prove
 (`!x:A. !s. (s DELETE x) DELETE x = s DELETE x`,
  SET_TAC[]);;

let DELETE_COMM = prove
 (`!x:A. !y. !s. (s DELETE x) DELETE y = (s DELETE y) DELETE x`,
  SET_TAC[]);;

let DELETE_SUBSET = prove
 (`!x:A. !s. (s DELETE x) SUBSET s`,
  SET_TAC[]);;

let SUBSET_DELETE = prove
 (`!x:A. !s t. s SUBSET (t DELETE x) <=> ~(x IN s) /\ (s SUBSET t)`,
  SET_TAC[]);;

let SUBSET_INSERT_DELETE = prove
 (`!x:A. !s t. s SUBSET (x INSERT t) <=> ((s DELETE x) SUBSET t)`,
  SET_TAC[]);;

let DIFF_INSERT = prove
 (`!s t. !x:A. s DIFF (x INSERT t) = (s DELETE x) DIFF t`,
  SET_TAC[]);;

let PSUBSET_INSERT_SUBSET = prove
 (`!s t. s PSUBSET t <=> ?x:A. ~(x IN s) /\ (x INSERT s) SUBSET t`,
  SET_TAC[]);;

let PSUBSET_MEMBER = prove
 (`!s:A->bool. !t. s PSUBSET t <=> (s SUBSET t /\ ?y. y IN t /\ ~(y IN s))`,
  SET_TAC[]);;

let DELETE_INSERT = prove
 (`!x:A. !y s.
      (x INSERT s) DELETE y =
        if x = y then s DELETE y else x INSERT (s DELETE y)`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  POP_ASSUM MP_TAC THEN SET_TAC[]);;

let INSERT_DELETE = prove
 (`!x:A. !s. x IN s ==> (x INSERT (s DELETE x) = s)`,
  SET_TAC[]);;

let DELETE_INTER = prove
 (`!s t. !x:A. (s DELETE x) INTER t = (s INTER t) DELETE x`,
  SET_TAC[]);;

let DISJOINT_DELETE_SYM = prove
 (`!s t. !x:A. DISJOINT (s DELETE x) t = DISJOINT (t DELETE x) s`,
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Multiple union.                                                           *)
(* ------------------------------------------------------------------------- *)

let UNIONS_0 = prove
 (`UNIONS {} = {}`,
  SET_TAC[]);;

let UNIONS_1 = prove
 (`UNIONS {s} = s`,
  SET_TAC[]);;

let UNIONS_2 = prove
 (`UNIONS {s,t} = s UNION t`,
  SET_TAC[]);;

let UNIONS_INSERT = prove
 (`UNIONS (s INSERT u) = s UNION (UNIONS u)`,
  SET_TAC[]);;

let FORALL_IN_UNIONS = prove
 (`!P s. (!x. x IN UNIONS s ==> P x) <=> !t x. t IN s /\ x IN t ==> P x`,
  SET_TAC[]);;

let EXISTS_IN_UNIONS = prove
 (`!P s. (?x. x IN UNIONS s /\ P x) <=> (?t x. t IN s /\ x IN t /\ P x)`,
  SET_TAC[]);;

let EMPTY_UNIONS = prove
 (`!s. (UNIONS s = {}) <=> !t. t IN s ==> t = {}`,
  SET_TAC[]);;

let INTER_UNIONS = prove
 (`(!s t. UNIONS s INTER t = UNIONS {x INTER t | x IN s}) /\
   (!s t. t INTER UNIONS s = UNIONS {t INTER x | x IN s})`,
  ONCE_REWRITE_TAC[EXTENSION] THEN
  REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_INTER] THEN
  MESON_TAC[IN_INTER]);;

let UNIONS_SUBSET = prove
 (`!f t. UNIONS f SUBSET t <=> !s. s IN f ==> s SUBSET t`,
  SET_TAC[]);;

let SUBSET_UNIONS = prove
 (`!f g. f SUBSET g ==> UNIONS f SUBSET UNIONS g`,
  SET_TAC[]);;

let UNIONS_UNION = prove
 (`!s t. UNIONS(s UNION t) = (UNIONS s) UNION (UNIONS t)`,
  SET_TAC[]);;

let INTERS_UNION = prove
 (`!s t. INTERS (s UNION t) = INTERS s INTER INTERS t`,
  SET_TAC[]);;

let UNIONS_MONO = prove
 (`(!x. x IN s ==> ?y. y IN t /\ x SUBSET y) ==> UNIONS s SUBSET UNIONS t`,
  SET_TAC[]);;

let UNIONS_MONO_IMAGE = prove
 (`(!x. x IN s ==> f x SUBSET g x)
   ==> UNIONS(IMAGE f s) SUBSET UNIONS(IMAGE g s)`,
  SET_TAC[]);;

let UNIONS_UNIV = prove
 (`UNIONS (:A->bool) = (:A)`,
  REWRITE_TAC[EXTENSION; IN_UNIONS; IN_UNIV] THEN
  MESON_TAC[IN_SING]);;

let UNIONS_INSERT_EMPTY = prove
 (`!s. UNIONS({} INSERT s) = UNIONS s`,
  ONCE_REWRITE_TAC[EXTENSION] THEN
  REWRITE_TAC[IN_UNIONS; IN_INSERT] THEN MESON_TAC[NOT_IN_EMPTY]);;

let UNIONS_DELETE_EMPTY = prove
 (`!s. UNIONS(s DELETE {}) = UNIONS s`,
  ONCE_REWRITE_TAC[EXTENSION] THEN
  REWRITE_TAC[IN_UNIONS; IN_DELETE] THEN MESON_TAC[NOT_IN_EMPTY]);;

let INTERS_EQ_UNIV = prove
 (`!f. INTERS f = (:A) <=> !s. s IN f ==> s = (:A)`,
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Multiple intersection.                                                    *)
(* ------------------------------------------------------------------------- *)

let INTERS_0 = prove
 (`INTERS {} = (:A)`,
  SET_TAC[]);;

let INTERS_1 = prove
 (`INTERS {s} = s`,
  SET_TAC[]);;

let INTERS_2 = prove
 (`INTERS {s,t} = s INTER t`,
  SET_TAC[]);;

let INTERS_INSERT = prove
 (`INTERS (s INSERT u) = s INTER (INTERS u)`,
  SET_TAC[]);;

let SUBSET_INTERS = prove
 (`!s f. s SUBSET INTERS f <=> (!t. t IN f ==> s SUBSET t)`,
  SET_TAC[]);;

let INTERS_SUBSET = prove
 (`!u s:A->bool.
    ~(u = {}) /\ (!t. t IN u ==> t SUBSET s) ==> INTERS u SUBSET s`,
  SET_TAC[]);;

let INTERS_SUBSET_STRONG = prove
 (`!u s:A->bool. (?t. t IN u /\ t SUBSET s) ==> INTERS u SUBSET s`,
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Image.                                                                    *)
(* ------------------------------------------------------------------------- *)

let IMAGE_CLAUSES = prove
 (`(IMAGE f {} = {}) /\
   (IMAGE f (x INSERT s) = (f x) INSERT (IMAGE f s))`,
  REWRITE_TAC[IMAGE; IN_ELIM_THM; NOT_IN_EMPTY; IN_INSERT; EXTENSION] THEN
  MESON_TAC[]);;

let IMAGE_UNION = prove
 (`!f s t. IMAGE f (s UNION t) = (IMAGE f s) UNION (IMAGE f t)`,
  REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNION] THEN MESON_TAC[]);;

let IMAGE_ID = prove
 (`!s. IMAGE (\x. x) s = s`,
  REWRITE_TAC[EXTENSION; IN_IMAGE; UNWIND_THM1]);;

let IMAGE_I = prove
 (`!s. IMAGE I s = s`,
  REWRITE_TAC[I_DEF; IMAGE_ID]);;

let IMAGE_o = prove
 (`!f g s. IMAGE (f o g) s = IMAGE f (IMAGE g s)`,
  REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN MESON_TAC[]);;

let IMAGE_SUBSET = prove
 (`!f s t. s SUBSET t ==> (IMAGE f s) SUBSET (IMAGE f t)`,
  REWRITE_TAC[SUBSET; IN_IMAGE] THEN MESON_TAC[]);;

let IMAGE_INTER_INJ = prove
 (`!f s t. (!x y. (f(x) = f(y)) ==> (x = y))
           ==> (IMAGE f (s INTER t) = (IMAGE f s) INTER (IMAGE f t))`,
  REWRITE_TAC[EXTENSION; IN_IMAGE; IN_INTER] THEN MESON_TAC[]);;

let IMAGE_DIFF_INJ = prove
 (`!f:A->B s t.
        (!x y. x IN s /\ y IN t /\ f x = f y ==> x = y)
        ==> IMAGE f (s DIFF t) = IMAGE f s DIFF IMAGE f t`,
  SET_TAC[]);;

let IMAGE_DIFF_INJ_ALT = prove
 (`!f:A->B s t.
        (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ t SUBSET s
        ==> IMAGE f (s DIFF t) = IMAGE f s DIFF IMAGE f t`,
  SET_TAC[]);;

let IMAGE_DELETE_INJ = prove
 (`!f:A->B s a.
        (!x. x IN s /\ f x = f a ==> x = a)
        ==> IMAGE f (s DELETE a) = IMAGE f s DELETE f a`,
  SET_TAC[]);;

let IMAGE_DELETE_INJ_ALT = prove
 (`!f:A->B s a.
        (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ a IN s
        ==> IMAGE f (s DELETE a) = IMAGE f s DELETE f a`,
  SET_TAC[]);;

let IMAGE_EQ_EMPTY = prove
 (`!f s. (IMAGE f s = {}) <=> (s = {})`,
  REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_IMAGE] THEN MESON_TAC[]);;

let FORALL_IN_IMAGE = prove
 (`!f s. (!y. y IN IMAGE f s ==> P y) <=> (!x. x IN s ==> P(f x))`,
  REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[]);;

let EXISTS_IN_IMAGE = prove
 (`!f s. (?y. y IN IMAGE f s /\ P y) <=> ?x. x IN s /\ P(f x)`,
  REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[]);;

let FORALL_IN_IMAGE_2 = prove
 (`!f P s. (!x y. x IN IMAGE f s /\ y IN IMAGE f s ==> P x y) <=>
           (!x y. x IN s /\ y IN s ==> P (f x) (f y))`,
  SET_TAC[]);;

let IMAGE_CONST = prove
 (`!s c. IMAGE (\x. c) s = if s = {} then {} else {c}`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  ASM_REWRITE_TAC[IMAGE_CLAUSES] THEN
  REWRITE_TAC[EXTENSION; IN_IMAGE; IN_SING] THEN
  ASM_MESON_TAC[MEMBER_NOT_EMPTY]);;

let SIMPLE_IMAGE = prove
 (`!f s. {f x | x IN s} = IMAGE f s`,
  REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN MESON_TAC[]);;

let SIMPLE_IMAGE_GEN = prove
 (`!f P. {f x | P x} = IMAGE f {x | P x}`,
  SET_TAC[]);;

let IMAGE_UNIONS = prove
 (`!f s. IMAGE f (UNIONS s) = UNIONS (IMAGE (IMAGE f) s)`,
  ONCE_REWRITE_TAC[EXTENSION] THEN REWRITE_TAC[IN_UNIONS; IN_IMAGE] THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2; IN_IMAGE] THEN
  MESON_TAC[]);;

let FUN_IN_IMAGE = prove
 (`!f s x. x IN s ==> f(x) IN IMAGE f s`,
  SET_TAC[]);;

let SURJECTIVE_IMAGE_EQ = prove
 (`!s t. (!y. y IN t ==> ?x. f x = y) /\ (!x. (f x) IN t <=> x IN s)
         ==> IMAGE f s = t`,
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Misc lemmas.                                                              *)
(* ------------------------------------------------------------------------- *)

let EMPTY_GSPEC = prove
 (`{x | F} = {}`,
  SET_TAC[]);;

let UNIV_GSPEC = prove
 (`{x | T} = UNIV`,
  SET_TAC[]);;

let SING_GSPEC = prove
 (`(!a. {x | x = a} = {a}) /\
   (!a. {x | a = x} = {a})`,
  SET_TAC[]);;

let IN_ELIM_PAIR_THM = prove
 (`!P a b. (a,b) IN {(x,y) | P x y} <=> P a b`,
  REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[PAIR_EQ]);;

let SET_PAIR_THM = prove
 (`!P. {p | P p} = {(a,b) | P(a,b)}`,
  REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_THM; IN_ELIM_PAIR_THM]);;

let FORALL_IN_GSPEC = prove
 (`(!P f. (!z. z IN {f x | P x} ==> Q z) <=> (!x. P x ==> Q(f x))) /\
   (!P f. (!z. z IN {f x y | P x y} ==> Q z) <=>
          (!x y. P x y ==> Q(f x y))) /\
   (!P f. (!z. z IN {f w x y | P w x y} ==> Q z) <=>
          (!w x y. P w x y ==> Q(f w x y))) /\
   (!P f. (!z. z IN {f v w x y | P v w x y} ==> Q z) <=>
          (!v w x y. P v w x y ==> Q(f v w x y)))`,
  SET_TAC[]);;

let EXISTS_IN_GSPEC = prove
 (`(!P f. (?z. z IN {f x | P x} /\ Q z) <=> (?x. P x /\ Q(f x))) /\
   (!P f. (?z. z IN {f x y | P x y} /\ Q z) <=>
          (?x y. P x y /\ Q(f x y))) /\
   (!P f. (?z. z IN {f w x y | P w x y} /\ Q z) <=>
          (?w x y. P w x y /\ Q(f w x y))) /\
   (!P f. (?z. z IN {f v w x y | P v w x y} /\ Q z) <=>
          (?v w x y. P v w x y /\ Q(f v w x y)))`,
  SET_TAC[]);;

let SET_PROVE_CASES = prove
 (`!P:(A->bool)->bool.
       P {} /\ (!a s. ~(a IN s) ==> P(a INSERT s))
       ==> !s. P s`,
  MESON_TAC[SET_CASES]);;

let UNIONS_IMAGE = prove
 (`!f s. UNIONS (IMAGE f s) = {y | ?x. x IN s /\ y IN f x}`,
  REPEAT GEN_TAC THEN  GEN_REWRITE_TAC I [EXTENSION] THEN
  REWRITE_TAC[IN_UNIONS; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]);;

let INTERS_IMAGE = prove
 (`!f s. INTERS (IMAGE f s) = {y | !x. x IN s ==> y IN f x}`,
  REPEAT GEN_TAC THEN  GEN_REWRITE_TAC I [EXTENSION] THEN
  REWRITE_TAC[IN_INTERS; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]);;

let UNIONS_GSPEC = prove
 (`(!P f. UNIONS {f x | P x} = {a | ?x. P x /\ a IN (f x)}) /\
   (!P f. UNIONS {f x y | P x y} = {a | ?x y. P x y /\ a IN (f x y)}) /\
   (!P f. UNIONS {f x y z | P x y z} =
            {a | ?x y z. P x y z /\ a IN (f x y z)})`,
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN
  REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN MESON_TAC[]);;

let INTERS_GSPEC = prove
 (`(!P f. INTERS {f x | P x} = {a | !x. P x ==> a IN (f x)}) /\
   (!P f. INTERS {f x y | P x y} = {a | !x y. P x y ==> a IN (f x y)}) /\
   (!P f. INTERS {f x y z | P x y z} =
                {a | !x y z. P x y z ==> a IN (f x y z)})`,
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN
  REWRITE_TAC[IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;

let IMAGE_INTERS = prove
 (`!f s. ~(s = {}) /\
         (!x y. x IN UNIONS s /\ y IN UNIONS s /\ f x = f y ==> x = y)
         ==> IMAGE f (INTERS s) = INTERS(IMAGE (IMAGE f) s)`,
  REWRITE_TAC[INTERS_IMAGE] THEN SET_TAC[]);;

let DIFF_INTERS = prove
 (`!u s. u DIFF INTERS s = UNIONS {u DIFF t | t IN s}`,
  REWRITE_TAC[UNIONS_GSPEC] THEN SET_TAC[]);;

let INTERS_UNIONS = prove
 (`!s. INTERS s = UNIV DIFF (UNIONS {UNIV DIFF t | t IN s})`,
  REWRITE_TAC[GSYM DIFF_INTERS] THEN SET_TAC[]);;

let UNIONS_INTERS = prove
 (`!s. UNIONS s = UNIV DIFF (INTERS {UNIV DIFF t | t IN s})`,
  GEN_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN
  REWRITE_TAC[IN_UNIONS; IN_UNIV; IN_DIFF; INTERS_GSPEC; IN_ELIM_THM] THEN
  MESON_TAC[]);;

let UNIONS_DIFF = prove
 (`!s t. UNIONS s DIFF t = UNIONS {x DIFF t | x IN s}`,
  REWRITE_TAC[UNIONS_GSPEC] THEN SET_TAC[]);;

let DIFF_UNIONS = prove
 (`!u s. u DIFF UNIONS s = u INTER INTERS {u DIFF t | t IN s}`,
  REWRITE_TAC[INTERS_GSPEC] THEN SET_TAC[]);;

let DIFF_UNIONS_NONEMPTY = prove
 (`!u s. ~(s = {}) ==> u DIFF UNIONS s = INTERS {u DIFF t | t IN s}`,
  REWRITE_TAC[INTERS_GSPEC] THEN SET_TAC[]);;

let INTERS_OVER_UNIONS = prove
 (`!f:A->(B->bool)->bool s.
        INTERS { UNIONS(f x) | x IN s} =
        UNIONS { INTERS {g x | x IN s} |g| !x. x IN s ==> g x IN f x}`,
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN
  REWRITE_TAC[SIMPLE_IMAGE; INTERS_IMAGE; UNIONS_IMAGE; UNIONS_GSPEC] THEN
  REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN
  X_GEN_TAC `b:B` THEN REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
  MESON_TAC[]);;

let INTER_INTERS = prove
 (`(!f s:A->bool. s INTER INTERS f =
           if f = {} then s else INTERS {s INTER t | t IN f}) /\
   (!f s:A->bool. INTERS f INTER s =
           if f = {} then s else INTERS {t INTER s | t IN f})`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
  ASM_REWRITE_TAC[INTERS_0; INTER_UNIV; INTERS_GSPEC] THEN
  ASM SET_TAC[]);;

let UNIONS_OVER_INTERS = prove
 (`!f:A->(B->bool)->bool s.
        UNIONS { INTERS(f x) | x IN s} =
        INTERS { UNIONS {g x | x IN s} |g| !x. x IN s ==> g x IN f x}`,
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN
  REWRITE_TAC[SIMPLE_IMAGE; INTERS_IMAGE; UNIONS_IMAGE; INTERS_GSPEC] THEN
  REWRITE_TAC[IN_INTERS; IN_ELIM_THM] THEN
  GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `(p <=> q) <=> (~p <=> ~q)`] THEN
  REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; NOT_EXISTS_THM] THEN
  REWRITE_TAC[AND_FORALL_THM; GSYM SKOLEM_THM] THEN MESON_TAC[]);;

let IMAGE_INTERS_SUBSET = prove
 (`!(f:A->B) g. IMAGE f (INTERS g) SUBSET INTERS (IMAGE (IMAGE f) g)`,
  REWRITE_TAC[INTERS_IMAGE] THEN SET_TAC[]);;

let IMAGE_INTER_SUBSET = prove
 (`!f s t. IMAGE f (s INTER t) SUBSET IMAGE f s INTER IMAGE f t`,
  SET_TAC[]);;

let IMAGE_INTER_SATURATED_GEN = prove
 (`!f:A->B s t u.
        {x | x IN u /\ f(x) IN IMAGE f s} SUBSET s /\ t SUBSET u \/
        {x | x IN u /\ f(x) IN IMAGE f t} SUBSET t /\ s SUBSET u
        ==> IMAGE f (s INTER t) = IMAGE f s INTER IMAGE f t`,
  SET_TAC[]);;

let IMAGE_INTERS_SATURATED_GEN = prove
 (`!f:A->B g s u.
        ~(g = {}) /\
        (!t. t IN g ==> t SUBSET u) /\
        (!t. t IN g DELETE s ==> {x | x IN u /\ f(x) IN IMAGE f t} SUBSET t)
        ==> IMAGE f (INTERS g) = INTERS (IMAGE (IMAGE f) g)`,
  let lemma = prove
   (`~(g = {}) /\
     (!t. t IN g ==> t SUBSET u /\ {x | x IN u /\ f(x) IN IMAGE f t} SUBSET t)
     ==> IMAGE f (INTERS g) = INTERS (IMAGE (IMAGE f) g)`,
    ONCE_REWRITE_TAC[EXTENSION] THEN
    REWRITE_TAC[INTERS_IMAGE; IN_INTERS; IN_IMAGE] THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_ELIM_THM; NOT_IN_EMPTY] THEN
    ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
    REWRITE_TAC[IMP_CONJ; FORALL_UNWIND_THM2] THEN SET_TAC[]) in
  REPEAT GEN_TAC THEN ASM_CASES_TAC `(s:A->bool) IN g` THEN
  ASM_SIMP_TAC[SET_RULE `~(s IN g) ==> g DELETE s = g`] THENL
   [ALL_TAC; MESON_TAC[lemma]] THEN
  REWRITE_TAC[CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE
   `x IN s ==> s = x INSERT (s DELETE x)`)) THEN
  REWRITE_TAC[FORALL_IN_INSERT; NOT_INSERT_EMPTY] THEN
  STRIP_TAC THEN ASM_CASES_TAC `g DELETE (s:A->bool) = {}` THEN
  ASM_REWRITE_TAC[IMAGE_CLAUSES; INTERS_0; INTERS_1] THEN
  REWRITE_TAC[IMAGE_CLAUSES; INTERS_INSERT] THEN
  MATCH_MP_TAC(SET_RULE
   `IMAGE f (s INTER t) = IMAGE f s INTER IMAGE f t /\
    IMAGE f t = u ==> IMAGE f (s INTER t) = IMAGE f s INTER u`) THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC IMAGE_INTER_SATURATED_GEN THEN
    EXISTS_TAC `u:A->bool` THEN ASM SET_TAC[];
    MATCH_MP_TAC lemma THEN ASM SET_TAC[]]);;

let IMAGE_INTER_SATURATED = prove
 (`!f:A->B s t.
        {x | f(x) IN IMAGE f s} SUBSET s \/ {x | f(x) IN IMAGE f t} SUBSET t
         ==> IMAGE f (s INTER t) = IMAGE f s INTER IMAGE f t`,
  SET_TAC[]);;

let IMAGE_INTERS_SATURATED = prove
 (`!f:A->B g s.
        ~(g = {}) /\ (!t. t IN g DELETE s ==> {x | f(x) IN IMAGE f t} SUBSET t)
        ==> IMAGE f (INTERS g) = INTERS (IMAGE (IMAGE f) g)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC IMAGE_INTERS_SATURATED_GEN THEN
  MAP_EVERY EXISTS_TAC [`s:A->bool`; `(:A)`] THEN
  ASM_REWRITE_TAC[IN_UNIV; SUBSET_UNIV]);;

(* ------------------------------------------------------------------------- *)
(* Stronger form of induction is sometimes handy.                            *)
(* ------------------------------------------------------------------------- *)

let FINITE_INDUCT_STRONG = prove
 (`!P:(A->bool)->bool.
        P {} /\ (!x s. P s /\ ~(x IN s) /\ FINITE s ==> P(x INSERT s))
        ==> !s. FINITE s ==> P s`,
  GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN `!s:A->bool. FINITE s ==> FINITE s /\ P s` MP_TAC THENL
   [ALL_TAC; MESON_TAC[]] THEN
  MATCH_MP_TAC FINITE_INDUCT THEN ASM_SIMP_TAC[FINITE_RULES] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `x:A IN s` THENL
   [SUBGOAL_THEN `x:A INSERT s = s` (fun th -> ASM_REWRITE_TAC[th]) THEN
    UNDISCH_TAC `x:A IN s` THEN SET_TAC[];
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Useful general properties of functions.                                   *)
(* ------------------------------------------------------------------------- *)

let INJECTIVE_ON_ALT = prove
 (`!P f. (!x y. P x /\ P y /\ f x = f y ==> x = y) <=>
         (!x y. P x /\ P y ==> (f x = f y <=> x = y))`,
  MESON_TAC[]);;

let INJECTIVE_ALT = prove
 (`!f. (!x y. f x = f y ==> x = y) <=> (!x y. f x = f y <=> x = y)`,
  MESON_TAC[]);;

let SURJECTIVE_ON_RIGHT_INVERSE = prove
 (`!f t. (!y. y IN t ==> ?x. x IN s /\ (f(x) = y)) <=>
         (?g. !y. y IN t ==> g(y) IN s /\ (f(g(y)) = y))`,
  REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM]);;

let INJECTIVE_ON_LEFT_INVERSE = prove
 (`!f s. (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)) <=>
         (?g. !x. x IN s ==> (g(f(x)) = x))`,
  let lemma = MESON[]
   `(!x. x IN s ==> (g(f(x)) = x)) <=>
    (!y x. x IN s /\ (y = f x) ==> (g y = x))` in
  REWRITE_TAC[lemma; GSYM SKOLEM_THM] THEN MESON_TAC[]);;

let BIJECTIVE_ON_LEFT_RIGHT_INVERSE = prove
 (`!f s t.
        (!x. x IN s ==> f(x) IN t)
        ==> ((!x y. x IN s /\ y IN s /\ f(x) = f(y) ==> x = y) /\
             (!y. y IN t ==> ?x. x IN s /\ f x = y) <=>
            ?g. (!y. y IN t ==> g(y) IN s) /\
                (!y. y IN t ==> (f(g(y)) = y)) /\
                (!x. x IN s ==> (g(f(x)) = x)))`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE; SURJECTIVE_ON_RIGHT_INVERSE] THEN
  REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN
  EQ_TAC THEN ASM_MESON_TAC[]);;

let SURJECTIVE_RIGHT_INVERSE = prove
 (`(!y. ?x. f(x) = y) <=> (?g. !y. f(g(y)) = y)`,
  MESON_TAC[SURJECTIVE_ON_RIGHT_INVERSE; IN_UNIV]);;

let INJECTIVE_LEFT_INVERSE = prove
 (`(!x y. (f x = f y) ==> (x = y)) <=> (?g. !x. g(f(x)) = x)`,
  let th = REWRITE_RULE[IN_UNIV]
   (ISPECL [`f:A->B`; `UNIV:A->bool`] INJECTIVE_ON_LEFT_INVERSE) in
  REWRITE_TAC[th]);;

let BIJECTIVE_LEFT_RIGHT_INVERSE = prove
 (`!f:A->B.
       (!x y. f(x) = f(y) ==> x = y) /\ (!y. ?x. f x = y) <=>
       ?g. (!y. f(g(y)) = y) /\ (!x. g(f(x)) = x)`,
  GEN_TAC THEN
  MP_TAC(ISPECL [`f:A->B`; `(:A)`; `(:B)`] BIJECTIVE_ON_LEFT_RIGHT_INVERSE) THEN
  REWRITE_TAC[IN_UNIV]);;

let FUNCTION_FACTORS_LEFT_GEN = prove
 (`!P f g. (!x y. P x /\ P y /\ g x = g y ==> f x = f y) <=>
           (?h. !x. P x ==> f(x) = h(g x))`,
  ONCE_REWRITE_TAC[MESON[]
   `(!x. P x ==> f(x) = g(k x)) <=> (!y x. P x /\ y = k x ==> f x = g y)`] THEN
  REWRITE_TAC[GSYM SKOLEM_THM] THEN MESON_TAC[]);;

let FUNCTION_FACTORS_LEFT = prove
 (`!f g. (!x y. (g x = g y) ==> (f x = f y)) <=> ?h. f = h o g`,
  REWRITE_TAC[FUN_EQ_THM; o_THM;
   GSYM(REWRITE_RULE[] (ISPEC `\x. T` FUNCTION_FACTORS_LEFT_GEN))]);;

let FUNCTION_FACTORS_RIGHT_GEN = prove
 (`!P f g. (!x. P x ==> ?y. g(y) = f(x)) <=>
           (?h. !x. P x ==> f(x) = g(h x))`,
  REWRITE_TAC[GSYM SKOLEM_THM] THEN MESON_TAC[]);;

let FUNCTION_FACTORS_RIGHT = prove
 (`!f g. (!x. ?y. g(y) = f(x)) <=> ?h. f = g o h`,
  REWRITE_TAC[FUN_EQ_THM; o_THM; GSYM SKOLEM_THM] THEN MESON_TAC[]);;

let SURJECTIVE_FORALL_THM = prove
 (`!f:A->B. (!y. ?x. f x = y) <=> (!P. (!x. P(f x)) <=> (!y. P y))`,
  GEN_TAC THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM th]) THEN MESON_TAC[]);;

let SURJECTIVE_EXISTS_THM = prove
 (`!f:A->B. (!y. ?x. f x = y) <=> (!P. (?x. P(f x)) <=> (?y. P y))`,
  GEN_TAC THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o SPEC `\y:B. !x:A. ~(f x = y)`) THEN MESON_TAC[]);;

let SURJECTIVE_IMAGE_THM = prove
 (`!f:A->B. (!y. ?x. f x = y) <=> (!P. IMAGE f {x | P(f x)} = {x | P x})`,
  GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN
  EQ_TAC THENL [ALL_TAC; DISCH_THEN(MP_TAC o SPEC `\y:B. T`)] THEN
  MESON_TAC[]);;

let IMAGE_INJECTIVE_IMAGE_OF_SUBSET = prove
 (`!f:A->B s.
     ?t. t SUBSET s /\
         IMAGE f s = IMAGE f t /\
         (!x y. x IN t /\ y IN t /\ f x = f y ==> x = y)`,
  REPEAT GEN_TAC THEN
  SUBGOAL_THEN
   `?g. !y. y IN IMAGE (f:A->B) s ==> g(y) IN s /\ f(g(y)) = y`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[GSYM SURJECTIVE_ON_RIGHT_INVERSE] THEN SET_TAC[];
    EXISTS_TAC `IMAGE (g:B->A) (IMAGE (f:A->B) s)` THEN ASM SET_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Basic combining theorems for finite sets.                                 *)
(* ------------------------------------------------------------------------- *)

let FINITE_EMPTY = prove
 (`FINITE {}`,
  REWRITE_TAC[FINITE_RULES]);;

let FINITE_SUBSET = prove
 (`!(s:A->bool) t. FINITE t /\ s SUBSET t ==> FINITE s`,
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
   [MESON_TAC[SUBSET_EMPTY; FINITE_RULES]; ALL_TAC] THEN
  X_GEN_TAC `x:A` THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN
  X_GEN_TAC `t:A->bool` THEN DISCH_TAC THEN
  SUBGOAL_THEN `FINITE((x:A) INSERT (t DELETE x))` ASSUME_TAC THENL
   [MATCH_MP_TAC(CONJUNCT2 FINITE_RULES) THEN
    FIRST_ASSUM MATCH_MP_TAC THEN
    UNDISCH_TAC `t SUBSET (x:A INSERT u)` THEN SET_TAC[];
    ASM_CASES_TAC `x:A IN t` THENL
     [SUBGOAL_THEN `x:A INSERT (t DELETE x) = t` SUBST_ALL_TAC THENL
       [UNDISCH_TAC `x:A IN t` THEN SET_TAC[]; ASM_REWRITE_TAC[]];
      FIRST_ASSUM MATCH_MP_TAC THEN
      UNDISCH_TAC `t SUBSET x:A INSERT u` THEN
      UNDISCH_TAC `~(x:A IN t)` THEN SET_TAC[]]]);;

let FINITE_RESTRICT = prove
 (`!s:A->bool P. FINITE s ==> FINITE {x | x IN s /\ P x}`,
  MESON_TAC[SUBSET_RESTRICT; FINITE_SUBSET]);;

let FINITE_UNION_IMP = prove
 (`!(s:A->bool) t. FINITE s /\ FINITE t ==> FINITE (s UNION t)`,
  REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT THEN REWRITE_TAC[UNION_EMPTY] THEN
  SUBGOAL_THEN `!x s t. (x:A INSERT s) UNION t = x INSERT (s UNION t)`
  (fun th -> REWRITE_TAC[th]) THENL
   [SET_TAC[];
    MESON_TAC[FINITE_RULES]]);;

let FINITE_UNION = prove
 (`!(s:A->bool) t. FINITE(s UNION t) <=> FINITE(s) /\ FINITE(t)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC `(s:A->bool) UNION t` THEN ASM_REWRITE_TAC[] THEN SET_TAC[];
    MATCH_ACCEPT_TAC FINITE_UNION_IMP]);;

let FINITE_INTER = prove
 (`!(s:A->bool) t. FINITE s \/ FINITE t ==> FINITE (s INTER t)`,
  MESON_TAC[INTER_SUBSET; FINITE_SUBSET]);;

let FINITE_INSERT = prove
 (`!(s:A->bool) x. FINITE (x INSERT s) <=> FINITE s`,
  REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
   [MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC `x:A INSERT s` THEN ASM_REWRITE_TAC[] THEN SET_TAC[];
    MATCH_MP_TAC(CONJUNCT2 FINITE_RULES) THEN
    ASM_REWRITE_TAC[]]);;

let FINITE_SING = prove
 (`!a. FINITE {a}`,
  REWRITE_TAC[FINITE_INSERT; FINITE_RULES]);;

let FINITE_DELETE_IMP = prove
 (`!(s:A->bool) x. FINITE s ==> FINITE (s DELETE x)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
  ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);;

let FINITE_DELETE = prove
 (`!(s:A->bool) x. FINITE (s DELETE x) <=> FINITE s`,
  REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[FINITE_DELETE_IMP] THEN
  ASM_CASES_TAC `x:A IN s` THENL
   [SUBGOAL_THEN `s = x INSERT (s DELETE x:A)`
    (fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [th]) THEN
    REWRITE_TAC[FINITE_INSERT] THEN POP_ASSUM MP_TAC THEN SET_TAC[];
    SUBGOAL_THEN `s DELETE x:A = s` (fun th -> REWRITE_TAC[th]) THEN
    POP_ASSUM MP_TAC THEN SET_TAC[]]);;

let FINITE_FINITE_UNIONS = prove
 (`!s. FINITE(s) ==> (FINITE(UNIONS s) <=> (!t. t IN s ==> FINITE(t)))`,
  MATCH_MP_TAC FINITE_INDUCT THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; UNIONS_0; UNIONS_INSERT] THEN
  REWRITE_TAC[FINITE_UNION; FINITE_RULES] THEN MESON_TAC[]);;

let FINITE_IMAGE_EXPAND = prove
 (`!(f:A->B) s. FINITE s ==> FINITE {y | ?x. x IN s /\ (y = f x)}`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT THEN
  REWRITE_TAC[NOT_IN_EMPTY; REWRITE_RULE[] EMPTY_GSPEC; FINITE_RULES] THEN
  REPEAT GEN_TAC THEN
  SUBGOAL_THEN `{y | ?z. z IN (x INSERT s) /\ (y = (f:A->B) z)} =
                {y | ?z. z IN s /\ (y = f z)} UNION {(f x)}`
  (fun th -> REWRITE_TAC[th]) THENL
   [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; IN_UNION; NOT_IN_EMPTY] THEN
    MESON_TAC[];
    REWRITE_TAC[FINITE_UNION; FINITE_INSERT; FINITE_RULES]]);;

let FINITE_IMAGE = prove
 (`!(f:A->B) s. FINITE s ==> FINITE (IMAGE f s)`,
  REWRITE_TAC[IMAGE; FINITE_IMAGE_EXPAND]);;

let FINITE_IMAGE_INJ_GENERAL = prove
 (`!(f:A->B) A s.
        (!x y. x IN s /\ y IN s /\ f(x) = f(y) ==> x = y) /\
        FINITE A
        ==> FINITE {x | x IN s /\ f(x) IN A}`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN
  DISCH_THEN(X_CHOOSE_TAC `g:B->A`) THEN
  MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `IMAGE (g:B->A) A` THEN
  ASM_SIMP_TAC[FINITE_IMAGE] THEN ASM SET_TAC[]);;

let FINITE_FINITE_PREIMAGE_GENERAL = prove
 (`!f:A->B s t.
        FINITE t /\
        (!y. y IN t ==> FINITE {x | x IN s /\ f(x) = y})
        ==> FINITE {x | x IN s /\ f(x) IN t}`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `{x | x IN s /\ (f:A->B)(x) IN t} =
    UNIONS (IMAGE (\a. {x | x IN s /\ f x = a}) t)`
  SUBST1_TAC THENL
   [GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIONS] THEN
    REWRITE_TAC[EXISTS_IN_IMAGE] THEN SET_TAC[];
    ASM_SIMP_TAC[FINITE_FINITE_UNIONS; FINITE_IMAGE; FORALL_IN_IMAGE]]);;

let FINITE_FINITE_PREIMAGE = prove
 (`!f:A->B t.
        FINITE t /\
        (!y. y IN t ==> FINITE {x | f(x) = y})
        ==> FINITE {x | f(x) IN t}`,
  REPEAT GEN_TAC THEN MP_TAC
   (ISPECL [`f:A->B`; `(:A)`; `t:B->bool`] FINITE_FINITE_PREIMAGE_GENERAL) THEN
  REWRITE_TAC[IN_UNIV]);;

let FINITE_IMAGE_INJ_EQ = prove
 (`!(f:A->B) s. (!x y. x IN s /\ y IN s /\ (f(x) = f(y)) ==> (x = y))
                ==> (FINITE(IMAGE f s) <=> FINITE s)`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[IMP_IMP] THEN
  DISCH_THEN(MP_TAC o MATCH_MP FINITE_IMAGE_INJ_GENERAL) THEN
  MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[]);;

let FINITE_IMAGE_INJ = prove
 (`!(f:A->B) A. (!x y. (f(x) = f(y)) ==> (x = y)) /\
                FINITE A ==> FINITE {x | f(x) IN A}`,
  REPEAT GEN_TAC THEN
  MP_TAC(SPECL [`f:A->B`; `A:B->bool`; `UNIV:A->bool`]
    FINITE_IMAGE_INJ_GENERAL) THEN REWRITE_TAC[IN_UNIV]);;

let INFINITE_IMAGE = prove
 (`!f:A->B s.
        INFINITE s /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
        ==> INFINITE (IMAGE f s)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ_ALT; INJECTIVE_ON_LEFT_INVERSE] THEN
  DISCH_THEN(X_CHOOSE_TAC `g:B->A`) THEN
  REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN DISCH_TAC THEN
  SUBGOAL_THEN `s = IMAGE (g:B->A) (IMAGE f s)` SUBST1_TAC THENL
   [ASM SET_TAC[]; MATCH_MP_TAC FINITE_IMAGE THEN ASM_REWRITE_TAC[]]);;

let INFINITE_IMAGE_INJ = prove
 (`!f:A->B. (!x y. (f x = f y) ==> (x = y))
            ==> !s. INFINITE s ==> INFINITE(IMAGE f s)`,
  MESON_TAC[INFINITE_IMAGE]);;

let INFINITE_NONEMPTY = prove
 (`!s. INFINITE(s) ==> ~(s = EMPTY)`,
  MESON_TAC[INFINITE; FINITE_RULES]);;

let INFINITE_DIFF_FINITE = prove
 (`!s:A->bool t. INFINITE(s) /\ FINITE(t) ==> INFINITE(s DIFF t)`,
  REPEAT GEN_TAC THEN
  MATCH_MP_TAC(TAUT `(b /\ ~c ==> ~a) ==> a /\ b ==> c`) THEN
  REWRITE_TAC[INFINITE] THEN STRIP_TAC THEN
  MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `(t:A->bool) UNION (s DIFF t)` THEN
  ASM_REWRITE_TAC[FINITE_UNION] THEN SET_TAC[]);;

let SUBSET_IMAGE_INJ = prove
 (`!f:A->B s t.
        s SUBSET (IMAGE f t) <=>
        ?u. u SUBSET t /\
            (!x y. x IN u /\ y IN u ==> (f x = f y <=> x = y)) /\
            s = IMAGE f u`,
  REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[IMAGE_SUBSET]] THEN
  DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE
   `s SUBSET IMAGE f t ==> !x. x IN s ==> ?y. y IN t /\ f y = x`)) THEN
  REWRITE_TAC[SURJECTIVE_ON_RIGHT_INVERSE] THEN
  DISCH_THEN(X_CHOOSE_TAC `g:B->A`) THEN
  EXISTS_TAC `IMAGE (g:B->A) s` THEN ASM SET_TAC[]);;

let SUBSET_IMAGE = prove
 (`!f:A->B s t. s SUBSET (IMAGE f t) <=> ?u. u SUBSET t /\ (s = IMAGE f u)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[IMAGE_SUBSET]] THEN
  REWRITE_TAC[SUBSET_IMAGE_INJ] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);;

let EXISTS_SUBSET_IMAGE = prove
 (`!P f s.
    (?t. t SUBSET IMAGE f s /\ P t) <=> (?t. t SUBSET s /\ P (IMAGE f t))`,
  REWRITE_TAC[SUBSET_IMAGE] THEN MESON_TAC[]);;

let FORALL_SUBSET_IMAGE = prove
 (`!P f s. (!t. t SUBSET IMAGE f s ==> P t) <=>
           (!t. t SUBSET s ==> P(IMAGE f t))`,
  REWRITE_TAC[SUBSET_IMAGE] THEN MESON_TAC[]);;

let EXISTS_SUBSET_IMAGE_INJ = prove
 (`!P f s.
    (?t. t SUBSET IMAGE f s /\ P t) <=>
    (?t. t SUBSET s /\
         (!x y. x IN t /\ y IN t ==> (f x = f y <=> x = y)) /\
         P (IMAGE f t))`,
  REWRITE_TAC[SUBSET_IMAGE_INJ] THEN MESON_TAC[]);;

let FORALL_SUBSET_IMAGE_INJ = prove
 (`!P f s. (!t. t SUBSET IMAGE f s ==> P t) <=>
           (!t. t SUBSET s /\
                (!x y. x IN t /\ y IN t ==> (f x = f y <=> x = y))
                 ==> P(IMAGE f t))`,
  REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[MESON[] `(!t. p t) <=> ~(?t. ~p t)`] THEN
  REWRITE_TAC[NOT_IMP; EXISTS_SUBSET_IMAGE_INJ; GSYM CONJ_ASSOC]);;

let EXISTS_FINITE_SUBSET_IMAGE_INJ = prove
 (`!P f s.
    (?t. FINITE t /\ t SUBSET IMAGE f s /\ P t) <=>
    (?t. FINITE t /\ t SUBSET s /\
         (!x y. x IN t /\ y IN t ==> (f x = f y <=> x = y)) /\
         P (IMAGE f t))`,
  ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN
  REPEAT GEN_TAC THEN REWRITE_TAC[EXISTS_SUBSET_IMAGE_INJ] THEN
  AP_TERM_TAC THEN ABS_TAC THEN MESON_TAC[FINITE_IMAGE_INJ_EQ]);;

let FORALL_FINITE_SUBSET_IMAGE_INJ = prove
 (`!P f s. (!t. FINITE t /\ t SUBSET IMAGE f s ==> P t) <=>
           (!t. FINITE t /\ t SUBSET s /\
                (!x y. x IN t /\ y IN t ==> (f x = f y <=> x = y))
                 ==> P(IMAGE f t))`,
  REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[MESON[] `(!t. p t) <=> ~(?t. ~p t)`] THEN
  REWRITE_TAC[NOT_IMP; EXISTS_FINITE_SUBSET_IMAGE_INJ; GSYM CONJ_ASSOC]);;

let EXISTS_FINITE_SUBSET_IMAGE = prove
 (`!P f s.
    (?t. FINITE t /\ t SUBSET IMAGE f s /\ P t) <=>
    (?t. FINITE t /\ t SUBSET s /\ P (IMAGE f t))`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE_INJ] THEN MESON_TAC[];
    MESON_TAC[FINITE_IMAGE; IMAGE_SUBSET]]);;

let FORALL_FINITE_SUBSET_IMAGE = prove
 (`!P f s. (!t. FINITE t /\ t SUBSET IMAGE f s ==> P t) <=>
           (!t. FINITE t /\ t SUBSET s ==> P(IMAGE f t))`,
  REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[MESON[] `(!x. P x) <=> ~(?x. ~P x)`] THEN
  REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; EXISTS_FINITE_SUBSET_IMAGE]);;

let FINITE_SUBSET_IMAGE = prove
 (`!f:A->B s t.
        FINITE(t) /\ t SUBSET (IMAGE f s) <=>
        ?s'. FINITE s' /\ s' SUBSET s /\ (t = IMAGE f s')`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [ALL_TAC; ASM_MESON_TAC[FINITE_IMAGE; IMAGE_SUBSET]] THEN
  SPEC_TAC(`t:B->bool`,`t:B->bool`) THEN
  REWRITE_TAC[FORALL_FINITE_SUBSET_IMAGE] THEN MESON_TAC[]);;

let FINITE_SUBSET_IMAGE_IMP = prove
 (`!f:A->B s t.
        FINITE(t) /\ t SUBSET (IMAGE f s)
        ==> ?s'. FINITE s' /\ s' SUBSET s /\ t SUBSET (IMAGE f s')`,
  MESON_TAC[SUBSET_REFL; FINITE_SUBSET_IMAGE]);;

let FINITE_DIFF = prove
 (`!s t. FINITE s ==> FINITE(s DIFF t)`,
  MESON_TAC[FINITE_SUBSET; SUBSET_DIFF]);;

let INFINITE_SUPERSET = prove
 (`!s t. INFINITE s /\ s SUBSET t ==> INFINITE t`,
  REWRITE_TAC[INFINITE] THEN MESON_TAC[FINITE_SUBSET]);;

let FINITE_TRANSITIVITY_CHAIN = prove
 (`!R s:A->bool.
        FINITE s /\
        (!x. ~(R x x)) /\
        (!x y z. R x y /\ R y z ==> R x z) /\
        (!x. x IN s ==> ?y. y IN s /\ R x y)
        ==> s = {}`,
  GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[NOT_IN_EMPTY] THEN
  SET_TAC[]);;

let UNIONS_MAXIMAL_SETS = prove
 (`!f. FINITE f
       ==> UNIONS {t:A->bool | t IN f /\ !u. u IN f ==> ~(t PSUBSET u)} =
           UNIONS f`,
  SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET_UNIONS; SUBSET_RESTRICT] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC UNIONS_MONO THEN
  X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN
  GEN_REWRITE_TAC I [TAUT `p <=> ~ ~ p`] THEN DISCH_TAC THEN
  MP_TAC(ISPECL [`\t u:A->bool. s SUBSET t /\ t PSUBSET u`;
    `{t:A->bool | t IN f /\ s SUBSET t}`]FINITE_TRANSITIVITY_CHAIN) THEN
  ASM_SIMP_TAC[NOT_IMP; FINITE_RESTRICT; FORALL_IN_GSPEC; EXISTS_IN_GSPEC] THEN
  REPEAT CONJ_TAC THENL [SET_TAC[]; SET_TAC[]; ALL_TAC; ASM SET_TAC[]] THEN
  ASM_MESON_TAC[PSUBSET_TRANS; SUBSET_PSUBSET_TRANS; PSUBSET]);;

let FINITE_SUBSET_UNIONS = prove
 (`!f s:A->bool.
        FINITE s /\ s SUBSET UNIONS f
        ==> ?f'. FINITE f' /\ f' SUBSET f /\ s SUBSET UNIONS f'`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
  GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
   [IN_UNIONS; RIGHT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `u:A->A->bool` THEN DISCH_TAC THEN
  EXISTS_TAC `IMAGE (u:A->A->bool) s` THEN
  ASM_SIMP_TAC[FINITE_IMAGE; UNIONS_IMAGE] THEN ASM SET_TAC[]);;

let UNIONS_IN_CHAIN = prove
 (`!f:(A->bool)->bool.
        FINITE f /\ ~(f = {}) /\
        (!s t. s IN f /\ t IN f ==> s SUBSET t \/ t SUBSET s)
        ==> UNIONS f IN f`,
  REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_IN_INSERT; UNIONS_INSERT] THEN
  REWRITE_TAC[FORALL_AND_THM; TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`;
              NOT_INSERT_EMPTY] THEN
  MAP_EVERY X_GEN_TAC [`s:A->bool`; `f:(A->bool)->bool`] THEN
  ASM_CASES_TAC `f:(A->bool)->bool = {}` THEN
  ASM_REWRITE_TAC[UNIONS_0; IN_INSERT; UNION_EMPTY] THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[]
   `s UNION t = s \/ s UNION t = t
    ==> t IN f ==> s UNION t = s \/ s UNION t IN f`) THEN
  ASM SET_TAC[]);;

let INTERS_IN_CHAIN = prove
 (`!f:(A->bool)->bool.
        FINITE f /\ ~(f = {}) /\
        (!s t. s IN f /\ t IN f ==> s SUBSET t \/ t SUBSET s)
        ==> INTERS f IN f`,
  REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_IN_INSERT; INTERS_INSERT] THEN
  REWRITE_TAC[FORALL_AND_THM; TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`;
              NOT_INSERT_EMPTY] THEN
  MAP_EVERY X_GEN_TAC [`s:A->bool`; `f:(A->bool)->bool`] THEN
  ASM_CASES_TAC `f:(A->bool)->bool = {}` THEN
  ASM_REWRITE_TAC[INTERS_0; IN_INSERT; INTER_UNIV] THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[]
   `s INTER t = s \/ s INTER t = t
    ==> t IN f ==> s INTER t = s \/ s INTER t IN f`) THEN
  ASM SET_TAC[]);;

let FINITE_SUBSET_UNIONS_CHAIN = prove
 (`!f s:A->bool.
        FINITE s /\ s SUBSET UNIONS f /\ ~(f = {}) /\
        (!t u. t IN f /\ u IN f ==> t SUBSET u \/ u SUBSET t)
        ==> ?t. t IN f /\ s SUBSET t`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`f:(A->bool)->bool`; `s:A->bool`]
        FINITE_SUBSET_UNIONS) THEN
  ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `t:(A->bool)->bool` THEN
  ASM_CASES_TAC `t:(A->bool)->bool = {}` THENL
   [ASM_SIMP_TAC[UNIONS_0] THEN ASM SET_TAC[]; STRIP_TAC] THEN
  EXISTS_TAC `UNIONS t:A->bool` THEN
  ASM_REWRITE_TAC[] THEN
  FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN
  MATCH_MP_TAC UNIONS_IN_CHAIN THEN ASM SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Recursion over finite sets; based on Ching-Tsun's code (archive 713).     *)
(* ------------------------------------------------------------------------- *)

let FINREC = new_recursive_definition num_RECURSION
  `(FINREC (f:A->B->B) b s a 0 <=> (s = {}) /\ (a = b)) /\
   (FINREC (f:A->B->B) b s a (SUC n) <=>
                ?x c. x IN s /\
                      FINREC f b (s DELETE x) c n  /\
                      (a = f x c))`;;

let FINREC_1_LEMMA = prove
 (`!f b s a. FINREC f b s a (SUC 0) <=> ?x. (s = {x}) /\ (a = f x b)`,
  REWRITE_TAC[FINREC] THEN
  REPEAT GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN SET_TAC[]);;

let FINREC_SUC_LEMMA = prove
 (`!(f:A->B->B) b.
         (!x y s. ~(x = y) ==> (f x (f y s) = f y (f x s)))
         ==> !n s z.
                FINREC f b s z (SUC n)
                ==> !x. x IN s ==> ?w. FINREC f b (s DELETE x) w n /\
                                       (z = f x w)`,
  let lem = prove(`s DELETE (x:A) DELETE y = s DELETE y DELETE x`,SET_TAC[]) in
  REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THENL
   [REWRITE_TAC[FINREC_1_LEMMA] THEN REWRITE_TAC[FINREC] THEN
    REPEAT GEN_TAC THEN STRIP_TAC THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
    DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `b:B` THEN
    ASM_REWRITE_TAC[] THEN SET_TAC[];
    REPEAT GEN_TAC THEN
    GEN_REWRITE_TAC LAND_CONV [FINREC] THEN
    DISCH_THEN(X_CHOOSE_THEN `y:A` MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `c:B` STRIP_ASSUME_TAC) THEN
    X_GEN_TAC `x:A` THEN DISCH_TAC THEN
    ASM_CASES_TAC `x:A = y` THEN ASM_REWRITE_TAC[] THENL
     [EXISTS_TAC `c:B` THEN ASM_REWRITE_TAC[];
      UNDISCH_TAC `FINREC (f:A->B->B) b (s DELETE y) c (SUC n)` THEN
      DISCH_THEN(ANTE_RES_THEN (MP_TAC o SPEC `x:A`)) THEN
      ASM_REWRITE_TAC[IN_DELETE] THEN
      DISCH_THEN(X_CHOOSE_THEN `v:B` STRIP_ASSUME_TAC) THEN
      EXISTS_TAC `(f:A->B->B) y v` THEN ASM_REWRITE_TAC[FINREC] THEN
      CONJ_TAC THENL
       [MAP_EVERY EXISTS_TAC [`y:A`; `v:B`] THEN
        ONCE_REWRITE_TAC[lem] THEN ASM_REWRITE_TAC[IN_DELETE];
        FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]]]);;

let FINREC_UNIQUE_LEMMA = prove
 (`!(f:A->B->B) b.
         (!x y s. ~(x = y) ==> (f x (f y s) = f y (f x s)))
         ==> !n1 n2 s a1 a2.
                FINREC f b s a1 n1 /\ FINREC f b s a2 n2
                ==> (a1 = a2) /\ (n1 = n2)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  INDUCT_TAC THEN INDUCT_TAC THENL
   [REWRITE_TAC[FINREC] THEN MESON_TAC[NOT_IN_EMPTY];
    REWRITE_TAC[FINREC] THEN MESON_TAC[NOT_IN_EMPTY];
    REWRITE_TAC[FINREC] THEN MESON_TAC[NOT_IN_EMPTY];
    IMP_RES_THEN ASSUME_TAC FINREC_SUC_LEMMA THEN REPEAT GEN_TAC THEN
    DISCH_THEN(fun th -> MP_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN
    DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN ASSUME_TAC)) THEN
    REWRITE_TAC[FINREC] THEN STRIP_TAC THEN ASM_MESON_TAC[]]);;

let FINREC_EXISTS_LEMMA = prove
 (`!(f:A->B->B) b s. FINITE s ==> ?a n. FINREC f b s a n`,
  let lem = prove(`~(x IN s ) ==> ((x:A INSERT s) DELETE x = s)`,SET_TAC[]) in
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REPEAT STRIP_TAC THENL
   [MAP_EVERY EXISTS_TAC [`b:B`; `0`] THEN REWRITE_TAC[FINREC];
    MAP_EVERY EXISTS_TAC [`(f:A->B->B) x a`; `SUC n`] THEN
    REWRITE_TAC[FINREC] THEN MAP_EVERY EXISTS_TAC [`x:A`; `a:B`] THEN
    FIRST_ASSUM(fun th -> ASM_REWRITE_TAC[MATCH_MP lem th; IN_INSERT])]);;

let FINREC_FUN_LEMMA = prove
 (`!P (R:A->B->C->bool).
       (!s. P s ==> ?a n. R s a n) /\
       (!n1 n2 s a1 a2. R s a1 n1 /\ R s a2 n2 ==> (a1 = a2) /\ (n1 = n2))
       ==> ?f. !s a. P s ==> ((?n. R s a n) <=> (f s = a))`,
  REPEAT STRIP_TAC THEN EXISTS_TAC `\s:A. @a:B. ?n:C. R s a n` THEN
  REPEAT STRIP_TAC THEN BETA_TAC THEN EQ_TAC THENL
   [STRIP_TAC THEN MATCH_MP_TAC SELECT_UNIQUE THEN ASM_MESON_TAC[];
    DISCH_THEN(SUBST1_TAC o SYM) THEN CONV_TAC SELECT_CONV THEN
    ASM_MESON_TAC[]]);;

let FINREC_FUN = prove
 (`!(f:A->B->B) b.
        (!x y s. ~(x = y) ==> (f x (f y s) = f y (f x s)))
        ==> ?g. (g {} = b) /\
                !s x. FINITE s /\ x IN s
                      ==> (g s = f x (g (s DELETE x)))`,
  REPEAT STRIP_TAC THEN IMP_RES_THEN MP_TAC FINREC_UNIQUE_LEMMA THEN
  DISCH_THEN(MP_TAC o SPEC `b:B`) THEN DISCH_THEN
   (MP_TAC o CONJ (SPECL [`f:A->B->B`; `b:B`] FINREC_EXISTS_LEMMA)) THEN
  DISCH_THEN(MP_TAC o MATCH_MP FINREC_FUN_LEMMA) THEN
  DISCH_THEN(X_CHOOSE_TAC `g:(A->bool)->B`) THEN
  EXISTS_TAC `g:(A->bool)->B` THEN CONJ_TAC THENL
   [SUBGOAL_THEN `FINITE(EMPTY:A->bool)`
    (ANTE_RES_THEN (fun th -> GEN_REWRITE_TAC I [GSYM th])) THENL
     [REWRITE_TAC[FINITE_RULES];
      EXISTS_TAC `0` THEN REWRITE_TAC[FINREC]];
    REPEAT STRIP_TAC THEN
    ANTE_RES_THEN MP_TAC (ASSUME `FINITE(s:A->bool)`) THEN
    DISCH_THEN(ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM(MP_TAC o SPEC `(g:(A->bool)->B) s`) THEN
    REWRITE_TAC[] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    INDUCT_TAC THENL
     [ASM_REWRITE_TAC[FINREC] THEN DISCH_TAC THEN UNDISCH_TAC `x:A IN s` THEN
      ASM_REWRITE_TAC[NOT_IN_EMPTY];
      IMP_RES_THEN ASSUME_TAC FINREC_SUC_LEMMA THEN
      DISCH_THEN(ANTE_RES_THEN (MP_TAC o SPEC `x:A`)) THEN
      ASM_REWRITE_TAC[] THEN
      DISCH_THEN(X_CHOOSE_THEN `w:B` (CONJUNCTS_THEN ASSUME_TAC)) THEN
      SUBGOAL_THEN `(g (s DELETE x:A) = w:B)` SUBST1_TAC THENL
       [SUBGOAL_THEN `FINITE(s DELETE x:A)` MP_TAC THENL
         [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `s:A->bool` THEN
          ASM_REWRITE_TAC[] THEN SET_TAC[];
          DISCH_THEN(ANTE_RES_THEN (MP_TAC o GSYM)) THEN
          DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
          EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[]];
        ASM_REWRITE_TAC[]]]]);;

let SET_RECURSION_LEMMA = prove
 (`!(f:A->B->B) b.
        (!x y s. ~(x = y) ==> (f x (f y s) = f y (f x s)))
        ==> ?g. (g {} = b) /\
                !x s. FINITE s
                      ==> (g (x INSERT s) =
                                if x IN s then g s else f x (g s))`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(MP_TAC o SPEC `b:B` o MATCH_MP FINREC_FUN) THEN
  DISCH_THEN(X_CHOOSE_THEN `g:(A->bool)->B` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `g:(A->bool)->B` THEN ASM_REWRITE_TAC[] THEN
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  DISCH_TAC THENL
   [AP_TERM_TAC THEN REWRITE_TAC[GSYM ABSORPTION] THEN ASM_REWRITE_TAC[];
    SUBGOAL_THEN `FINITE(x:A INSERT s) /\ x IN (x INSERT s)` MP_TAC THENL
     [REWRITE_TAC[IN_INSERT] THEN ASM_MESON_TAC[FINITE_RULES];
      DISCH_THEN(ANTE_RES_THEN SUBST1_TAC) THEN
      REPEAT AP_TERM_TAC THEN UNDISCH_TAC `~(x:A IN s)` THEN SET_TAC[]]]);;

let ITSET = new_definition
  `ITSET f s b =
        (@g. (g {} = b) /\
             !x s. FINITE s
                   ==> (g (x INSERT s) = if x IN s then g s else f x (g s)))
        s`;;

let FINITE_RECURSION = prove
 (`!(f:A->B->B) b.
        (!x y s. ~(x = y) ==> (f x (f y s) = f y (f x s)))
        ==> (ITSET f {} b = b) /\
            !x s. FINITE s
                  ==> (ITSET f (x INSERT s) b =
                       if x IN s then ITSET f s b
                                 else f x (ITSET f s b))`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[ITSET] THEN
  CONV_TAC SELECT_CONV THEN MATCH_MP_TAC SET_RECURSION_LEMMA THEN
  ASM_REWRITE_TAC[]);;

let FINITE_RECURSION_DELETE = prove
 (`!(f:A->B->B) b.
        (!x y s. ~(x = y) ==> (f x (f y s) = f y (f x s)))
        ==> (ITSET f {} b = b) /\
            !x s. FINITE s
                  ==> (ITSET f s b =
                       if x IN s then f x (ITSET f (s DELETE x) b)
                                 else ITSET f (s DELETE x) b)`,
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP FINITE_RECURSION) THEN
  DISCH_THEN(STRIP_ASSUME_TAC o SPEC `b:B`) THEN ASM_REWRITE_TAC[] THEN
  REPEAT GEN_TAC THEN ASM_CASES_TAC `x:A IN s` THEN ASM_REWRITE_TAC[] THENL
   [DISCH_THEN(MP_TAC o MATCH_MP FINITE_DELETE_IMP) THEN
    DISCH_THEN(ANTE_RES_THEN MP_TAC o SPEC `x:A`) THEN
    DISCH_THEN(MP_TAC o SPEC `x:A`) THEN
    REWRITE_TAC[IN_DELETE] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN UNDISCH_TAC `x:A IN s` THEN SET_TAC[];
    DISCH_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    UNDISCH_TAC `~(x:A IN s)` THEN SET_TAC[]]);;

let ITSET_EQ = prove
 (`!s f g b. FINITE(s) /\ (!x. x IN s ==> (f x = g x)) /\
             (!x y s. ~(x = y) ==> (f x (f y s) = f y (f x s))) /\
             (!x y s. ~(x = y) ==> (g x (g y s) = g y (g x s)))
             ==> (ITSET f s b = ITSET g s b)`,
  ONCE_REWRITE_TAC[IMP_CONJ] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[FINITE_RECURSION; NOT_IN_EMPTY; IN_INSERT] THEN
  REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
  FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[RIGHT_IMP_FORALL_THM]) THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Cardinality.                                                              *)
(* ------------------------------------------------------------------------- *)

let CARD = new_definition
 `CARD s = ITSET (\x n. SUC n) s 0`;;

let CARD_CLAUSES = prove
 (`(CARD ({}:A->bool) = 0) /\
   (!(x:A) s. FINITE s ==>
                 (CARD (x INSERT s) =
                      if x IN s then CARD s else SUC(CARD s)))`,
  MP_TAC(ISPECL [`\(x:A) n. SUC n`; `0`] FINITE_RECURSION) THEN
  REWRITE_TAC[CARD]);;

let CARD_UNION = prove
 (`!(s:A->bool) t. FINITE(s) /\ FINITE(t) /\ (s INTER t = EMPTY)
         ==> (CARD (s UNION t) = CARD s + CARD t)`,
  REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> a ==> b /\ c ==> d`] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[UNION_EMPTY; CARD_CLAUSES; INTER_EMPTY; ADD_CLAUSES] THEN
  X_GEN_TAC `x:A` THEN X_GEN_TAC `s:A->bool` THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `(x:A INSERT s) UNION t = x INSERT (s UNION t)`
  SUBST1_TAC THENL [SET_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `FINITE ((s:A->bool) UNION t) /\ FINITE s`
  STRIP_ASSUME_TAC THENL
   [ASM_REWRITE_TAC[] THEN MATCH_MP_TAC FINITE_UNION_IMP THEN
    ASM_REWRITE_TAC[]; ALL_TAC] THEN
  MP_TAC(ISPECL [`x:A`; `s:A->bool`] (CONJUNCT2 CARD_CLAUSES)) THEN
  MP_TAC(ISPECL [`x:A`; `s:A->bool UNION t`] (CONJUNCT2 CARD_CLAUSES)) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `~(x:A IN (s UNION t))` ASSUME_TAC THENL
   [ASM_REWRITE_TAC[IN_UNION] THEN
    UNDISCH_TAC `(x:A INSERT s) INTER t = EMPTY` THEN
    REWRITE_TAC[EXTENSION; IN_INSERT; IN_INTER; NOT_IN_EMPTY] THEN
    MESON_TAC[];
    ASM_REWRITE_TAC[SUC_INJ; ADD_CLAUSES] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
    UNDISCH_TAC `x:A INSERT s INTER t = EMPTY` THEN SET_TAC[]]);;

let CARD_DELETE = prove
 (`!x:A s. FINITE(s)
           ==> (CARD(s DELETE x) = if x IN s then CARD(s) - 1 else CARD(s))`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
   [SUBGOAL_THEN `s = x:A INSERT (s DELETE x)`
     (fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [th])
    THENL [UNDISCH_TAC `x:A IN s` THEN SET_TAC[]; ALL_TAC] THEN
    ASM_SIMP_TAC[CARD_CLAUSES; FINITE_DELETE; IN_DELETE; SUC_SUB1];
    AP_TERM_TAC THEN UNDISCH_TAC `~(x:A IN s)` THEN SET_TAC[]]);;

let CARD_UNION_EQ = prove
 (`!s t u. FINITE u /\ (s INTER t = {}) /\ (s UNION t = u)
           ==> (CARD s + CARD t = CARD u)`,
  MESON_TAC[CARD_UNION; FINITE_SUBSET; SUBSET_UNION]);;

let CARD_DIFF = prove
 (`!s t. FINITE s /\ t SUBSET s ==> CARD(s DIFF t) = CARD s - CARD t`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(ARITH_RULE `a + b:num = c ==> a = c - b`) THEN
  MATCH_MP_TAC CARD_UNION_EQ THEN ASM_SIMP_TAC[] THEN ASM SET_TAC[]);;

let CARD_EQ_0 = prove
 (`!s. FINITE s ==> ((CARD s = 0) <=> (s = {}))`,
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[CARD_CLAUSES; NOT_INSERT_EMPTY; NOT_SUC]);;

let CARD_SING = prove
 (`!a:A. CARD {a} = 1`,
  SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY; NOT_IN_EMPTY; ARITH]);;

(* ------------------------------------------------------------------------- *)
(* A stronger still form of induction where we get to choose the element.    *)
(* ------------------------------------------------------------------------- *)

let FINITE_INDUCT_DELETE = prove
 (`!P. P {} /\
       (!s. FINITE s /\ ~(s = {}) ==> ?x. x IN s /\ (P(s DELETE x) ==> P s))
       ==> !s:A->bool. FINITE s ==> P s`,
  GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN WF_INDUCT_TAC `CARD(s:A->bool)` THEN
  ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  UNDISCH_TAC
   `!s. FINITE s /\ ~(s = {}) ==> ?x:A. x IN s /\ (P(s DELETE x) ==> P s)` THEN
  DISCH_THEN(MP_TAC o SPEC `s:A->bool`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `x:A` (CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC)) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `s DELETE (x:A)`) THEN
  ASM_SIMP_TAC[FINITE_DELETE; CARD_DELETE; CARD_EQ_0;
               ARITH_RULE `n - 1 < n <=> ~(n = 0)`]);;

(* ------------------------------------------------------------------------- *)
(* Relational form is often more useful.                                     *)
(* ------------------------------------------------------------------------- *)

let HAS_SIZE = new_definition
  `s HAS_SIZE n <=> FINITE s /\ (CARD s = n)`;;

let HAS_SIZE_CARD = prove
 (`!s n. s HAS_SIZE n ==> (CARD s = n)`,
  SIMP_TAC[HAS_SIZE]);;

let HAS_SIZE_0 = prove
 (`!(s:A->bool). s HAS_SIZE 0 <=> (s = {})`,
  REPEAT GEN_TAC THEN REWRITE_TAC[HAS_SIZE] THEN
  EQ_TAC THEN DISCH_TAC THEN
  ASM_REWRITE_TAC[FINITE_RULES; CARD_CLAUSES] THEN
  FIRST_ASSUM(MP_TAC o CONJUNCT2) THEN
  FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN
  SPEC_TAC(`s:A->bool`,`s:A->bool`) THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[NOT_INSERT_EMPTY] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP (CONJUNCT2 CARD_CLAUSES) th]) THEN
  ASM_REWRITE_TAC[NOT_SUC]);;

let HAS_SIZE_SUC = prove
 (`!(s:A->bool) n. s HAS_SIZE (SUC n) <=>
                   ~(s = {}) /\ !a. a IN s ==> (s DELETE a) HAS_SIZE n`,
  REPEAT GEN_TAC THEN REWRITE_TAC[HAS_SIZE] THEN
  ASM_CASES_TAC `s:A->bool = {}` THEN
  ASM_REWRITE_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; NOT_SUC] THEN
  REWRITE_TAC[FINITE_DELETE] THEN
  ASM_CASES_TAC `FINITE(s:A->bool)` THEN
  ASM_REWRITE_TAC[NOT_FORALL_THM; MEMBER_NOT_EMPTY] THEN
  EQ_TAC THEN REPEAT STRIP_TAC THENL
   [MP_TAC(ISPECL [`a:A`; `s DELETE a:A`] (CONJUNCT2 CARD_CLAUSES)) THEN
    ASM_REWRITE_TAC[FINITE_DELETE; IN_DELETE] THEN
    SUBGOAL_THEN `a INSERT (s DELETE a:A) = s` SUBST1_TAC THENL
     [UNDISCH_TAC `a:A IN s` THEN SET_TAC[];
      ASM_REWRITE_TAC[SUC_INJ] THEN MESON_TAC[]];
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
    DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN
    MP_TAC(ISPECL [`a:A`; `s DELETE a:A`] (CONJUNCT2 CARD_CLAUSES)) THEN
    ASM_REWRITE_TAC[FINITE_DELETE; IN_DELETE] THEN
    SUBGOAL_THEN `a INSERT (s DELETE a:A) = s` SUBST1_TAC THENL
     [UNDISCH_TAC `a:A IN s` THEN SET_TAC[];
      ASM_MESON_TAC[]]]);;

let HAS_SIZE_UNION = prove
 (`!s t m n. s HAS_SIZE m /\ t HAS_SIZE n /\ DISJOINT s t
             ==> (s UNION t) HAS_SIZE (m + n)`,
  SIMP_TAC[HAS_SIZE; FINITE_UNION; DISJOINT; CARD_UNION]);;

let HAS_SIZE_DIFF = prove
 (`!s t m n. s HAS_SIZE m /\ t HAS_SIZE n /\ t SUBSET s
             ==> (s DIFF t) HAS_SIZE (m - n)`,
  SIMP_TAC[HAS_SIZE; FINITE_DIFF; CARD_DIFF]);;

let HAS_SIZE_UNIONS = prove
 (`!s t:A->B->bool m n.
        s HAS_SIZE m /\
        (!x. x IN s ==> t(x) HAS_SIZE n) /\
        (!x y. x IN s /\ y IN s /\ ~(x = y) ==> DISJOINT (t x) (t y))
        ==> UNIONS {t(x) | x IN s} HAS_SIZE (m * n)`,
  GEN_REWRITE_TAC (funpow 4 BINDER_CONV o funpow 2 LAND_CONV) [HAS_SIZE] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC] THEN
  ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
   [REPEAT GEN_TAC THEN REWRITE_TAC[CARD_CLAUSES] THEN
    DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) (K ALL_TAC)) THEN
    REWRITE_TAC[MULT_CLAUSES; HAS_SIZE_0; EMPTY_UNIONS] THEN
    REWRITE_TAC[IN_ELIM_THM; NOT_IN_EMPTY];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`x:A`; `s:A->bool`] THEN STRIP_TAC THEN
  MAP_EVERY X_GEN_TAC [`t:A->B->bool`; `m:num`; `n:num`] THEN
  ASM_SIMP_TAC[CARD_CLAUSES] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) STRIP_ASSUME_TAC) THEN
  REWRITE_TAC[SET_RULE
   `UNIONS {t y | y IN x INSERT s} = t x UNION UNIONS {t y | y IN s}`] THEN
  REWRITE_TAC[ARITH_RULE `SUC a * b = b + a * b`] THEN
  MATCH_MP_TAC HAS_SIZE_UNION THEN ASM_SIMP_TAC[IN_INSERT] THEN
  REWRITE_TAC[SET_RULE
   `DISJOINT a (UNIONS s) <=> !x. x IN s ==> DISJOINT a x`] THEN
  ASM_SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
  ASM_MESON_TAC[IN_INSERT]);;

let FINITE_HAS_SIZE = prove
 (`!s. FINITE s <=> s HAS_SIZE CARD s`,
  REWRITE_TAC[HAS_SIZE]);;

(* ------------------------------------------------------------------------- *)
(* This is often more useful as a rewrite.                                   *)
(* ------------------------------------------------------------------------- *)

let HAS_SIZE_CLAUSES = prove
 (`(s HAS_SIZE 0 <=> (s = {})) /\
   (s HAS_SIZE (SUC n) <=>
        ?a t. t HAS_SIZE n /\ ~(a IN t) /\ (s = a INSERT t))`,
  let lemma = SET_RULE `a IN s ==> (s = a INSERT (s DELETE a))` in
  REWRITE_TAC[HAS_SIZE_0] THEN REPEAT STRIP_TAC THEN EQ_TAC THENL
   [REWRITE_TAC[HAS_SIZE_SUC; GSYM MEMBER_NOT_EMPTY] THEN
    MESON_TAC[lemma; IN_DELETE];
    SIMP_TAC[LEFT_IMP_EXISTS_THM; HAS_SIZE; CARD_CLAUSES; FINITE_INSERT]]);;

(* ------------------------------------------------------------------------- *)
(* Produce an explicit expansion for "s HAS_SIZE n" for numeral n.           *)
(* ------------------------------------------------------------------------- *)

let HAS_SIZE_CONV =
  let pth = prove
   (`(~(a IN {}) /\ P <=> P) /\
     (~(a IN {b}) /\ P <=> ~(a = b) /\ P) /\
     (~(a IN (b INSERT cs)) /\ P <=> ~(a = b) /\ ~(a IN cs) /\ P)`,
    SET_TAC[])
  and qth = prove
   (`((?s. s HAS_SIZE 0 /\ P s) <=> P {}) /\
     ((?s. s HAS_SIZE (SUC n) /\ P s) <=>
      (?a s. s HAS_SIZE n /\ ~(a IN s) /\ P(a INSERT s)))`,
    REWRITE_TAC[HAS_SIZE_CLAUSES] THEN MESON_TAC[]) in
  let qconv_0 = GEN_REWRITE_CONV I [CONJUNCT1 qth]
  and qconv_1 = GEN_REWRITE_CONV I [CONJUNCT2 qth]
  and rconv_0 = GEN_REWRITE_CONV I [CONJUNCT1 pth]
  and rconv_1 = GEN_REWRITE_CONV I [CONJUNCT2 pth] in
  let rec EXISTS_HAS_SIZE_AND_CONV tm =
   (qconv_0 ORELSEC
    (BINDER_CONV(LAND_CONV(RAND_CONV num_CONV)) THENC
     qconv_1 THENC
     BINDER_CONV EXISTS_HAS_SIZE_AND_CONV)) tm in
  let rec NOT_IN_INSERT_CONV tm =
   ((rconv_0 THENC NOT_IN_INSERT_CONV) ORELSEC
    (rconv_1 THENC RAND_CONV NOT_IN_INSERT_CONV) ORELSEC
    ALL_CONV) tm in
  let HAS_SIZE_CONV =
    GEN_REWRITE_CONV I [CONJUNCT1 HAS_SIZE_CLAUSES] ORELSEC
    (RAND_CONV num_CONV THENC
     GEN_REWRITE_CONV I [CONJUNCT2 HAS_SIZE_CLAUSES] THENC
     BINDER_CONV EXISTS_HAS_SIZE_AND_CONV) in
  fun tm ->
    let th = HAS_SIZE_CONV tm in
    let tm' = rand(concl th) in
    let evs,bod = strip_exists tm' in
    if evs = [] then th else
    let th' = funpow (length evs) BINDER_CONV NOT_IN_INSERT_CONV tm' in
    TRANS th th';;

(* ------------------------------------------------------------------------- *)
(* Various useful lemmas about cardinalities of unions etc.                  *)
(* ------------------------------------------------------------------------- *)

let CARD_SUBSET_EQ = prove
 (`!(a:A->bool) b. FINITE b /\ a SUBSET b /\ (CARD a = CARD b) ==> (a = b)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`a:A->bool`; `b DIFF (a:A->bool)`] CARD_UNION) THEN
  SUBGOAL_THEN `FINITE(a:A->bool)` ASSUME_TAC THENL
   [ASM_MESON_TAC[FINITE_SUBSET]; ALL_TAC] THEN
  SUBGOAL_THEN `FINITE(b:A->bool DIFF a)` ASSUME_TAC THENL
   [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `b:A->bool` THEN
    ASM_REWRITE_TAC[] THEN SET_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `a:A->bool INTER (b DIFF a) = EMPTY` ASSUME_TAC THENL
   [SET_TAC[]; ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `a UNION (b:A->bool DIFF a) = b` ASSUME_TAC THENL
   [UNDISCH_TAC `a:A->bool SUBSET b` THEN SET_TAC[]; ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[ARITH_RULE `(a = a + b) <=> (b = 0)`] THEN DISCH_TAC THEN
  SUBGOAL_THEN `b:A->bool DIFF a = EMPTY` MP_TAC THENL
   [REWRITE_TAC[GSYM HAS_SIZE_0] THEN
    ASM_REWRITE_TAC[HAS_SIZE];
    UNDISCH_TAC `a:A->bool SUBSET b` THEN SET_TAC[]]);;

let CARD_SUBSET = prove
 (`!(a:A->bool) b. a SUBSET b /\ FINITE(b) ==> CARD(a) <= CARD(b)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `b:A->bool = a UNION (b DIFF a)` SUBST1_TAC THENL
   [UNDISCH_TAC `a:A->bool SUBSET b` THEN SET_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN
   `CARD (a UNION b DIFF a) = CARD(a:A->bool) + CARD(b DIFF a)`
  SUBST1_TAC THENL
   [MATCH_MP_TAC CARD_UNION THEN REPEAT CONJ_TAC THENL
     [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `b:A->bool` THEN
      ASM_REWRITE_TAC[];
      MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `b:A->bool` THEN
      ASM_REWRITE_TAC[] THEN SET_TAC[];
      SET_TAC[]];
    ARITH_TAC]);;

let CARD_SUBSET_LE = prove
 (`!(a:A->bool) b. FINITE b /\ a SUBSET b /\ (CARD b <= CARD a) ==> (a = b)`,
  MESON_TAC[CARD_SUBSET; CARD_SUBSET_EQ; LE_ANTISYM]);;

let SUBSET_CARD_EQ = prove
 (`!s t. FINITE t /\ s SUBSET t ==> (CARD s = CARD t <=> s = t)`,
  MESON_TAC[CARD_SUBSET_EQ; LE_ANTISYM; CARD_SUBSET]);;

let CARD_PSUBSET = prove
 (`!(a:A->bool) b. a PSUBSET b /\ FINITE(b) ==> CARD(a) < CARD(b)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[SET_RULE
   `a PSUBSET b <=> ?x. x IN b /\ ~(x IN a) /\ a SUBSET (b DELETE x)` ] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN
  MATCH_MP_TAC LET_TRANS THEN EXISTS_TAC `CARD(b DELETE (x:A))` THEN
  ASM_SIMP_TAC[CARD_SUBSET; FINITE_DELETE] THEN
  ASM_SIMP_TAC[CARD_DELETE; ARITH_RULE `n - 1 < n <=> ~(n = 0)`] THEN
  ASM_MESON_TAC[CARD_EQ_0; MEMBER_NOT_EMPTY]);;

let CARD_UNION_LE = prove
 (`!s t:A->bool.
        FINITE s /\ FINITE t ==> CARD(s UNION t) <= CARD(s) + CARD(t)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC LE_TRANS THEN
  EXISTS_TAC `CARD(s:A->bool) + CARD(t DIFF s)` THEN
  ASM_SIMP_TAC[LE_ADD_LCANCEL; CARD_SUBSET; SUBSET_DIFF; FINITE_DIFF] THEN
  MATCH_MP_TAC EQ_IMP_LE THEN
  ONCE_REWRITE_TAC[SET_RULE `s UNION t = s UNION (t DIFF s)`] THEN
  MATCH_MP_TAC CARD_UNION THEN ASM_SIMP_TAC[FINITE_DIFF] THEN SET_TAC[]);;

let CARD_UNIONS_LE = prove
 (`!s t:A->B->bool m n.
        s HAS_SIZE m /\ (!x. x IN s ==> FINITE(t x) /\ CARD(t x) <= n)
        ==> CARD(UNIONS {t(x) | x IN s}) <= m * n`,
  GEN_REWRITE_TAC (funpow 4 BINDER_CONV o funpow 2 LAND_CONV) [HAS_SIZE] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC] THEN
  ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THEN
  REWRITE_TAC[SET_RULE `UNIONS {t x | x IN {}} = {}`; CARD_CLAUSES; LE_0] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN
  ASM_SIMP_TAC[CARD_CLAUSES; FINITE_RULES] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THEN
  REWRITE_TAC[SET_RULE
   `UNIONS {t x | x IN a INSERT s} = t(a) UNION UNIONS {t x | x IN s}`] THEN
  MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC
   `CARD((t:A->B->bool) x) + CARD(UNIONS {(t:A->B->bool) y | y IN s})` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC CARD_UNION_LE THEN ASM_SIMP_TAC[IN_INSERT] THEN
    REWRITE_TAC[SET_RULE `{t x | x IN s} = IMAGE t s`] THEN
    ASM_SIMP_TAC[FINITE_FINITE_UNIONS; FINITE_IMAGE; FORALL_IN_IMAGE;
                 IN_INSERT];
    MATCH_MP_TAC(ARITH_RULE `a <= n /\ b <= x * n ==> a + b <= SUC x * n`) THEN
    ASM_SIMP_TAC[IN_INSERT]]);;

let CARD_UNION_GEN = prove
 (`!s t. FINITE s /\ FINITE t
         ==> CARD(s UNION t) = (CARD(s) + CARD(t)) - CARD(s INTER t)`,
  REPEAT STRIP_TAC THEN
  ONCE_REWRITE_TAC[SET_RULE `s UNION t = s UNION (t DIFF s)`] THEN
  ASM_SIMP_TAC[ARITH_RULE `x:num <= y ==> (a + y) - x = a + (y - x)`;
               CARD_SUBSET; INTER_SUBSET; GSYM CARD_DIFF] THEN
  REWRITE_TAC[SET_RULE `t DIFF (s INTER t) = t DIFF s`] THEN
  MATCH_MP_TAC CARD_UNION THEN ASM_SIMP_TAC[FINITE_DIFF] THEN SET_TAC[]);;

let CARD_UNION_OVERLAP_EQ = prove
 (`!s t. FINITE s /\ FINITE t
         ==> (CARD(s UNION t) = CARD s + CARD t <=> s INTER t = {})`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  ASM_SIMP_TAC[CARD_UNION_GEN] THEN
  REWRITE_TAC[ARITH_RULE `a - b = a <=> b = 0 \/ a = 0`] THEN
  ASM_SIMP_TAC[ADD_EQ_0; CARD_EQ_0; FINITE_INTER] THEN SET_TAC[]);;

let CARD_UNION_OVERLAP = prove
 (`!s t. FINITE s /\ FINITE t /\ CARD(s UNION t) < CARD(s) + CARD(t)
         ==> ~(s INTER t = {})`,
  SIMP_TAC[GSYM CARD_UNION_OVERLAP_EQ] THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Cardinality of image under maps, injective or general.                    *)
(* ------------------------------------------------------------------------- *)

let CARD_IMAGE_INJ = prove
 (`!(f:A->B) s. (!x y. x IN s /\ y IN s /\ (f(x) = f(y)) ==> (x = y)) /\
                FINITE s ==> (CARD (IMAGE f s) = CARD s)`,
  GEN_TAC THEN
  REWRITE_TAC[TAUT `a /\ b ==> c <=> b ==> a ==> c`] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[NOT_IN_EMPTY; IMAGE_CLAUSES] THEN
  REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[CARD_CLAUSES; FINITE_IMAGE; IN_IMAGE] THEN
  COND_CASES_TAC THEN ASM_MESON_TAC[IN_INSERT]);;

let HAS_SIZE_IMAGE_INJ = prove
 (`!(f:A->B) s n.
        (!x y. x IN s /\ y IN s /\ (f(x) = f(y)) ==> (x = y)) /\ s HAS_SIZE n
        ==> (IMAGE f s) HAS_SIZE n`,
  SIMP_TAC[HAS_SIZE; FINITE_IMAGE] THEN MESON_TAC[CARD_IMAGE_INJ]);;

let CARD_IMAGE_LE = prove
 (`!(f:A->B) s. FINITE s ==> CARD(IMAGE f s) <= CARD s`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[IMAGE_CLAUSES; CARD_CLAUSES; FINITE_IMAGE; LE_REFL] THEN
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  DISCH_THEN(MP_TAC o CONJUNCT1) THEN ARITH_TAC);;

let CARD_IMAGE_INJ_EQ = prove
 (`!f:A->B s t.
        FINITE s /\
        (!x. x IN s ==> f(x) IN t) /\
        (!y. y IN t ==> ?!x. x IN s /\ f(x) = y)
        ==> CARD t = CARD s`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `t = IMAGE (f:A->B) s` SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ASM_MESON_TAC[];
    MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_MESON_TAC[]]);;

let CARD_SUBSET_IMAGE = prove
 (`!f s t. FINITE t /\ s SUBSET IMAGE f t ==> CARD s <= CARD t`,
  MESON_TAC[LE_TRANS; FINITE_IMAGE; CARD_IMAGE_LE; CARD_SUBSET]);;

let HAS_SIZE_IMAGE_INJ_EQ = prove
 (`!f s n.
        (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
        ==> ((IMAGE f s) HAS_SIZE n <=> s HAS_SIZE n)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[HAS_SIZE] THEN
  MATCH_MP_TAC(TAUT
   `(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC FINITE_IMAGE_INJ_EQ;
    DISCH_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    MATCH_MP_TAC CARD_IMAGE_INJ] THEN
  ASM_REWRITE_TAC[]);;

let CARD_IMAGE_EQ_INJ = prove
 (`!f:A->B s.
        FINITE s
        ==> (CARD(IMAGE f s) = CARD s <=>
             !x y. x IN s /\ y IN s /\ f x = f y ==> x = y)`,
  REPEAT STRIP_TAC THEN EQ_TAC THENL
   [DISCH_TAC; ASM_MESON_TAC[CARD_IMAGE_INJ]] THEN
  MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN
  ASM_CASES_TAC `x:A = y` THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC `CARD(IMAGE (f:A->B) s) = CARD s` THEN
  SUBGOAL_THEN `IMAGE  (f:A->B) s = IMAGE f (s DELETE y)` SUBST1_TAC THENL
   [ASM SET_TAC[]; REWRITE_TAC[]] THEN
  MATCH_MP_TAC(ARITH_RULE `!n. m <= n /\ n < p ==> ~(m:num = p)`) THEN
  EXISTS_TAC `CARD(s DELETE (y:A))` THEN
  ASM_SIMP_TAC[CARD_IMAGE_LE; FINITE_DELETE] THEN
  ASM_SIMP_TAC[CARD_DELETE; CARD_EQ_0;
               ARITH_RULE `n - 1 < n <=> ~(n = 0)`] THEN
  ASM SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Choosing a smaller subset of a given size.                                *)
(* ------------------------------------------------------------------------- *)

let CHOOSE_SUBSET_STRONG = prove
 (`!n s:A->bool.
        (FINITE s ==> n <= CARD s) ==> ?t. t SUBSET s /\ t HAS_SIZE n`,
  INDUCT_TAC THEN REWRITE_TAC[HAS_SIZE_0; HAS_SIZE_SUC] THENL
   [MESON_TAC[EMPTY_SUBSET]; ALL_TAC] THEN
  MATCH_MP_TAC SET_PROVE_CASES THEN
  REWRITE_TAC[FINITE_EMPTY; CARD_CLAUSES; ARITH_RULE `~(SUC n <= 0)`] THEN
  MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN DISCH_TAC THEN
  ASM_SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; LE_SUC] THEN DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `(a:A) INSERT t` THEN
  REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN
  ASM_SIMP_TAC[HAS_SIZE; CARD_DELETE; FINITE_INSERT; FINITE_DELETE;
               CARD_CLAUSES] THEN
  GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[SUC_SUB1] THEN
  ASM SET_TAC[]);;

let CHOOSE_SUBSET_EQ = prove
 (`!n s:A->bool.
     (FINITE s ==> n <= CARD s) <=> (?t. t SUBSET s /\ t HAS_SIZE n)`,
  REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[CHOOSE_SUBSET_STRONG] THEN
  DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN DISCH_TAC THEN
  TRANS_TAC LE_TRANS `CARD(t:A->bool)` THEN
  ASM_MESON_TAC[CARD_SUBSET; HAS_SIZE; LE_REFL]);;

let CHOOSE_SUBSET = prove
 (`!s:A->bool. FINITE s ==> !n. n <= CARD s ==> ?t. t SUBSET s /\ t HAS_SIZE n`,
  MESON_TAC[CHOOSE_SUBSET_STRONG]);;

let CHOOSE_SUBSET_BETWEEN = prove
 (`!n s u:A->bool.
        s SUBSET u /\ FINITE s /\ CARD s <= n /\ (FINITE u ==> n <= CARD u)
        ==> ?t. s SUBSET t /\ t SUBSET u /\ t HAS_SIZE n`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`n - CARD(s:A->bool)`; `u DIFF s:A->bool`]
        CHOOSE_SUBSET_STRONG) THEN
  ANTS_TAC THENL
   [ASM_CASES_TAC `FINITE(u:A->bool)` THEN
    ASM_SIMP_TAC[CARD_DIFF; ARITH_RULE `n:num <= m ==> n - x <= m - x`] THEN
    MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN
    ASM_MESON_TAC[FINITE_UNION; FINITE_SUBSET; SET_RULE
     `u SUBSET (u DIFF s) UNION s`];
    DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `s UNION t:A->bool` THEN
    REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN
    SUBGOAL_THEN `n:num = CARD(s) + (n - CARD(s:A->bool))` SUBST1_TAC THENL
     [ASM_ARITH_TAC;
      MATCH_MP_TAC HAS_SIZE_UNION] THEN
      ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[HAS_SIZE] THEN ASM SET_TAC[]]);;

let CARD_LE_UNIONS_CHAIN = prove
 (`!(f:(A->bool)->bool) n.
        (!t u. t IN f /\ u IN f ==> t SUBSET u \/ u SUBSET t) /\
        (!t. t IN f ==> FINITE t /\ CARD t <= n)
        ==> FINITE(UNIONS f) /\ CARD(UNIONS f) <= n`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `f:(A->bool)->bool = {}` THEN
  ASM_REWRITE_TAC[UNIONS_0; FINITE_EMPTY; CARD_CLAUSES; LE_0] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN
  REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; TAUT `~(p /\ q) <=> p ==> ~q`] THEN
  REWRITE_TAC[ARITH_RULE `~(x <= n) <=> SUC n <= x`] THEN
  REWRITE_TAC[CHOOSE_SUBSET_EQ] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `s:A->bool` THEN
  REWRITE_TAC[HAS_SIZE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC FINITE_SUBSET_UNIONS_CHAIN THEN
  ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Cardinality of product.                                                   *)
(* ------------------------------------------------------------------------- *)

let HAS_SIZE_PRODUCT_DEPENDENT = prove
 (`!s m t n.
         s HAS_SIZE m /\ (!x. x IN s ==> t(x) HAS_SIZE n)
         ==> {(x:A,y:B) | x IN s /\ y IN t(x)} HAS_SIZE (m * n)`,
  GEN_REWRITE_TAC (funpow 4 BINDER_CONV o funpow 2 LAND_CONV) [HAS_SIZE] THEN
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[CARD_CLAUSES; NOT_IN_EMPTY; IN_INSERT] THEN CONJ_TAC THENL
   [GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
    REWRITE_TAC[MULT_CLAUSES; HAS_SIZE_0] THEN SET_TAC[];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`x:A`; `s:A->bool`] THEN STRIP_TAC THEN
  X_GEN_TAC `m:num` THEN DISCH_THEN(ASSUME_TAC o SYM) THEN
  MAP_EVERY X_GEN_TAC [`t:A->B->bool`; `n:num`] THEN
  REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
  SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
  STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `CARD(s:A->bool)`) THEN
  ASM_REWRITE_TAC[MULT_CLAUSES] THEN DISCH_TAC THEN
  REWRITE_TAC[SET_RULE
    `{(x,y) | (x = a \/ x IN s) /\ y IN t(x)} =
     {(x,y) | x IN s /\ y IN t(x)} UNION
     IMAGE (\y. (a,y)) (t a)`] THEN
  MATCH_MP_TAC HAS_SIZE_UNION THEN
  ASM_SIMP_TAC[HAS_SIZE_IMAGE_INJ; PAIR_EQ] THEN
  REWRITE_TAC[DISJOINT; IN_IMAGE; IN_ELIM_THM; IN_INTER; EXTENSION;
              NOT_IN_EMPTY; EXISTS_PAIR_THM; PAIR_EQ] THEN
  REPEAT STRIP_TAC THEN ASM_MESON_TAC[PAIR_EQ]);;

let FINITE_PRODUCT_DEPENDENT = prove
 (`!f:A->B->C s t.
        FINITE s /\ (!x. x IN s ==> FINITE(t x))
        ==> FINITE {f x y | x IN s /\ y IN (t x)}`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `IMAGE (\(x,y). (f:A->B->C) x y) {x,y | x IN s /\ y IN t x}` THEN
  REWRITE_TAC[SUBSET; IN_IMAGE; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN
  REWRITE_TAC[FORALL_IN_GSPEC] THEN
  CONJ_TAC THENL [MATCH_MP_TAC FINITE_IMAGE; MESON_TAC[]] THEN
  MAP_EVERY UNDISCH_TAC
   [`!x:A. x IN s ==> FINITE(t x :B->bool)`; `FINITE(s:A->bool)`] THEN
  MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`t:A->B->bool`; `s:A->bool`] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
   [GEN_TAC THEN SUBGOAL_THEN `{(x:A,y:B) | x IN {} /\ y IN (t x)} = {}`
     (fun th -> REWRITE_TAC[th; FINITE_RULES]) THEN
    REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN STRIP_TAC THEN
  X_GEN_TAC `t:A->B->bool` THEN
  SUBGOAL_THEN
   `{(x:A,y:B) | x IN (a INSERT s) /\ y IN (t x)} =
    IMAGE (\y. a,y) (t a) UNION {(x,y) | x IN s /\ y IN (t x)}`
   (fun th -> ASM_SIMP_TAC[IN_INSERT; FINITE_IMAGE; FINITE_UNION; th]) THEN
  REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM; IN_INSERT; IN_UNION] THEN
  MESON_TAC[]);;

let FINITE_PRODUCT = prove
 (`!s t. FINITE s /\ FINITE t ==> FINITE {(x:A,y:B) | x IN s /\ y IN t}`,
  SIMP_TAC[FINITE_PRODUCT_DEPENDENT]);;

let CARD_PRODUCT = prove
 (`!s t. FINITE s /\ FINITE t
         ==> (CARD {(x:A,y:B) | x IN s /\ y IN t} = CARD s * CARD t)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`s:A->bool`; `CARD(s:A->bool)`; `\x:A. t:B->bool`;
                  `CARD(t:B->bool)`] HAS_SIZE_PRODUCT_DEPENDENT) THEN
  ASM_SIMP_TAC[HAS_SIZE]);;

let HAS_SIZE_PRODUCT = prove
 (`!s m t n. s HAS_SIZE m /\ t HAS_SIZE n
             ==> {(x:A,y:B) | x IN s /\ y IN t} HAS_SIZE (m * n)`,
  SIMP_TAC[HAS_SIZE; CARD_PRODUCT; FINITE_PRODUCT]);;

(* ------------------------------------------------------------------------- *)
(* Actually introduce a Cartesian product operation.                         *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("CROSS",(22,"right"));;

let CROSS = new_definition
 `s CROSS t = {x,y | x IN s /\ y IN t}`;;

let IN_CROSS = prove
 (`!x y s t. (x,y) IN (s CROSS t) <=> x IN s /\ y IN t`,
  REWRITE_TAC[CROSS; IN_ELIM_PAIR_THM]);;

let HAS_SIZE_CROSS = prove
 (`!s t m n. s HAS_SIZE m /\ t HAS_SIZE n ==> (s CROSS t) HAS_SIZE (m * n)`,
  REWRITE_TAC[CROSS; HAS_SIZE_PRODUCT]);;

let FINITE_CROSS = prove
 (`!s t. FINITE s /\ FINITE t ==> FINITE(s CROSS t)`,
  SIMP_TAC[CROSS; FINITE_PRODUCT]);;

let CARD_CROSS = prove
 (`!s t. FINITE s /\ FINITE t ==> CARD(s CROSS t) = CARD s * CARD t`,
  SIMP_TAC[CROSS; CARD_PRODUCT]);;

let CROSS_EQ_EMPTY = prove
 (`!s t. s CROSS t = {} <=> s = {} \/ t = {}`,
  REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_CROSS; NOT_IN_EMPTY] THEN
  MESON_TAC[]);;

let CROSS_EMPTY = prove
 (`(!s:A->bool. s CROSS {} = {}) /\ (!t:B->bool. {} CROSS t = {})`,
  REWRITE_TAC[CROSS_EQ_EMPTY]);;

let CROSS_UNIV = prove
 (`(:A) CROSS (:B) = (:A#B)`,
  REWRITE_TAC[CROSS; EXTENSION; IN_ELIM_PAIR_THM; FORALL_PAIR_THM; IN_UNIV]);;

let FINITE_CROSS_EQ = prove
 (`!s:A->bool t:B->bool.
        FINITE(s CROSS t) <=> s = {} \/ t = {} \/ FINITE s /\ FINITE t`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `s:A->bool = {}` THEN
  ASM_REWRITE_TAC[CROSS_EMPTY; FINITE_EMPTY] THEN
  ASM_CASES_TAC `t:B->bool = {}` THEN
  ASM_REWRITE_TAC[CROSS_EMPTY; FINITE_EMPTY] THEN
  EQ_TAC THEN REWRITE_TAC[FINITE_CROSS] THEN REPEAT STRIP_TAC THENL
   [FIRST_ASSUM(MP_TAC o MATCH_MP(ISPEC `FST:A#B->A` FINITE_IMAGE));
    FIRST_ASSUM(MP_TAC o MATCH_MP(ISPEC `SND:A#B->B` FINITE_IMAGE))] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
  REWRITE_TAC[SUBSET; IN_IMAGE; EXISTS_PAIR_THM; IN_CROSS] THEN
  ASM SET_TAC[]);;

let FINITE_UNIV_PAIR = prove
 (`FINITE(:A#A) <=> FINITE(:A)`,
  MP_TAC(ISPECL [`(:A)`; `(:A)`] FINITE_CROSS_EQ) THEN
  REWRITE_TAC[CROSS_UNIV; UNIV_NOT_EMPTY]);;

let INFINITE_UNIV_PAIR = prove
 (`INFINITE(:A#A) <=> INFINITE(:A)`,
  REWRITE_TAC[INFINITE; FINITE_UNIV_PAIR]);;

let FORALL_IN_CROSS = prove
 (`!P s t. (!z. z IN s CROSS t ==> P z) <=>
           (!x y. x IN s /\ y IN t ==> P(x,y))`,
  REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS]);;

let EXISTS_IN_CROSS = prove
 (`!P s t. (?z. z IN s CROSS t /\ P z) <=>
           (?x y. x IN s /\ y IN t /\ P(x,y))`,
  REWRITE_TAC[EXISTS_PAIR_THM; GSYM CONJ_ASSOC; IN_CROSS]);;

let SUBSET_CROSS = prove
 (`!s t s' t'. s CROSS t SUBSET s' CROSS t' <=>
                s = {} \/ t = {} \/ s SUBSET s' /\ t SUBSET t'`,
  SIMP_TAC[CROSS; EXTENSION; IN_ELIM_PAIR_THM; SUBSET;
   FORALL_PAIR_THM; IN_CROSS; NOT_IN_EMPTY] THEN MESON_TAC[]);;

let CROSS_MONO = prove
 (`!s t s' t'. s SUBSET s' /\ t SUBSET t' ==> s CROSS t SUBSET s' CROSS t'`,
  SIMP_TAC[SUBSET_CROSS]);;

let CROSS_EQ = prove
 (`!s s':A->bool t t':B->bool.
        s CROSS t = s' CROSS t' <=>
        (s = {} \/ t = {}) /\ (s' = {} \/ t' = {}) \/ s = s' /\ t = t'`,
  REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET_CROSS] THEN SET_TAC[]);;

let IMAGE_FST_CROSS = prove
 (`!s:A->bool t:B->bool.
        IMAGE FST (s CROSS t) = if t = {} then {} else s`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  ASM_REWRITE_TAC[CROSS_EMPTY; IMAGE_CLAUSES] THEN
  REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
  REWRITE_TAC[EXISTS_IN_CROSS; FST] THEN ASM SET_TAC[]);;

let IMAGE_SND_CROSS = prove
 (`!s:A->bool t:B->bool.
        IMAGE SND (s CROSS t) = if s = {} then {} else t`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  ASM_REWRITE_TAC[CROSS_EMPTY; IMAGE_CLAUSES] THEN
  REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
  REWRITE_TAC[EXISTS_IN_CROSS; SND] THEN ASM SET_TAC[]);;

let CROSS_INTER = prove
 (`(!s t u. s CROSS (t INTER u) = (s CROSS t) INTER (s CROSS u)) /\
   (!s t u. (s INTER t) CROSS u = (s CROSS u) INTER (t CROSS u))`,
  REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_INTER; IN_CROSS] THEN
  REPEAT STRIP_TAC THEN CONV_TAC TAUT);;

let CROSS_UNION = prove
 (`(!s t u. s CROSS (t UNION u) = (s CROSS t) UNION (s CROSS u)) /\
   (!s t u. (s UNION t) CROSS u = (s CROSS u) UNION (t CROSS u))`,
  REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_UNION; IN_CROSS] THEN
  REPEAT STRIP_TAC THEN CONV_TAC TAUT);;

let CROSS_DIFF = prove
 (`(!s t u. s CROSS (t DIFF u) = (s CROSS t) DIFF (s CROSS u)) /\
   (!s t u. (s DIFF t) CROSS u = (s CROSS u) DIFF (t CROSS u))`,
  REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_DIFF; IN_CROSS] THEN
  REPEAT STRIP_TAC THEN CONV_TAC TAUT);;

let INTER_CROSS = prove
 (`!s s' t t'.
      (s CROSS t) INTER (s' CROSS t') = (s INTER s') CROSS (t INTER t')`,
  REWRITE_TAC[EXTENSION; IN_INTER; FORALL_PAIR_THM; IN_CROSS] THEN
  CONV_TAC TAUT);;

let CROSS_UNIONS_UNIONS,CROSS_UNIONS = (CONJ_PAIR o prove)
 (`(!f g. (UNIONS f) CROSS (UNIONS g) =
          UNIONS {s CROSS t | s IN f /\ t IN g}) /\
   (!s f. s CROSS (UNIONS f) = UNIONS {s CROSS t | t IN f}) /\
   (!f t. (UNIONS f) CROSS t = UNIONS {s CROSS t | s IN f})`,
  REWRITE_TAC[UNIONS_GSPEC; EXTENSION; FORALL_PAIR_THM; IN_ELIM_THM;
              IN_CROSS] THEN
  SET_TAC[]);;

let CROSS_INTERS_INTERS,CROSS_INTERS = (CONJ_PAIR o prove)
 (`(!f g. (INTERS f) CROSS (INTERS g) =
          if f = {} then INTERS {UNIV CROSS t | t IN g}
          else if g = {} then INTERS {s CROSS UNIV | s IN f}
          else INTERS {s CROSS t | s IN f /\ t IN g}) /\
   (!s f. s CROSS (INTERS f) =
          if f = {} then s CROSS UNIV else INTERS {s CROSS t | t IN f}) /\
   (!f t. (INTERS f) CROSS t =
          if f = {} then UNIV CROSS t else INTERS {s CROSS t | s IN f})`,
  REPEAT STRIP_TAC THEN REPEAT (COND_CASES_TAC THEN REWRITE_TAC[]) THEN
  ASM_REWRITE_TAC[INTERS_GSPEC; EXTENSION; FORALL_PAIR_THM; IN_ELIM_THM;
                  IN_CROSS; NOT_IN_EMPTY] THEN
  ASM SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Cardinality of functions with bounded domain (support) and range.         *)
(* ------------------------------------------------------------------------- *)

let HAS_SIZE_FUNSPACE = prove
 (`!d n t:B->bool m s:A->bool.
        s HAS_SIZE m /\ t HAS_SIZE n
        ==> {f | (!x. x IN s ==> f(x) IN t) /\ (!x. ~(x IN s) ==> (f x = d))}
            HAS_SIZE (n EXP m)`,
  GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  REWRITE_TAC[HAS_SIZE_CLAUSES] THENL
   [REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; EXP] THEN
    CONV_TAC HAS_SIZE_CONV THEN EXISTS_TAC `(\x. d):A->B` THEN
    REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN REWRITE_TAC[FUN_EQ_THM];
    REWRITE_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM]] THEN
  MAP_EVERY X_GEN_TAC [`s0:A->bool`; `a:A`; `s:A->bool`] THEN
  STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN
  ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
  SUBGOAL_THEN
   `{f:A->B | (!x. x IN a INSERT s ==> f x IN t) /\
              (!x. ~(x IN a INSERT s) ==> (f x = d))} =
    IMAGE (\(b,g) x. if x = a then b else g(x))
          {b,g | b IN t /\
                 g IN {f | (!x. x IN s ==> f x IN t) /\
                           (!x. ~(x IN s) ==> (f x = d))}}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE; FORALL_PAIR_THM; IN_ELIM_THM;
                EXISTS_PAIR_THM] THEN
    REWRITE_TAC[PAIR_EQ; CONJ_ASSOC; ONCE_REWRITE_RULE[CONJ_SYM]
     UNWIND_THM1] THEN
    X_GEN_TAC `f:A->B` THEN REWRITE_TAC[IN_INSERT] THEN EQ_TAC THENL
     [STRIP_TAC THEN MAP_EVERY EXISTS_TAC
       [`(f:A->B) a`; `\x. if x IN s then (f:A->B) x else d`] THEN
      REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[];
      DISCH_THEN(X_CHOOSE_THEN `b:B` (X_CHOOSE_THEN `g:A->B`
        STRIP_ASSUME_TAC)) THEN
      ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]];
    ALL_TAC] THEN
  MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN ASM_SIMP_TAC[EXP; HAS_SIZE_PRODUCT] THEN
  REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM; PAIR_EQ; CONJ_ASSOC] THEN
  REWRITE_TAC[ONCE_REWRITE_RULE[CONJ_SYM] UNWIND_THM1] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[FUN_EQ_THM] THEN REPEAT GEN_TAC THEN
  STRIP_TAC THEN CONJ_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o SPEC `a:A`) THEN REWRITE_TAC[];
    X_GEN_TAC `x:A` THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN
    ASM_MESON_TAC[]]);;

let CARD_FUNSPACE = prove
 (`!s t. FINITE s /\ FINITE t
         ==> (CARD {f | (!x. x IN s ==> f(x) IN t) /\
                        (!x. ~(x IN s) ==> (f x = d))} =
              (CARD t) EXP (CARD s))`,
  MESON_TAC[HAS_SIZE_FUNSPACE; HAS_SIZE]);;

let FINITE_FUNSPACE = prove
 (`!s t. FINITE s /\ FINITE t
         ==> FINITE {f | (!x. x IN s ==> f(x) IN t) /\
                         (!x. ~(x IN s) ==> (f x = d))}`,
  MESON_TAC[HAS_SIZE_FUNSPACE; HAS_SIZE]);;

let HAS_SIZE_FUNSPACE_UNIV = prove
 (`!m n. (:A) HAS_SIZE m /\ (:B) HAS_SIZE n ==> (:A->B) HAS_SIZE (n EXP m)`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(MP_TAC o MATCH_MP HAS_SIZE_FUNSPACE) THEN
  REWRITE_TAC[IN_UNIV; UNIV_GSPEC]);;

let CARD_FUNSPACE_UNIV = prove
 (`FINITE(:A) /\ FINITE(:B) ==> CARD(:A->B) = CARD(:B) EXP CARD(:A)`,
  MESON_TAC[HAS_SIZE_FUNSPACE_UNIV; HAS_SIZE]);;

let FINITE_FUNSPACE_UNIV = prove
 (`FINITE(:A) /\ FINITE(:B) ==> FINITE(:A->B)`,
  MESON_TAC[HAS_SIZE_FUNSPACE_UNIV; HAS_SIZE]);;

(* ------------------------------------------------------------------------- *)
(* Cardinality of type bool.                                                 *)
(* ------------------------------------------------------------------------- *)

let HAS_SIZE_BOOL = prove
 (`(:bool) HAS_SIZE 2`,
  SUBGOAL_THEN `(:bool) = {F,T}` SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_UNIV; IN_INSERT] THEN CONV_TAC TAUT;
    SIMP_TAC[HAS_SIZE; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY; ARITH;
             IN_SING; NOT_IN_EMPTY]]);;

let CARD_BOOL = prove
 (`CARD(:bool) = 2`,
  MESON_TAC[HAS_SIZE_BOOL; HAS_SIZE]);;

let FINITE_BOOL = prove
 (`FINITE(:bool)`,
  MESON_TAC[HAS_SIZE_BOOL; HAS_SIZE]);;

(* ------------------------------------------------------------------------- *)
(* Hence cardinality of powerset.                                            *)
(* ------------------------------------------------------------------------- *)

let HAS_SIZE_POWERSET = prove
 (`!(s:A->bool) n. s HAS_SIZE n ==> {t | t SUBSET s} HAS_SIZE (2 EXP n)`,
  REPEAT STRIP_TAC THEN SUBGOAL_THEN
   `{t | t SUBSET s} =
    {f | (!x:A. x IN s ==> f(x) IN UNIV) /\ (!x. ~(x IN s) ==> (f x = F))}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_UNIV; SUBSET; IN; CONTRAPOS_THM];
    MATCH_MP_TAC HAS_SIZE_FUNSPACE THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC HAS_SIZE_CONV THEN MAP_EVERY EXISTS_TAC [`T`; `F`] THEN
    REWRITE_TAC[EXTENSION; IN_UNIV; IN_INSERT; NOT_IN_EMPTY] THEN
    CONV_TAC TAUT]);;

let CARD_POWERSET = prove
 (`!s:A->bool. FINITE s ==> (CARD {t | t SUBSET s} = 2 EXP (CARD s))`,
  MESON_TAC[HAS_SIZE_POWERSET; HAS_SIZE]);;

let FINITE_POWERSET = prove
 (`!s:A->bool. FINITE s ==> FINITE {t | t SUBSET s}`,
  MESON_TAC[HAS_SIZE_POWERSET; HAS_SIZE]);;

let FINITE_UNIONS = prove
 (`!s:(A->bool)->bool.
        FINITE(UNIONS s) <=> FINITE s /\ (!t. t IN s ==> FINITE t)`,
  GEN_TAC THEN ASM_CASES_TAC `FINITE(s:(A->bool)->bool)` THEN
  ASM_SIMP_TAC[FINITE_FINITE_UNIONS] THEN
  DISCH_THEN(MP_TAC o MATCH_MP FINITE_POWERSET) THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[CONTRAPOS_THM] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN SET_TAC[]);;

let POWERSET_CLAUSES = prove
 (`{s | s SUBSET {}} = {{}} /\
   (!a:A t. {s | s SUBSET (a INSERT t)} =
            {s | s SUBSET t} UNION IMAGE (\s. a INSERT s) {s | s SUBSET t})`,
  REWRITE_TAC[SUBSET_INSERT_DELETE; SUBSET_EMPTY; SING_GSPEC] THEN
  MAP_EVERY X_GEN_TAC [`a:A`; `t:A->bool`] THEN
  MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[UNION_SUBSET] THEN
  ONCE_REWRITE_TAC[SUBSET] THEN
  REWRITE_TAC[FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN
  REWRITE_TAC[IN_ELIM_THM; IN_UNION; IN_IMAGE] THEN
  CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN
  X_GEN_TAC `s:A->bool` THEN
  ASM_CASES_TAC `(a:A) IN s` THENL [ALL_TAC; ASM SET_TAC[]] THEN
  STRIP_TAC THEN DISJ2_TAC THEN EXISTS_TAC `s DELETE (a:A)` THEN
  ASM SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Set of numbers is infinite.                                               *)
(* ------------------------------------------------------------------------- *)

let HAS_SIZE_NUMSEG_LT = prove
 (`!n. {m | m < n} HAS_SIZE n`,
  INDUCT_TAC THENL
   [SUBGOAL_THEN `{m | m < 0} = {}`
       (fun th -> REWRITE_TAC[HAS_SIZE_0; th]) THEN
    REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; LT];
    SUBGOAL_THEN `{m | m < SUC n} = n INSERT {m | m < n}` SUBST1_TAC THENL
     [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN ARITH_TAC;
      ALL_TAC] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN
    ASM_SIMP_TAC[HAS_SIZE; CARD_CLAUSES; FINITE_INSERT] THEN
    REWRITE_TAC[IN_ELIM_THM; LT_REFL]]);;

let CARD_NUMSEG_LT = prove
 (`!n. CARD {m | m < n} = n`,
  REWRITE_TAC[REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_LT]);;

let FINITE_NUMSEG_LT = prove
 (`!n:num. FINITE {m | m < n}`,
  REWRITE_TAC[REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_LT]);;

let HAS_SIZE_NUMSEG_LE = prove
 (`!n. {m | m <= n} HAS_SIZE (n + 1)`,
  REWRITE_TAC[GSYM LT_SUC_LE; HAS_SIZE_NUMSEG_LT; ADD1]);;

let FINITE_NUMSEG_LE = prove
 (`!n. FINITE {m | m <= n}`,
  REWRITE_TAC[REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_LE]);;

let CARD_NUMSEG_LE = prove
 (`!n. CARD {m | m <= n} = n + 1`,
  REWRITE_TAC[REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_LE]);;

let num_FINITE = prove
 (`!s:num->bool. FINITE s <=> ?a. !x. x IN s ==> x <= a`,
  GEN_TAC THEN EQ_TAC THENL
   [SPEC_TAC(`s:num->bool`,`s:num->bool`) THEN
    MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
    REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[LE_CASES; LE_TRANS];
    DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC `{m:num | m <= n}` THEN REWRITE_TAC[FINITE_NUMSEG_LE] THEN
    ASM_SIMP_TAC[SUBSET; IN_ELIM_THM]]);;

let num_FINITE_AVOID = prove
 (`!s:num->bool. FINITE(s) ==> ?a. ~(a IN s)`,
  MESON_TAC[num_FINITE; LT; NOT_LT]);;

let num_INFINITE_EQ = prove
 (`!s:num->bool. INFINITE s <=> !N. ?n. N <= n /\ n IN s`,
  GEN_TAC THEN REWRITE_TAC[INFINITE; num_FINITE] THEN
  MESON_TAC[NOT_LE; LT_IMP_LE; LE_SUC_LT]);;

let num_INFINITE = prove
 (`INFINITE(:num)`,
  REWRITE_TAC[INFINITE] THEN MESON_TAC[num_FINITE_AVOID; IN_UNIV]);;

(* ------------------------------------------------------------------------- *)
(* Set of strings is infinite.                                               *)
(* ------------------------------------------------------------------------- *)

let string_INFINITE = prove
 (`INFINITE(:string)`,
  MP_TAC num_INFINITE THEN REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN
  DISCH_THEN(MP_TAC o ISPEC `LENGTH:string->num` o MATCH_MP FINITE_IMAGE) THEN
  MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
  REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN MESON_TAC[LENGTH_REPLICATE]);;

(* ------------------------------------------------------------------------- *)
(* Non-trivial intervals of reals are infinite.                              *)
(* ------------------------------------------------------------------------- *)

let FINITE_REAL_INTERVAL = prove
 (`(!a. ~FINITE {x:real | a < x}) /\
   (!a. ~FINITE {x:real | a <= x}) /\
   (!b. ~FINITE {x:real | x < b}) /\
   (!b. ~FINITE {x:real | x <= b}) /\
   (!a b. FINITE {x:real | a < x /\ x < b} <=> b <= a) /\
   (!a b. FINITE {x:real | a <= x /\ x < b} <=> b <= a) /\
   (!a b. FINITE {x:real | a < x /\ x <= b} <=> b <= a) /\
   (!a b. FINITE {x:real | a <= x /\ x <= b} <=> b <= a)`,
  SUBGOAL_THEN `!a b. FINITE {x:real | a < x /\ x < b} <=> b <= a`
  ASSUME_TAC THENL
   [REPEAT GEN_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN
    ASM_CASES_TAC `a:real < b` THEN
    ASM_SIMP_TAC[REAL_ARITH `~(a:real < b) ==> ~(a < x /\ x < b)`] THEN
    REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY] THEN
    DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN
    DISCH_THEN(MP_TAC o SPEC `IMAGE (\n. a + (b - a) / (&n + &2)) (:num)`) THEN
    REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV; IN_ELIM_THM] THEN
    SIMP_TAC[REAL_LT_ADDR; REAL_ARITH `a + x / y < b <=> x / y < b - a`] THEN
    ASM_SIMP_TAC[REAL_LT_DIV; REAL_SUB_LT; REAL_LT_LDIV_EQ; NOT_IMP;
                 REAL_ARITH `&0:real < &n + &2`] THEN
    REWRITE_TAC[REAL_ARITH `x:real < x * (n + &2) <=> &0 < x * (n + &1)`] THEN
    ASM_SIMP_TAC[REAL_SUB_LT; REAL_LT_MUL; REAL_ARITH `&0:real < &n + &1`] THEN
    MP_TAC num_INFINITE THEN REWRITE_TAC[INFINITE] THEN
    MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC FINITE_IMAGE_INJ_EQ THEN
    ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_FIELD
     `a < b ==> (a + (b - a) / (&n + &2) = a + (b - a) / (&m + &2) <=>
                 &n:real = &m)`];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL
   [DISCH_THEN(MP_TAC o SPEC `{x:real | a < x /\ x < a + &1}` o
        MATCH_MP(REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN
    ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REAL_ARITH_TAC;
    DISCH_THEN(MP_TAC o SPEC `{x:real | a < x /\ x < a + &1}` o
        MATCH_MP(REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN
    ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REAL_ARITH_TAC;
    DISCH_THEN(MP_TAC o SPEC `{x:real | b - &1 < x /\ x < b}` o
        MATCH_MP(REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN
    ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REAL_ARITH_TAC;
    DISCH_THEN(MP_TAC o SPEC `{x:real | b - &1 < x /\ x < b}` o
        MATCH_MP(REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN
    ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REAL_ARITH_TAC;
    REWRITE_TAC[REAL_ARITH
     `a:real <= x /\ x < b <=> (a < x /\ x < b) \/ ~(b <= a) /\ x = a`];
    REWRITE_TAC[REAL_ARITH
     `a:real < x /\ x <= b <=> (a < x /\ x < b) \/ ~(b <= a) /\ x = b`];
    ASM_CASES_TAC `b:real = a` THEN
    ASM_SIMP_TAC[REAL_LE_ANTISYM; REAL_LE_REFL; SING_GSPEC; FINITE_SING] THEN
    ASM_SIMP_TAC[REAL_ARITH
     `~(b:real = a) ==>
        (a <= x /\ x <= b <=> (a < x /\ x < b) \/ ~(b <= a) /\ x = a \/
        ~(b <= a) /\ x = b)`]] THEN
  ASM_REWRITE_TAC[FINITE_UNION; SET_RULE
   `{x | p x \/ q x} = {x | p x} UNION {x | q x}`] THEN
  ASM_CASES_TAC `b:real <= a` THEN
  ASM_REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY]);;

let real_INFINITE = prove
 (`INFINITE(:real)`,
  REWRITE_TAC[INFINITE] THEN
  DISCH_THEN(MP_TAC o SPEC `{x:real | &0 <= x}` o
        MATCH_MP(REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN
  REWRITE_TAC[FINITE_REAL_INTERVAL; SUBSET_UNIV]);;

(* ------------------------------------------------------------------------- *)
(* Indexing of finite sets and enumeration of subsets of N in order.         *)
(* ------------------------------------------------------------------------- *)

let HAS_SIZE_INDEX = prove
 (`!s n. s HAS_SIZE n
         ==> ?f:num->A. (!m. m < n ==> f(m) IN s) /\
                        (!x. x IN s ==> ?!m. m < n /\ (f m = x))`,
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN INDUCT_TAC THEN
  SIMP_TAC[HAS_SIZE_0; HAS_SIZE_SUC; LT; NOT_IN_EMPTY] THEN
  X_GEN_TAC `s:A->bool` THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN
  REWRITE_TAC[NOT_FORALL_THM] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a:A`) (MP_TAC o SPEC `a:A`)) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `s DELETE (a:A)`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:num->A` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `\m:num. if m < n then f(m) else a:A` THEN CONJ_TAC THENL
   [GEN_TAC THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN
    ASM_MESON_TAC[IN_DELETE]; ALL_TAC] THEN
  X_GEN_TAC `x:A` THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN
  ASM_REWRITE_TAC[IN_DELETE] THEN
  CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
  ASM_CASES_TAC `a:A = x` THEN ASM_SIMP_TAC[] THEN
  ASM_MESON_TAC[LT_REFL; IN_DELETE]);;

let INFINITE_ENUMERATE = prove
 (`!s:num->bool.
       INFINITE s
       ==> ?r:num->num. (!m n. m < n ==> r(m) < r(n)) /\
                        IMAGE r (:num) = s`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `!n:num. ?x. n <= x /\ x IN s` MP_TAC THENL
   [ASM_MESON_TAC[INFINITE; num_FINITE; LT_IMP_LE; NOT_LE];
    GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [num_WOP]] THEN
  REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM; FORALL_AND_THM] THEN
  REWRITE_TAC[TAUT `p ==> ~(q /\ r) <=> q /\ p ==> ~r`] THEN
  X_GEN_TAC `next:num->num` THEN STRIP_TAC THEN
  (MP_TAC o prove_recursive_functions_exist num_RECURSION)
   `(f(0) = next 0) /\ (!n. f(SUC n) = next(f n + 1))` THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
   [GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LT] THEN
    ASM_MESON_TAC[ARITH_RULE `m <= n /\ n + 1 <= p ==> m < p`; LE_LT];
    DISCH_TAC] THEN
  ASM_REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; FORALL_IN_IMAGE; SUBSET] THEN
  REWRITE_TAC[IN_IMAGE; IN_UNIV] THEN CONJ_TAC THENL
   [INDUCT_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `?m:num. m < n /\ m IN s` THENL
   [MP_TAC(SPEC `\m:num. m < n /\ m IN s` num_MAX) THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT
     `p /\ (q ==> r) ==> (p <=> q) ==> r`) THEN
    CONJ_TAC THENL [MESON_TAC[LT_IMP_LE]; ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN `?q. p = (r:num->num) q` (CHOOSE_THEN SUBST_ALL_TAC) THENL
     [ASM_MESON_TAC[]; EXISTS_TAC `SUC q`] THEN
    ASM_REWRITE_TAC[GSYM LE_ANTISYM; GSYM NOT_LT] THEN
    ASM_MESON_TAC[NOT_LE; ARITH_RULE `r < p <=> r + 1 <= p`];
    EXISTS_TAC `0` THEN ASM_REWRITE_TAC[GSYM LE_ANTISYM; GSYM NOT_LT] THEN
    ASM_MESON_TAC[LE_0]]);;

let INFINITE_ENUMERATE_EQ = prove
 (`!s:num->bool.
     INFINITE s <=> ?r. (!m n:num. m < n ==> r m < r n) /\ IMAGE r (:num) = s`,
  GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[INFINITE_ENUMERATE] THEN
  DISCH_THEN(X_CHOOSE_THEN `r:num->num` (STRIP_ASSUME_TAC o GSYM)) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INFINITE_IMAGE THEN
  REWRITE_TAC[num_INFINITE; IN_UNIV] THEN
  MATCH_MP_TAC WLOG_LT THEN ASM_MESON_TAC[LT_REFL]);;

(* ------------------------------------------------------------------------- *)
(* Mapping between finite sets and lists.                                    *)
(* ------------------------------------------------------------------------- *)

let set_of_list = new_recursive_definition list_RECURSION
  `(set_of_list ([]:A list) = {}) /\
   (set_of_list (CONS (h:A) t) = h INSERT (set_of_list t))`;;

let list_of_set = new_definition
  `list_of_set s = @l. (set_of_list l = s) /\ (LENGTH l = CARD s)`;;

let LIST_OF_SET_PROPERTIES = prove
 (`!s:A->bool. FINITE(s)
               ==> (set_of_list(list_of_set s) = s) /\
                   (LENGTH(list_of_set s) = CARD s)`,
  REWRITE_TAC[list_of_set] THEN
  CONV_TAC(BINDER_CONV(RAND_CONV SELECT_CONV)) THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REPEAT STRIP_TAC THENL
   [EXISTS_TAC `[]:A list` THEN REWRITE_TAC[CARD_CLAUSES; LENGTH; set_of_list];
    EXISTS_TAC `CONS (x:A) l` THEN ASM_REWRITE_TAC[LENGTH] THEN
    ASM_REWRITE_TAC[set_of_list] THEN
    FIRST_ASSUM(fun th -> REWRITE_TAC
     [MATCH_MP (CONJUNCT2 CARD_CLAUSES) th]) THEN
    ASM_REWRITE_TAC[]]);;

let SET_OF_LIST_OF_SET = prove
 (`!s. FINITE(s) ==> (set_of_list(list_of_set s) = s)`,
  MESON_TAC[LIST_OF_SET_PROPERTIES]);;

let LENGTH_LIST_OF_SET = prove
 (`!s. FINITE(s) ==> (LENGTH(list_of_set s) = CARD s)`,
  MESON_TAC[LIST_OF_SET_PROPERTIES]);;

let MEM_LIST_OF_SET = prove
 (`!s:A->bool. FINITE(s) ==> !x. MEM x (list_of_set s) <=> x IN s`,
  GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SET_OF_LIST_OF_SET) THEN
  DISCH_THEN(fun th -> GEN_REWRITE_TAC (BINDER_CONV o funpow 2 RAND_CONV)
    [GSYM th]) THEN
  SPEC_TAC(`list_of_set(s:A->bool)`,`l:A list`) THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; set_of_list; NOT_IN_EMPTY] THEN
  ASM_REWRITE_TAC[IN_INSERT]);;

let FINITE_SET_OF_LIST = prove
 (`!l. FINITE(set_of_list l)`,
  LIST_INDUCT_TAC THEN ASM_SIMP_TAC[set_of_list; FINITE_RULES]);;

let IN_SET_OF_LIST = prove
 (`!x l. x IN (set_of_list l) <=> MEM x l`,
  GEN_TAC THEN LIST_INDUCT_TAC THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; MEM; set_of_list] THEN
  ASM_MESON_TAC[]);;

let SET_OF_LIST_APPEND = prove
 (`!l1 l2. set_of_list(APPEND l1 l2) = set_of_list(l1) UNION set_of_list(l2)`,
  REWRITE_TAC[EXTENSION; IN_SET_OF_LIST; IN_UNION; MEM_APPEND]);;

let SET_OF_LIST_MAP = prove
 (`!f l. set_of_list(MAP f l) = IMAGE f (set_of_list l)`,
  GEN_TAC THEN LIST_INDUCT_TAC THEN
  ASM_REWRITE_TAC[set_of_list; MAP; IMAGE_CLAUSES]);;

let SET_OF_LIST_EQ_EMPTY = prove
 (`!l. set_of_list l = {} <=> l = []`,
  LIST_INDUCT_TAC THEN
  REWRITE_TAC[set_of_list; NOT_CONS_NIL; NOT_INSERT_EMPTY]);;

let LIST_OF_SET_EMPTY = prove
 (`list_of_set {} = []`,
  REWRITE_TAC[GSYM LENGTH_EQ_NIL] THEN
  SIMP_TAC[LENGTH_LIST_OF_SET; FINITE_EMPTY; CARD_CLAUSES]);;

let LIST_OF_SET_SING = prove
 (`!x:A. list_of_set {a} = [a]`,
  GEN_TAC THEN REWRITE_TAC[list_of_set] THEN
  MATCH_MP_TAC SELECT_UNIQUE THEN
  MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[NOT_CONS_NIL] THEN
  SIMP_TAC[LENGTH; CARD_CLAUSES; FINITE_EMPTY; NOT_IN_EMPTY; NOT_SUC] THEN
  GEN_TAC THEN LIST_INDUCT_TAC THEN DISCH_THEN(K ALL_TAC) THEN
  SIMP_TAC[LENGTH; set_of_list; CONS_11; SUC_INJ; NOT_CONS_NIL; NOT_SUC] THEN
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Mappings from finite set enumerations to lists (no "setification").       *)
(* ------------------------------------------------------------------------- *)

let dest_setenum =
  let fn = splitlist (dest_binary "INSERT") in
  fun tm -> let l,n = fn tm in
            if is_const n && fst(dest_const n) = "EMPTY" then l
            else failwith "dest_setenum: not a finite set enumeration";;

let is_setenum = can dest_setenum;;

let mk_setenum =
  let insert_atm = `(INSERT):A->(A->bool)->(A->bool)`
  and nil_atm = `(EMPTY):A->bool` in
  fun (l,ty) ->
    let insert_tm = inst [ty,aty] insert_atm
    and nil_tm = inst [ty,aty] nil_atm in
    itlist (mk_binop insert_tm) l nil_tm;;

let mk_fset l = mk_setenum(l,type_of(hd l));;

(* ------------------------------------------------------------------------- *)
(* Pairwise property over sets and lists.                                    *)
(* ------------------------------------------------------------------------- *)

let pairwise = new_definition
  `pairwise r s <=> !x y. x IN s /\ y IN s /\ ~(x = y) ==> r x y`;;

let PAIRWISE_EMPTY = prove
 (`!r. pairwise r {} <=> T`,
  REWRITE_TAC[pairwise; NOT_IN_EMPTY] THEN MESON_TAC[]);;

let PAIRWISE_SING = prove
 (`!r x. pairwise r {x} <=> T`,
  REWRITE_TAC[pairwise; IN_SING] THEN MESON_TAC[]);;

let PAIRWISE_IMP = prove
 (`!P Q s:A->bool.
        pairwise P s /\
        (!x y. x IN s /\ y IN s /\ P x y /\ ~(x = y) ==> Q x y)
        ==> pairwise Q s`,
  REWRITE_TAC[pairwise] THEN SET_TAC[]);;

let PAIRWISE_MONO = prove
 (`!r s t. pairwise r s /\ t SUBSET s ==> pairwise r t`,
  REWRITE_TAC[pairwise] THEN SET_TAC[]);;

let PAIRWISE_AND = prove
 (`!R R' s. pairwise R s /\ pairwise R' s <=>
            pairwise (\x y. R x y /\ R' x y) s`,
  REWRITE_TAC[pairwise] THEN SET_TAC[]);;

let PAIRWISE_INSERT = prove
 (`!r x s.
        pairwise r (x INSERT s) <=>
        (!y. y IN s /\ ~(y = x) ==> r x y /\ r y x) /\
        pairwise r s`,
  REWRITE_TAC[pairwise; IN_INSERT] THEN MESON_TAC[]);;

let PAIRWISE_IMAGE = prove
 (`!r f. pairwise r (IMAGE f s) <=>
         pairwise (\x y. ~(f x = f y) ==> r (f x) (f y)) s`,
  REWRITE_TAC[pairwise; IN_IMAGE] THEN MESON_TAC[]);;

let PAIRWISE_UNION = prove
 (`!R s t. pairwise R (s UNION t) <=>
           pairwise R s /\ pairwise R t /\
           (!x y. x IN s DIFF t /\ y IN t DIFF s ==> R x y /\ R y x)`,
  REWRITE_TAC[pairwise] THEN SET_TAC[]);;

let PAIRWISE_CHAIN_UNIONS = prove
 (`!R:A->A->bool c.
        (!s. s IN c ==> pairwise R s) /\
        (!s t. s IN c /\ t IN c ==> s SUBSET t \/ t SUBSET s)
        ==> pairwise R (UNIONS c)`,
  REWRITE_TAC[pairwise] THEN SET_TAC[]);;

let DIFF_UNIONS_PAIRWISE_DISJOINT = prove
 (`!s t:(A->bool)->bool.
        pairwise DISJOINT s /\ t SUBSET s
        ==> UNIONS s DIFF UNIONS t = UNIONS(s DIFF t)`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(SET_RULE `t UNION u = s /\ DISJOINT t u ==> s DIFF t = u`) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[GSYM UNIONS_UNION] THEN AP_TERM_TAC THEN ASM SET_TAC[];
    REWRITE_TAC[DISJOINT; INTER_UNIONS; EMPTY_UNIONS; FORALL_IN_GSPEC] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [pairwise]) THEN
    REWRITE_TAC[DISJOINT; IN_DIFF] THEN REPEAT STRIP_TAC THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN
    REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN ASM_MESON_TAC[]]);;

let INTER_UNIONS_PAIRWISE_DISJOINT = prove
 (`!s t:(A->bool)->bool.
        pairwise DISJOINT (s UNION t)
        ==> UNIONS s INTER UNIONS t = UNIONS(s INTER t)`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[INTER_UNIONS; SIMPLE_IMAGE; UNIONS_IMAGE] THEN
  GEN_REWRITE_TAC RAND_CONV [EXTENSION] THEN
  REWRITE_TAC[pairwise; IN_UNIONS; IN_INTER; IN_ELIM_THM; IN_UNION] THEN
  DISCH_TAC THEN X_GEN_TAC `z:A` THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
  EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM]; MESON_TAC[]] THEN
  MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`u:A->bool`; `v:A->bool`]) THEN
  ASM_CASES_TAC `u:A->bool = v` THEN ASM_REWRITE_TAC[] THENL
   [ASM_MESON_TAC[]; ASM SET_TAC[]]);;

let PSUBSET_UNIONS_PAIRWISE_DISJOINT = prove
 (`!u v:(A->bool)->bool.
        pairwise DISJOINT v /\ u PSUBSET (v DELETE {})
        ==> UNIONS u PSUBSET UNIONS v`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(SET_RULE `u SUBSET v /\ ~(v DIFF u = {}) ==> u PSUBSET v`) THEN
  CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  W(MP_TAC o PART_MATCH (lhand o rand)
      DIFF_UNIONS_PAIRWISE_DISJOINT o lhand o rand o snd) THEN
  ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN
  REWRITE_TAC[EMPTY_UNIONS] THEN
  FIRST_ASSUM(MP_TAC o CONJUNCT2 o GEN_REWRITE_RULE I [PSUBSET_ALT]) THEN
  REWRITE_TAC[IN_DELETE; IN_DIFF] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Useful idioms for being a suitable union/intersection of somethings.      *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("UNION_OF",(20,"right"));;
parse_as_infix("INTERSECTION_OF",(20,"right"));;

let UNION_OF = new_definition
 `P UNION_OF Q =
   \s:A->bool. ?u. P u /\ (!c. c IN u ==> Q c) /\ UNIONS u = s`;;

let INTERSECTION_OF = new_definition
 `P INTERSECTION_OF Q =
   \s:A->bool. ?u. P u /\ (!c. c IN u ==> Q c) /\ INTERS u = s`;;

let UNION_OF_INC = prove
 (`!P Q s:A->bool. P {s} /\ Q s ==> (P UNION_OF Q) s`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[UNION_OF] THEN
  EXISTS_TAC `{s:A->bool}` THEN ASM_SIMP_TAC[UNIONS_1; IN_SING]);;

let INTERSECTION_OF_INC = prove
 (`!P Q s:A->bool. P {s} /\ Q s ==> (P INTERSECTION_OF Q) s`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[INTERSECTION_OF] THEN
  EXISTS_TAC `{s:A->bool}` THEN ASM_SIMP_TAC[INTERS_1; IN_SING]);;

let UNION_OF_MONO = prove
 (`!P Q Q' s:A->bool.
        (P UNION_OF Q) s /\ (!x. Q x ==> Q' x) ==> (P UNION_OF Q') s`,
  REWRITE_TAC[UNION_OF] THEN MESON_TAC[]);;

let INTERSECTION_OF_MONO = prove
 (`!P Q Q' s:A->bool.
        (P INTERSECTION_OF Q) s /\ (!x. Q x ==> Q' x)
        ==> (P INTERSECTION_OF Q') s`,
  REWRITE_TAC[INTERSECTION_OF] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Some additional properties of "set_of_list".                              *)
(* ------------------------------------------------------------------------- *)

let CARD_SET_OF_LIST_LE = prove
 (`!l. CARD(set_of_list l) <= LENGTH l`,
  LIST_INDUCT_TAC THEN
  SIMP_TAC[LENGTH; set_of_list; CARD_CLAUSES; FINITE_SET_OF_LIST] THEN
  ASM_ARITH_TAC);;

let HAS_SIZE_SET_OF_LIST = prove
 (`!l. (set_of_list l) HAS_SIZE (LENGTH l) <=> PAIRWISE (\x y. ~(x = y)) l`,
  REWRITE_TAC[HAS_SIZE; FINITE_SET_OF_LIST] THEN LIST_INDUCT_TAC THEN
  ASM_SIMP_TAC[CARD_CLAUSES; LENGTH; set_of_list; PAIRWISE; ALL;
               FINITE_SET_OF_LIST; GSYM ALL_MEM; IN_SET_OF_LIST] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[SUC_INJ] THEN
  ASM_MESON_TAC[CARD_SET_OF_LIST_LE; ARITH_RULE `~(SUC n <= n)`]);;

(* ------------------------------------------------------------------------- *)
(* Classic result on function of finite set into itself.                     *)
(* ------------------------------------------------------------------------- *)

let SURJECTIVE_IFF_INJECTIVE_GEN = prove
 (`!s t f:A->B.
        FINITE s /\ FINITE t /\ (CARD s = CARD t) /\ (IMAGE f s) SUBSET t
        ==> ((!y. y IN t ==> ?x. x IN s /\ (f x = y)) <=>
             (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)))`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL
   [ASM_CASES_TAC `x:A = y` THEN ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `CARD s <= CARD (IMAGE (f:A->B) (s DELETE y))` MP_TAC THENL
     [ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CARD_SUBSET THEN
      ASM_SIMP_TAC[FINITE_IMAGE; FINITE_DELETE] THEN
      REWRITE_TAC[SUBSET; IN_IMAGE; IN_DELETE] THEN ASM_MESON_TAC[];
      REWRITE_TAC[NOT_LE] THEN MATCH_MP_TAC LET_TRANS THEN
      EXISTS_TAC `CARD(s DELETE (y:A))` THEN
      ASM_SIMP_TAC[CARD_IMAGE_LE; FINITE_DELETE] THEN
      ASM_SIMP_TAC[CARD_DELETE; ARITH_RULE `x - 1 < x <=> ~(x = 0)`] THEN
      ASM_MESON_TAC[CARD_EQ_0; MEMBER_NOT_EMPTY]];
    SUBGOAL_THEN `IMAGE (f:A->B) s = t` MP_TAC THENL
     [ALL_TAC; ASM_MESON_TAC[EXTENSION; IN_IMAGE]] THEN
    ASM_MESON_TAC[CARD_SUBSET_EQ; CARD_IMAGE_INJ]]);;

let SURJECTIVE_IFF_INJECTIVE = prove
 (`!s f:A->A.
        FINITE s /\ (IMAGE f s) SUBSET s
        ==> ((!y. y IN s ==> ?x. x IN s /\ (f x = y)) <=>
             (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)))`,
  SIMP_TAC[SURJECTIVE_IFF_INJECTIVE_GEN]);;

let IMAGE_IMP_INJECTIVE_GEN = prove
 (`!s t f:A->B.
        FINITE s /\ (CARD s = CARD t) /\ (IMAGE f s = t)
        ==> !x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)`,
  REPEAT GEN_TAC THEN DISCH_THEN(ASSUME_TAC o GSYM) THEN
  MP_TAC(ISPECL [`s:A->bool`; `t:B->bool`; `f:A->B`]
                SURJECTIVE_IFF_INJECTIVE_GEN) THEN
  ASM_SIMP_TAC[SUBSET_REFL; FINITE_IMAGE] THEN
  ASM_MESON_TAC[EXTENSION; IN_IMAGE]);;

let IMAGE_IMP_INJECTIVE = prove
 (`!s f. FINITE s /\ (IMAGE f s = s)
       ==> !x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)`,
  MESON_TAC[IMAGE_IMP_INJECTIVE_GEN]);;

(* ------------------------------------------------------------------------- *)
(* Converse relation between cardinality and injection.                      *)
(* ------------------------------------------------------------------------- *)

let CARD_LE_INJ = prove
 (`!s t. FINITE s /\ FINITE t /\ CARD s <= CARD t
   ==> ?f:A->B. (IMAGE f s) SUBSET t /\
                !x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)`,
  REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[IMAGE_CLAUSES; EMPTY_SUBSET; NOT_IN_EMPTY] THEN
  SIMP_TAC[CARD_CLAUSES] THEN
  MAP_EVERY X_GEN_TAC [`x:A`; `s:A->bool`] THEN STRIP_TAC THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[CARD_CLAUSES; LE; NOT_SUC] THEN
  MAP_EVERY X_GEN_TAC [`y:B`; `t:B->bool`] THEN
  SIMP_TAC[CARD_CLAUSES] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (K ALL_TAC) STRIP_ASSUME_TAC) THEN
  REWRITE_TAC[LE_SUC] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `t:B->bool`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `\z:A. if z = x then (y:B) else f(z)` THEN
  REWRITE_TAC[IN_INSERT; SUBSET; IN_IMAGE] THEN
  ASM_MESON_TAC[SUBSET; IN_IMAGE]);;

(* ------------------------------------------------------------------------- *)
(* Occasionally handy rewrites.                                              *)
(* ------------------------------------------------------------------------- *)

let FORALL_IN_CLAUSES = prove
 (`(!P. (!x. x IN {} ==> P x) <=> T) /\
   (!P a s. (!x. x IN (a INSERT s) ==> P x) <=> P a /\ (!x. x IN s ==> P x))`,
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);;

let EXISTS_IN_CLAUSES = prove
 (`(!P. (?x. x IN {} /\ P x) <=> F) /\
   (!P a s. (?x. x IN (a INSERT s) /\ P x) <=> P a \/ (?x. x IN s /\ P x))`,
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Injectivity and surjectivity of image and preimage under a function.      *)
(* ------------------------------------------------------------------------- *)

let INJECTIVE_ON_IMAGE = prove
 (`!f:A->B u.
    (!s t. s SUBSET u /\ t SUBSET u /\ IMAGE f s = IMAGE f t ==> s = t) <=>
    (!x y. x IN u /\ y IN u /\ f x = f y ==> x = y)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC; SET_TAC[]] THEN
  MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`{x:A}`; `{y:A}`]) THEN
  ASM_REWRITE_TAC[SING_SUBSET; IMAGE_CLAUSES] THEN SET_TAC[]);;

let INJECTIVE_IMAGE = prove
 (`!f:A->B.
    (!s t. IMAGE f s = IMAGE f t ==> s = t) <=> (!x y. f x = f y ==> x = y)`,
  GEN_TAC THEN MP_TAC(ISPECL [`f:A->B`; `(:A)`] INJECTIVE_ON_IMAGE) THEN
  REWRITE_TAC[IN_UNIV; SUBSET_UNIV]);;

let SURJECTIVE_ON_IMAGE = prove
 (`!f:A->B u v.
        (!t. t SUBSET v ==> ?s. s SUBSET u /\ IMAGE f s = t) <=>
        (!y. y IN v ==> ?x. x IN u /\ f x = y)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [DISCH_TAC THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `{y:B}`) THEN ASM SET_TAC[];
    DISCH_TAC THEN X_GEN_TAC `t:B->bool` THEN DISCH_TAC THEN
    EXISTS_TAC `{x | x IN u /\ (f:A->B) x IN t}` THEN ASM SET_TAC[]]);;

let SURJECTIVE_IMAGE = prove
 (`!f:A->B. (!t. ?s. IMAGE f s = t) <=> (!y. ?x. f x = y)`,
  GEN_TAC THEN
  MP_TAC(ISPECL [`f:A->B`; `(:A)`; `(:B)`] SURJECTIVE_ON_IMAGE) THEN
  REWRITE_TAC[IN_UNIV; SUBSET_UNIV]);;

let INJECTIVE_ON_PREIMAGE = prove
 (`!f:A->B s u.
        (!t t'. t SUBSET u /\ t' SUBSET u /\
                {x | x IN s /\ f x IN t} = {x | x IN s /\ f x IN t'}
                ==> t = t') <=>
        u SUBSET IMAGE f s`,
  REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
  REWRITE_TAC[SUBSET] THEN X_GEN_TAC `y:B` THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`{y:B}`; `{}:B->bool`]) THEN ASM SET_TAC[]);;

let SURJECTIVE_ON_PREIMAGE = prove
 (`!f:A->B s u.
        (!k. k SUBSET s
             ==> ?t. t SUBSET u /\ {x | x IN s /\ f x IN t} = k) <=>
        IMAGE f s SUBSET u /\
        (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL
   [CONJ_TAC THENL
     [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:A` THEN
      DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:A}`) THEN ASM SET_TAC[];
      MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `{x:A}`) THEN ASM SET_TAC[]];
    X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN
    EXISTS_TAC `IMAGE (f:A->B) k` THEN ASM SET_TAC[]]);;

let INJECTIVE_PREIMAGE = prove
 (`!f:A->B.
        (!t t'. {x | f x IN t} = {x | f x IN t'} ==> t = t') <=>
        IMAGE f UNIV = UNIV`,
  REPEAT GEN_TAC THEN
  MP_TAC(ISPECL [`f:A->B`; `(:A)`; `(:B)`]
        INJECTIVE_ON_PREIMAGE) THEN
  REWRITE_TAC[IN_UNIV; SUBSET_UNIV] THEN SET_TAC[]);;

let SURJECTIVE_PREIMAGE = prove
 (`!f:A->B. (!k. ?t. {x | f x IN t} = k) <=> (!x y. f x = f y ==> x = y)`,
  REPEAT GEN_TAC THEN
  MP_TAC(ISPECL [`f:A->B`; `(:A)`; `(:B)`]
        SURJECTIVE_ON_PREIMAGE) THEN
  REWRITE_TAC[IN_UNIV; SUBSET_UNIV] THEN SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Existence of bijections between two finite sets of same size.             *)
(* ------------------------------------------------------------------------- *)

let CARD_EQ_BIJECTION = prove
 (`!s t. FINITE s /\ FINITE t /\ CARD s = CARD t
   ==> ?f:A->B. (!x. x IN s ==> f(x) IN t) /\
                (!y. y IN t ==> ?x. x IN s /\ f x = y) /\
                !x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)`,
  MP_TAC CARD_LE_INJ THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[LE_REFL] THEN MATCH_MP_TAC MONO_EXISTS THEN
  ASM_SIMP_TAC[SURJECTIVE_IFF_INJECTIVE_GEN] THEN
  MESON_TAC[SUBSET; IN_IMAGE]);;

let CARD_EQ_BIJECTIONS = prove
 (`!s t. FINITE s /\ FINITE t /\ CARD s = CARD t
   ==> ?f:A->B g. (!x. x IN s ==> f(x) IN t /\ g(f x) = x) /\
                  (!y. y IN t ==> g(y) IN s /\ f(g y) = y)`,
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CARD_EQ_BIJECTION) THEN
  MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[SURJECTIVE_ON_RIGHT_INVERSE] THEN
  GEN_TAC THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[]);;

let BIJECTIONS_HAS_SIZE = prove
 (`!s t f:A->B g.
        (!x. x IN s ==> f(x) IN t /\ g(f x) = x) /\
        (!y. y IN t ==> g(y) IN s /\ f(g y) = y) /\
        s HAS_SIZE n
        ==> t HAS_SIZE n`,
  REPEAT STRIP_TAC THEN SUBGOAL_THEN `t = IMAGE (f:A->B) s` SUBST_ALL_TAC THENL
   [ASM SET_TAC[];
    MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN ASM_MESON_TAC[]]);;

let BIJECTIONS_HAS_SIZE_EQ = prove
 (`!s t f:A->B g.
        (!x. x IN s ==> f(x) IN t /\ g(f x) = x) /\
        (!y. y IN t ==> g(y) IN s /\ f(g y) = y)
        ==> !n. s HAS_SIZE n <=> t HAS_SIZE n`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN
  MATCH_MP_TAC(ONCE_REWRITE_RULE
  [TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] BIJECTIONS_HAS_SIZE) THENL
   [MAP_EVERY EXISTS_TAC [`f:A->B`; `g:B->A`];
    MAP_EVERY EXISTS_TAC [`g:B->A`; `f:A->B`]] THEN
  ASM_MESON_TAC[]);;

let BIJECTIONS_CARD_EQ = prove
 (`!s t f:A->B g.
        (FINITE s \/ FINITE t) /\
        (!x. x IN s ==> f(x) IN t /\ g(f x) = x) /\
        (!y. y IN t ==> g(y) IN s /\ f(g y) = y)
        ==> CARD s = CARD t`,
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2
   MP_TAC (MP_TAC o MATCH_MP BIJECTIONS_HAS_SIZE_EQ)) THEN
  MESON_TAC[HAS_SIZE]);;

(* ------------------------------------------------------------------------- *)
(* Transitive relation with finitely many predecessors is wellfounded.       *)
(* ------------------------------------------------------------------------- *)

let WF_FINITE = prove
 (`!(<<). (!x. ~(x << x)) /\ (!x y z. x << y /\ y << z ==> x << z) /\
          (!x:A. FINITE {y | y << x})
          ==> WF(<<)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[WF_DCHAIN] THEN
  DISCH_THEN(X_CHOOSE_THEN `s:num->A` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `!m n. m < n ==> (s:num->A) n << s m` ASSUME_TAC THENL
   [MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN ASM_MESON_TAC[]; ALL_TAC] THEN
  MP_TAC(ISPEC `s:num->A` INFINITE_IMAGE_INJ) THEN ANTS_TAC THENL
   [ASM_MESON_TAC[LT_CASES]; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o SPEC `(:num)`) THEN
  REWRITE_TAC[num_INFINITE] THEN REWRITE_TAC[INFINITE] THEN
  MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `s(0) INSERT {y:A | y << s(0)}` THEN
  ASM_REWRITE_TAC[FINITE_INSERT] THEN
  REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV; IN_INSERT] THEN
  INDUCT_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[LT_0]);;

let WF_PSUBSET = prove
 (`!s:A->bool. FINITE s ==> WF (\t1 t2. t1 PSUBSET t2 /\ t2 SUBSET s)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC WF_FINITE THEN SIMP_TAC[CONJ_ASSOC] THEN
  CONJ_TAC THENL [SET_TAC[]; X_GEN_TAC `t:A->bool`] THEN
  MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{t:A->bool | t SUBSET s}` THEN
  ASM_SIMP_TAC[FINITE_POWERSET] THEN SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Cardinal comparisons (more theory in Library/card.ml)                     *)
(* ------------------------------------------------------------------------- *)

let le_c = new_definition
  `s <=_c t <=> ?f. (!x. x IN s ==> f(x) IN t) /\
                    (!x y. x IN s /\ y IN s /\ (f(x) = f(y)) ==> (x = y))`;;

let lt_c = new_definition
  `s <_c t <=> s <=_c t /\ ~(t <=_c s)`;;

let eq_c = new_definition
  `s =_c t <=> ?f. (!x. x IN s ==> f(x) IN t) /\
                   !y. y IN t ==> ?!x. x IN s /\ (f x = y)`;;

let ge_c = new_definition
 `s >=_c t <=> t <=_c s`;;

let gt_c = new_definition
 `s >_c t <=> t <_c s`;;

let LE_C = prove
 (`!s t. s <=_c t <=> ?g. !x. x IN s ==> ?y. y IN t /\ (g y = x)`,
  REWRITE_TAC[le_c; INJECTIVE_ON_LEFT_INVERSE; SURJECTIVE_ON_RIGHT_INVERSE;
              RIGHT_IMP_EXISTS_THM; SKOLEM_THM; RIGHT_AND_EXISTS_THM] THEN
  MESON_TAC[]);;

let GE_C = prove
 (`!s t. s >=_c t <=> ?f. !y. y IN t ==> ?x. x IN s /\ (y = f x)`,
  REWRITE_TAC[ge_c; LE_C] THEN MESON_TAC[]);;

let COUNTABLE = new_definition
  `COUNTABLE t <=> (:num) >=_c t`;;

(* ------------------------------------------------------------------------- *)
(* Supremum and infimum.                                                     *)
(* ------------------------------------------------------------------------- *)

let sup = new_definition
  `sup s = @a:real. (!x. x IN s ==> x <= a) /\
                    !b. (!x. x IN s ==> x <= b) ==> a <= b`;;

let SUP_EQ = prove
 (`!s t. (!b. (!x. x IN s ==> x <= b) <=> (!x. x IN t ==> x <= b))
         ==> sup s = sup t`,
  SIMP_TAC[sup]);;

let SUP = prove
 (`!s. ~(s = {}) /\ (?b. !x. x IN s ==> x <= b)
       ==> (!x. x IN s ==> x <= sup s) /\
           !b. (!x. x IN s ==> x <= b) ==> sup s <= b`,
  REWRITE_TAC[sup] THEN CONV_TAC(ONCE_DEPTH_CONV SELECT_CONV) THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_COMPLETE THEN
  ASM_MESON_TAC[MEMBER_NOT_EMPTY]);;

let SUP_FINITE_LEMMA = prove
 (`!s. FINITE s /\ ~(s = {}) ==> ?b:real. b IN s /\ !x. x IN s ==> x <= b`,
  REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[NOT_INSERT_EMPTY; IN_INSERT] THEN
  REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN
  MESON_TAC[REAL_LE_TOTAL; REAL_LE_TRANS]);;

let SUP_FINITE = prove
 (`!s. FINITE s /\ ~(s = {}) ==> (sup s) IN s /\ !x. x IN s ==> x <= sup s`,
  GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP SUP_FINITE_LEMMA) THEN
  ASM_MESON_TAC[REAL_LE_ANTISYM; REAL_LE_TOTAL; SUP]);;

let REAL_LE_SUP_FINITE = prove
 (`!s a. FINITE s /\ ~(s = {}) ==> (a <= sup s <=> ?x. x IN s /\ a <= x)`,
  MESON_TAC[SUP_FINITE; REAL_LE_TRANS]);;

let REAL_SUP_LE_FINITE = prove
 (`!s a. FINITE s /\ ~(s = {}) ==> (sup s <= a <=> !x. x IN s ==> x <= a)`,
  MESON_TAC[SUP_FINITE; REAL_LE_TRANS]);;

let REAL_LT_SUP_FINITE = prove
 (`!s a. FINITE s /\ ~(s = {}) ==> (a < sup s <=> ?x. x IN s /\ a < x)`,
  MESON_TAC[SUP_FINITE; REAL_LTE_TRANS]);;

let REAL_SUP_LT_FINITE = prove
 (`!s a. FINITE s /\ ~(s = {}) ==> (sup s < a <=> !x. x IN s ==> x < a)`,
  MESON_TAC[SUP_FINITE; REAL_LET_TRANS]);;

let REAL_SUP_UNIQUE = prove
 (`!s b. (!x. x IN s ==> x <= b) /\
         (!b'. b' < b ==> ?x. x IN s /\ b' < x)
         ==> sup s = b`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[sup] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
  ASM_MESON_TAC[REAL_NOT_LE; REAL_LE_ANTISYM]);;

let REAL_SUP_LE = prove
 (`!b. ~(s = {}) /\ (!x. x IN s ==> x <= b) ==> sup s <= b`,
  MESON_TAC[SUP]);;

let REAL_SUP_LE_SUBSET = prove
 (`!s t. ~(s = {}) /\ s SUBSET t /\ (?b. !x. x IN t ==> x <= b)
         ==> sup s <= sup t`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_SUP_LE THEN
  MP_TAC(SPEC `t:real->bool` SUP) THEN ASM SET_TAC[]);;

let REAL_SUP_BOUNDS = prove
 (`!s a b. ~(s = {}) /\ (!x. x IN s ==> a <= x /\ x <= b)
           ==> a <= sup s /\ sup s <= b`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MP_TAC(SPEC `s:real->bool` SUP) THEN ANTS_TAC THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
  ASM_MESON_TAC[REAL_LE_TRANS]);;

let REAL_ABS_SUP_LE = prove
 (`!s a. ~(s = {}) /\ (!x. x IN s ==> abs(x) <= a) ==> abs(sup s) <= a`,
  REWRITE_TAC[GSYM REAL_BOUNDS_LE; REAL_SUP_BOUNDS]);;

let REAL_SUP_ASCLOSE = prove
 (`!s l e. ~(s = {}) /\ (!x. x IN s ==> abs(x - l) <= e)
           ==> abs(sup s - l) <= e`,
  SIMP_TAC[REAL_ARITH `abs(x - l):real <= e <=> l - e <= x /\ x <= l + e`] THEN
  REWRITE_TAC[REAL_SUP_BOUNDS]);;

let SUP_UNIQUE_FINITE = prove
 (`!s. FINITE s /\ ~(s = {})
       ==> (sup s = a <=> a IN s /\ !y. y IN s ==> y <= a)`,
   ASM_SIMP_TAC[GSYM REAL_LE_ANTISYM; REAL_LE_SUP_FINITE; REAL_SUP_LE_FINITE;
               NOT_INSERT_EMPTY; FINITE_INSERT; FINITE_EMPTY] THEN
   MESON_TAC[REAL_LE_REFL; REAL_LE_TRANS; REAL_LE_ANTISYM]);;

let SUP_INSERT_FINITE = prove
 (`!x s. FINITE s ==> sup(x INSERT s) = if s = {} then x else max x (sup s)`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[SUP_UNIQUE_FINITE;  FINITE_INSERT; FINITE_EMPTY;
               NOT_INSERT_EMPTY; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
  REWRITE_TAC[IN_SING; REAL_LE_REFL] THEN
  REWRITE_TAC[real_max] THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[SUP_FINITE; IN_INSERT; REAL_LE_REFL] THEN
  ASM_MESON_TAC[SUP_FINITE; REAL_LE_TOTAL; REAL_LE_TRANS]);;

let SUP_SING = prove
 (`!a. sup {a} = a`,
  SIMP_TAC[SUP_INSERT_FINITE; FINITE_EMPTY]);;

let SUP_INSERT_INSERT = prove
 (`!a b s. sup (b INSERT a INSERT s) = sup (max a b INSERT s)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC SUP_EQ THEN
  X_GEN_TAC `c:real` THEN REWRITE_TAC[FORALL_IN_INSERT] THEN
  ASM_CASES_TAC `!x:real. x IN s ==> x <= c` THEN ASM_REWRITE_TAC[] THEN
  REAL_ARITH_TAC);;

let REAL_LE_SUP = prove
 (`!s a b y. y IN s /\ a <= y /\ (!x. x IN s ==> x <= b) ==> a <= sup s`,
  MESON_TAC[SUP; MEMBER_NOT_EMPTY; REAL_LE_TRANS]);;

let REAL_SUP_LE_EQ = prove
 (`!s y. ~(s = {}) /\ (?b. !x. x IN s ==> x <= b)
         ==> (sup s <= y <=> !x. x IN s ==> x <= y)`,
  MESON_TAC[SUP; REAL_LE_TRANS]);;

let SUP_UNIQUE = prove
 (`!s b. (!c. (!x. x IN s ==> x <= c) <=> b <= c) ==> sup s = b`,
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM SUP_SING] THEN
  MATCH_MP_TAC SUP_EQ THEN ASM SET_TAC[]);;

let SUP_UNION = prove
 (`!s t. ~(s = {}) /\ ~(t = {}) /\
         (?b. !x. x IN s ==> x <= b) /\ (?c. !x. x IN t ==> x <= c)
         ==> sup(s UNION t) = max (sup s) (sup t)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUP_UNIQUE THEN
  REWRITE_TAC[FORALL_IN_UNION; REAL_MAX_LE] THEN
  ASM_MESON_TAC[SUP; REAL_LE_TRANS]);;

let ELEMENT_LE_SUP = prove
 (`!s a. (?b. !x. x IN s ==> x <= b) /\ a IN s ==> a <= sup s`,
  MESON_TAC[REAL_LE_SUP; REAL_LE_REFL]);;

let inf = new_definition
  `inf s = @a:real. (!x. x IN s ==> a <= x) /\
                    !b. (!x. x IN s ==> b <= x) ==> b <= a`;;

let INF_EQ = prove
 (`!s t. (!a. (!x. x IN s ==> a <= x) <=> (!x. x IN t ==> a <= x))
         ==> inf s = inf t`,
  SIMP_TAC[inf]);;

let INF = prove
 (`!s. ~(s = {}) /\ (?b. !x. x IN s ==> b <= x)
       ==> (!x. x IN s ==> inf s <= x) /\
           !b. (!x. x IN s ==> b <= x) ==> b <= inf s`,
  GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[inf] THEN
  CONV_TAC(ONCE_DEPTH_CONV SELECT_CONV) THEN
  ONCE_REWRITE_TAC[GSYM REAL_LE_NEG2] THEN
  EXISTS_TAC `--(sup (IMAGE (--) s))` THEN
  MP_TAC(SPEC `IMAGE (--) (s:real->bool)` SUP) THEN
  REWRITE_TAC[REAL_NEG_NEG] THEN
  ABBREV_TAC `a = sup (IMAGE (--) s)` THEN
  REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_IMAGE] THEN
  ASM_MESON_TAC[REAL_NEG_NEG; MEMBER_NOT_EMPTY; REAL_LE_NEG2]);;

let INF_FINITE_LEMMA = prove
 (`!s. FINITE s /\ ~(s = {}) ==> ?b:real. b IN s /\ !x. x IN s ==> b <= x`,
  REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[NOT_INSERT_EMPTY; IN_INSERT] THEN
  REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN
  MESON_TAC[REAL_LE_TOTAL; REAL_LE_TRANS]);;

let INF_FINITE = prove
 (`!s. FINITE s /\ ~(s = {}) ==> (inf s) IN s /\ !x. x IN s ==> inf s <= x`,
  GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP INF_FINITE_LEMMA) THEN
  ASM_MESON_TAC[REAL_LE_ANTISYM; REAL_LE_TOTAL; INF]);;

let REAL_LE_INF_FINITE = prove
(`!s a. FINITE s /\ ~(s = {}) ==> (a <= inf s <=> !x. x IN s ==> a <= x)`,
  MESON_TAC[INF_FINITE; REAL_LE_TRANS]);;

let REAL_INF_LE_FINITE = prove
 (`!s a. FINITE s /\ ~(s = {}) ==> (inf s <= a <=> ?x. x IN s /\ x <= a)`,
  MESON_TAC[INF_FINITE; REAL_LE_TRANS]);;

let REAL_LT_INF_FINITE = prove
 (`!s a. FINITE s /\ ~(s = {}) ==> (a < inf s <=> !x. x IN s ==> a < x)`,
  MESON_TAC[INF_FINITE; REAL_LTE_TRANS]);;

let REAL_INF_LT_FINITE = prove
 (`!s a. FINITE s /\ ~(s = {}) ==> (inf s < a <=> ?x. x IN s /\ x < a)`,
  MESON_TAC[INF_FINITE; REAL_LET_TRANS]);;

let REAL_INF_UNIQUE = prove
 (`!s b. (!x. x IN s ==> b <= x) /\
         (!b'. b < b' ==> ?x. x IN s /\ x < b')
         ==> inf s = b`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[inf] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
  ASM_MESON_TAC[REAL_NOT_LE; REAL_LE_ANTISYM]);;

let REAL_LE_INF = prove
 (`!b. ~(s = {}) /\ (!x. x IN s ==> b <= x) ==> b <= inf s`,
  MESON_TAC[INF]);;

let REAL_LE_INF_SUBSET = prove
 (`!s t. ~(t = {}) /\ t SUBSET s /\ (?b. !x. x IN s ==> b <= x)
         ==> inf s <= inf t`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_INF THEN
  MP_TAC(SPEC `s:real->bool` INF) THEN ASM SET_TAC[]);;

let REAL_INF_BOUNDS = prove
 (`!s a b. ~(s = {}) /\ (!x. x IN s ==> a <= x /\ x <= b)
           ==> a <= inf s /\ inf s <= b`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MP_TAC(SPEC `s:real->bool` INF) THEN ANTS_TAC THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
  ASM_MESON_TAC[REAL_LE_TRANS]);;

let REAL_ABS_INF_LE = prove
 (`!s a. ~(s = {}) /\ (!x. x IN s ==> abs(x) <= a) ==> abs(inf s) <= a`,
  REWRITE_TAC[GSYM REAL_BOUNDS_LE; REAL_INF_BOUNDS]);;

let REAL_INF_ASCLOSE = prove
 (`!s l e. ~(s = {}) /\ (!x. x IN s ==> abs(x - l) <= e)
           ==> abs(inf s - l) <= e`,
  SIMP_TAC[REAL_ARITH `abs(x - l):real <= e <=> l - e <= x /\ x <= l + e`] THEN
  REWRITE_TAC[REAL_INF_BOUNDS]);;

let INF_UNIQUE_FINITE = prove
 (`!s. FINITE s /\ ~(s = {})
       ==> (inf s = a <=> a IN s /\ !y. y IN s ==> a <= y)`,
   ASM_SIMP_TAC[GSYM REAL_LE_ANTISYM; REAL_LE_INF_FINITE; REAL_INF_LE_FINITE;
               NOT_INSERT_EMPTY; FINITE_INSERT; FINITE_EMPTY] THEN
   MESON_TAC[REAL_LE_REFL; REAL_LE_TRANS; REAL_LE_ANTISYM]);;

let INF_INSERT_FINITE = prove
 (`!x s. FINITE s ==> inf(x INSERT s) = if s = {} then x else min x (inf s)`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[INF_UNIQUE_FINITE;  FINITE_INSERT; FINITE_EMPTY;
               NOT_INSERT_EMPTY; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
  REWRITE_TAC[IN_SING; REAL_LE_REFL] THEN
  REWRITE_TAC[real_min] THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[INF_FINITE; IN_INSERT; REAL_LE_REFL] THEN
  ASM_MESON_TAC[INF_FINITE; REAL_LE_TOTAL; REAL_LE_TRANS]);;

let INF_SING = prove
 (`!a. inf {a} = a`,
  SIMP_TAC[INF_INSERT_FINITE; FINITE_EMPTY]);;

let INF_INSERT_INSERT = prove
 (`!a b s. inf (b INSERT a INSERT s) = inf (min a b INSERT s)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC INF_EQ THEN
  X_GEN_TAC `c:real` THEN REWRITE_TAC[FORALL_IN_INSERT] THEN
  ASM_CASES_TAC `!x:real. x IN s ==> c <= x` THEN ASM_REWRITE_TAC[] THEN
  REAL_ARITH_TAC);;

let REAL_SUP_EQ_INF = prove
 (`!s. ~(s = {}) /\ (?B. !x. x IN s ==> abs(x) <= B)
       ==> (sup s = inf s <=> ?a. s = {a})`,
  REPEAT STRIP_TAC THEN EQ_TAC THENL
   [DISCH_TAC THEN EXISTS_TAC `sup s` THEN MATCH_MP_TAC
     (SET_RULE `~(s = {}) /\ (!x. x IN s ==> x = a) ==> s = {a}`) THEN
    ASM_REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN
    ASM_MESON_TAC[SUP; REAL_ABS_BOUNDS; INF];
    STRIP_TAC THEN
    ASM_SIMP_TAC[SUP_INSERT_FINITE; INF_INSERT_FINITE; FINITE_EMPTY]]);;

let REAL_INF_LE = prove
 (`!s a b y. y IN s /\ y <= b /\ (!x. x IN s ==> a <= x) ==> inf s <= b`,
  MESON_TAC[INF; MEMBER_NOT_EMPTY; REAL_LE_TRANS]);;

let REAL_LE_INF_EQ = prove
 (`!s t. ~(s = {}) /\ (?b. !x. x IN s ==> b <= x)
         ==> (y <= inf s <=> !x. x IN s ==> y <= x)`,
  MESON_TAC[INF; REAL_LE_TRANS]);;

let INF_UNIQUE = prove
 (`!s b. (!c. (!x. x IN s ==> c <= x) <=> c <= b) ==> inf s = b`,
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM INF_SING] THEN
  MATCH_MP_TAC INF_EQ THEN ASM SET_TAC[]);;

let INF_UNION = prove
 (`!s t. ~(s = {}) /\ ~(t = {}) /\
         (?b. !x. x IN s ==> b <= x) /\ (?c. !x. x IN t ==> c <= x)
         ==> inf(s UNION t) = min (inf s) (inf t)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC INF_UNIQUE THEN
  REWRITE_TAC[FORALL_IN_UNION; REAL_LE_MIN] THEN
  ASM_MESON_TAC[INF; REAL_LE_TRANS]);;

let INF_LE_ELEMENT = prove
 (`!s a. (?b. !x. x IN s ==> b <= x) /\ a IN s ==> inf s <= a`,
  MESON_TAC[REAL_INF_LE; REAL_LE_REFL]);;

(* ------------------------------------------------------------------------- *)
(* Inductive definition of sets, by reducing them to inductive relations.    *)
(* ------------------------------------------------------------------------- *)

let new_inductive_set =
  let const_of_var v = mk_mconst(name_of v,type_of v) in
  let comb_all =
    let rec f (n:int) (tm:term) : hol_type list -> term = function
      | [] -> tm
      | ty::tys ->
          let v = variant (variables tm) (mk_var("x"^string_of_int n,ty)) in
          f (n+1) (mk_comb(tm,v)) tys in
    fun tm -> let tys = fst (splitlist dest_fun_ty (type_of tm)) in
              f 0 tm tys in
  let mk_eqin = REWR_CONV (GSYM IN) o comb_all in
  let transf conv = rhs o concl o conv in
  let remove_in_conv ptm : conv =
    let rconv = REWR_CONV(SYM(mk_eqin ptm)) in
    fun tm -> let htm = fst(strip_comb(snd(dest_binary "IN" tm))) in
              if htm = ptm then rconv tm else fail() in
  let remove_in_transf =
    transf o ONCE_DEPTH_CONV o FIRST_CONV o map remove_in_conv in
  let rule_head tm =
    let tm = snd(strip_forall tm) in
    let tm = snd(splitlist(dest_binop `(==>)`) tm) in
    let tm = snd(dest_binary "IN" tm) in
    fst(strip_comb tm) in
  let find_pvars = setify o map rule_head o binops `(/\)` in
  fun tm ->
    let pvars = find_pvars tm in
    let dtm = remove_in_transf pvars tm in
    let th_rules, th_induct, th_cases = new_inductive_definition dtm in
    let insert_in_rule = REWRITE_RULE(map (mk_eqin o const_of_var) pvars) in
    insert_in_rule th_rules,
    insert_in_rule th_induct,
    insert_in_rule th_cases;;