File: constructible.ml

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (898 lines) | stat: -rw-r--r-- 42,919 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
(* ========================================================================= *)
(* Non-constructibility of irrational cubic equation solutions.              *)
(*                                                                           *)
(* This gives the two classic impossibility results: trisecting an angle or  *)
(* constructing the cube using traditional geometric constructions.          *)
(*                                                                           *)
(* This elementary proof (not using field extensions etc.) is taken from     *)
(* Dickson's "First Course in the Theory of Equations", chapter III.         *)
(* ========================================================================= *)

needs "Library/prime.ml";;
needs "Library/floor.ml";;
needs "Multivariate/transcendentals.ml";;

prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* The critical lemma.                                                       *)
(* ------------------------------------------------------------------------- *)

let STEP_LEMMA = prove
 (`!P. (!n. P(&n)) /\
       (!x. P x ==> P(--x)) /\
       (!x. P x /\ ~(x = &0) ==> P(inv x)) /\
       (!x y. P x /\ P y ==> P(x + y)) /\
       (!x y. P x /\ P y ==> P(x * y))
       ==> !a b c z u v s.
               P a /\ P b /\ P c /\
               z pow 3 + a * z pow 2 + b * z + c = &0 /\
               P u /\ P v /\ P(s * s) /\ z = u + v * s
               ==> ?w. P w /\ w pow 3 + a * w pow 2 + b * w + c = &0`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN
  ASM_CASES_TAC `v * s = &0` THENL
   [ASM_REWRITE_TAC[REAL_ADD_RID] THEN MESON_TAC[]; ALL_TAC] THEN
  STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
  MAP_EVERY ABBREV_TAC
   [`A = a * s pow 2 * v pow 2 + &3 * s pow 2 * u * v pow 2 +
         a * u pow 2 + u pow 3 +  b * u + c`;
    `B = s pow 2 * v pow 3 + &2 * a * u * v + &3 * u pow 2 * v + b * v`] THEN
  SUBGOAL_THEN `A + B * s = &0` ASSUME_TAC THENL
   [REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN CONV_TAC REAL_RING; ALL_TAC] THEN
  ASM_CASES_TAC `(P:real->bool) s` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `B = &0` ASSUME_TAC THENL
   [UNDISCH_TAC `~P(s:real)` THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    DISCH_TAC THEN REWRITE_TAC[] THEN
    FIRST_X_ASSUM(MP_TAC o MATCH_MP (REAL_FIELD
     `A + B * s = &0 ==> ~(B = &0) ==> s = --A / B`)) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
    REWRITE_TAC[real_div] THEN FIRST_ASSUM MATCH_MP_TAC THEN
    CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
    MAP_EVERY EXPAND_TAC ["A"; "B"] THEN
    REWRITE_TAC[REAL_ARITH `x pow 3 = x * x * x`; REAL_POW_2] THEN
    REPEAT(FIRST_ASSUM MATCH_ACCEPT_TAC ORELSE
           (FIRST_ASSUM MATCH_MP_TAC THEN REPEAT CONJ_TAC));
    ALL_TAC] THEN
  EXISTS_TAC `--(a + &2 * u)` THEN ASM_SIMP_TAC[] THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o check ((not) o is_forall o concl))) THEN
  CONV_TAC REAL_RING);;

(* ------------------------------------------------------------------------- *)
(* Instantiate to square roots.                                              *)
(* ------------------------------------------------------------------------- *)

let STEP_LEMMA_SQRT = prove
 (`!P. (!n. P(&n)) /\
       (!x. P x ==> P(--x)) /\
       (!x. P x /\ ~(x = &0) ==> P(inv x)) /\
       (!x y. P x /\ P y ==> P(x + y)) /\
       (!x y. P x /\ P y ==> P(x * y))
       ==> !a b c z u v s.
               P a /\ P b /\ P c /\
               z pow 3 + a * z pow 2 + b * z + c = &0 /\
               P u /\ P v /\ P(s) /\ &0 <= s /\ z = u + v * sqrt(s)
               ==> ?w. P w /\ w pow 3 + a * w pow 2 + b * w + c = &0`,
  GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP STEP_LEMMA) THEN
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
  ASM_MESON_TAC[SQRT_POW_2; REAL_POW_2]);;

(* ------------------------------------------------------------------------- *)
(* Numbers definable by radicals involving square roots only.                *)
(* ------------------------------------------------------------------------- *)

let radical_RULES,radical_INDUCT,radical_CASES = new_inductive_definition
 `(!x. rational x ==> radical x) /\
  (!x. radical x ==> radical (--x)) /\
  (!x. radical x /\ ~(x = &0) ==> radical (inv x)) /\
  (!x y. radical x /\ radical y ==> radical (x + y)) /\
  (!x y. radical x /\ radical y ==> radical (x * y)) /\
  (!x. radical x /\ &0 <= x ==> radical (sqrt x))`;;

let RADICAL_RULES = prove
 (`(!n. radical(&n)) /\
   (!x. rational x ==> radical x) /\
   (!x. radical x ==> radical (--x)) /\
   (!x. radical x /\ ~(x = &0) ==> radical (inv x)) /\
   (!x y. radical x /\ radical y ==> radical (x + y)) /\
   (!x y. radical x /\ radical y ==> radical (x - y)) /\
   (!x y. radical x /\ radical y ==> radical (x * y)) /\
   (!x y. radical x /\ radical y /\ ~(y = &0) ==> radical (x / y)) /\
   (!x n. radical x ==> radical(x pow n)) /\
   (!x. radical x /\ &0 <= x ==> radical (sqrt x))`,
  SIMP_TAC[real_div; real_sub; radical_RULES; RATIONAL_NUM] THEN
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_SIMP_TAC[radical_RULES; real_pow; RATIONAL_NUM]);;

let RADICAL_TAC =
  REPEAT(MATCH_ACCEPT_TAC (CONJUNCT1 RADICAL_RULES) ORELSE
         (MAP_FIRST MATCH_MP_TAC(tl(tl(CONJUNCTS RADICAL_RULES))) THEN
          REPEAT CONJ_TAC));;

(* ------------------------------------------------------------------------- *)
(* Explicit "expressions" to support inductive proof.                        *)
(* ------------------------------------------------------------------------- *)

let expression_INDUCT,expression_RECURSION = define_type
 "expression = Constant real
             | Negation expression
             | Inverse expression
             | Addition expression expression
             | Multiplication expression expression
             | Sqrt expression";;

(* ------------------------------------------------------------------------- *)
(* Interpretation.                                                           *)
(* ------------------------------------------------------------------------- *)

let value = define
 `(value(Constant x) = x) /\
  (value(Negation e) = --(value e)) /\
  (value(Inverse e) = inv(value e)) /\
  (value(Addition e1 e2) = value e1 + value e2) /\
  (value(Multiplication e1 e2) = value e1 * value e2) /\
  (value(Sqrt e) = sqrt(value e))`;;

(* ------------------------------------------------------------------------- *)
(* Wellformedness of an expression.                                          *)
(* ------------------------------------------------------------------------- *)

let wellformed = define
 `(wellformed(Constant x) <=> rational x) /\
  (wellformed(Negation e) <=> wellformed e) /\
  (wellformed(Inverse e) <=> ~(value e = &0) /\ wellformed e) /\
  (wellformed(Addition e1 e2) <=> wellformed e1 /\ wellformed e2) /\
  (wellformed(Multiplication e1 e2) <=> wellformed e1 /\ wellformed e2) /\
  (wellformed(Sqrt e) <=> &0 <= value e /\ wellformed e)`;;

(* ------------------------------------------------------------------------- *)
(* The set of radicals in an expression.                                     *)
(* ------------------------------------------------------------------------- *)

let radicals = define
 `(radicals(Constant x) = {}) /\
  (radicals(Negation e) = radicals e) /\
  (radicals(Inverse e) = radicals e) /\
  (radicals(Addition e1 e2) = (radicals e1) UNION (radicals e2)) /\
  (radicals(Multiplication e1 e2) = (radicals e1) UNION (radicals e2)) /\
  (radicals(Sqrt e) = e INSERT (radicals e))`;;

let FINITE_RADICALS = prove
 (`!e. FINITE(radicals e)`,
  MATCH_MP_TAC expression_INDUCT THEN
  SIMP_TAC[radicals; FINITE_RULES; FINITE_UNION]);;

let WELLFORMED_RADICALS = prove
 (`!e. wellformed e ==> !r. r IN radicals(e) ==> &0 <= value r`,
  MATCH_MP_TAC expression_INDUCT THEN
  REWRITE_TAC[radicals; wellformed; NOT_IN_EMPTY; IN_UNION; IN_INSERT] THEN
  MESON_TAC[]);;

let RADICALS_WELLFORMED = prove
 (`!e. wellformed e ==> !r. r IN radicals e ==> wellformed r`,
  MATCH_MP_TAC expression_INDUCT THEN
  REWRITE_TAC[radicals; wellformed; NOT_IN_EMPTY; IN_UNION; IN_INSERT] THEN
  MESON_TAC[]);;

let RADICALS_SUBSET = prove
 (`!e r. r IN radicals e ==> radicals(r) SUBSET radicals(e)`,
  MATCH_MP_TAC expression_INDUCT THEN
  REWRITE_TAC[radicals; IN_UNION; NOT_IN_EMPTY; IN_INSERT; SUBSET] THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Show that every radical is the interpretation of a wellformed expresion.  *)
(* ------------------------------------------------------------------------- *)

let RADICAL_EXPRESSION = prove
 (`!x. radical x <=> ?e. wellformed e /\ x = value e`,
  GEN_TAC THEN EQ_TAC THEN SPEC_TAC(`x:real`,`x:real`) THENL
   [MATCH_MP_TAC radical_INDUCT THEN REPEAT STRIP_TAC THEN
    REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_MESON_TAC[value; wellformed];
    SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
    REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
    REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
    MATCH_MP_TAC expression_INDUCT THEN
    REWRITE_TAC[value; wellformed] THEN SIMP_TAC[radical_RULES]]);;

(* ------------------------------------------------------------------------- *)
(* Nesting depth of radicals in an expression.                               *)
(* ------------------------------------------------------------------------- *)

let LT_MAX = prove
 (`!a b c. a < MAX b c <=> a < b \/ a < c`,
  ARITH_TAC);;

let depth = define
 `(depth(Constant x) = 0) /\
  (depth(Negation e) = depth e) /\
  (depth(Inverse e) = depth e) /\
  (depth(Addition e1 e2) = MAX (depth e1) (depth e2)) /\
  (depth(Multiplication e1 e2) = MAX (depth e1) (depth e2)) /\
  (depth(Sqrt e) = 1 + depth e)`;;

let IN_RADICALS_SMALLER = prove
 (`!r s. s IN radicals(r) ==> depth(s) < depth(r)`,
  MATCH_MP_TAC expression_INDUCT THEN REWRITE_TAC[radicals; depth] THEN
  REWRITE_TAC[IN_UNION; NOT_IN_EMPTY; IN_INSERT; LT_MAX] THEN
  MESON_TAC[ARITH_RULE `s = a \/ s < a ==> s < 1 + a`]);;

let NOT_IN_OWN_RADICALS = prove
 (`!r. ~(r IN radicals r)`,
  MESON_TAC[IN_RADICALS_SMALLER; LT_REFL]);;

let RADICALS_EMPTY_RATIONAL = prove
 (`!e. wellformed e /\ radicals e = {} ==> rational(value e)`,
  MATCH_MP_TAC expression_INDUCT THEN
  REWRITE_TAC[wellformed; value; radicals; EMPTY_UNION; NOT_INSERT_EMPTY] THEN
  REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_SIMP_TAC[RATIONAL_CLOSED]);;

(* ------------------------------------------------------------------------- *)
(* Crucial point about splitting off some "topmost" radical.                 *)
(* ------------------------------------------------------------------------- *)

let FINITE_MAX = prove
 (`!s. FINITE s ==> ~(s = {}) ==> ?b:num. b IN s /\ !a. a IN s ==> a <= b`,
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[NOT_INSERT_EMPTY; IN_INSERT] THEN REPEAT GEN_TAC THEN
  ASM_CASES_TAC `s:num->bool = {}` THEN
  ASM_SIMP_TAC[NOT_IN_EMPTY; UNWIND_THM2; LE_REFL] THEN
  REWRITE_TAC[RIGHT_OR_DISTRIB; EXISTS_OR_THM; UNWIND_THM2] THEN
  MESON_TAC[LE_CASES; LE_REFL; LE_TRANS]);;

let RADICAL_TOP = prove
 (`!e. ~(radicals e = {})
       ==> ?r. r IN radicals e /\
               !s. s IN radicals(e) ==> ~(r IN radicals s)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `IMAGE depth (radicals e)` FINITE_MAX) THEN
  ASM_SIMP_TAC[IMAGE_EQ_EMPTY; FINITE_IMAGE; FINITE_RADICALS] THEN
  REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_IN_IMAGE] THEN
  MESON_TAC[IN_RADICALS_SMALLER; NOT_LT]);;

(* ------------------------------------------------------------------------- *)
(* By rearranging the expression we can use it in a canonical way.           *)
(* ------------------------------------------------------------------------- *)

let RADICAL_CANONICAL_TRIVIAL = prove
 (`!e r.
     (r IN radicals e
            ==> (?a b.
                   wellformed a /\
                   wellformed b /\
                   value e = value a + value b * sqrt (value r) /\
                   radicals a SUBSET radicals e DELETE r /\
                   radicals b SUBSET radicals e DELETE r /\
                   radicals r SUBSET radicals e DELETE r))
     ==> wellformed e
         ==> ?a b. wellformed a /\
                   wellformed b /\
                   value e = value a + value b * sqrt (value r) /\
                   radicals a SUBSET (radicals e UNION radicals r) DELETE r /\
                   radicals b SUBSET (radicals e UNION radicals r) DELETE r /\
                   radicals r SUBSET (radicals e UNION radicals r) DELETE r`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `r IN radicals e` THEN ASM_SIMP_TAC[] THENL
   [DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
    REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SET_TAC[];
    DISCH_TAC THEN
    MAP_EVERY EXISTS_TAC [`e:expression`; `Constant(&0)`] THEN
    ASM_REWRITE_TAC[wellformed; value; radicals] THEN
    REWRITE_TAC[RATIONAL_NUM; REAL_MUL_LZERO; REAL_ADD_RID] THEN
    UNDISCH_TAC `~(r IN radicals e)` THEN
    MP_TAC(SPEC `r:expression` NOT_IN_OWN_RADICALS) THEN SET_TAC[]]);;

let RADICAL_CANONICAL = prove
 (`!e. wellformed e /\ ~(radicals e = {})
       ==> ?r. r IN radicals(e) /\
               ?a b. wellformed(Addition a (Multiplication b (Sqrt r))) /\
                     value e = value(Addition a (Multiplication b (Sqrt r))) /\
                     (radicals a) SUBSET (radicals(e) DELETE r) /\
                     (radicals b) SUBSET (radicals(e) DELETE r) /\
                     (radicals r) SUBSET (radicals(e) DELETE r)`,
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP RADICAL_TOP) THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:expression` THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `&0 <= value r /\ wellformed r` STRIP_ASSUME_TAC THENL
   [ASM_MESON_TAC[WELLFORMED_RADICALS; RADICALS_WELLFORMED]; ALL_TAC] THEN
  MAP_EVERY UNDISCH_TAC [`wellformed e`; `r IN radicals e`] THEN
  ASM_REWRITE_TAC[IMP_IMP; wellformed; value; GSYM CONJ_ASSOC] THEN
  SPEC_TAC(`e:expression`,`e:expression`) THEN
  MATCH_MP_TAC expression_INDUCT THEN
  REWRITE_TAC[wellformed; radicals; value; NOT_IN_EMPTY] THEN
  REWRITE_TAC[IN_INSERT; IN_UNION] THEN REPEAT CONJ_TAC THEN
  X_GEN_TAC `e1:expression` THEN TRY(X_GEN_TAC `e2:expression`) THENL
   [DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
    ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`a:expression`; `b:expression`] THEN
    STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`Negation a`; `Negation b`] THEN
    ASM_REWRITE_TAC[value; wellformed; radicals] THEN REAL_ARITH_TAC;

    DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
    ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`a:expression`; `b:expression`] THEN
    ASM_CASES_TAC `value b * sqrt(value r) = value a` THENL
     [ASM_REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
      MAP_EVERY EXISTS_TAC
       [`Inverse(Multiplication (Constant(&2)) a)`; `Constant(&0)`] THEN
      ASM_REWRITE_TAC[value; radicals; wellformed] THEN
      REWRITE_TAC[RATIONAL_NUM; EMPTY_SUBSET; CONJ_ASSOC] THEN CONJ_TAC THENL
       [UNDISCH_TAC `~(value a + value a = &0)` THEN CONV_TAC REAL_FIELD;
        REPEAT(POP_ASSUM MP_TAC) THEN SET_TAC[]];
      ALL_TAC] THEN
    STRIP_TAC THEN MAP_EVERY EXISTS_TAC
     [`Multiplication a (Inverse
        (Addition (Multiplication a a)
                  (Multiplication (Multiplication b b) (Negation r))))`;
      `Multiplication (Negation b) (Inverse
        (Addition (Multiplication a a)
                  (Multiplication (Multiplication b b) (Negation r))))`] THEN
    ASM_REWRITE_TAC[value; wellformed; radicals; UNION_SUBSET] THEN
    UNDISCH_TAC `~(value b * sqrt (value r) = value a)` THEN
    UNDISCH_TAC `~(value e1 = &0)` THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP SQRT_POW_2) THEN CONV_TAC REAL_FIELD;

    REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
    REWRITE_TAC[FORALL_AND_THM] THEN
    DISCH_THEN(fun th ->
      DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN MP_TAC th) THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(CONJUNCTS_THEN(MP_TAC o
      MATCH_MP RADICAL_CANONICAL_TRIVIAL)) THEN
    ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[IMP_IMP] THEN
    DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
    REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
    REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC
     [`a1:expression`; `b1:expression`; `a2:expression`; `b2:expression`] THEN
    STRIP_TAC THEN MAP_EVERY EXISTS_TAC
     [`Addition a1 a2`; `Addition b1 b2`] THEN
    ASM_REWRITE_TAC[value; wellformed; radicals] THEN
    CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
    MP_TAC(SPEC `r:expression` NOT_IN_OWN_RADICALS) THEN
    MP_TAC(SPECL [`e1:expression`; `r:expression`] RADICALS_SUBSET) THEN
    MP_TAC(SPECL [`e2:expression`; `r:expression`] RADICALS_SUBSET) THEN
    REPEAT(POP_ASSUM MP_TAC) THEN SET_TAC[];

    REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
    REWRITE_TAC[FORALL_AND_THM] THEN
    DISCH_THEN(fun th ->
      DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN MP_TAC th) THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(CONJUNCTS_THEN(MP_TAC o
      MATCH_MP RADICAL_CANONICAL_TRIVIAL)) THEN
    ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[IMP_IMP] THEN
    DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
    REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
    REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC
     [`a1:expression`; `b1:expression`; `a2:expression`; `b2:expression`] THEN
    STRIP_TAC THEN MAP_EVERY EXISTS_TAC
     [`Addition (Multiplication a1 a2)
                (Multiplication (Multiplication b1 b2) r)`;
      `Addition (Multiplication a1 b2) (Multiplication a2 b1)`] THEN
    ASM_REWRITE_TAC[value; wellformed; radicals] THEN CONJ_TAC THENL
     [FIRST_ASSUM(MP_TAC o MATCH_MP SQRT_POW_2) THEN CONV_TAC REAL_RING;
      ALL_TAC] THEN
    MP_TAC(SPEC `r:expression` NOT_IN_OWN_RADICALS) THEN
    MP_TAC(SPECL [`e1:expression`; `r:expression`] RADICALS_SUBSET) THEN
    MP_TAC(SPECL [`e2:expression`; `r:expression`] RADICALS_SUBSET) THEN
    REPEAT(POP_ASSUM MP_TAC) THEN SET_TAC[];

    REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
    REWRITE_TAC[FORALL_AND_THM] THEN
    DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
    REPEAT(DISCH_THEN(K ALL_TAC)) THEN
    MAP_EVERY EXISTS_TAC [`Constant(&0)`; `Constant(&1)`] THEN
    REWRITE_TAC[wellformed; value; REAL_ADD_LID; REAL_MUL_LID] THEN
    REWRITE_TAC[radicals; RATIONAL_NUM] THEN
    MP_TAC(SPEC `r:expression` NOT_IN_OWN_RADICALS) THEN ASM SET_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Now we quite easily get an inductive argument.                            *)
(* ------------------------------------------------------------------------- *)

let CUBIC_ROOT_STEP = prove
 (`!a b c. rational a /\ rational b /\ rational c
           ==> !e. wellformed e /\
                   ~(radicals e = {}) /\
                   (value e) pow 3 + a * (value e) pow 2 +
                                     b * (value e) + c = &0
                   ==> ?e'. wellformed e' /\
                            (radicals e') PSUBSET (radicals e) /\
                            (value e') pow 3 + a * (value e') pow 2 +
                                     b * (value e') + c = &0`,
  REPEAT STRIP_TAC THEN MP_TAC(SPEC `e:expression` RADICAL_CANONICAL) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN
   (X_CHOOSE_THEN `r:expression` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`eu:expression`; `ev:expression`] THEN
  STRIP_TAC THEN
  MP_TAC(SPEC `\x. ?ex. wellformed ex /\
                        radicals ex SUBSET (radicals(e) DELETE r) /\
                        value ex = x`
              STEP_LEMMA_SQRT) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [REPEAT CONJ_TAC THENL
     [X_GEN_TAC `n:num` THEN EXISTS_TAC `Constant(&n)` THEN
      REWRITE_TAC[wellformed; radicals; RATIONAL_NUM; value; EMPTY_SUBSET];
      X_GEN_TAC `x:real` THEN
      DISCH_THEN(X_CHOOSE_THEN `ex:expression` STRIP_ASSUME_TAC) THEN
      EXISTS_TAC `Negation ex` THEN
      ASM_REWRITE_TAC[wellformed; radicals; value];
      X_GEN_TAC `x:real` THEN
      DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
      DISCH_THEN(X_CHOOSE_THEN `ex:expression` STRIP_ASSUME_TAC) THEN
      EXISTS_TAC `Inverse ex` THEN
      ASM_REWRITE_TAC[wellformed; radicals; value];
      MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN
      DISCH_THEN(CONJUNCTS_THEN2
       (X_CHOOSE_THEN `ex:expression` STRIP_ASSUME_TAC)
       (X_CHOOSE_THEN `ey:expression` STRIP_ASSUME_TAC)) THEN
      EXISTS_TAC `Addition ex ey` THEN
      ASM_REWRITE_TAC[wellformed; radicals; value; UNION_SUBSET];
      MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN
      DISCH_THEN(CONJUNCTS_THEN2
       (X_CHOOSE_THEN `ex:expression` STRIP_ASSUME_TAC)
       (X_CHOOSE_THEN `ey:expression` STRIP_ASSUME_TAC)) THEN
      EXISTS_TAC `Multiplication ex ey` THEN
      ASM_REWRITE_TAC[wellformed; radicals; value; UNION_SUBSET]];
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o SPECL
   [`a:real`; `b:real`; `c:real`;
    `value e`; `value eu`; `value ev`; `value r`]) THEN
  ANTS_TAC THENL
   [CONJ_TAC THENL
     [EXISTS_TAC `Constant a` THEN
      ASM_REWRITE_TAC[wellformed; radicals; EMPTY_SUBSET; value];
      ALL_TAC] THEN
    CONJ_TAC THENL
     [EXISTS_TAC `Constant b` THEN
      ASM_REWRITE_TAC[wellformed; radicals; EMPTY_SUBSET; value];
      ALL_TAC] THEN
    CONJ_TAC THENL
     [EXISTS_TAC `Constant c` THEN
      ASM_REWRITE_TAC[wellformed; radicals; EMPTY_SUBSET; value];
      ALL_TAC] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[wellformed]) THEN
    ASM_REWRITE_TAC[value] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `e':expression` THEN
  ASM_SIMP_TAC[] THEN ASM SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Hence the main result.                                                    *)
(* ------------------------------------------------------------------------- *)

let CUBIC_ROOT_RADICAL_INDUCT = prove
 (`!a b c. rational a /\ rational b /\ rational c
           ==> !n e. wellformed e /\ CARD (radicals e) = n /\
                     (value e) pow 3 + a * (value e) pow 2 +
                                b * (value e) + c = &0
                 ==> ?x. rational x /\
                         x pow 3 + a * x pow 2 + b * x + c = &0`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN
  X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `e:expression` THEN
  STRIP_TAC THEN ASM_CASES_TAC `radicals e = {}` THENL
   [ASM_MESON_TAC[RADICALS_EMPTY_RATIONAL]; ALL_TAC] THEN
  MP_TAC(SPECL [`a:real`; `b:real`; `c:real`] CUBIC_ROOT_STEP) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `e:expression`) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `e':expression` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `CARD(radicals e')`) THEN ANTS_TAC THENL
   [REWRITE_TAC[SYM(ASSUME `CARD(radicals e) = n`)] THEN
    MATCH_MP_TAC CARD_PSUBSET THEN ASM_REWRITE_TAC[FINITE_RADICALS];
    DISCH_THEN MATCH_MP_TAC THEN EXISTS_TAC `e':expression` THEN
    ASM_REWRITE_TAC[]]);;

let CUBIC_ROOT_RATIONAL = prove
 (`!a b c. rational a /\ rational b /\ rational c /\
           (?x. radical x /\ x pow 3 + a * x pow 2 + b * x + c = &0)
           ==> (?x. rational x /\ x pow 3 + a * x pow 2 + b * x + c = &0)`,
  REWRITE_TAC[RADICAL_EXPRESSION] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`a:real`; `b:real`; `c:real`] CUBIC_ROOT_RADICAL_INDUCT) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
  MAP_EVERY EXISTS_TAC [`CARD(radicals e)`; `e:expression`] THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Now go further to an *integer*, since the polynomial is monic.            *)
(* ------------------------------------------------------------------------- *)

prioritize_num();;

let RATIONAL_LOWEST_LEMMA = prove
 (`!p q. ~(q = 0) ==> ?p' q'. ~(q' = 0) /\ coprime(p',q') /\ p * q' = p' * q`,
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN MATCH_MP_TAC num_WF THEN
  X_GEN_TAC `q:num` THEN DISCH_TAC THEN X_GEN_TAC `p:num` THEN DISCH_TAC THEN
  ASM_CASES_TAC `coprime(p,q)` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [coprime]) THEN
  REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; GSYM CONJ_ASSOC] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` MP_TAC) THEN
  ASM_CASES_TAC `d = 0` THEN ASM_REWRITE_TAC[DIVIDES_ZERO] THEN
  REWRITE_TAC[divides] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `p':num` SUBST_ALL_TAC)
   (CONJUNCTS_THEN2 (X_CHOOSE_THEN `q':num` SUBST_ALL_TAC) ASSUME_TAC)) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `q':num`) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN
  GEN_REWRITE_TAC (funpow 2 LAND_CONV) [ARITH_RULE `a < b <=> 1 * a < b`] THEN
  ASM_REWRITE_TAC[LT_MULT_RCANCEL] THEN
  ASM_SIMP_TAC[ARITH_RULE `~(d = 0) /\ ~(d = 1) ==> 1 < d`] THEN
  DISCH_THEN(MP_TAC o SPEC `p':num`) THEN
  REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SIMP_TAC[] THEN
  CONV_TAC NUM_RING);;

prioritize_real();;

let RATIONAL_LOWEST = prove
 (`!x. rational x <=> ?p q. ~(q = 0) /\ coprime(p,q) /\ abs(x) = &p / &q`,
  GEN_TAC THEN REWRITE_TAC[RATIONAL_ALT] THEN EQ_TAC THENL
   [ALL_TAC; MESON_TAC[]] THEN
  STRIP_TAC THEN MP_TAC(SPECL [`p:num`; `q:num`] RATIONAL_LOWEST_LEMMA) THEN
  ASM_REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
  UNDISCH_TAC `~(q = 0)` THEN SIMP_TAC[GSYM REAL_OF_NUM_EQ] THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN CONV_TAC REAL_FIELD);;

let RATIONAL_ROOT_INTEGER = prove
 (`!a b c x. integer a /\ integer b /\ integer c /\ rational x /\
             x pow 3 + a * x pow 2 + b * x + c = &0
             ==> integer x`,
  REWRITE_TAC[RATIONAL_LOWEST; GSYM REAL_OF_NUM_EQ] THEN
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP(REAL_ARITH
   `abs x = a ==> x = a \/ x = --a`)) THEN
  DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o check (is_eq o concl)) THEN
  ASM_SIMP_TAC[REAL_FIELD
   `~(q = &0)
     ==> ((p / q) pow 3 + a * (p / q) pow 2 + b * (p / q) + c = &0 <=>
          (p pow 3 = q * --(a * p pow 2 + b * p * q + c * q pow 2))) /\
         ((--(p / q)) pow 3 + a * (--(p / q)) pow 2 +
           b * (--(p / q)) + c = &0 <=>
          p pow 3 = q * (a * p pow 2 - b * p * q + c * q pow 2))`] THEN
  (W(fun(asl,w) ->
       SUBGOAL_THEN(mk_comb(`integer`,rand(rand(lhand w)))) MP_TAC THENL
    [REPEAT(MAP_FIRST MATCH_MP_TAC (tl(CONJUNCTS INTEGER_CLOSED)) THEN
            REPEAT CONJ_TAC) THEN
     ASM_REWRITE_TAC[INTEGER_CLOSED];
     ALL_TAC])) THEN
  REWRITE_TAC[integer] THEN DISCH_THEN(X_CHOOSE_TAC `i:num`) THEN
  DISCH_THEN(MP_TAC o AP_TERM `abs`) THEN
  ASM_REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NEG] THEN
  REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM; REAL_OF_NUM_MUL] THEN
  REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_EQ] THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_SYM]) THEN
  DISCH_THEN(MP_TAC o SPEC `3` o MATCH_MP COPRIME_EXP) THEN
  REWRITE_TAC[coprime] THEN DISCH_THEN(MP_TAC o SPEC `q:num`) THEN
  ASM_CASES_TAC `q = 1` THEN
  ASM_SIMP_TAC[REAL_DIV_1; REAL_ABS_NUM; REAL_OF_NUM_EQ; GSYM EXISTS_REFL] THEN
  MESON_TAC[divides; DIVIDES_REFL]);;

(* ------------------------------------------------------------------------- *)
(* Hence we have our big final theorem.                                      *)
(* ------------------------------------------------------------------------- *)

let CUBIC_ROOT_INTEGER = prove
 (`!a b c. integer a /\ integer b /\ integer c /\
           (?x. radical x /\ x pow 3 + a * x pow 2 + b * x + c = &0)
           ==> (?x. integer x /\ x pow 3 + a * x pow 2 + b * x + c = &0)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`a:real`; `b:real`; `c:real`] CUBIC_ROOT_RATIONAL) THEN
  ASM_SIMP_TAC[RATIONAL_INTEGER] THEN
  ASM_MESON_TAC[RATIONAL_ROOT_INTEGER]);;

(* ------------------------------------------------------------------------- *)
(* Geometrical definitions.                                                  *)
(* ------------------------------------------------------------------------- *)

let length = new_definition
  `length(a:real^2,b:real^2) = norm(b - a)`;;

let parallel = new_definition
 `parallel (a:real^2,b:real^2) (c:real^2,d:real^2) <=>
        (a$1 - b$1) * (c$2 - d$2) = (a$2 - b$2) * (c$1 - d$1)`;;

let collinear3 = new_definition
  `collinear3 (a:real^2) b c <=> parallel (a,b) (a,c)`;;

let is_intersection = new_definition
  `is_intersection p (a,b) (c,d) <=> collinear3 a p b /\ collinear3 c p d`;;

let on_circle = new_definition
 `on_circle x (centre,pt) <=> length(centre,x) = length(centre,pt)`;;

(* ------------------------------------------------------------------------- *)
(* A trivial lemma.                                                          *)
(* ------------------------------------------------------------------------- *)

let SQRT_CASES_LEMMA = prove
 (`!x y. y pow 2 = x ==> &0 <= x /\ (sqrt(x) = y \/ sqrt(x) = --y)`,
  REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
  REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE] THEN
  MP_TAC(SPEC `y:real` (GEN_ALL POW_2_SQRT)) THEN
  MP_TAC(SPEC `--y` (GEN_ALL POW_2_SQRT)) THEN
  REWRITE_TAC[GSYM REAL_POW_2; REAL_POW_NEG; ARITH] THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Show that solutions to certain classes of equations are radical.          *)
(* ------------------------------------------------------------------------- *)

let RADICAL_LINEAR_EQUATION = prove
 (`!a b x. radical a /\ radical b /\ ~(a = &0 /\ b = &0) /\ a * x + b = &0
           ==> radical x`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `~(a = &0) /\ x = --b / a`
   (fun th -> ASM_SIMP_TAC[th; RADICAL_RULES]) THEN
  REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);;

let RADICAL_SIMULTANEOUS_LINEAR_EQUATION = prove
 (`!a b c d e f x.
        radical a /\ radical b /\ radical c /\
        radical d /\ radical e /\ radical f /\
        ~(a * e = b * d /\ a * f = c * d /\ e * c = b * f) /\
        a * x + b * y = c /\ d * x + e * y = f
        ==> radical(x) /\ radical(y)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN
   `~(a * e - b * d = &0) /\
    x = (e * c - b * f) / (a * e - b * d) /\
    y = (a * f - d * c) / (a * e - b * d)`
  STRIP_ASSUME_TAC THENL
   [REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD;
    ASM_SIMP_TAC[RADICAL_RULES]]);;

let RADICAL_QUADRATIC_EQUATION = prove
 (`!a b c x. radical a /\ radical b /\ radical c /\
             a * x pow 2 + b * x + c = &0 /\
             ~(a = &0 /\ b = &0 /\ c = &0)
             ==> radical x`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `a = &0` THEN ASM_REWRITE_TAC[] THENL
   [ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN
    MESON_TAC[RADICAL_LINEAR_EQUATION];
    ALL_TAC] THEN
  STRIP_TAC THEN MATCH_MP_TAC RADICAL_LINEAR_EQUATION THEN
  EXISTS_TAC `&2 * a` THEN
  ASM_SIMP_TAC[RADICAL_RULES; REAL_ENTIRE; REAL_OF_NUM_EQ; ARITH_EQ] THEN
  SUBGOAL_THEN `&0 <= b pow 2 - &4 * a * c /\
                ((&2 * a) * x + (b - sqrt(b pow 2 - &4 * a * c)) = &0 \/
                 (&2 * a) * x + (b + sqrt(b pow 2 - &4 * a * c)) = &0)`
  MP_TAC THENL
   [REWRITE_TAC[real_sub; REAL_ARITH `a + (b + c) = &0 <=> c = --(a + b)`] THEN
    REWRITE_TAC[REAL_EQ_NEG2] THEN MATCH_MP_TAC SQRT_CASES_LEMMA THEN
    FIRST_X_ASSUM(MP_TAC o SYM) THEN CONV_TAC REAL_RING;
    STRIP_TAC THENL
     [EXISTS_TAC `b - sqrt(b pow 2 - &4 * a * c)`;
      EXISTS_TAC `b + sqrt(b pow 2 - &4 * a * c)`] THEN
    ASM_REWRITE_TAC[] THEN RADICAL_TAC THEN ASM_REWRITE_TAC[]]);;

let RADICAL_SIMULTANEOUS_LINEAR_QUADRATIC = prove
 (`!a b c d e f x.
        radical a /\ radical b /\ radical c /\
        radical d /\ radical e /\ radical f /\
        ~(d = &0 /\ e = &0 /\ f = &0) /\
        (x - a) pow 2 + (y - b) pow 2 = c /\ d * x + e * y = f
        ==> radical x /\ radical y`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `d pow 2 + e pow 2` RADICAL_QUADRATIC_EQUATION) THEN
  DISCH_THEN MATCH_MP_TAC THENL
   [EXISTS_TAC `&2 * b * d * e - &2 * a * e pow 2 - &2 * d * f` THEN
    EXISTS_TAC `b pow 2 * e pow 2 + a pow 2 * e pow 2 +
                f pow 2 - c * e pow 2 - &2 * b * e * f`;
    EXISTS_TAC `&2 * a * d * e - &2 * b * d pow 2 - &2 * f * e` THEN
    EXISTS_TAC `a pow 2 * d pow 2 + b pow 2 * d pow 2 +
                f pow 2 - c * d pow 2 - &2 * a * d * f`] THEN
  (REPLICATE_TAC 3
    (CONJ_TAC THENL [RADICAL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC]) THEN
   CONJ_TAC THENL
    [REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_RING; ALL_TAC] THEN
   REWRITE_TAC[REAL_SOS_EQ_0] THEN REPEAT(POP_ASSUM MP_TAC) THEN
   CONV_TAC REAL_RING));;

let RADICAL_SIMULTANEOUS_QUADRATIC_QUADRATIC = prove
 (`!a b c d e f x.
        radical a /\ radical b /\ radical c /\
        radical d /\ radical e /\ radical f /\
        ~(a = d /\ b = e /\ c = f) /\
        (x - a) pow 2 + (y - b) pow 2 = c /\
        (x - d) pow 2 + (y - e) pow 2 = f
        ==> radical x /\ radical y`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MATCH_MP_TAC RADICAL_SIMULTANEOUS_LINEAR_QUADRATIC THEN
  MAP_EVERY EXISTS_TAC
   [`a:real`; `b:real`; `c:real`; `&2 * (d - a)`; `&2 * (e - b)`;
    `(d pow 2 - a pow 2) + (e pow 2 - b pow 2) + (c - f)`] THEN
  ASM_REWRITE_TAC[] THEN
  REPLICATE_TAC 3
   (CONJ_TAC THENL [RADICAL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC]) THEN
  REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_RING);;

(* ------------------------------------------------------------------------- *)
(* Analytic criterion for constructibility.                                  *)
(* ------------------------------------------------------------------------- *)

let constructible_RULES,constructible_INDUCT,constructible_CASES =
 new_inductive_definition
  `(!x:real^2. rational(x$1) /\ rational(x$2) ==> constructible x) /\
// Intersection of two non-parallel lines AB and CD
  (!a b c d x. constructible a /\ constructible b /\
               constructible c /\ constructible d /\
               ~parallel (a,b) (c,d) /\ is_intersection x (a,b) (c,d)
               ==> constructible x) /\
// Intersection of a nontrivial line AB and circle with centre C, radius DE
  (!a b c d e x. constructible a /\ constructible b /\
                 constructible c /\ constructible d /\
                 constructible e /\
                 ~(a = b) /\ collinear3 a x b /\ length (c,x) = length(d,e)
                 ==> constructible x) /\
// Intersection of distinct circles with centres A and D, radii BD and EF
  (!a b c d e f x. constructible a /\ constructible b /\
                   constructible c /\ constructible d /\
                   constructible e /\ constructible f /\
                   ~(a = d /\ length (b,c) = length (e,f)) /\
                   length (a,x) = length (b,c) /\ length (d,x) = length (e,f)
                   ==> constructible x)`;;

(* ------------------------------------------------------------------------- *)
(* Some "coordinate geometry" lemmas.                                        *)
(* ------------------------------------------------------------------------- *)

let RADICAL_LINE_LINE_INTERSECTION = prove
 (`!a b c d x.
        radical(a$1) /\ radical(a$2) /\
        radical(b$1) /\ radical(b$2) /\
        radical(c$1) /\ radical(c$2) /\
        radical(d$1) /\ radical(d$2) /\
        ~(parallel (a,b) (c,d)) /\ is_intersection x (a,b) (c,d)
        ==> radical(x$1) /\ radical(x$2)`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[parallel; collinear3; is_intersection] THEN STRIP_TAC THEN
  MATCH_MP_TAC RADICAL_SIMULTANEOUS_LINEAR_EQUATION THEN
  MAP_EVERY EXISTS_TAC
   [`(b:real^2)$2 - (a:real^2)$2`; `(a:real^2)$1 - (b:real^2)$1`;
    `(a:real^2)$2 * (a$1 - (b:real^2)$1) - (a:real^2)$1 * (a$2 - b$2)`;
    `(d:real^2)$2 - (c:real^2)$2`; `(c:real^2)$1 - (d:real^2)$1`;
    `(c:real^2)$2 * (c$1 - (d:real^2)$1) - (c:real^2)$1 * (c$2 - d$2)`] THEN
  REPLICATE_TAC 6
   (CONJ_TAC THENL [RADICAL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC]) THEN
  REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_RING);;

let RADICAL_LINE_CIRCLE_INTERSECTION = prove
 (`!a b c d e x.
        radical(a$1) /\ radical(a$2) /\
        radical(b$1) /\ radical(b$2) /\
        radical(c$1) /\ radical(c$2) /\
        radical(d$1) /\ radical(d$2) /\
        radical(e$1) /\ radical(e$2) /\
        ~(a = b) /\ collinear3 a x b /\ length(c,x) = length(d,e)
        ==> radical(x$1) /\ radical(x$2)`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[length; NORM_EQ; collinear3; parallel] THEN
  SIMP_TAC[CART_EQ; FORALL_2; dot; SUM_2; DIMINDEX_2; VECTOR_SUB_COMPONENT;
           GSYM REAL_POW_2] THEN
  STRIP_TAC THEN MATCH_MP_TAC RADICAL_SIMULTANEOUS_LINEAR_QUADRATIC THEN
  MAP_EVERY EXISTS_TAC
   [`(c:real^2)$1`; `(c:real^2)$2`;
    `((e:real^2)$1 - (d:real^2)$1) pow 2 + (e$2 - d$2) pow 2`;
    `(b:real^2)$2 - (a:real^2)$2`;
    `(a:real^2)$1 - (b:real^2)$1`;
    `a$2 * ((a:real^2)$1 - (b:real^2)$1) - a$1 * (a$2 - b$2)`] THEN
  REPLICATE_TAC 6
   (CONJ_TAC THENL [RADICAL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC]) THEN
  REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_RING);;

let RADICAL_CIRCLE_CIRCLE_INTERSECTION = prove
 (`!a b c d e f x.
        radical(a$1) /\ radical(a$2) /\
        radical(b$1) /\ radical(b$2) /\
        radical(c$1) /\ radical(c$2) /\
        radical(d$1) /\ radical(d$2) /\
        radical(e$1) /\ radical(e$2) /\
        radical(f$1) /\ radical(f$2) /\
        length(a,x) = length(b,c) /\
        length(d,x) = length(e,f) /\
        ~(a = d /\ length(b,c) = length(e,f))
        ==> radical(x$1) /\ radical(x$2)`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[length; NORM_EQ; collinear3; parallel] THEN
  SIMP_TAC[CART_EQ; FORALL_2; dot; SUM_2; DIMINDEX_2; VECTOR_SUB_COMPONENT;
           GSYM REAL_POW_2] THEN
  STRIP_TAC THEN MATCH_MP_TAC RADICAL_SIMULTANEOUS_QUADRATIC_QUADRATIC THEN
  MAP_EVERY EXISTS_TAC
   [`(a:real^2)$1`; `(a:real^2)$2`;
    `((c:real^2)$1 - (b:real^2)$1) pow 2 + (c$2 - b$2) pow 2`;
    `(d:real^2)$1`; `(d:real^2)$2`;
    `((f:real^2)$1 - (e:real^2)$1) pow 2 + (f$2 - e$2) pow 2`] THEN
  REPLICATE_TAC 6
   (CONJ_TAC THENL [RADICAL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC]) THEN
  REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_RING);;

(* ------------------------------------------------------------------------- *)
(* So constructible points have radical coordinates.                         *)
(* ------------------------------------------------------------------------- *)

let CONSTRUCTIBLE_RADICAL = prove
 (`!x. constructible x ==> radical(x$1) /\ radical(x$2)`,
  MATCH_MP_TAC constructible_INDUCT THEN REPEAT CONJ_TAC THEN
  REPEAT GEN_TAC THEN STRIP_TAC THENL
   [ASM_SIMP_TAC[RADICAL_RULES];
    MATCH_MP_TAC RADICAL_LINE_LINE_INTERSECTION THEN ASM_MESON_TAC[];
    MATCH_MP_TAC RADICAL_LINE_CIRCLE_INTERSECTION THEN ASM_MESON_TAC[];
    MATCH_MP_TAC RADICAL_CIRCLE_CIRCLE_INTERSECTION THEN ASM_MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Impossibility of doubling the cube.                                       *)
(* ------------------------------------------------------------------------- *)

let DOUBLE_THE_CUBE_ALGEBRA = prove
 (`~(?x. radical x /\ x pow 3 = &2)`,
  STRIP_TAC THEN MP_TAC(SPECL [`&0`; `&0`; `-- &2`] CUBIC_ROOT_INTEGER) THEN
  SIMP_TAC[INTEGER_CLOSED; NOT_IMP] THEN
  REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN
  REWRITE_TAC[GSYM real_sub; REAL_SUB_0] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o AP_TERM `abs`) THEN
  REWRITE_TAC[REAL_ABS_POW] THEN
  FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[integer]) THEN
  REWRITE_TAC[REAL_ABS_NUM; REAL_OF_NUM_POW; REAL_OF_NUM_EQ] THEN
  MATCH_MP_TAC(ARITH_RULE
   `n EXP 3 <= 1 EXP 3 \/ 2 EXP 3 <= n EXP 3 ==> ~(n EXP 3 = 2)`) THEN
  REWRITE_TAC[num_CONV `3`; EXP_MONO_LE_SUC] THEN ARITH_TAC);;

let DOUBLE_THE_CUBE = prove
 (`!x. x pow 3 = &2 ==> ~(constructible(vector[x; &0]))`,
  GEN_TAC THEN DISCH_TAC THEN
  DISCH_THEN(MP_TAC o MATCH_MP CONSTRUCTIBLE_RADICAL) THEN
  REWRITE_TAC[VECTOR_2; RADICAL_RULES] THEN
  ASM_MESON_TAC[DOUBLE_THE_CUBE_ALGEBRA]);;

(* ------------------------------------------------------------------------- *)
(* Impossibility of trisecting                                               *)
(* ------------------------------------------------------------------------- *)

let COS_TRIPLE = prove
 (`!x. cos(&3 * x) = &4 * cos(x) pow 3 - &3 * cos(x)`,
  GEN_TAC THEN
  REWRITE_TAC[REAL_ARITH `&3 * x = x + x + x`; SIN_ADD; COS_ADD] THEN
  MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN CONV_TAC REAL_RING);;

let COS_PI3 = prove
 (`cos(pi / &3) = &1 / &2`,
  MP_TAC(SPEC `pi / &3` COS_TRIPLE) THEN
  SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH; COS_PI] THEN
  REWRITE_TAC[REAL_RING
   `-- &1 = &4 * c pow 3 - &3 * c <=> c = &1 / &2 \/ c = -- &1`] THEN
  DISCH_THEN(DISJ_CASES_THEN2 ACCEPT_TAC MP_TAC) THEN
  MP_TAC(SPEC `pi / &3` COS_POS_PI) THEN MP_TAC PI_POS THEN REAL_ARITH_TAC);;

let TRISECT_60_DEGREES_ALGEBRA = prove
 (`~(?x. radical x /\ x pow 3 - &3 * x - &1 = &0)`,
  STRIP_TAC THEN MP_TAC(SPECL [`&0`; `-- &3`; `-- &1`] CUBIC_ROOT_INTEGER) THEN
  SIMP_TAC[INTEGER_CLOSED; NOT_IMP] THEN REWRITE_TAC[REAL_ADD_ASSOC] THEN
  REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_RID; REAL_MUL_LNEG; GSYM real_sub] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  REWRITE_TAC[REAL_ARITH
   `x pow 3 - &3 * x - &1 = &0 <=> x * (x pow 2 - &3) = &1`] THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o AP_TERM `abs`) THEN
  REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NUM] THEN
  ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN
  FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[integer]) THEN
  REPEAT_TCL DISJ_CASES_THEN SUBST1_TAC (ARITH_RULE
   `n = 0 \/ n = 1 \/ n = 2 + (n - 2)`) THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
  REWRITE_TAC[REAL_ARITH `(&2 + m) pow 2 - &3 = m pow 2 + &4 * m + &1`] THEN
  REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_MUL; REAL_OF_NUM_POW; REAL_ABS_NUM;
              REAL_OF_NUM_EQ; MULT_EQ_1] THEN
  ARITH_TAC);;

let TRISECT_60_DEGREES = prove
 (`!y. ~(constructible(vector[cos(pi / &9); y]))`,
  GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CONSTRUCTIBLE_RADICAL) THEN
  DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[VECTOR_2] THEN
  DISCH_TAC THEN MP_TAC(SPEC `pi / &9` COS_TRIPLE) THEN
  SIMP_TAC[REAL_ARITH `&3 * x / &9 = x / &3`; COS_PI3] THEN
  REWRITE_TAC[REAL_ARITH
   `&1 / &2 = &4 * c pow 3 - &3 * c <=>
    (&2 * c) pow 3 - &3 * (&2 * c) - &1 = &0`] THEN
  ASM_MESON_TAC[TRISECT_60_DEGREES_ALGEBRA; RADICAL_RULES]);;