1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
|
(* ========================================================================= *)
(* Non-constructibility of irrational cubic equation solutions. *)
(* *)
(* This gives the two classic impossibility results: trisecting an angle or *)
(* constructing the cube using traditional geometric constructions. *)
(* *)
(* This elementary proof (not using field extensions etc.) is taken from *)
(* Dickson's "First Course in the Theory of Equations", chapter III. *)
(* ========================================================================= *)
needs "Library/prime.ml";;
needs "Library/floor.ml";;
needs "Multivariate/transcendentals.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* The critical lemma. *)
(* ------------------------------------------------------------------------- *)
let STEP_LEMMA = prove
(`!P. (!n. P(&n)) /\
(!x. P x ==> P(--x)) /\
(!x. P x /\ ~(x = &0) ==> P(inv x)) /\
(!x y. P x /\ P y ==> P(x + y)) /\
(!x y. P x /\ P y ==> P(x * y))
==> !a b c z u v s.
P a /\ P b /\ P c /\
z pow 3 + a * z pow 2 + b * z + c = &0 /\
P u /\ P v /\ P(s * s) /\ z = u + v * s
==> ?w. P w /\ w pow 3 + a * w pow 2 + b * w + c = &0`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN
ASM_CASES_TAC `v * s = &0` THENL
[ASM_REWRITE_TAC[REAL_ADD_RID] THEN MESON_TAC[]; ALL_TAC] THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
MAP_EVERY ABBREV_TAC
[`A = a * s pow 2 * v pow 2 + &3 * s pow 2 * u * v pow 2 +
a * u pow 2 + u pow 3 + b * u + c`;
`B = s pow 2 * v pow 3 + &2 * a * u * v + &3 * u pow 2 * v + b * v`] THEN
SUBGOAL_THEN `A + B * s = &0` ASSUME_TAC THENL
[REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN CONV_TAC REAL_RING; ALL_TAC] THEN
ASM_CASES_TAC `(P:real->bool) s` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `B = &0` ASSUME_TAC THENL
[UNDISCH_TAC `~P(s:real)` THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
DISCH_TAC THEN REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP (REAL_FIELD
`A + B * s = &0 ==> ~(B = &0) ==> s = --A / B`)) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[real_div] THEN FIRST_ASSUM MATCH_MP_TAC THEN
CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY EXPAND_TAC ["A"; "B"] THEN
REWRITE_TAC[REAL_ARITH `x pow 3 = x * x * x`; REAL_POW_2] THEN
REPEAT(FIRST_ASSUM MATCH_ACCEPT_TAC ORELSE
(FIRST_ASSUM MATCH_MP_TAC THEN REPEAT CONJ_TAC));
ALL_TAC] THEN
EXISTS_TAC `--(a + &2 * u)` THEN ASM_SIMP_TAC[] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o check ((not) o is_forall o concl))) THEN
CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Instantiate to square roots. *)
(* ------------------------------------------------------------------------- *)
let STEP_LEMMA_SQRT = prove
(`!P. (!n. P(&n)) /\
(!x. P x ==> P(--x)) /\
(!x. P x /\ ~(x = &0) ==> P(inv x)) /\
(!x y. P x /\ P y ==> P(x + y)) /\
(!x y. P x /\ P y ==> P(x * y))
==> !a b c z u v s.
P a /\ P b /\ P c /\
z pow 3 + a * z pow 2 + b * z + c = &0 /\
P u /\ P v /\ P(s) /\ &0 <= s /\ z = u + v * sqrt(s)
==> ?w. P w /\ w pow 3 + a * w pow 2 + b * w + c = &0`,
GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP STEP_LEMMA) THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_MESON_TAC[SQRT_POW_2; REAL_POW_2]);;
(* ------------------------------------------------------------------------- *)
(* Numbers definable by radicals involving square roots only. *)
(* ------------------------------------------------------------------------- *)
let radical_RULES,radical_INDUCT,radical_CASES = new_inductive_definition
`(!x. rational x ==> radical x) /\
(!x. radical x ==> radical (--x)) /\
(!x. radical x /\ ~(x = &0) ==> radical (inv x)) /\
(!x y. radical x /\ radical y ==> radical (x + y)) /\
(!x y. radical x /\ radical y ==> radical (x * y)) /\
(!x. radical x /\ &0 <= x ==> radical (sqrt x))`;;
let RADICAL_RULES = prove
(`(!n. radical(&n)) /\
(!x. rational x ==> radical x) /\
(!x. radical x ==> radical (--x)) /\
(!x. radical x /\ ~(x = &0) ==> radical (inv x)) /\
(!x y. radical x /\ radical y ==> radical (x + y)) /\
(!x y. radical x /\ radical y ==> radical (x - y)) /\
(!x y. radical x /\ radical y ==> radical (x * y)) /\
(!x y. radical x /\ radical y /\ ~(y = &0) ==> radical (x / y)) /\
(!x n. radical x ==> radical(x pow n)) /\
(!x. radical x /\ &0 <= x ==> radical (sqrt x))`,
SIMP_TAC[real_div; real_sub; radical_RULES; RATIONAL_NUM] THEN
GEN_TAC THEN INDUCT_TAC THEN
ASM_SIMP_TAC[radical_RULES; real_pow; RATIONAL_NUM]);;
let RADICAL_TAC =
REPEAT(MATCH_ACCEPT_TAC (CONJUNCT1 RADICAL_RULES) ORELSE
(MAP_FIRST MATCH_MP_TAC(tl(tl(CONJUNCTS RADICAL_RULES))) THEN
REPEAT CONJ_TAC));;
(* ------------------------------------------------------------------------- *)
(* Explicit "expressions" to support inductive proof. *)
(* ------------------------------------------------------------------------- *)
let expression_INDUCT,expression_RECURSION = define_type
"expression = Constant real
| Negation expression
| Inverse expression
| Addition expression expression
| Multiplication expression expression
| Sqrt expression";;
(* ------------------------------------------------------------------------- *)
(* Interpretation. *)
(* ------------------------------------------------------------------------- *)
let value = define
`(value(Constant x) = x) /\
(value(Negation e) = --(value e)) /\
(value(Inverse e) = inv(value e)) /\
(value(Addition e1 e2) = value e1 + value e2) /\
(value(Multiplication e1 e2) = value e1 * value e2) /\
(value(Sqrt e) = sqrt(value e))`;;
(* ------------------------------------------------------------------------- *)
(* Wellformedness of an expression. *)
(* ------------------------------------------------------------------------- *)
let wellformed = define
`(wellformed(Constant x) <=> rational x) /\
(wellformed(Negation e) <=> wellformed e) /\
(wellformed(Inverse e) <=> ~(value e = &0) /\ wellformed e) /\
(wellformed(Addition e1 e2) <=> wellformed e1 /\ wellformed e2) /\
(wellformed(Multiplication e1 e2) <=> wellformed e1 /\ wellformed e2) /\
(wellformed(Sqrt e) <=> &0 <= value e /\ wellformed e)`;;
(* ------------------------------------------------------------------------- *)
(* The set of radicals in an expression. *)
(* ------------------------------------------------------------------------- *)
let radicals = define
`(radicals(Constant x) = {}) /\
(radicals(Negation e) = radicals e) /\
(radicals(Inverse e) = radicals e) /\
(radicals(Addition e1 e2) = (radicals e1) UNION (radicals e2)) /\
(radicals(Multiplication e1 e2) = (radicals e1) UNION (radicals e2)) /\
(radicals(Sqrt e) = e INSERT (radicals e))`;;
let FINITE_RADICALS = prove
(`!e. FINITE(radicals e)`,
MATCH_MP_TAC expression_INDUCT THEN
SIMP_TAC[radicals; FINITE_RULES; FINITE_UNION]);;
let WELLFORMED_RADICALS = prove
(`!e. wellformed e ==> !r. r IN radicals(e) ==> &0 <= value r`,
MATCH_MP_TAC expression_INDUCT THEN
REWRITE_TAC[radicals; wellformed; NOT_IN_EMPTY; IN_UNION; IN_INSERT] THEN
MESON_TAC[]);;
let RADICALS_WELLFORMED = prove
(`!e. wellformed e ==> !r. r IN radicals e ==> wellformed r`,
MATCH_MP_TAC expression_INDUCT THEN
REWRITE_TAC[radicals; wellformed; NOT_IN_EMPTY; IN_UNION; IN_INSERT] THEN
MESON_TAC[]);;
let RADICALS_SUBSET = prove
(`!e r. r IN radicals e ==> radicals(r) SUBSET radicals(e)`,
MATCH_MP_TAC expression_INDUCT THEN
REWRITE_TAC[radicals; IN_UNION; NOT_IN_EMPTY; IN_INSERT; SUBSET] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Show that every radical is the interpretation of a wellformed expresion. *)
(* ------------------------------------------------------------------------- *)
let RADICAL_EXPRESSION = prove
(`!x. radical x <=> ?e. wellformed e /\ x = value e`,
GEN_TAC THEN EQ_TAC THEN SPEC_TAC(`x:real`,`x:real`) THENL
[MATCH_MP_TAC radical_INDUCT THEN REPEAT STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_MESON_TAC[value; wellformed];
SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
MATCH_MP_TAC expression_INDUCT THEN
REWRITE_TAC[value; wellformed] THEN SIMP_TAC[radical_RULES]]);;
(* ------------------------------------------------------------------------- *)
(* Nesting depth of radicals in an expression. *)
(* ------------------------------------------------------------------------- *)
let LT_MAX = prove
(`!a b c. a < MAX b c <=> a < b \/ a < c`,
ARITH_TAC);;
let depth = define
`(depth(Constant x) = 0) /\
(depth(Negation e) = depth e) /\
(depth(Inverse e) = depth e) /\
(depth(Addition e1 e2) = MAX (depth e1) (depth e2)) /\
(depth(Multiplication e1 e2) = MAX (depth e1) (depth e2)) /\
(depth(Sqrt e) = 1 + depth e)`;;
let IN_RADICALS_SMALLER = prove
(`!r s. s IN radicals(r) ==> depth(s) < depth(r)`,
MATCH_MP_TAC expression_INDUCT THEN REWRITE_TAC[radicals; depth] THEN
REWRITE_TAC[IN_UNION; NOT_IN_EMPTY; IN_INSERT; LT_MAX] THEN
MESON_TAC[ARITH_RULE `s = a \/ s < a ==> s < 1 + a`]);;
let NOT_IN_OWN_RADICALS = prove
(`!r. ~(r IN radicals r)`,
MESON_TAC[IN_RADICALS_SMALLER; LT_REFL]);;
let RADICALS_EMPTY_RATIONAL = prove
(`!e. wellformed e /\ radicals e = {} ==> rational(value e)`,
MATCH_MP_TAC expression_INDUCT THEN
REWRITE_TAC[wellformed; value; radicals; EMPTY_UNION; NOT_INSERT_EMPTY] THEN
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_SIMP_TAC[RATIONAL_CLOSED]);;
(* ------------------------------------------------------------------------- *)
(* Crucial point about splitting off some "topmost" radical. *)
(* ------------------------------------------------------------------------- *)
let FINITE_MAX = prove
(`!s. FINITE s ==> ~(s = {}) ==> ?b:num. b IN s /\ !a. a IN s ==> a <= b`,
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[NOT_INSERT_EMPTY; IN_INSERT] THEN REPEAT GEN_TAC THEN
ASM_CASES_TAC `s:num->bool = {}` THEN
ASM_SIMP_TAC[NOT_IN_EMPTY; UNWIND_THM2; LE_REFL] THEN
REWRITE_TAC[RIGHT_OR_DISTRIB; EXISTS_OR_THM; UNWIND_THM2] THEN
MESON_TAC[LE_CASES; LE_REFL; LE_TRANS]);;
let RADICAL_TOP = prove
(`!e. ~(radicals e = {})
==> ?r. r IN radicals e /\
!s. s IN radicals(e) ==> ~(r IN radicals s)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `IMAGE depth (radicals e)` FINITE_MAX) THEN
ASM_SIMP_TAC[IMAGE_EQ_EMPTY; FINITE_IMAGE; FINITE_RADICALS] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_IN_IMAGE] THEN
MESON_TAC[IN_RADICALS_SMALLER; NOT_LT]);;
(* ------------------------------------------------------------------------- *)
(* By rearranging the expression we can use it in a canonical way. *)
(* ------------------------------------------------------------------------- *)
let RADICAL_CANONICAL_TRIVIAL = prove
(`!e r.
(r IN radicals e
==> (?a b.
wellformed a /\
wellformed b /\
value e = value a + value b * sqrt (value r) /\
radicals a SUBSET radicals e DELETE r /\
radicals b SUBSET radicals e DELETE r /\
radicals r SUBSET radicals e DELETE r))
==> wellformed e
==> ?a b. wellformed a /\
wellformed b /\
value e = value a + value b * sqrt (value r) /\
radicals a SUBSET (radicals e UNION radicals r) DELETE r /\
radicals b SUBSET (radicals e UNION radicals r) DELETE r /\
radicals r SUBSET (radicals e UNION radicals r) DELETE r`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `r IN radicals e` THEN ASM_SIMP_TAC[] THENL
[DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SET_TAC[];
DISCH_TAC THEN
MAP_EVERY EXISTS_TAC [`e:expression`; `Constant(&0)`] THEN
ASM_REWRITE_TAC[wellformed; value; radicals] THEN
REWRITE_TAC[RATIONAL_NUM; REAL_MUL_LZERO; REAL_ADD_RID] THEN
UNDISCH_TAC `~(r IN radicals e)` THEN
MP_TAC(SPEC `r:expression` NOT_IN_OWN_RADICALS) THEN SET_TAC[]]);;
let RADICAL_CANONICAL = prove
(`!e. wellformed e /\ ~(radicals e = {})
==> ?r. r IN radicals(e) /\
?a b. wellformed(Addition a (Multiplication b (Sqrt r))) /\
value e = value(Addition a (Multiplication b (Sqrt r))) /\
(radicals a) SUBSET (radicals(e) DELETE r) /\
(radicals b) SUBSET (radicals(e) DELETE r) /\
(radicals r) SUBSET (radicals(e) DELETE r)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP RADICAL_TOP) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:expression` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `&0 <= value r /\ wellformed r` STRIP_ASSUME_TAC THENL
[ASM_MESON_TAC[WELLFORMED_RADICALS; RADICALS_WELLFORMED]; ALL_TAC] THEN
MAP_EVERY UNDISCH_TAC [`wellformed e`; `r IN radicals e`] THEN
ASM_REWRITE_TAC[IMP_IMP; wellformed; value; GSYM CONJ_ASSOC] THEN
SPEC_TAC(`e:expression`,`e:expression`) THEN
MATCH_MP_TAC expression_INDUCT THEN
REWRITE_TAC[wellformed; radicals; value; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_INSERT; IN_UNION] THEN REPEAT CONJ_TAC THEN
X_GEN_TAC `e1:expression` THEN TRY(X_GEN_TAC `e2:expression`) THENL
[DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:expression`; `b:expression`] THEN
STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`Negation a`; `Negation b`] THEN
ASM_REWRITE_TAC[value; wellformed; radicals] THEN REAL_ARITH_TAC;
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:expression`; `b:expression`] THEN
ASM_CASES_TAC `value b * sqrt(value r) = value a` THENL
[ASM_REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
MAP_EVERY EXISTS_TAC
[`Inverse(Multiplication (Constant(&2)) a)`; `Constant(&0)`] THEN
ASM_REWRITE_TAC[value; radicals; wellformed] THEN
REWRITE_TAC[RATIONAL_NUM; EMPTY_SUBSET; CONJ_ASSOC] THEN CONJ_TAC THENL
[UNDISCH_TAC `~(value a + value a = &0)` THEN CONV_TAC REAL_FIELD;
REPEAT(POP_ASSUM MP_TAC) THEN SET_TAC[]];
ALL_TAC] THEN
STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`Multiplication a (Inverse
(Addition (Multiplication a a)
(Multiplication (Multiplication b b) (Negation r))))`;
`Multiplication (Negation b) (Inverse
(Addition (Multiplication a a)
(Multiplication (Multiplication b b) (Negation r))))`] THEN
ASM_REWRITE_TAC[value; wellformed; radicals; UNION_SUBSET] THEN
UNDISCH_TAC `~(value b * sqrt (value r) = value a)` THEN
UNDISCH_TAC `~(value e1 = &0)` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP SQRT_POW_2) THEN CONV_TAC REAL_FIELD;
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN
DISCH_THEN(fun th ->
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(CONJUNCTS_THEN(MP_TAC o
MATCH_MP RADICAL_CANONICAL_TRIVIAL)) THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[IMP_IMP] THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[`a1:expression`; `b1:expression`; `a2:expression`; `b2:expression`] THEN
STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`Addition a1 a2`; `Addition b1 b2`] THEN
ASM_REWRITE_TAC[value; wellformed; radicals] THEN
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
MP_TAC(SPEC `r:expression` NOT_IN_OWN_RADICALS) THEN
MP_TAC(SPECL [`e1:expression`; `r:expression`] RADICALS_SUBSET) THEN
MP_TAC(SPECL [`e2:expression`; `r:expression`] RADICALS_SUBSET) THEN
REPEAT(POP_ASSUM MP_TAC) THEN SET_TAC[];
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN
DISCH_THEN(fun th ->
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(CONJUNCTS_THEN(MP_TAC o
MATCH_MP RADICAL_CANONICAL_TRIVIAL)) THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[IMP_IMP] THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[`a1:expression`; `b1:expression`; `a2:expression`; `b2:expression`] THEN
STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`Addition (Multiplication a1 a2)
(Multiplication (Multiplication b1 b2) r)`;
`Addition (Multiplication a1 b2) (Multiplication a2 b1)`] THEN
ASM_REWRITE_TAC[value; wellformed; radicals] THEN CONJ_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP SQRT_POW_2) THEN CONV_TAC REAL_RING;
ALL_TAC] THEN
MP_TAC(SPEC `r:expression` NOT_IN_OWN_RADICALS) THEN
MP_TAC(SPECL [`e1:expression`; `r:expression`] RADICALS_SUBSET) THEN
MP_TAC(SPECL [`e2:expression`; `r:expression`] RADICALS_SUBSET) THEN
REPEAT(POP_ASSUM MP_TAC) THEN SET_TAC[];
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
REPEAT(DISCH_THEN(K ALL_TAC)) THEN
MAP_EVERY EXISTS_TAC [`Constant(&0)`; `Constant(&1)`] THEN
REWRITE_TAC[wellformed; value; REAL_ADD_LID; REAL_MUL_LID] THEN
REWRITE_TAC[radicals; RATIONAL_NUM] THEN
MP_TAC(SPEC `r:expression` NOT_IN_OWN_RADICALS) THEN ASM SET_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Now we quite easily get an inductive argument. *)
(* ------------------------------------------------------------------------- *)
let CUBIC_ROOT_STEP = prove
(`!a b c. rational a /\ rational b /\ rational c
==> !e. wellformed e /\
~(radicals e = {}) /\
(value e) pow 3 + a * (value e) pow 2 +
b * (value e) + c = &0
==> ?e'. wellformed e' /\
(radicals e') PSUBSET (radicals e) /\
(value e') pow 3 + a * (value e') pow 2 +
b * (value e') + c = &0`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `e:expression` RADICAL_CANONICAL) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN
(X_CHOOSE_THEN `r:expression` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`eu:expression`; `ev:expression`] THEN
STRIP_TAC THEN
MP_TAC(SPEC `\x. ?ex. wellformed ex /\
radicals ex SUBSET (radicals(e) DELETE r) /\
value ex = x`
STEP_LEMMA_SQRT) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[REPEAT CONJ_TAC THENL
[X_GEN_TAC `n:num` THEN EXISTS_TAC `Constant(&n)` THEN
REWRITE_TAC[wellformed; radicals; RATIONAL_NUM; value; EMPTY_SUBSET];
X_GEN_TAC `x:real` THEN
DISCH_THEN(X_CHOOSE_THEN `ex:expression` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `Negation ex` THEN
ASM_REWRITE_TAC[wellformed; radicals; value];
X_GEN_TAC `x:real` THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `ex:expression` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `Inverse ex` THEN
ASM_REWRITE_TAC[wellformed; radicals; value];
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `ex:expression` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `ey:expression` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `Addition ex ey` THEN
ASM_REWRITE_TAC[wellformed; radicals; value; UNION_SUBSET];
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `ex:expression` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `ey:expression` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `Multiplication ex ey` THEN
ASM_REWRITE_TAC[wellformed; radicals; value; UNION_SUBSET]];
ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPECL
[`a:real`; `b:real`; `c:real`;
`value e`; `value eu`; `value ev`; `value r`]) THEN
ANTS_TAC THENL
[CONJ_TAC THENL
[EXISTS_TAC `Constant a` THEN
ASM_REWRITE_TAC[wellformed; radicals; EMPTY_SUBSET; value];
ALL_TAC] THEN
CONJ_TAC THENL
[EXISTS_TAC `Constant b` THEN
ASM_REWRITE_TAC[wellformed; radicals; EMPTY_SUBSET; value];
ALL_TAC] THEN
CONJ_TAC THENL
[EXISTS_TAC `Constant c` THEN
ASM_REWRITE_TAC[wellformed; radicals; EMPTY_SUBSET; value];
ALL_TAC] THEN
RULE_ASSUM_TAC(REWRITE_RULE[wellformed]) THEN
ASM_REWRITE_TAC[value] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `e':expression` THEN
ASM_SIMP_TAC[] THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Hence the main result. *)
(* ------------------------------------------------------------------------- *)
let CUBIC_ROOT_RADICAL_INDUCT = prove
(`!a b c. rational a /\ rational b /\ rational c
==> !n e. wellformed e /\ CARD (radicals e) = n /\
(value e) pow 3 + a * (value e) pow 2 +
b * (value e) + c = &0
==> ?x. rational x /\
x pow 3 + a * x pow 2 + b * x + c = &0`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN
X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `e:expression` THEN
STRIP_TAC THEN ASM_CASES_TAC `radicals e = {}` THENL
[ASM_MESON_TAC[RADICALS_EMPTY_RATIONAL]; ALL_TAC] THEN
MP_TAC(SPECL [`a:real`; `b:real`; `c:real`] CUBIC_ROOT_STEP) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `e:expression`) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `e':expression` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `CARD(radicals e')`) THEN ANTS_TAC THENL
[REWRITE_TAC[SYM(ASSUME `CARD(radicals e) = n`)] THEN
MATCH_MP_TAC CARD_PSUBSET THEN ASM_REWRITE_TAC[FINITE_RADICALS];
DISCH_THEN MATCH_MP_TAC THEN EXISTS_TAC `e':expression` THEN
ASM_REWRITE_TAC[]]);;
let CUBIC_ROOT_RATIONAL = prove
(`!a b c. rational a /\ rational b /\ rational c /\
(?x. radical x /\ x pow 3 + a * x pow 2 + b * x + c = &0)
==> (?x. rational x /\ x pow 3 + a * x pow 2 + b * x + c = &0)`,
REWRITE_TAC[RADICAL_EXPRESSION] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`a:real`; `b:real`; `c:real`] CUBIC_ROOT_RADICAL_INDUCT) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
MAP_EVERY EXISTS_TAC [`CARD(radicals e)`; `e:expression`] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Now go further to an *integer*, since the polynomial is monic. *)
(* ------------------------------------------------------------------------- *)
prioritize_num();;
let RATIONAL_LOWEST_LEMMA = prove
(`!p q. ~(q = 0) ==> ?p' q'. ~(q' = 0) /\ coprime(p',q') /\ p * q' = p' * q`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN MATCH_MP_TAC num_WF THEN
X_GEN_TAC `q:num` THEN DISCH_TAC THEN X_GEN_TAC `p:num` THEN DISCH_TAC THEN
ASM_CASES_TAC `coprime(p,q)` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [coprime]) THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; GSYM CONJ_ASSOC] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` MP_TAC) THEN
ASM_CASES_TAC `d = 0` THEN ASM_REWRITE_TAC[DIVIDES_ZERO] THEN
REWRITE_TAC[divides] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `p':num` SUBST_ALL_TAC)
(CONJUNCTS_THEN2 (X_CHOOSE_THEN `q':num` SUBST_ALL_TAC) ASSUME_TAC)) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `q':num`) THEN
RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN
GEN_REWRITE_TAC (funpow 2 LAND_CONV) [ARITH_RULE `a < b <=> 1 * a < b`] THEN
ASM_REWRITE_TAC[LT_MULT_RCANCEL] THEN
ASM_SIMP_TAC[ARITH_RULE `~(d = 0) /\ ~(d = 1) ==> 1 < d`] THEN
DISCH_THEN(MP_TAC o SPEC `p':num`) THEN
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SIMP_TAC[] THEN
CONV_TAC NUM_RING);;
prioritize_real();;
let RATIONAL_LOWEST = prove
(`!x. rational x <=> ?p q. ~(q = 0) /\ coprime(p,q) /\ abs(x) = &p / &q`,
GEN_TAC THEN REWRITE_TAC[RATIONAL_ALT] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[]] THEN
STRIP_TAC THEN MP_TAC(SPECL [`p:num`; `q:num`] RATIONAL_LOWEST_LEMMA) THEN
ASM_REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
UNDISCH_TAC `~(q = 0)` THEN SIMP_TAC[GSYM REAL_OF_NUM_EQ] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN CONV_TAC REAL_FIELD);;
let RATIONAL_ROOT_INTEGER = prove
(`!a b c x. integer a /\ integer b /\ integer c /\ rational x /\
x pow 3 + a * x pow 2 + b * x + c = &0
==> integer x`,
REWRITE_TAC[RATIONAL_LOWEST; GSYM REAL_OF_NUM_EQ] THEN
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP(REAL_ARITH
`abs x = a ==> x = a \/ x = --a`)) THEN
DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o check (is_eq o concl)) THEN
ASM_SIMP_TAC[REAL_FIELD
`~(q = &0)
==> ((p / q) pow 3 + a * (p / q) pow 2 + b * (p / q) + c = &0 <=>
(p pow 3 = q * --(a * p pow 2 + b * p * q + c * q pow 2))) /\
((--(p / q)) pow 3 + a * (--(p / q)) pow 2 +
b * (--(p / q)) + c = &0 <=>
p pow 3 = q * (a * p pow 2 - b * p * q + c * q pow 2))`] THEN
(W(fun(asl,w) ->
SUBGOAL_THEN(mk_comb(`integer`,rand(rand(lhand w)))) MP_TAC THENL
[REPEAT(MAP_FIRST MATCH_MP_TAC (tl(CONJUNCTS INTEGER_CLOSED)) THEN
REPEAT CONJ_TAC) THEN
ASM_REWRITE_TAC[INTEGER_CLOSED];
ALL_TAC])) THEN
REWRITE_TAC[integer] THEN DISCH_THEN(X_CHOOSE_TAC `i:num`) THEN
DISCH_THEN(MP_TAC o AP_TERM `abs`) THEN
ASM_REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NEG] THEN
REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM; REAL_OF_NUM_MUL] THEN
REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_EQ] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_SYM]) THEN
DISCH_THEN(MP_TAC o SPEC `3` o MATCH_MP COPRIME_EXP) THEN
REWRITE_TAC[coprime] THEN DISCH_THEN(MP_TAC o SPEC `q:num`) THEN
ASM_CASES_TAC `q = 1` THEN
ASM_SIMP_TAC[REAL_DIV_1; REAL_ABS_NUM; REAL_OF_NUM_EQ; GSYM EXISTS_REFL] THEN
MESON_TAC[divides; DIVIDES_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Hence we have our big final theorem. *)
(* ------------------------------------------------------------------------- *)
let CUBIC_ROOT_INTEGER = prove
(`!a b c. integer a /\ integer b /\ integer c /\
(?x. radical x /\ x pow 3 + a * x pow 2 + b * x + c = &0)
==> (?x. integer x /\ x pow 3 + a * x pow 2 + b * x + c = &0)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`a:real`; `b:real`; `c:real`] CUBIC_ROOT_RATIONAL) THEN
ASM_SIMP_TAC[RATIONAL_INTEGER] THEN
ASM_MESON_TAC[RATIONAL_ROOT_INTEGER]);;
(* ------------------------------------------------------------------------- *)
(* Geometrical definitions. *)
(* ------------------------------------------------------------------------- *)
let length = new_definition
`length(a:real^2,b:real^2) = norm(b - a)`;;
let parallel = new_definition
`parallel (a:real^2,b:real^2) (c:real^2,d:real^2) <=>
(a$1 - b$1) * (c$2 - d$2) = (a$2 - b$2) * (c$1 - d$1)`;;
let collinear3 = new_definition
`collinear3 (a:real^2) b c <=> parallel (a,b) (a,c)`;;
let is_intersection = new_definition
`is_intersection p (a,b) (c,d) <=> collinear3 a p b /\ collinear3 c p d`;;
let on_circle = new_definition
`on_circle x (centre,pt) <=> length(centre,x) = length(centre,pt)`;;
(* ------------------------------------------------------------------------- *)
(* A trivial lemma. *)
(* ------------------------------------------------------------------------- *)
let SQRT_CASES_LEMMA = prove
(`!x y. y pow 2 = x ==> &0 <= x /\ (sqrt(x) = y \/ sqrt(x) = --y)`,
REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE] THEN
MP_TAC(SPEC `y:real` (GEN_ALL POW_2_SQRT)) THEN
MP_TAC(SPEC `--y` (GEN_ALL POW_2_SQRT)) THEN
REWRITE_TAC[GSYM REAL_POW_2; REAL_POW_NEG; ARITH] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Show that solutions to certain classes of equations are radical. *)
(* ------------------------------------------------------------------------- *)
let RADICAL_LINEAR_EQUATION = prove
(`!a b x. radical a /\ radical b /\ ~(a = &0 /\ b = &0) /\ a * x + b = &0
==> radical x`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `~(a = &0) /\ x = --b / a`
(fun th -> ASM_SIMP_TAC[th; RADICAL_RULES]) THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);;
let RADICAL_SIMULTANEOUS_LINEAR_EQUATION = prove
(`!a b c d e f x.
radical a /\ radical b /\ radical c /\
radical d /\ radical e /\ radical f /\
~(a * e = b * d /\ a * f = c * d /\ e * c = b * f) /\
a * x + b * y = c /\ d * x + e * y = f
==> radical(x) /\ radical(y)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN
`~(a * e - b * d = &0) /\
x = (e * c - b * f) / (a * e - b * d) /\
y = (a * f - d * c) / (a * e - b * d)`
STRIP_ASSUME_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD;
ASM_SIMP_TAC[RADICAL_RULES]]);;
let RADICAL_QUADRATIC_EQUATION = prove
(`!a b c x. radical a /\ radical b /\ radical c /\
a * x pow 2 + b * x + c = &0 /\
~(a = &0 /\ b = &0 /\ c = &0)
==> radical x`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a = &0` THEN ASM_REWRITE_TAC[] THENL
[ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN
MESON_TAC[RADICAL_LINEAR_EQUATION];
ALL_TAC] THEN
STRIP_TAC THEN MATCH_MP_TAC RADICAL_LINEAR_EQUATION THEN
EXISTS_TAC `&2 * a` THEN
ASM_SIMP_TAC[RADICAL_RULES; REAL_ENTIRE; REAL_OF_NUM_EQ; ARITH_EQ] THEN
SUBGOAL_THEN `&0 <= b pow 2 - &4 * a * c /\
((&2 * a) * x + (b - sqrt(b pow 2 - &4 * a * c)) = &0 \/
(&2 * a) * x + (b + sqrt(b pow 2 - &4 * a * c)) = &0)`
MP_TAC THENL
[REWRITE_TAC[real_sub; REAL_ARITH `a + (b + c) = &0 <=> c = --(a + b)`] THEN
REWRITE_TAC[REAL_EQ_NEG2] THEN MATCH_MP_TAC SQRT_CASES_LEMMA THEN
FIRST_X_ASSUM(MP_TAC o SYM) THEN CONV_TAC REAL_RING;
STRIP_TAC THENL
[EXISTS_TAC `b - sqrt(b pow 2 - &4 * a * c)`;
EXISTS_TAC `b + sqrt(b pow 2 - &4 * a * c)`] THEN
ASM_REWRITE_TAC[] THEN RADICAL_TAC THEN ASM_REWRITE_TAC[]]);;
let RADICAL_SIMULTANEOUS_LINEAR_QUADRATIC = prove
(`!a b c d e f x.
radical a /\ radical b /\ radical c /\
radical d /\ radical e /\ radical f /\
~(d = &0 /\ e = &0 /\ f = &0) /\
(x - a) pow 2 + (y - b) pow 2 = c /\ d * x + e * y = f
==> radical x /\ radical y`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `d pow 2 + e pow 2` RADICAL_QUADRATIC_EQUATION) THEN
DISCH_THEN MATCH_MP_TAC THENL
[EXISTS_TAC `&2 * b * d * e - &2 * a * e pow 2 - &2 * d * f` THEN
EXISTS_TAC `b pow 2 * e pow 2 + a pow 2 * e pow 2 +
f pow 2 - c * e pow 2 - &2 * b * e * f`;
EXISTS_TAC `&2 * a * d * e - &2 * b * d pow 2 - &2 * f * e` THEN
EXISTS_TAC `a pow 2 * d pow 2 + b pow 2 * d pow 2 +
f pow 2 - c * d pow 2 - &2 * a * d * f`] THEN
(REPLICATE_TAC 3
(CONJ_TAC THENL [RADICAL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC]) THEN
CONJ_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_RING; ALL_TAC] THEN
REWRITE_TAC[REAL_SOS_EQ_0] THEN REPEAT(POP_ASSUM MP_TAC) THEN
CONV_TAC REAL_RING));;
let RADICAL_SIMULTANEOUS_QUADRATIC_QUADRATIC = prove
(`!a b c d e f x.
radical a /\ radical b /\ radical c /\
radical d /\ radical e /\ radical f /\
~(a = d /\ b = e /\ c = f) /\
(x - a) pow 2 + (y - b) pow 2 = c /\
(x - d) pow 2 + (y - e) pow 2 = f
==> radical x /\ radical y`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC RADICAL_SIMULTANEOUS_LINEAR_QUADRATIC THEN
MAP_EVERY EXISTS_TAC
[`a:real`; `b:real`; `c:real`; `&2 * (d - a)`; `&2 * (e - b)`;
`(d pow 2 - a pow 2) + (e pow 2 - b pow 2) + (c - f)`] THEN
ASM_REWRITE_TAC[] THEN
REPLICATE_TAC 3
(CONJ_TAC THENL [RADICAL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC]) THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Analytic criterion for constructibility. *)
(* ------------------------------------------------------------------------- *)
let constructible_RULES,constructible_INDUCT,constructible_CASES =
new_inductive_definition
`(!x:real^2. rational(x$1) /\ rational(x$2) ==> constructible x) /\
// Intersection of two non-parallel lines AB and CD
(!a b c d x. constructible a /\ constructible b /\
constructible c /\ constructible d /\
~parallel (a,b) (c,d) /\ is_intersection x (a,b) (c,d)
==> constructible x) /\
// Intersection of a nontrivial line AB and circle with centre C, radius DE
(!a b c d e x. constructible a /\ constructible b /\
constructible c /\ constructible d /\
constructible e /\
~(a = b) /\ collinear3 a x b /\ length (c,x) = length(d,e)
==> constructible x) /\
// Intersection of distinct circles with centres A and D, radii BD and EF
(!a b c d e f x. constructible a /\ constructible b /\
constructible c /\ constructible d /\
constructible e /\ constructible f /\
~(a = d /\ length (b,c) = length (e,f)) /\
length (a,x) = length (b,c) /\ length (d,x) = length (e,f)
==> constructible x)`;;
(* ------------------------------------------------------------------------- *)
(* Some "coordinate geometry" lemmas. *)
(* ------------------------------------------------------------------------- *)
let RADICAL_LINE_LINE_INTERSECTION = prove
(`!a b c d x.
radical(a$1) /\ radical(a$2) /\
radical(b$1) /\ radical(b$2) /\
radical(c$1) /\ radical(c$2) /\
radical(d$1) /\ radical(d$2) /\
~(parallel (a,b) (c,d)) /\ is_intersection x (a,b) (c,d)
==> radical(x$1) /\ radical(x$2)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[parallel; collinear3; is_intersection] THEN STRIP_TAC THEN
MATCH_MP_TAC RADICAL_SIMULTANEOUS_LINEAR_EQUATION THEN
MAP_EVERY EXISTS_TAC
[`(b:real^2)$2 - (a:real^2)$2`; `(a:real^2)$1 - (b:real^2)$1`;
`(a:real^2)$2 * (a$1 - (b:real^2)$1) - (a:real^2)$1 * (a$2 - b$2)`;
`(d:real^2)$2 - (c:real^2)$2`; `(c:real^2)$1 - (d:real^2)$1`;
`(c:real^2)$2 * (c$1 - (d:real^2)$1) - (c:real^2)$1 * (c$2 - d$2)`] THEN
REPLICATE_TAC 6
(CONJ_TAC THENL [RADICAL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC]) THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_RING);;
let RADICAL_LINE_CIRCLE_INTERSECTION = prove
(`!a b c d e x.
radical(a$1) /\ radical(a$2) /\
radical(b$1) /\ radical(b$2) /\
radical(c$1) /\ radical(c$2) /\
radical(d$1) /\ radical(d$2) /\
radical(e$1) /\ radical(e$2) /\
~(a = b) /\ collinear3 a x b /\ length(c,x) = length(d,e)
==> radical(x$1) /\ radical(x$2)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[length; NORM_EQ; collinear3; parallel] THEN
SIMP_TAC[CART_EQ; FORALL_2; dot; SUM_2; DIMINDEX_2; VECTOR_SUB_COMPONENT;
GSYM REAL_POW_2] THEN
STRIP_TAC THEN MATCH_MP_TAC RADICAL_SIMULTANEOUS_LINEAR_QUADRATIC THEN
MAP_EVERY EXISTS_TAC
[`(c:real^2)$1`; `(c:real^2)$2`;
`((e:real^2)$1 - (d:real^2)$1) pow 2 + (e$2 - d$2) pow 2`;
`(b:real^2)$2 - (a:real^2)$2`;
`(a:real^2)$1 - (b:real^2)$1`;
`a$2 * ((a:real^2)$1 - (b:real^2)$1) - a$1 * (a$2 - b$2)`] THEN
REPLICATE_TAC 6
(CONJ_TAC THENL [RADICAL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC]) THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_RING);;
let RADICAL_CIRCLE_CIRCLE_INTERSECTION = prove
(`!a b c d e f x.
radical(a$1) /\ radical(a$2) /\
radical(b$1) /\ radical(b$2) /\
radical(c$1) /\ radical(c$2) /\
radical(d$1) /\ radical(d$2) /\
radical(e$1) /\ radical(e$2) /\
radical(f$1) /\ radical(f$2) /\
length(a,x) = length(b,c) /\
length(d,x) = length(e,f) /\
~(a = d /\ length(b,c) = length(e,f))
==> radical(x$1) /\ radical(x$2)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[length; NORM_EQ; collinear3; parallel] THEN
SIMP_TAC[CART_EQ; FORALL_2; dot; SUM_2; DIMINDEX_2; VECTOR_SUB_COMPONENT;
GSYM REAL_POW_2] THEN
STRIP_TAC THEN MATCH_MP_TAC RADICAL_SIMULTANEOUS_QUADRATIC_QUADRATIC THEN
MAP_EVERY EXISTS_TAC
[`(a:real^2)$1`; `(a:real^2)$2`;
`((c:real^2)$1 - (b:real^2)$1) pow 2 + (c$2 - b$2) pow 2`;
`(d:real^2)$1`; `(d:real^2)$2`;
`((f:real^2)$1 - (e:real^2)$1) pow 2 + (f$2 - e$2) pow 2`] THEN
REPLICATE_TAC 6
(CONJ_TAC THENL [RADICAL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC]) THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* So constructible points have radical coordinates. *)
(* ------------------------------------------------------------------------- *)
let CONSTRUCTIBLE_RADICAL = prove
(`!x. constructible x ==> radical(x$1) /\ radical(x$2)`,
MATCH_MP_TAC constructible_INDUCT THEN REPEAT CONJ_TAC THEN
REPEAT GEN_TAC THEN STRIP_TAC THENL
[ASM_SIMP_TAC[RADICAL_RULES];
MATCH_MP_TAC RADICAL_LINE_LINE_INTERSECTION THEN ASM_MESON_TAC[];
MATCH_MP_TAC RADICAL_LINE_CIRCLE_INTERSECTION THEN ASM_MESON_TAC[];
MATCH_MP_TAC RADICAL_CIRCLE_CIRCLE_INTERSECTION THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Impossibility of doubling the cube. *)
(* ------------------------------------------------------------------------- *)
let DOUBLE_THE_CUBE_ALGEBRA = prove
(`~(?x. radical x /\ x pow 3 = &2)`,
STRIP_TAC THEN MP_TAC(SPECL [`&0`; `&0`; `-- &2`] CUBIC_ROOT_INTEGER) THEN
SIMP_TAC[INTEGER_CLOSED; NOT_IMP] THEN
REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN
REWRITE_TAC[GSYM real_sub; REAL_SUB_0] THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o AP_TERM `abs`) THEN
REWRITE_TAC[REAL_ABS_POW] THEN
FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[integer]) THEN
REWRITE_TAC[REAL_ABS_NUM; REAL_OF_NUM_POW; REAL_OF_NUM_EQ] THEN
MATCH_MP_TAC(ARITH_RULE
`n EXP 3 <= 1 EXP 3 \/ 2 EXP 3 <= n EXP 3 ==> ~(n EXP 3 = 2)`) THEN
REWRITE_TAC[num_CONV `3`; EXP_MONO_LE_SUC] THEN ARITH_TAC);;
let DOUBLE_THE_CUBE = prove
(`!x. x pow 3 = &2 ==> ~(constructible(vector[x; &0]))`,
GEN_TAC THEN DISCH_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP CONSTRUCTIBLE_RADICAL) THEN
REWRITE_TAC[VECTOR_2; RADICAL_RULES] THEN
ASM_MESON_TAC[DOUBLE_THE_CUBE_ALGEBRA]);;
(* ------------------------------------------------------------------------- *)
(* Impossibility of trisecting *)
(* ------------------------------------------------------------------------- *)
let COS_TRIPLE = prove
(`!x. cos(&3 * x) = &4 * cos(x) pow 3 - &3 * cos(x)`,
GEN_TAC THEN
REWRITE_TAC[REAL_ARITH `&3 * x = x + x + x`; SIN_ADD; COS_ADD] THEN
MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN CONV_TAC REAL_RING);;
let COS_PI3 = prove
(`cos(pi / &3) = &1 / &2`,
MP_TAC(SPEC `pi / &3` COS_TRIPLE) THEN
SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH; COS_PI] THEN
REWRITE_TAC[REAL_RING
`-- &1 = &4 * c pow 3 - &3 * c <=> c = &1 / &2 \/ c = -- &1`] THEN
DISCH_THEN(DISJ_CASES_THEN2 ACCEPT_TAC MP_TAC) THEN
MP_TAC(SPEC `pi / &3` COS_POS_PI) THEN MP_TAC PI_POS THEN REAL_ARITH_TAC);;
let TRISECT_60_DEGREES_ALGEBRA = prove
(`~(?x. radical x /\ x pow 3 - &3 * x - &1 = &0)`,
STRIP_TAC THEN MP_TAC(SPECL [`&0`; `-- &3`; `-- &1`] CUBIC_ROOT_INTEGER) THEN
SIMP_TAC[INTEGER_CLOSED; NOT_IMP] THEN REWRITE_TAC[REAL_ADD_ASSOC] THEN
REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_RID; REAL_MUL_LNEG; GSYM real_sub] THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[REAL_ARITH
`x pow 3 - &3 * x - &1 = &0 <=> x * (x pow 2 - &3) = &1`] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o AP_TERM `abs`) THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NUM] THEN
ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN
FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[integer]) THEN
REPEAT_TCL DISJ_CASES_THEN SUBST1_TAC (ARITH_RULE
`n = 0 \/ n = 1 \/ n = 2 + (n - 2)`) THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
REWRITE_TAC[REAL_ARITH `(&2 + m) pow 2 - &3 = m pow 2 + &4 * m + &1`] THEN
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_MUL; REAL_OF_NUM_POW; REAL_ABS_NUM;
REAL_OF_NUM_EQ; MULT_EQ_1] THEN
ARITH_TAC);;
let TRISECT_60_DEGREES = prove
(`!y. ~(constructible(vector[cos(pi / &9); y]))`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CONSTRUCTIBLE_RADICAL) THEN
DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[VECTOR_2] THEN
DISCH_TAC THEN MP_TAC(SPEC `pi / &9` COS_TRIPLE) THEN
SIMP_TAC[REAL_ARITH `&3 * x / &9 = x / &3`; COS_PI3] THEN
REWRITE_TAC[REAL_ARITH
`&1 / &2 = &4 * c pow 3 - &3 * c <=>
(&2 * c) pow 3 - &3 * (&2 * c) - &1 = &0`] THEN
ASM_MESON_TAC[TRISECT_60_DEGREES_ALGEBRA; RADICAL_RULES]);;
|