1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
|
(* ========================================================================= *)
(* Sum of reciprocals of triangular numbers. *)
(* ========================================================================= *)
needs "Multivariate/misc.ml";; (*** Just for REAL_ARCH_INV! ***)
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Definition of triangular numbers. *)
(* ------------------------------------------------------------------------- *)
let triangle = new_definition
`triangle n = (n * (n + 1)) DIV 2`;;
(* ------------------------------------------------------------------------- *)
(* Mapping them into the reals: division is exact. *)
(* ------------------------------------------------------------------------- *)
let REAL_TRIANGLE = prove
(`&(triangle n) = (&n * (&n + &1)) / &2`,
MATCH_MP_TAC(REAL_ARITH `&2 * x = y ==> x = y / &2`) THEN
REWRITE_TAC[triangle; REAL_OF_NUM_MUL; REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN
SUBGOAL_THEN `EVEN(n * (n + 1))` MP_TAC THENL
[REWRITE_TAC[EVEN_MULT; EVEN_ADD; ARITH] THEN CONV_TAC TAUT;
REWRITE_TAC[EVEN_EXISTS] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
AP_TERM_TAC THEN MATCH_MP_TAC DIV_MULT THEN REWRITE_TAC[ARITH]]);;
(* ------------------------------------------------------------------------- *)
(* Sum of a finite number of terms. *)
(* ------------------------------------------------------------------------- *)
let TRIANGLE_FINITE_SUM = prove
(`!n. sum(1..n) (\k. &1 / &(triangle k)) = &2 - &2 / (&n + &1)`,
INDUCT_TAC THEN
ASM_REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH_EQ; ARITH_RULE `1 <= SUC n`] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_TRIANGLE; GSYM REAL_OF_NUM_SUC] THEN CONV_TAC REAL_FIELD);;
(* ------------------------------------------------------------------------- *)
(* Hence limit. *)
(* ------------------------------------------------------------------------- *)
let TRIANGLE_CONVERGES = prove
(`!e. &0 < e
==> ?N. !n. n >= N
==> abs(sum(1..n) (\k. &1 / &(triangle k)) - &2) < e`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [REAL_ARCH_INV] THEN
DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `2 * N + 1` THEN REWRITE_TAC[GE] THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[TRIANGLE_FINITE_SUM; REAL_ARITH `abs(x - y - x) = abs y`] THEN
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `inv(&N)` THEN
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NUM] THEN
ONCE_REWRITE_TAC[GSYM REAL_INV_DIV] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
REWRITE_TAC[REAL_ARITH `abs(&n + &1) = &n + &1`] THEN
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* In terms of limits. *)
(* ------------------------------------------------------------------------- *)
needs "Library/analysis.ml";;
override_interface ("-->",`(tends_num_real)`);;
let TRIANGLE_CONVERGES' = prove
(`(\n. sum(1..n) (\k. &1 / &(triangle k))) --> &2`,
REWRITE_TAC[SEQ; TRIANGLE_CONVERGES]);;
|