1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
|
(* ========================================================================= *)
(* HOL Light formalizations of some of the main theorems from the paper *)
(* by Warren Ferguson, Jesse Bingham, Levent Erkok, John Harrison and *)
(* Joe Leslie-Hurd: "Digit Serial Methods with Applications to *)
(* Division and Square Root", IEEE Transactions on Computers, vol. 67, *)
(* issue 3, pp. 449-456, 2017. *)
(* ========================================================================= *)
(*** This dependency is just for some convex function basics. ***)
(*** It is a bit extravagent for the small amount actually used. ***)
needs "Multivariate/realanalysis.ml";;
(* ------------------------------------------------------------------------- *)
(* The main proxy theorem. *)
(* ------------------------------------------------------------------------- *)
let THEOREM_V_1 = prove
(`!(V:real) (beta:num->real) (omega:num->real) (DSF:num->real->real)
(B:num->real) (H:num->real) (v:num->real) (Tl:num->real) (Tp:num->real)
(PSI:num->real#real->real) (psi:num->real#real->real)
(tau:num->real->real) (taup:num->real->real).
// Environmental assumptions including nondecreasing property
&0 <= V /\
(!i. i >= 0 ==> beta i > &0) /\
(!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
(!i. i >= 0 ==> abs (psi i (V,Tl i)) <= PSI i (V,abs(Tl i))) /\
(!i x y. &0 <= x /\ x <= y ==> PSI i (V,x) <= PSI i (V,y)) /\
(!u. tau 0 u = u) /\
(!i u. tau (i + 1) u =
beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1)) /\
(!i u. taup i u = (&1 + PSI i (u,tau i u)) * tau i u) /\
// Computing recursively
B 0 = &1 /\ H 0 = &0 /\ Tl 0 = V /\
(!i. Tp i = (&1 + psi i (V,Tl i)) * Tl i) /\
(!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
(!i. B (i + 1) = beta (i + 1) * B i) /\
(!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
(!i. Tl (i + 1) = beta (i + 1) * Tl i - v (i + 1))
// Conclude loop invariant and bounds.
==> (!i. V = H i + Tl i / B i) /\
(!i. i >= 0 ==> abs(Tl i) <= tau i V) /\
(!i. i >= 0 ==> abs(Tp i) <= taup i V)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GE; real_gt; real_gt; LE_0] THEN
STRIP_TAC THEN
(*** Lemma: all the B_i are strictly positive, by induction ***)
SUBGOAL_THEN `!i:num. &0 < B i` ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_SIMP_TAC[REAL_LT_01; ADD1; REAL_LT_MUL];
ALL_TAC] THEN
(*** Handle the tau_p clause first, assuming the other two ***)
MATCH_MP_TAC(TAUT `(p /\ q ==> r) /\ p /\ q ==> p /\ q /\ r`) THEN
CONJ_TAC THENL
[DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
ASM_REWRITE_TAC[REAL_ABS_MUL] THEN GEN_TAC THEN
MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_ABS_POS] THEN
MATCH_MP_TAC(REAL_ARITH `abs(x) <= a ==> abs(&1 + x) <= &1 + a`) THEN
TRANS_TAC REAL_LE_TRANS `(PSI:num->real#real->real) i (V,abs(Tl i))` THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[REAL_ABS_POS];
ALL_TAC] THEN
(*** Start main induction and dispose of base case ***)
REWRITE_TAC[AND_FORALL_THM] THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
(*** Prove the step case of the loop invariant ***)
CONJ_TAC THENL
[ASM_REWRITE_TAC[ADD1] THEN
SUBGOAL_THEN `&0 < beta (i + 1) /\ &0 < B i` MP_TAC THENL
[ASM_REWRITE_TAC[]; CONV_TAC REAL_FIELD];
ALL_TAC] THEN
(*** Massage the goal a little then chain through the inequalities ***)
FIRST_X_ASSUM(CONJUNCTS_THEN (ASSUME_TAC o GSYM)) THEN
REWRITE_TAC[ADD1] THEN
TRANS_TAC REAL_LE_TRANS
`abs(-- beta (i + 1) * psi i (V:real,Tl i) * Tl i +
(beta (i + 1) * Tp i - DSF (i + 1) (beta (i + 1) * Tp i)))` THEN
CONJ_TAC THENL [ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; ALL_TAC] THEN
TRANS_TAC REAL_LE_TRANS
`beta (i + 1) * abs(psi i (V:real,Tl i)) * abs(Tl i) + omega(i + 1)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC(REAL_ARITH
`abs(x) <= a /\ abs(y) <= b ==> abs(x + y) <= a + b`) THEN
ASM_SIMP_TAC[ARITH_RULE `1 <= i + 1`] THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NEG] THEN
ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> abs x = x`; REAL_LE_REFL];
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_LE_RADD] THEN
ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN
MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_ABS_POS] THEN
TRANS_TAC REAL_LE_TRANS `(PSI:num->real#real->real) i (V,abs(Tl i))` THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[REAL_ABS_POS]);;
(* ------------------------------------------------------------------------- *)
(* Restricted posynomials (definition V.2) *)
(* ------------------------------------------------------------------------- *)
let posynomial = new_definition
`posynomial p <=>
?c (n:num->real) k.
(!i. 1 <= i /\ i <= k ==> c i > &0 /\ integer(n i)) /\
(!v. &0 < v ==> sum (1..k) (\i. c i * v rpow (n i)) = p v)`;;
let POSYNOMIAL_0 = prove
(`posynomial (\v. &0)`,
REWRITE_TAC[posynomial] THEN
MAP_EVERY EXISTS_TAC [`(\i. &1):num->real`; `(\i. &0):num->real`; `0`] THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;
let POSYNOMIAL_1 = prove
(`posynomial (\v. &1)`,
REWRITE_TAC[posynomial] THEN
MAP_EVERY EXISTS_TAC [`(\i. &1):num->real`; `(\i. &0):num->real`; `1`] THEN
REWRITE_TAC[INTEGER_CLOSED; SUM_SING_NUMSEG; RPOW_POW] THEN REAL_ARITH_TAC);;
let POSYNOMIAL_CMUL = prove
(`!p c. posynomial p /\ &0 < c ==> posynomial(\v. c * p(v))`,
REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
REWRITE_TAC[posynomial] THEN DISCH_THEN(X_CHOOSE_THEN `d:num->real`
(fun th -> EXISTS_TAC `(\i. c * d i):num->real` THEN MP_TAC th)) THEN
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
SIMP_TAC[SUM_LMUL; GSYM REAL_MUL_ASSOC] THEN
ASM_SIMP_TAC[real_gt; REAL_LT_MUL]);;
let POSYNOMIAL_CONST = prove
(`!c. &0 <= c ==> posynomial (\v. c)`,
REWRITE_TAC[REAL_ARITH `&0 <= c <=> c = &0 \/ &0 < c`] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[POSYNOMIAL_0] THEN
GEN_REWRITE_TAC (RAND_CONV o ABS_CONV) [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC POSYNOMIAL_CMUL THEN
ASM_REWRITE_TAC[POSYNOMIAL_1]);;
let POSYNOMIAL_VPOWMUL = prove
(`!p n. posynomial p /\ integer n ==> posynomial(\v. p(v) * v rpow n)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
REWRITE_TAC[posynomial] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:num->real` THEN
GEN_REWRITE_TAC BINOP_CONV [SWAP_EXISTS_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN
DISCH_THEN(X_CHOOSE_THEN `nn:num->real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(\i. nn i + n):num->real` THEN
ASM_SIMP_TAC[RPOW_ADD; REAL_MUL_ASSOC; SUM_RMUL; INTEGER_CLOSED]);;
let POSYNOMIAL_VMUL = prove
(`!p. posynomial p ==> posynomial(\v. p(v) * v)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`p:real->real`; `&1:real`] POSYNOMIAL_VPOWMUL) THEN
ASM_REWRITE_TAC[RPOW_POW; REAL_POW_1; INTEGER_CLOSED]);;
let POSYNOMIAL_VDIV = prove
(`!p. posynomial p ==> posynomial(\v. p(v) / v)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`p:real->real`; `-- &1:real`] POSYNOMIAL_VPOWMUL) THEN
ASM_SIMP_TAC[RPOW_POW; real_div; RPOW_NEG; REAL_POW_1; INTEGER_CLOSED]);;
let POSYNOMIAL_V = prove
(`posynomial(\v. v)`,
GEN_REWRITE_TAC (RAND_CONV o ABS_CONV) [GSYM REAL_MUL_LID] THEN
MATCH_MP_TAC POSYNOMIAL_VMUL THEN REWRITE_TAC[POSYNOMIAL_1]);;
let POSYNOMIAL_ADD = prove
(`!p q. posynomial p /\ posynomial q ==> posynomial(\v. p v + q v)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[posynomial; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`c1:num->real`; `n1:num->real`; `m:num`] THEN
DISCH_TAC THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`c2:num->real`; `n2:num->real`; `n:num`] THEN
DISCH_TAC THEN DISCH_TAC THEN
EXISTS_TAC `\i. if i <= m then (c1:num->real) i else c2 (i - m)` THEN
EXISTS_TAC `\i. if i <= m then (n1:num->real) i else n2 (i - m)` THEN
EXISTS_TAC `m + n:num` THEN REWRITE_TAC[] THEN CONJ_TAC THENL
[REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN
ASM_MESON_TAC[ARITH_RULE
`~(i:num <= m) /\ i <= m + n ==> 1 <= i - m /\ i - m <= n`];
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[COND_RAND] THEN
ONCE_REWRITE_TAC[MESON[] `(if p then f else g) (if p then x else y) =
if p then f x else g y`] THEN
SIMP_TAC[SUM_CASES; FINITE_NUMSEG; IN_NUMSEG;
ARITH_RULE `(1 <= i /\ i <= m + n) /\ i <= m <=> 1 <= i /\ i <= m`;
ARITH_RULE `(1 <= i /\ i <= m + n) /\ ~(i <= m) <=>
1 + m <= i /\ i <= n + m`] THEN
REWRITE_TAC[GSYM numseg; SUM_OFFSET; ADD_SUB] THEN ASM_SIMP_TAC[]]);;
let POSYNOMIAL_SUM = prove
(`!k:A->bool p.
FINITE k /\ (!i. i IN k ==> posynomial(\v. p v i))
==> posynomial (\v. sum k (p v))`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[SUM_CLAUSES; POSYNOMIAL_0; POSYNOMIAL_ADD; FORALL_IN_INSERT;
ETA_AX]);;
let POSYNOMIAL_MUL = prove
(`!p q. posynomial p /\ posynomial q ==> posynomial(\v. p v * q v)`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV)
[CONV_RULE (RAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) (SPEC_ALL posynomial)] THEN
STRIP_TAC THEN ASM_SIMP_TAC[posynomial] THEN
REWRITE_TAC[GSYM posynomial] THEN
SIMP_TAC[SUM_SUM_PRODUCT; FINITE_NUMSEG; REAL_MUL_SUM] THEN
MATCH_MP_TAC POSYNOMIAL_SUM THEN
SIMP_TAC[FINITE_PRODUCT_DEPENDENT; FINITE_NUMSEG; FORALL_IN_GSPEC] THEN
REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH
`(c * x) * (d * y):real = (c * d) * (x * y)`] THEN
SIMP_TAC[posynomial; GSYM RPOW_ADD] THEN REWRITE_TAC[GSYM posynomial] THEN
MATCH_MP_TAC POSYNOMIAL_VPOWMUL THEN ASM_SIMP_TAC[INTEGER_CLOSED] THEN
ONCE_REWRITE_TAC[GSYM REAL_MUL_RID] THEN
RULE_ASSUM_TAC(REWRITE_RULE[real_gt]) THEN
MATCH_MP_TAC POSYNOMIAL_CMUL THEN
ASM_SIMP_TAC[REAL_LT_MUL; POSYNOMIAL_1]);;
let REAL_CONVEX_ON_POSYNOMIAL = prove
(`!p. posynomial p ==> p real_convex_on {x | x > &0}`,
GEN_TAC THEN REWRITE_TAC[posynomial; LEFT_IMP_EXISTS_THM; real_gt] THEN
MAP_EVERY X_GEN_TAC [`c:num->real`; `n:num->real`; `m:num`] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
[SET_RULE `&0 < v <=> v IN {x | &0 < x}`] THEN
MATCH_MP_TAC(MESON[REAL_CONVEX_ON_EQ]
`is_realinterval s /\ f real_convex_on s
==> (!x. x IN s ==> f x = g x) ==> g real_convex_on s`) THEN
REWRITE_TAC[IS_REALINTERVAL_CLAUSES] THEN
MATCH_MP_TAC REAL_CONVEX_ON_SUM THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC REAL_CONVEX_LMUL THEN
ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
MATCH_MP_TAC REAL_CONVEX_ON_RPOW_INTEGER THEN
ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* The corollary. *)
(* ------------------------------------------------------------------------- *)
let COROLLARY_V_3 = prove
(`!(V:real) (beta:num->real) (omega:num->real) (DSF:num->real->real)
(B:num->real) (H:num->real) (v:num->real) (Tl:num->real) (Tp:num->real)
(PSI:num->real#real->real) (psi:num->real#real->real)
(tau:num->real->real) (taup:num->real->real).
// Environmental assumptions including nondecreasing property
&0 < V /\
(!i. i >= 0 ==> beta i > &0) /\
(!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
(!i. i >= 0 ==> abs (psi i (V,Tl i)) <= PSI i (V,abs(Tl i))) /\
(!i x y. &0 <= x /\ x <= y ==> PSI i (V,x) <= PSI i (V,y)) /\
(!u. tau 0 u = u) /\
(!i u. tau (i + 1) u =
beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1)) /\
(!i u. taup i u = (&1 + PSI i (u,tau i u)) * tau i u) /\
// Computing recursively
B 0 = &1 /\ H 0 = &0 /\ Tl 0 = V /\
(!i. Tp i = (&1 + psi i (V,Tl i)) * Tl i) /\
(!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
(!i. B (i + 1) = beta (i + 1) * B i) /\
(!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
(!i. Tl (i + 1) = beta (i + 1) * Tl i - v (i + 1)) /\
// The extra posynomial-related assumption
(!i p. i >= 0 /\ posynomial p
==> posynomial (\v. PSI i (v,p v)))
// Hence conclude our bounds
==> !a b. real_interval[a,b] SUBSET {x | x > &0}
==> !i u. u IN real_interval[a,b]
==> tau i u <= max (tau i a) (tau i b) /\
taup i u <= max (taup i a) (taup i b)`,
REWRITE_TAC[real_gt; real_ge; GT; GE; LE_0] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE) THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `!i:num. posynomial (tau i)` ASSUME_TAC THENL
[INDUCT_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN
ASM_REWRITE_TAC[ADD1; POSYNOMIAL_V] THEN
MATCH_MP_TAC POSYNOMIAL_ADD THEN CONJ_TAC THENL
[MATCH_MP_TAC POSYNOMIAL_CMUL THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC POSYNOMIAL_MUL THEN ASM_SIMP_TAC[ETA_AX];
MATCH_MP_TAC POSYNOMIAL_CONST THEN
ASM_MESON_TAC[REAL_LE_TRANS; REAL_ABS_POS; ARITH_RULE `1 <= i + 1`]];
ALL_TAC] THEN
SUBGOAL_THEN `!i:num. posynomial (taup i)` ASSUME_TAC THENL
[INDUCT_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN
REWRITE_TAC[ADD1] THEN ONCE_ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC POSYNOMIAL_MUL THEN REWRITE_TAC[ETA_AX] THEN
(CONJ_TAC THENL [ALL_TAC; FIRST_X_ASSUM MATCH_ACCEPT_TAC]) THEN
MATCH_MP_TAC POSYNOMIAL_ADD THEN REWRITE_TAC[POSYNOMIAL_1] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[ETA_AX] THEN
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
ALL_TAC] THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_CONVEX_LOWER_REAL_INTERVAL THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
REAL_CONVEX_ON_SUBSET)) THEN
REWRITE_TAC[GSYM real_gt] THEN MATCH_MP_TAC REAL_CONVEX_ON_POSYNOMIAL THEN
FIRST_X_ASSUM MATCH_ACCEPT_TAC);;
(* ------------------------------------------------------------------------- *)
(* Add the other clauses to the corollary. *)
(* ------------------------------------------------------------------------- *)
let FULL_COROLLARY = prove
(`!(V:real) (beta:num->real) (omega:num->real) (DSF:num->real->real)
(B:num->real) (H:num->real) (v:num->real) (Tl:num->real) (Tp:num->real)
(PSI:num->real#real->real) (psi:num->real#real->real)
(tau:num->real->real) (taup:num->real->real).
// Not stated explicitly in the theorem itself but higher up.
&0 < V /\
// Environmental assumptions including nondecreasing property
(!i. i >= 0 ==> beta i > &0) /\
(!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
(!i. i >= 0 ==> abs (psi i (V,Tl i)) <= PSI i (V,abs(Tl i))) /\
(!i x y. &0 <= x /\ x <= y ==> PSI i (V,x) <= PSI i (V,y)) /\
(!u. tau 0 u = u) /\
(!i u. tau (i + 1) u =
beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1)) /\
(!i u. taup i u = (&1 + PSI i (u,tau i u)) * tau i u) /\
// Computing recursively
B 0 = &1 /\ H 0 = &0 /\ Tl 0 = V /\
(!i. Tp i = (&1 + psi i (V,Tl i)) * Tl i) /\
(!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
(!i. B (i + 1) = beta (i + 1) * B i) /\
(!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
(!i. Tl (i + 1) = beta (i + 1) * Tl i - v (i + 1)) /\
// The extra posynomial-related assumption
(!i p. i >= 0 /\ posynomial p
==> posynomial (\v. PSI i (v,p v)))
// Hence conclude invariant and all bounds.
==> (!i. V = H i + Tl i / B i) /\
(!i. abs(Tl i) <= tau i V) /\
(!i. abs(Tp i) <= taup i V) /\
(!a b. real_interval[a,b] SUBSET {x | x > &0}
==> !i u. u IN real_interval[a,b]
==> tau i u <= max (tau i a) (tau i b) /\
taup i u <= max (taup i a) (taup i b))`,
REWRITE_TAC[real_gt; real_ge; GT; GE; LE_0] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE) THEN
ONCE_REWRITE_TAC[TAUT `p /\ q /\ r /\ s <=> (p /\ q /\ r) /\ s`] THEN
CONJ_TAC THENL
[MATCH_MP_TAC(REWRITE_RULE[GE; LE_0] THEOREM_V_1) THEN
MAP_EVERY EXISTS_TAC
[`beta:num->real`; `omega:num->real`; `DSF:num->real->real`;
`v:num->real`; `PSI:num->real#real->real`;
`psi:num->real#real->real`] THEN
ASM_REWRITE_TAC[real_gt];
MATCH_MP_TAC(REWRITE_RULE[real_gt] COROLLARY_V_3) THEN
MAP_EVERY EXISTS_TAC
[`V:real`; `beta:num->real`; `omega:num->real`; `DSF:num->real->real`;
`B:num->real`; `H:num->real`; `v:num->real`; `Tl:num->real`;
`Tp:num->real`;
`PSI:num->real#real->real`; `psi:num->real#real->real`] THEN
ASM_REWRITE_TAC[GE; LE_0]]);;
(* ------------------------------------------------------------------------- *)
(* Instantiations for division and square root. *)
(* ------------------------------------------------------------------------- *)
let BOUND_THEOREM_DIV = prove
(`!beta Sigma omega B DSF H R Tp X Y g sigma v.
(!i. i >= 0 ==> beta i > &0) /\
&1 / &2 <= X /\ X < &1 /\
&1 <= Y /\ Y < &2 /\
(!y. &1 <= y /\ y < &2
==> g y = (&1 + sigma y) / y /\ abs(sigma y) <= Sigma) /\
(!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
B 0 = &1 /\ H 0 = &0 /\ R 0 = X /\
(!i. Tp i = g(Y) * R i) /\
(!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
(!i. B (i + 1) = beta (i + 1) * B i) /\
(!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
(!i. R (i + 1) = beta (i + 1) * R i - v(i + 1) * Y)
==> ?tau. (!u. tau 0 u = u) /\
(!i u. tau (i + 1) u =
beta (i + 1) * Sigma * tau i u + omega (i + 1)) /\
(!i. abs(X / Y - H i)
<= max (tau i (&1 / &4)) (tau i (&1)) / B i)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GE; LE_0; real_gt] THEN STRIP_TAC THEN
SUBGOAL_THEN `&0 <= Sigma` ASSUME_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `&1:real`) THEN REAL_ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `!i. &0 < (B:num->real) i` ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_SIMP_TAC[REAL_LT_MUL; ADD1; REAL_LT_01]; ALL_TAC] THEN
SUBGOAL_THEN `&0 < X /\ &0 < Y` STRIP_ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `&0 < X / Y` ASSUME_TAC THENL
[ASM_MESON_TAC[REAL_LT_DIV]; ALL_TAC] THEN
MAP_EVERY ABBREV_TAC
[`PSI:num->real#real->real = \i (u,t). Sigma`;
`psi:num->real#real->real = \i (u,t). sigma(Y:real)`] THEN
(X_CHOOSE_THEN `tau:num->real->real`
(STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o
prove_recursive_functions_exist num_RECURSION)
`(!u:real. tau 0 u = u) /\
(!i u. tau (SUC i) u =
beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1))` THEN
(X_CHOOSE_THEN `Tl:num->real`
(STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o
prove_recursive_functions_exist num_RECURSION)
`Tl 0 :real = X / Y /\
!i. Tl (SUC i) = beta (i + 1) * Tl i - v (i + 1)` THEN
ABBREV_TAC
`taup:num->real->real = \i u. (&1 + PSI i (u,tau i u)) * tau i u` THEN
MP_TAC(ISPECL
[`X / Y:real`;
`beta:num->real`;
`omega:num->real`;
`DSF:num->real->real`;
`B:num->real`;
`H:num->real`;
`v:num->real`;
`Tl:num->real`;
`Tp:num->real`;
`PSI:num->real#real->real`;
`psi:num->real#real->real`;
`tau:num->real->real`;
`taup:num->real->real`]
FULL_COROLLARY) THEN
REWRITE_TAC[GE; LE_0; real_gt] THEN ANTS_TAC THENL
[REPEAT CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
X_GEN_TAC `i:num` THEN MAP_EVERY EXPAND_TAC ["PSI"; "psi"] THEN
REWRITE_TAC[] THEN ASM_SIMP_TAC[] THEN NO_TAC;
EXPAND_TAC "PSI" THEN REWRITE_TAC[REAL_LE_REFL] THEN NO_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
ASM_REWRITE_TAC[] THEN NO_TAC;
EXPAND_TAC "taup" THEN REWRITE_TAC[] THEN NO_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
X_GEN_TAC `i:num` THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN
EXPAND_TAC "psi" THEN REWRITE_TAC[] THEN ASM_SIMP_TAC[] THEN
REWRITE_TAC[REAL_ARITH `a / b * c:real = a * c / b`] THEN
AP_TERM_TAC THEN ASM_SIMP_TAC[REAL_EQ_LDIV_EQ] THEN
SPEC_TAC(`i:num`,`j:num`) THEN
INDUCT_TAC THEN ASM_SIMP_TAC[ADD1; REAL_DIV_RMUL; REAL_LT_IMP_NZ] THEN
REAL_ARITH_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
EXPAND_TAC "PSI" THEN REWRITE_TAC[] THEN
ASM_SIMP_TAC[POSYNOMIAL_CONST] THEN NO_TAC];
STRIP_TAC THEN EXISTS_TAC `tau:num->real->real` THEN
ASM_REWRITE_TAC[REAL_ADD_SUB] THEN CONJ_TAC THENL
[EXPAND_TAC "PSI" THEN REWRITE_TAC[]; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_LE_DIV2_EQ;
REAL_ARITH `&0 < b ==> abs b = b`] THEN
X_GEN_TAC `i:num` THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`&1 / &4`; `&1`]) THEN
REWRITE_TAC[SUBSET; IN_REAL_INTERVAL; IN_ELIM_THM] THEN
ANTS_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPECL [`i:num`; `X / Y:real`]) THEN
ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LE_TRANS]] THEN
REWRITE_TAC[REAL_ARITH
`&1 / &4 <= X / Y /\ X / Y <= &1 <=>
&1 / &2 * inv(&2) <= X * inv Y /\ X * inv Y <= &1 * inv(&1)`] THEN
CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN REPEAT CONJ_TAC THEN
TRY(MATCH_MP_TAC REAL_LE_INV2) THEN
REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC]);;
let BOUND_THEOREM_SQRT = prove
(`!beta Sigma omega B DSF H R Tp X g sigma v.
(!i. i >= 0 ==> beta i > &0) /\
&1 / &4 <= X /\ X < &1 /\
(!x. &1 / &4 <= x /\ x < &1
==> g x = (&1 + sigma x) / sqrt x /\
abs(sigma x) <= Sigma) /\
(!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
B 0 = &1 /\ H 0 = &0 /\ R 0 = X / &2 /\
(!i. Tp i = (if i = 0 then &2 else &1) * g(X) * R i) /\
(!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
(!i. B (i + 1) = beta (i + 1) * B i) /\
(!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
(!i. R (i + 1) =
beta (i + 1) * R i - v(i + 1) * (H(i + 1) + H i) / &2)
==> ?tau.
(!u. tau 0 u = u) /\
(!i u. tau (i + 1) u =
beta (i + 1) *
(if i = 0 then Sigma
else Sigma + (&1 + Sigma) * tau i u / (&2 * u * B i))
* tau i u +
omega (i + 1)) /\
(!i. abs(sqrt X - H i)
<= max (tau i (&1 / &2)) (tau i (&1)) / B i)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GE; LE_0; real_gt] THEN STRIP_TAC THEN
SUBGOAL_THEN `&0 <= Sigma` ASSUME_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `&1 / &2`) THEN REAL_ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `!i. &0 < (B:num->real) i` ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_SIMP_TAC[REAL_LT_MUL; ADD1; REAL_LT_01]; ALL_TAC] THEN
SUBGOAL_THEN `&0 < X` ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `&0 < sqrt X` ASSUME_TAC THENL
[ASM_MESON_TAC[SQRT_POS_LT]; ALL_TAC] THEN
MAP_EVERY ABBREV_TAC
[`PSI:num->real#real->real = \i (u,t).
if i = 0 then Sigma
else Sigma + (&1 + Sigma) * t / (&2 * u * B i)`;
`psi:num->real#real->real = \i (u,t).
if i = 0 then sigma(X)
else (&1 + sigma(X:real)) * (&1 - t / (&2 * u * B i)) - &1`] THEN
(X_CHOOSE_THEN `tau:num->real->real`
(STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o
prove_recursive_functions_exist num_RECURSION)
`(!u:real. tau 0 u = u) /\
(!i u. tau (SUC i) u =
beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1))` THEN
(X_CHOOSE_THEN `Tl:num->real`
(STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o
prove_recursive_functions_exist num_RECURSION)
`Tl 0 = sqrt(X) /\
!i. Tl (SUC i) = beta (i + 1) * Tl i - v (i + 1)` THEN
ABBREV_TAC
`taup:num->real->real = \i u. (&1 + PSI i (u,tau i u)) * tau i u` THEN
MP_TAC(ISPECL
[`sqrt X`;
`beta:num->real`;
`omega:num->real`;
`DSF:num->real->real`;
`B:num->real`;
`H:num->real`;
`v:num->real`;
`Tl:num->real`;
`Tp:num->real`;
`PSI:num->real#real->real`;
`psi:num->real#real->real`;
`tau:num->real->real`;
`taup:num->real->real`]
FULL_COROLLARY) THEN
REWRITE_TAC[GE; LE_0; real_gt] THEN ANTS_TAC THENL
[REPEAT CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
X_GEN_TAC `i:num` THEN MAP_EVERY EXPAND_TAC ["PSI"; "psi"] THEN
REWRITE_TAC[] THEN ASM_CASES_TAC `i = 0` THEN ASM_SIMP_TAC[] THEN
MATCH_MP_TAC(REAL_ARITH
`abs x <= a /\ abs((&1 + x) * y) <= b
==> abs((&1 + x) * (&1 - y) - &1) <= a + b`) THEN
ASM_SIMP_TAC[REAL_ABS_MUL] THEN
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN
ASM_SIMP_TAC[REAL_ARITH `abs x <= a ==> abs(&1 + x) <= &1 + a`] THEN
REWRITE_TAC[REAL_ABS_DIV] THEN MATCH_MP_TAC REAL_EQ_IMP_LE THEN
AP_TERM_TAC THEN
MATCH_MP_TAC(REAL_ARITH `&0 < x ==> abs(&2 * x) = &2 * x`) THEN
MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[];
MAP_EVERY X_GEN_TAC [`i:num`; `x:real`; `y:real`] THEN STRIP_TAC THEN
EXPAND_TAC "PSI" THEN REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_LE_REFL; REAL_LE_LADD] THEN
ASM_SIMP_TAC[REAL_LE_LADD; REAL_LE_LMUL_EQ; REAL_LE_DIV2_EQ;
REAL_ARITH `&0 <= s ==> &0 < &1 + s`; REAL_LT_MUL;
REAL_ARITH `&0 < &2 * x <=> &0 < x`] THEN
REAL_ARITH_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
ASM_REWRITE_TAC[] THEN NO_TAC;
EXPAND_TAC "taup" THEN REWRITE_TAC[] THEN NO_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
X_GEN_TAC `i:num` THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN
EXPAND_TAC "psi" THEN REWRITE_TAC[] THEN
ASM_CASES_TAC `i = 0` THEN ASM_REWRITE_TAC[] THENL
[ASM_SIMP_TAC[REAL_DIV_SQRT; REAL_LT_IMP_LE; REAL_ARITH
`&2 * c / s * x / &2 = c * x / s`];
ALL_TAC] THEN
REWRITE_TAC[REAL_MUL_LID; REAL_ARITH `&1 + x - &1 = x`] THEN
ASM_SIMP_TAC[] THEN REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
AP_TERM_TAC THEN MATCH_MP_TAC(REAL_FIELD
`&0 < b /\ &0 < s /\ r = (s - t / b / &2) * t
==> inv s * r = (&1 - t * inv(&2 * s * b)) * t`) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `!j:num. Tl j / B j = sqrt X - H j`
ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_REWRITE_TAC[REAL_SUB_RZERO; REAL_DIV_1; ADD1] THEN
UNDISCH_TAC `Tl(j:num) / B j = sqrt X - H j` THEN
SUBGOAL_THEN `&0 < beta(j + 1) /\ &0 < B j` MP_TAC THENL
[ASM_REWRITE_TAC[]; CONV_TAC REAL_FIELD];
ASM_REWRITE_TAC[REAL_ARITH `s - (s - h) / &2 = (s + h) / &2`]] THEN
MATCH_MP_TAC(REAL_FIELD
`!b. &0 < b /\ x / b = y / &2 * z / b ==> x = y / &2 * z`) THEN
EXISTS_TAC `(B:num->real) i` THEN ASM_REWRITE_TAC[REAL_ARITH
`(x + h) / &2 * (x - h) = (x pow 2 - h pow 2) / &2`] THEN
ASM_SIMP_TAC[SQRT_POW_2; REAL_LT_IMP_LE] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ] THEN
SPEC_TAC(`i:num`,`j:num`) THEN
MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC THENL
[ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; REWRITE_TAC[ADD1]] THEN
ONCE_REWRITE_TAC[ASSUME
`!i. R (i + 1) =
beta (i + 1) * R i - v (i + 1) * (H (i + 1) + H i) / &2`] THEN
X_GEN_TAC `j:num` THEN SIMP_TAC[] THEN
REWRITE_TAC[ASSUME
`!i. H (i + 1):real = H i + v (i + 1) / B (i + 1)`] THEN
REWRITE_TAC[ASSUME `!i. B (i + 1):real = beta (i + 1) * B i`] THEN
SUBGOAL_THEN `&0 < beta(j + 1) /\ &0 < B j` MP_TAC THENL
[ASM_REWRITE_TAC[]; CONV_TAC REAL_FIELD];
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
MAP_EVERY X_GEN_TAC [`i:num`; `p:real->real`] THEN DISCH_TAC THEN
EXPAND_TAC "PSI" THEN REWRITE_TAC[] THEN
ASM_CASES_TAC `i = 0` THEN ASM_SIMP_TAC[POSYNOMIAL_CONST] THEN
MATCH_MP_TAC POSYNOMIAL_ADD THEN
ASM_SIMP_TAC[POSYNOMIAL_CONST] THEN
MATCH_MP_TAC POSYNOMIAL_MUL THEN
ASM_SIMP_TAC[POSYNOMIAL_CONST; REAL_ARITH
`&0 <= s ==> &0 <= &1 + s`] THEN
REWRITE_TAC[real_div; REAL_INV_MUL] THEN REWRITE_TAC[ REAL_ARITH
`x * inv(&2) * inv y * z = (inv(&2) * z) * x / y`] THEN
MATCH_MP_TAC POSYNOMIAL_CMUL THEN
ASM_SIMP_TAC[REAL_LT_INV_EQ; REAL_ARITH
`&0 < inv(&2) * x <=> &0 < x`] THEN
MATCH_MP_TAC POSYNOMIAL_VDIV THEN ASM_REWRITE_TAC[]];
STRIP_TAC THEN EXISTS_TAC `tau:num->real->real` THEN
ASM_REWRITE_TAC[REAL_ADD_SUB] THEN CONJ_TAC THENL
[EXPAND_TAC "PSI" THEN REWRITE_TAC[]; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_LE_DIV2_EQ;
REAL_ARITH `&0 < b ==> abs b = b`] THEN
X_GEN_TAC `i:num` THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`&1 / &2`; `&1`]) THEN
REWRITE_TAC[SUBSET; IN_REAL_INTERVAL; IN_ELIM_THM] THEN
ANTS_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPECL [`i:num`; `sqrt X`]) THEN
ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LE_TRANS]] THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_RSQRT; MATCH_MP_TAC REAL_LE_LSQRT] THEN
ASM_REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Automatically instantiate the theorems and derive error bounds. *)
(* *)
(* th = theorem to instantiate (BOUND_THEOREM_DIV or BOUND_THEOREM_SQRT) *)
(* beta, sigma, omega = HOL term instantiations for corresponding parameters *)
(* n = number of iterations: result will provide bounds for H_0, ..., H_n *)
(* d = number of fraction digits in resulting digit bounds *)
(* ------------------------------------------------------------------------- *)
let BOUNDS_INSTATIATION =
let pth = prove
(`x <= a / b ==> &0 <= b ==> !a'. a <= a' ==> x <= a' / b`,
REPEAT STRIP_TAC THEN TRANS_TAC REAL_LE_TRANS `a / b:real` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_div] THEN
MATCH_MP_TAC REAL_LE_RMUL THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ]) in
let rec calc rews (thb,ths) n =
if n = 0 then [thb] else
let oths = calc rews (thb,ths) (n - 1) in
let th1 = CONV_RULE NUM_REDUCE_CONV (SPEC(mk_small_numeral(n - 1)) ths) in
let th2 = GEN_REWRITE_RULE TOP_DEPTH_CONV (hd oths::rews) th1 in
let th3 = CONV_RULE REAL_RAT_REDUCE_CONV th2 in
th3::oths in
fun th beta sigma omega n d ->
let ith = BETA_RULE (SPECL [beta; sigma; omega] th) in
let avs,itm = strip_forall(concl ith) in
let hth = ASSUME (rand(lhand itm)) in
let eth = MP (SPECL avs ith) (CONJ (REAL_ARITH(lhand(lhand itm))) hth) in
let ev,ebod = dest_exists(concl eth) in
let [th0;th1;bth] = CONJUNCTS(ASSUME ebod) in
let (th_b,th_s) =
let hths = CONJUNCTS hth in
el (if th = BOUND_THEOREM_DIV then 6 else 4) hths,
el (if th = BOUND_THEOREM_DIV then 11 else 9) hths in
let bths = calc [] (th_b,th_s) n in
let tths_lo =
calc bths (SPEC (if th = BOUND_THEOREM_DIV then `&1 / &4` else `&1 / &2`)
th0,
SPEC (if th = BOUND_THEOREM_DIV then `&1 / &4` else `&1 / &2`)
(GEN_REWRITE_RULE I [SWAP_FORALL_THM] th1)) n
and tths_hi =
calc bths (SPEC `&1:real` th0,
SPEC `&1:real` (GEN_REWRITE_RULE I [SWAP_FORALL_THM] th1)) n in
let aths = map
(CONV_RULE REAL_RAT_REDUCE_CONV o
REWRITE_RULE(tths_lo@tths_hi) o
C SPEC bth o mk_small_numeral) (0--n) in
let weaken th =
let th1 = MATCH_MP pth th in
let th2 = GEN_REWRITE_CONV RAND_CONV bths (lhand(concl th1)) in
let th3 = CONV_RULE(RAND_CONV REAL_RAT_REDUCE_CONV) th2 in
let th4 = MP th1 (EQT_ELIM th3) in
let rr = rat_of_term(lhand(lhand(snd(dest_forall(concl th4))))) in
let yy = pow10 d in
let xx = ceiling_num(yy */ rr) in
let th5 = SPECL [mk_numeral xx; mk_numeral yy] DECIMAL in
let th6 = SPEC (lhand(concl th5)) th4 in
MP th6 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th6)))) in
let ath = end_itlist CONJ (map weaken aths) in
GENL avs (DISCH_ALL (CHOOSE(ev,eth) ath));;
(* ------------------------------------------------------------------------- *)
(* A slightly larger / more complicated example as a stress-test. *)
(* ------------------------------------------------------------------------- *)
BOUNDS_INSTATIATION BOUND_THEOREM_SQRT
`(\i. if i = 2 then &32 else if i = 5 then &64 else &128):num->real`
`inv(&2 pow 8):real`
`(\i. if i = 0 then &1 / &2 else &9 / &16):num->real`
7 6;;
(* ------------------------------------------------------------------------- *)
(* The actual examples in the table. *)
(* ------------------------------------------------------------------------- *)
let TABLE_PART_1 = BOUNDS_INSTATIATION BOUND_THEOREM_DIV
`(\i. &128):num->real`
`inv(&2 pow 9):real`
`(\i. &5 / &8):num->real`
4 4;;
let TABLE_PART_2 = BOUNDS_INSTATIATION BOUND_THEOREM_DIV
`(\i. if i = 2 then &32 else &128):num->real`
`inv(&2 pow 9):real`
`(\i. &5 / &8):num->real`
4 4;;
let TABLE_PART_3 = BOUNDS_INSTATIATION BOUND_THEOREM_SQRT
`(\i. &128):num->real`
`inv(&2 pow 9):real`
`(\i. &5 / &8):num->real`
4 4;;
let TABLE_PART_4 = BOUNDS_INSTATIATION BOUND_THEOREM_SQRT
`(\i. if i = 2 then &32 else &128):num->real`
`inv(&2 pow 9):real`
`(\i. &5 / &8):num->real`
4 4;;
|