File: digit_serial_methods.ml

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (758 lines) | stat: -rwxr-xr-x 34,404 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
(* ========================================================================= *)
(* HOL Light formalizations of some of the main theorems from the paper      *)
(* by Warren Ferguson, Jesse Bingham, Levent Erkok, John Harrison and        *)
(* Joe Leslie-Hurd: "Digit Serial Methods with Applications to               *)
(* Division and Square Root", IEEE Transactions on Computers, vol. 67,       *)
(* issue 3, pp. 449-456, 2017.                                               *)
(* ========================================================================= *)

(*** This dependency is just for some convex function basics.    ***)
(*** It is a bit extravagent for the small amount actually used. ***)

needs "Multivariate/realanalysis.ml";;

(* ------------------------------------------------------------------------- *)
(* The main proxy theorem.                                                   *)
(* ------------------------------------------------------------------------- *)

let THEOREM_V_1 = prove
 (`!(V:real) (beta:num->real) (omega:num->real) (DSF:num->real->real)
    (B:num->real) (H:num->real) (v:num->real) (Tl:num->real) (Tp:num->real)
    (PSI:num->real#real->real) (psi:num->real#real->real)
    (tau:num->real->real) (taup:num->real->real).

        // Environmental assumptions including nondecreasing property
        &0 <= V /\
        (!i. i >= 0 ==> beta i > &0) /\
        (!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
        (!i. i >= 0 ==> abs (psi i (V,Tl i)) <= PSI i (V,abs(Tl i))) /\
        (!i x y. &0 <= x /\ x <= y ==> PSI i (V,x) <= PSI i (V,y)) /\

        (!u. tau 0 u = u) /\
        (!i u. tau (i + 1) u =
               beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1)) /\
        (!i u. taup i u = (&1 + PSI i (u,tau i u)) * tau i u) /\

        // Computing recursively
        B 0 = &1 /\ H 0 = &0 /\ Tl 0 = V /\

        (!i. Tp i = (&1 + psi i (V,Tl i)) * Tl i) /\
        (!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
        (!i. B (i + 1) = beta (i + 1) * B i) /\
        (!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
        (!i. Tl (i + 1) = beta (i + 1) * Tl i - v (i + 1))

        // Conclude loop invariant and bounds.
        ==> (!i. V = H i + Tl i / B i) /\
            (!i. i >= 0 ==> abs(Tl i) <= tau i V) /\
            (!i. i >= 0 ==> abs(Tp i) <= taup i V)`,

  REPEAT GEN_TAC THEN REWRITE_TAC[GE; real_gt; real_gt; LE_0] THEN
  STRIP_TAC THEN

  (*** Lemma: all the B_i are strictly positive, by induction ***)

  SUBGOAL_THEN `!i:num. &0 < B i` ASSUME_TAC THENL
   [INDUCT_TAC THEN ASM_SIMP_TAC[REAL_LT_01; ADD1; REAL_LT_MUL];
    ALL_TAC] THEN

  (*** Handle the tau_p clause first, assuming the other two ***)

  MATCH_MP_TAC(TAUT `(p /\ q ==> r) /\ p /\ q ==> p /\ q /\ r`) THEN
  CONJ_TAC THENL
   [DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
    ASM_REWRITE_TAC[REAL_ABS_MUL] THEN GEN_TAC THEN
    MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_ABS_POS] THEN
    MATCH_MP_TAC(REAL_ARITH `abs(x) <= a ==> abs(&1 + x) <= &1 + a`) THEN
    TRANS_TAC REAL_LE_TRANS `(PSI:num->real#real->real) i (V,abs(Tl i))` THEN
    ASM_SIMP_TAC[] THEN ASM_MESON_TAC[REAL_ABS_POS];
    ALL_TAC] THEN

  (*** Start main induction and dispose of base case ***)

  REWRITE_TAC[AND_FORALL_THM] THEN
  INDUCT_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN

  (*** Prove the step case of the loop invariant ***)
  CONJ_TAC THENL
   [ASM_REWRITE_TAC[ADD1] THEN
    SUBGOAL_THEN `&0 < beta (i + 1) /\ &0 < B i` MP_TAC THENL
     [ASM_REWRITE_TAC[]; CONV_TAC REAL_FIELD];
    ALL_TAC] THEN

  (*** Massage the goal a little then chain through the inequalities ***)

  FIRST_X_ASSUM(CONJUNCTS_THEN (ASSUME_TAC o GSYM)) THEN
  REWRITE_TAC[ADD1] THEN

  TRANS_TAC REAL_LE_TRANS
   `abs(-- beta (i + 1)  * psi i (V:real,Tl i) * Tl i +
        (beta (i + 1) * Tp i - DSF (i + 1) (beta (i + 1) * Tp i)))` THEN
  CONJ_TAC THENL [ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; ALL_TAC] THEN

  TRANS_TAC REAL_LE_TRANS
   `beta (i + 1) * abs(psi i (V:real,Tl i)) * abs(Tl i) + omega(i + 1)` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC(REAL_ARITH
     `abs(x) <= a /\ abs(y) <= b ==> abs(x + y) <= a + b`) THEN
    ASM_SIMP_TAC[ARITH_RULE `1 <= i + 1`] THEN
    REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NEG] THEN
    ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> abs x = x`; REAL_LE_REFL];
    ALL_TAC] THEN

  ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_LE_RADD] THEN
  ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN
  MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_ABS_POS] THEN
  TRANS_TAC REAL_LE_TRANS `(PSI:num->real#real->real) i (V,abs(Tl i))` THEN
  ASM_SIMP_TAC[] THEN ASM_MESON_TAC[REAL_ABS_POS]);;

(* ------------------------------------------------------------------------- *)
(* Restricted posynomials (definition V.2)                                   *)
(* ------------------------------------------------------------------------- *)

let posynomial = new_definition
 `posynomial p <=>
  ?c (n:num->real) k.
        (!i. 1 <= i /\ i <= k ==> c i > &0 /\ integer(n i)) /\
        (!v. &0 < v ==> sum (1..k) (\i. c i * v rpow (n i)) = p v)`;;

let POSYNOMIAL_0 = prove
 (`posynomial (\v. &0)`,
  REWRITE_TAC[posynomial] THEN
  MAP_EVERY EXISTS_TAC [`(\i. &1):num->real`; `(\i. &0):num->real`; `0`] THEN
  REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;

let POSYNOMIAL_1 = prove
 (`posynomial (\v. &1)`,
  REWRITE_TAC[posynomial] THEN
  MAP_EVERY EXISTS_TAC [`(\i. &1):num->real`; `(\i. &0):num->real`; `1`] THEN
  REWRITE_TAC[INTEGER_CLOSED; SUM_SING_NUMSEG; RPOW_POW] THEN REAL_ARITH_TAC);;

let POSYNOMIAL_CMUL = prove
 (`!p c. posynomial p /\ &0 < c ==> posynomial(\v. c * p(v))`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  REWRITE_TAC[posynomial] THEN DISCH_THEN(X_CHOOSE_THEN `d:num->real`
   (fun th -> EXISTS_TAC `(\i. c * d i):num->real` THEN MP_TAC th)) THEN
  REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
  SIMP_TAC[SUM_LMUL; GSYM REAL_MUL_ASSOC] THEN
  ASM_SIMP_TAC[real_gt; REAL_LT_MUL]);;

let POSYNOMIAL_CONST = prove
 (`!c. &0 <= c ==> posynomial (\v. c)`,
  REWRITE_TAC[REAL_ARITH `&0 <= c <=> c = &0 \/ &0 < c`] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[POSYNOMIAL_0] THEN
  GEN_REWRITE_TAC (RAND_CONV o ABS_CONV) [GSYM REAL_MUL_RID] THEN
  MATCH_MP_TAC POSYNOMIAL_CMUL THEN
  ASM_REWRITE_TAC[POSYNOMIAL_1]);;

let POSYNOMIAL_VPOWMUL = prove
 (`!p n. posynomial p /\ integer n ==> posynomial(\v. p(v) * v rpow n)`,
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  REWRITE_TAC[posynomial] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:num->real` THEN
  GEN_REWRITE_TAC BINOP_CONV [SWAP_EXISTS_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN
  DISCH_THEN(X_CHOOSE_THEN `nn:num->real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `(\i. nn i + n):num->real` THEN
  ASM_SIMP_TAC[RPOW_ADD; REAL_MUL_ASSOC; SUM_RMUL; INTEGER_CLOSED]);;

let POSYNOMIAL_VMUL = prove
 (`!p. posynomial p ==> posynomial(\v. p(v) * v)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`p:real->real`; `&1:real`] POSYNOMIAL_VPOWMUL) THEN
  ASM_REWRITE_TAC[RPOW_POW; REAL_POW_1; INTEGER_CLOSED]);;

let POSYNOMIAL_VDIV = prove
 (`!p. posynomial p ==> posynomial(\v. p(v) / v)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`p:real->real`; `-- &1:real`] POSYNOMIAL_VPOWMUL) THEN
  ASM_SIMP_TAC[RPOW_POW; real_div; RPOW_NEG; REAL_POW_1; INTEGER_CLOSED]);;

let POSYNOMIAL_V = prove
 (`posynomial(\v. v)`,
  GEN_REWRITE_TAC (RAND_CONV o ABS_CONV) [GSYM REAL_MUL_LID] THEN
  MATCH_MP_TAC POSYNOMIAL_VMUL THEN REWRITE_TAC[POSYNOMIAL_1]);;

let POSYNOMIAL_ADD = prove
 (`!p q. posynomial p /\ posynomial q ==> posynomial(\v. p v + q v)`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[posynomial; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`c1:num->real`; `n1:num->real`; `m:num`] THEN
  DISCH_TAC THEN DISCH_TAC THEN
  MAP_EVERY X_GEN_TAC [`c2:num->real`; `n2:num->real`; `n:num`] THEN
  DISCH_TAC THEN DISCH_TAC THEN
  EXISTS_TAC `\i. if i <= m then (c1:num->real) i else c2 (i - m)` THEN
  EXISTS_TAC `\i. if i <= m then (n1:num->real) i else n2 (i - m)` THEN
  EXISTS_TAC `m + n:num` THEN REWRITE_TAC[] THEN CONJ_TAC THENL
   [REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN
    ASM_MESON_TAC[ARITH_RULE
     `~(i:num <= m) /\ i <= m + n ==> 1 <= i - m /\ i - m <= n`];
    REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[COND_RAND] THEN
    ONCE_REWRITE_TAC[MESON[] `(if p then f else g) (if p then x else y) =
        if p then f x else g y`] THEN
    SIMP_TAC[SUM_CASES; FINITE_NUMSEG; IN_NUMSEG;
      ARITH_RULE `(1 <= i /\ i <= m + n) /\ i <= m <=> 1 <= i /\ i <= m`;
      ARITH_RULE `(1 <= i /\ i <= m + n) /\ ~(i <= m) <=>
                  1 + m <= i /\ i <= n + m`] THEN
    REWRITE_TAC[GSYM numseg; SUM_OFFSET; ADD_SUB] THEN ASM_SIMP_TAC[]]);;

let POSYNOMIAL_SUM = prove
 (`!k:A->bool p.
        FINITE k /\ (!i. i IN k ==> posynomial(\v. p v i))
        ==> posynomial (\v. sum k (p v))`,
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[SUM_CLAUSES; POSYNOMIAL_0; POSYNOMIAL_ADD; FORALL_IN_INSERT;
            ETA_AX]);;

let POSYNOMIAL_MUL = prove
 (`!p q. posynomial p /\ posynomial q ==> posynomial(\v. p v * q v)`,
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV)
   [CONV_RULE (RAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) (SPEC_ALL posynomial)] THEN
  STRIP_TAC THEN ASM_SIMP_TAC[posynomial] THEN
  REWRITE_TAC[GSYM posynomial] THEN
  SIMP_TAC[SUM_SUM_PRODUCT; FINITE_NUMSEG; REAL_MUL_SUM] THEN
  MATCH_MP_TAC POSYNOMIAL_SUM THEN
  SIMP_TAC[FINITE_PRODUCT_DEPENDENT; FINITE_NUMSEG; FORALL_IN_GSPEC] THEN
  REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
  ONCE_REWRITE_TAC[REAL_ARITH
   `(c * x) * (d * y):real = (c * d) * (x * y)`] THEN
  SIMP_TAC[posynomial; GSYM RPOW_ADD] THEN REWRITE_TAC[GSYM posynomial] THEN
  MATCH_MP_TAC POSYNOMIAL_VPOWMUL THEN ASM_SIMP_TAC[INTEGER_CLOSED] THEN
  ONCE_REWRITE_TAC[GSYM REAL_MUL_RID] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[real_gt]) THEN
  MATCH_MP_TAC POSYNOMIAL_CMUL THEN
  ASM_SIMP_TAC[REAL_LT_MUL; POSYNOMIAL_1]);;

let REAL_CONVEX_ON_POSYNOMIAL = prove
 (`!p. posynomial p ==> p real_convex_on {x | x > &0}`,
  GEN_TAC THEN REWRITE_TAC[posynomial; LEFT_IMP_EXISTS_THM; real_gt] THEN
  MAP_EVERY X_GEN_TAC [`c:num->real`; `n:num->real`; `m:num`] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
   [SET_RULE `&0 < v <=> v IN {x | &0 < x}`] THEN
  MATCH_MP_TAC(MESON[REAL_CONVEX_ON_EQ]
   `is_realinterval s /\ f real_convex_on s
    ==> (!x. x IN s ==> f x = g x) ==> g real_convex_on s`) THEN
  REWRITE_TAC[IS_REALINTERVAL_CLAUSES] THEN
  MATCH_MP_TAC REAL_CONVEX_ON_SUM THEN
  REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
  X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC REAL_CONVEX_LMUL THEN
  ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
  MATCH_MP_TAC REAL_CONVEX_ON_RPOW_INTEGER THEN
  ASM SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* The corollary.                                                            *)
(* ------------------------------------------------------------------------- *)

let COROLLARY_V_3 = prove
 (`!(V:real) (beta:num->real) (omega:num->real) (DSF:num->real->real)
    (B:num->real) (H:num->real) (v:num->real) (Tl:num->real) (Tp:num->real)
    (PSI:num->real#real->real) (psi:num->real#real->real)
    (tau:num->real->real) (taup:num->real->real).

        // Environmental assumptions including nondecreasing property
        &0 < V /\
        (!i. i >= 0 ==> beta i > &0) /\
        (!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
        (!i. i >= 0 ==> abs (psi i (V,Tl i)) <= PSI i (V,abs(Tl i))) /\
        (!i x y. &0 <= x /\ x <= y ==> PSI i (V,x) <= PSI i (V,y)) /\

        (!u. tau 0 u = u) /\
        (!i u. tau (i + 1) u =
               beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1)) /\
        (!i u. taup i u = (&1 + PSI i (u,tau i u)) * tau i u) /\

        // Computing recursively
        B 0 = &1 /\ H 0 = &0 /\ Tl 0 = V /\

        (!i. Tp i = (&1 + psi i (V,Tl i)) * Tl i) /\
        (!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
        (!i. B (i + 1) = beta (i + 1) * B i) /\
        (!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
        (!i. Tl (i + 1) = beta (i + 1) * Tl i - v (i + 1)) /\

        // The extra posynomial-related assumption
        (!i p. i >= 0 /\ posynomial p
               ==> posynomial (\v. PSI i (v,p v)))

        // Hence conclude our bounds
        ==> !a b. real_interval[a,b] SUBSET {x | x > &0}
                  ==> !i u. u IN real_interval[a,b]
                            ==> tau i u <= max (tau i a) (tau i b) /\
                                taup i u <= max (taup i a) (taup i b)`,
  REWRITE_TAC[real_gt; real_ge; GT; GE; LE_0] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE) THEN
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN `!i:num. posynomial (tau i)` ASSUME_TAC THENL
   [INDUCT_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN
    ASM_REWRITE_TAC[ADD1; POSYNOMIAL_V] THEN
    MATCH_MP_TAC POSYNOMIAL_ADD THEN CONJ_TAC THENL
     [MATCH_MP_TAC POSYNOMIAL_CMUL THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC POSYNOMIAL_MUL THEN ASM_SIMP_TAC[ETA_AX];
      MATCH_MP_TAC POSYNOMIAL_CONST THEN
      ASM_MESON_TAC[REAL_LE_TRANS; REAL_ABS_POS; ARITH_RULE `1 <= i + 1`]];
    ALL_TAC] THEN
  SUBGOAL_THEN `!i:num. posynomial (taup i)` ASSUME_TAC THENL
   [INDUCT_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN
    REWRITE_TAC[ADD1] THEN ONCE_ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC POSYNOMIAL_MUL THEN REWRITE_TAC[ETA_AX] THEN
    (CONJ_TAC THENL [ALL_TAC; FIRST_X_ASSUM MATCH_ACCEPT_TAC]) THEN
    MATCH_MP_TAC POSYNOMIAL_ADD THEN REWRITE_TAC[POSYNOMIAL_1] THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[ETA_AX] THEN
    FIRST_X_ASSUM MATCH_ACCEPT_TAC;
    ALL_TAC] THEN
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC REAL_CONVEX_LOWER_REAL_INTERVAL THEN
  ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
        REAL_CONVEX_ON_SUBSET)) THEN
  REWRITE_TAC[GSYM real_gt] THEN MATCH_MP_TAC REAL_CONVEX_ON_POSYNOMIAL THEN
  FIRST_X_ASSUM MATCH_ACCEPT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Add the other clauses to the corollary.                                   *)
(* ------------------------------------------------------------------------- *)

let FULL_COROLLARY = prove
 (`!(V:real) (beta:num->real) (omega:num->real) (DSF:num->real->real)
    (B:num->real) (H:num->real) (v:num->real) (Tl:num->real) (Tp:num->real)
    (PSI:num->real#real->real) (psi:num->real#real->real)
    (tau:num->real->real) (taup:num->real->real).

        // Not stated explicitly in the theorem itself but higher up.
        &0 < V /\

        // Environmental assumptions including nondecreasing property
        (!i. i >= 0 ==> beta i > &0) /\
        (!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
        (!i. i >= 0 ==> abs (psi i (V,Tl i)) <= PSI i (V,abs(Tl i))) /\
        (!i x y. &0 <= x /\ x <= y ==> PSI i (V,x) <= PSI i (V,y)) /\

        (!u. tau 0 u = u) /\
        (!i u. tau (i + 1) u =
               beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1)) /\
        (!i u. taup i u = (&1 + PSI i (u,tau i u)) * tau i u) /\

        // Computing recursively
        B 0 = &1 /\ H 0 = &0 /\ Tl 0 = V /\

        (!i. Tp i = (&1 + psi i (V,Tl i)) * Tl i) /\
        (!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
        (!i. B (i + 1) = beta (i + 1) * B i) /\
        (!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
        (!i. Tl (i + 1) = beta (i + 1) * Tl i - v (i + 1)) /\

        // The extra posynomial-related assumption
        (!i p. i >= 0 /\ posynomial p
               ==> posynomial (\v. PSI i (v,p v)))

        // Hence conclude invariant and all bounds.
        ==> (!i. V = H i + Tl i / B i) /\
            (!i. abs(Tl i) <= tau i V) /\
            (!i. abs(Tp i) <= taup i V) /\
            (!a b. real_interval[a,b] SUBSET {x | x > &0}
                   ==> !i u. u IN real_interval[a,b]
                             ==> tau i u <= max (tau i a) (tau i b) /\
                                 taup i u <= max (taup i a) (taup i b))`,
  REWRITE_TAC[real_gt; real_ge; GT; GE; LE_0] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE) THEN
  ONCE_REWRITE_TAC[TAUT `p /\ q /\ r /\ s <=> (p /\ q /\ r) /\ s`] THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC(REWRITE_RULE[GE; LE_0] THEOREM_V_1) THEN
    MAP_EVERY EXISTS_TAC
     [`beta:num->real`; `omega:num->real`; `DSF:num->real->real`;
      `v:num->real`; `PSI:num->real#real->real`;
      `psi:num->real#real->real`] THEN
    ASM_REWRITE_TAC[real_gt];

    MATCH_MP_TAC(REWRITE_RULE[real_gt] COROLLARY_V_3) THEN
    MAP_EVERY EXISTS_TAC
     [`V:real`; `beta:num->real`; `omega:num->real`; `DSF:num->real->real`;
      `B:num->real`; `H:num->real`; `v:num->real`; `Tl:num->real`;
      `Tp:num->real`;
      `PSI:num->real#real->real`; `psi:num->real#real->real`] THEN
    ASM_REWRITE_TAC[GE; LE_0]]);;

(* ------------------------------------------------------------------------- *)
(* Instantiations for division and square root.                              *)
(* ------------------------------------------------------------------------- *)

let BOUND_THEOREM_DIV = prove
 (`!beta Sigma omega B DSF H R Tp X Y g sigma v.
        (!i. i >= 0 ==> beta i > &0) /\
        &1 / &2 <= X /\ X < &1 /\
        &1 <= Y /\ Y < &2 /\
        (!y. &1 <= y /\ y < &2
             ==> g y = (&1 + sigma y) / y /\ abs(sigma y) <= Sigma) /\
        (!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
        B 0 = &1 /\ H 0 = &0 /\ R 0 = X /\
        (!i. Tp i = g(Y) * R i) /\
        (!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
        (!i. B (i + 1) = beta (i + 1) * B i) /\
        (!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
        (!i. R (i + 1) = beta (i + 1) * R i -  v(i + 1) * Y)
        ==> ?tau. (!u. tau 0 u = u) /\
                  (!i u. tau (i + 1) u =
                         beta (i + 1) * Sigma * tau i u + omega (i + 1)) /\
                  (!i. abs(X / Y - H i)
                       <= max (tau i (&1 / &4)) (tau i (&1)) / B i)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GE; LE_0; real_gt] THEN STRIP_TAC THEN
  SUBGOAL_THEN `&0 <= Sigma` ASSUME_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o SPEC `&1:real`) THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `!i. &0 < (B:num->real) i` ASSUME_TAC THENL
   [INDUCT_TAC THEN ASM_SIMP_TAC[REAL_LT_MUL; ADD1; REAL_LT_01]; ALL_TAC] THEN
  SUBGOAL_THEN `&0 < X /\ &0 < Y` STRIP_ASSUME_TAC THENL
   [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  SUBGOAL_THEN `&0 < X / Y` ASSUME_TAC THENL
   [ASM_MESON_TAC[REAL_LT_DIV]; ALL_TAC] THEN
  MAP_EVERY ABBREV_TAC
   [`PSI:num->real#real->real = \i (u,t). Sigma`;
    `psi:num->real#real->real = \i (u,t). sigma(Y:real)`] THEN
  (X_CHOOSE_THEN `tau:num->real->real`
    (STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o
   prove_recursive_functions_exist num_RECURSION)
    `(!u:real. tau 0 u = u) /\
     (!i u. tau (SUC i) u =
            beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1))` THEN
  (X_CHOOSE_THEN `Tl:num->real`
    (STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o
   prove_recursive_functions_exist num_RECURSION)
    `Tl 0 :real = X / Y /\
    !i. Tl (SUC i) = beta (i + 1) * Tl i - v (i + 1)` THEN
  ABBREV_TAC
   `taup:num->real->real = \i u. (&1 + PSI i (u,tau i u)) * tau i u` THEN
  MP_TAC(ISPECL
   [`X / Y:real`;
    `beta:num->real`;
    `omega:num->real`;
    `DSF:num->real->real`;
    `B:num->real`;
    `H:num->real`;
    `v:num->real`;
    `Tl:num->real`;
    `Tp:num->real`;
    `PSI:num->real#real->real`;
    `psi:num->real#real->real`;
    `tau:num->real->real`;
    `taup:num->real->real`]
    FULL_COROLLARY) THEN
  REWRITE_TAC[GE; LE_0; real_gt] THEN ANTS_TAC THENL
   [REPEAT CONJ_TAC THENL
     [FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      X_GEN_TAC `i:num` THEN MAP_EVERY EXPAND_TAC ["PSI"; "psi"] THEN
      REWRITE_TAC[] THEN ASM_SIMP_TAC[] THEN NO_TAC;
      EXPAND_TAC "PSI" THEN REWRITE_TAC[REAL_LE_REFL] THEN NO_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      ASM_REWRITE_TAC[] THEN NO_TAC;
      EXPAND_TAC "taup" THEN REWRITE_TAC[] THEN NO_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      X_GEN_TAC `i:num` THEN
      FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN
      EXPAND_TAC "psi" THEN REWRITE_TAC[] THEN ASM_SIMP_TAC[] THEN
      REWRITE_TAC[REAL_ARITH `a / b * c:real = a * c / b`] THEN
      AP_TERM_TAC THEN ASM_SIMP_TAC[REAL_EQ_LDIV_EQ] THEN
      SPEC_TAC(`i:num`,`j:num`) THEN
      INDUCT_TAC THEN ASM_SIMP_TAC[ADD1; REAL_DIV_RMUL; REAL_LT_IMP_NZ] THEN
      REAL_ARITH_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      EXPAND_TAC "PSI" THEN REWRITE_TAC[] THEN
      ASM_SIMP_TAC[POSYNOMIAL_CONST] THEN NO_TAC];
    STRIP_TAC THEN EXISTS_TAC `tau:num->real->real` THEN
    ASM_REWRITE_TAC[REAL_ADD_SUB] THEN CONJ_TAC THENL
     [EXPAND_TAC "PSI" THEN REWRITE_TAC[]; ALL_TAC] THEN
    ASM_SIMP_TAC[REAL_ABS_DIV; REAL_LE_DIV2_EQ;
                 REAL_ARITH `&0 < b ==> abs b = b`] THEN
    X_GEN_TAC `i:num` THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`&1 / &4`; `&1`]) THEN
    REWRITE_TAC[SUBSET; IN_REAL_INTERVAL; IN_ELIM_THM] THEN
    ANTS_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
    DISCH_THEN(MP_TAC o SPECL [`i:num`; `X / Y:real`]) THEN
    ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LE_TRANS]] THEN
    REWRITE_TAC[REAL_ARITH
     `&1 / &4 <= X / Y /\ X / Y <= &1 <=>
      &1 / &2 * inv(&2) <= X * inv Y /\ X * inv Y <= &1 * inv(&1)`] THEN
    CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN REPEAT CONJ_TAC THEN
    TRY(MATCH_MP_TAC REAL_LE_INV2) THEN
    REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC]);;

let BOUND_THEOREM_SQRT = prove
 (`!beta Sigma omega B DSF H R Tp X g sigma v.
        (!i. i >= 0 ==> beta i > &0) /\
        &1 / &4 <= X /\ X < &1 /\
        (!x. &1 / &4 <= x /\ x < &1
             ==> g x = (&1 + sigma x) / sqrt x /\
                 abs(sigma x) <= Sigma) /\
        (!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
        B 0 = &1 /\ H 0 = &0 /\ R 0 = X / &2 /\
        (!i. Tp i = (if i = 0 then &2 else &1) * g(X) * R i) /\
        (!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
        (!i. B (i + 1) = beta (i + 1) * B i) /\
        (!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
        (!i. R (i + 1) =
             beta (i + 1) * R i -  v(i + 1) * (H(i + 1) + H i) / &2)
        ==> ?tau.
                  (!u. tau 0 u = u) /\
                  (!i u. tau (i + 1) u =
                         beta (i + 1) *
                         (if i = 0 then Sigma
                          else Sigma + (&1 + Sigma) * tau i u / (&2 * u * B i))
                          * tau i u +
                         omega (i + 1)) /\
                  (!i. abs(sqrt X - H i)
                       <= max (tau i (&1 / &2)) (tau i (&1)) / B i)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GE; LE_0; real_gt] THEN STRIP_TAC THEN
  SUBGOAL_THEN `&0 <= Sigma` ASSUME_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o SPEC `&1 / &2`) THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `!i. &0 < (B:num->real) i` ASSUME_TAC THENL
   [INDUCT_TAC THEN ASM_SIMP_TAC[REAL_LT_MUL; ADD1; REAL_LT_01]; ALL_TAC] THEN
  SUBGOAL_THEN `&0 < X` ASSUME_TAC THENL
   [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  SUBGOAL_THEN `&0 < sqrt X` ASSUME_TAC THENL
   [ASM_MESON_TAC[SQRT_POS_LT]; ALL_TAC] THEN
  MAP_EVERY ABBREV_TAC
   [`PSI:num->real#real->real = \i (u,t).
        if i = 0 then Sigma
        else Sigma + (&1 + Sigma) * t / (&2 * u * B i)`;
    `psi:num->real#real->real = \i (u,t).
        if i = 0 then sigma(X)
        else (&1 + sigma(X:real)) * (&1 - t / (&2 * u * B i)) - &1`] THEN
  (X_CHOOSE_THEN `tau:num->real->real`
    (STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o
   prove_recursive_functions_exist num_RECURSION)
    `(!u:real. tau 0 u = u) /\
     (!i u. tau (SUC i) u =
            beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1))` THEN
  (X_CHOOSE_THEN `Tl:num->real`
    (STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o
   prove_recursive_functions_exist num_RECURSION)
    `Tl 0 = sqrt(X) /\
    !i. Tl (SUC i) = beta (i + 1) * Tl i - v (i + 1)` THEN
  ABBREV_TAC
   `taup:num->real->real = \i u. (&1 + PSI i (u,tau i u)) * tau i u` THEN
  MP_TAC(ISPECL
   [`sqrt X`;
    `beta:num->real`;
    `omega:num->real`;
    `DSF:num->real->real`;
    `B:num->real`;
    `H:num->real`;
    `v:num->real`;
    `Tl:num->real`;
    `Tp:num->real`;
    `PSI:num->real#real->real`;
    `psi:num->real#real->real`;
    `tau:num->real->real`;
    `taup:num->real->real`]
    FULL_COROLLARY) THEN
  REWRITE_TAC[GE; LE_0; real_gt] THEN ANTS_TAC THENL
   [REPEAT CONJ_TAC THENL
     [FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      X_GEN_TAC `i:num` THEN MAP_EVERY EXPAND_TAC ["PSI"; "psi"] THEN
      REWRITE_TAC[] THEN ASM_CASES_TAC `i = 0` THEN ASM_SIMP_TAC[] THEN
      MATCH_MP_TAC(REAL_ARITH
       `abs x <= a /\ abs((&1 + x) * y) <= b
        ==> abs((&1 + x) * (&1 - y) - &1) <= a + b`) THEN
      ASM_SIMP_TAC[REAL_ABS_MUL] THEN
      MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN
      ASM_SIMP_TAC[REAL_ARITH `abs x <= a ==> abs(&1 + x) <= &1 + a`] THEN
      REWRITE_TAC[REAL_ABS_DIV] THEN MATCH_MP_TAC REAL_EQ_IMP_LE THEN
      AP_TERM_TAC THEN
      MATCH_MP_TAC(REAL_ARITH `&0 < x ==> abs(&2 * x) = &2 * x`) THEN
      MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[];
      MAP_EVERY X_GEN_TAC [`i:num`; `x:real`; `y:real`] THEN STRIP_TAC THEN
      EXPAND_TAC "PSI" THEN REWRITE_TAC[] THEN
      COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_LE_REFL; REAL_LE_LADD] THEN
      ASM_SIMP_TAC[REAL_LE_LADD; REAL_LE_LMUL_EQ; REAL_LE_DIV2_EQ;
                   REAL_ARITH `&0 <= s ==> &0 < &1 + s`; REAL_LT_MUL;
                   REAL_ARITH `&0 < &2 * x <=> &0 < x`] THEN
      REAL_ARITH_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      ASM_REWRITE_TAC[] THEN NO_TAC;
      EXPAND_TAC "taup" THEN REWRITE_TAC[] THEN NO_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      X_GEN_TAC `i:num` THEN
      FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN
      EXPAND_TAC "psi" THEN REWRITE_TAC[] THEN
      ASM_CASES_TAC `i = 0` THEN ASM_REWRITE_TAC[] THENL
       [ASM_SIMP_TAC[REAL_DIV_SQRT; REAL_LT_IMP_LE; REAL_ARITH
         `&2 * c / s * x / &2 = c * x / s`];
        ALL_TAC] THEN
      REWRITE_TAC[REAL_MUL_LID; REAL_ARITH `&1 + x - &1 = x`] THEN
      ASM_SIMP_TAC[] THEN REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
      AP_TERM_TAC THEN MATCH_MP_TAC(REAL_FIELD
       `&0 < b /\ &0 < s /\ r = (s - t / b / &2) * t
        ==> inv s * r = (&1 - t * inv(&2 * s * b)) * t`) THEN
      ASM_REWRITE_TAC[] THEN
      SUBGOAL_THEN `!j:num. Tl j / B j = sqrt X - H j`
      ASSUME_TAC THENL
       [INDUCT_TAC THEN ASM_REWRITE_TAC[REAL_SUB_RZERO; REAL_DIV_1; ADD1] THEN
        UNDISCH_TAC `Tl(j:num) / B j = sqrt X - H j` THEN
        SUBGOAL_THEN `&0 < beta(j + 1) /\ &0 < B j` MP_TAC THENL
         [ASM_REWRITE_TAC[]; CONV_TAC REAL_FIELD];
        ASM_REWRITE_TAC[REAL_ARITH `s - (s - h) / &2 = (s + h) / &2`]] THEN
      MATCH_MP_TAC(REAL_FIELD
       `!b. &0 < b /\ x / b = y / &2 * z / b ==> x = y / &2 * z`) THEN
      EXISTS_TAC `(B:num->real) i` THEN ASM_REWRITE_TAC[REAL_ARITH
       `(x + h) / &2 * (x - h) = (x pow 2 - h pow 2) / &2`] THEN
      ASM_SIMP_TAC[SQRT_POW_2; REAL_LT_IMP_LE] THEN
      ASM_SIMP_TAC[REAL_EQ_LDIV_EQ] THEN
      SPEC_TAC(`i:num`,`j:num`) THEN
      MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC THENL
       [ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; REWRITE_TAC[ADD1]] THEN
      ONCE_REWRITE_TAC[ASSUME
      `!i. R (i + 1) =
           beta (i + 1) * R i - v (i + 1) * (H (i + 1) + H i) / &2`] THEN
      X_GEN_TAC `j:num` THEN SIMP_TAC[] THEN
      REWRITE_TAC[ASSUME
       `!i. H (i + 1):real = H i + v (i + 1) / B (i + 1)`] THEN
      REWRITE_TAC[ASSUME `!i. B (i + 1):real = beta (i + 1) * B i`] THEN
      SUBGOAL_THEN `&0 < beta(j + 1) /\ &0 < B j` MP_TAC THENL
       [ASM_REWRITE_TAC[]; CONV_TAC REAL_FIELD];
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      MAP_EVERY X_GEN_TAC [`i:num`; `p:real->real`] THEN DISCH_TAC THEN
      EXPAND_TAC "PSI" THEN REWRITE_TAC[] THEN
      ASM_CASES_TAC `i = 0` THEN ASM_SIMP_TAC[POSYNOMIAL_CONST] THEN
      MATCH_MP_TAC POSYNOMIAL_ADD THEN
      ASM_SIMP_TAC[POSYNOMIAL_CONST] THEN
      MATCH_MP_TAC POSYNOMIAL_MUL THEN
      ASM_SIMP_TAC[POSYNOMIAL_CONST; REAL_ARITH
       `&0 <= s ==> &0 <= &1 + s`] THEN
      REWRITE_TAC[real_div; REAL_INV_MUL] THEN REWRITE_TAC[ REAL_ARITH
       `x * inv(&2) * inv y * z = (inv(&2) * z) * x / y`] THEN
      MATCH_MP_TAC POSYNOMIAL_CMUL THEN
      ASM_SIMP_TAC[REAL_LT_INV_EQ; REAL_ARITH
       `&0 < inv(&2) * x <=> &0 < x`] THEN
      MATCH_MP_TAC POSYNOMIAL_VDIV THEN ASM_REWRITE_TAC[]];
    STRIP_TAC THEN EXISTS_TAC `tau:num->real->real` THEN
    ASM_REWRITE_TAC[REAL_ADD_SUB] THEN CONJ_TAC THENL
     [EXPAND_TAC "PSI" THEN REWRITE_TAC[]; ALL_TAC] THEN
    ASM_SIMP_TAC[REAL_ABS_DIV; REAL_LE_DIV2_EQ;
                 REAL_ARITH `&0 < b ==> abs b = b`] THEN
    X_GEN_TAC `i:num` THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`&1 / &2`; `&1`]) THEN
    REWRITE_TAC[SUBSET; IN_REAL_INTERVAL; IN_ELIM_THM] THEN
    ANTS_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
    DISCH_THEN(MP_TAC o SPECL [`i:num`; `sqrt X`]) THEN
    ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LE_TRANS]] THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LE_RSQRT; MATCH_MP_TAC REAL_LE_LSQRT] THEN
    ASM_REAL_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Automatically instantiate the theorems and derive error bounds.           *)
(*                                                                           *)
(* th = theorem to instantiate (BOUND_THEOREM_DIV or BOUND_THEOREM_SQRT)     *)
(* beta, sigma, omega = HOL term instantiations for corresponding parameters *)
(* n = number of iterations: result will provide bounds for H_0, ..., H_n    *)
(* d = number of fraction digits in resulting digit bounds                   *)
(* ------------------------------------------------------------------------- *)

let BOUNDS_INSTATIATION =
  let pth = prove
     (`x <= a / b ==> &0 <= b ==> !a'. a <= a' ==> x <= a' / b`,
      REPEAT STRIP_TAC THEN TRANS_TAC REAL_LE_TRANS `a / b:real` THEN
      ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_div] THEN
      MATCH_MP_TAC REAL_LE_RMUL THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ]) in
  let rec calc rews (thb,ths) n =
    if n = 0 then [thb] else
    let oths = calc rews (thb,ths) (n - 1) in
    let th1 = CONV_RULE NUM_REDUCE_CONV (SPEC(mk_small_numeral(n - 1)) ths) in
    let th2 = GEN_REWRITE_RULE TOP_DEPTH_CONV (hd oths::rews) th1 in
    let th3 = CONV_RULE REAL_RAT_REDUCE_CONV th2 in
    th3::oths in
  fun th beta sigma omega n d ->
    let ith = BETA_RULE (SPECL [beta; sigma; omega] th) in
    let avs,itm = strip_forall(concl ith) in
    let hth = ASSUME (rand(lhand itm)) in
    let eth = MP (SPECL avs ith) (CONJ (REAL_ARITH(lhand(lhand itm))) hth) in
    let ev,ebod = dest_exists(concl eth) in
    let [th0;th1;bth] = CONJUNCTS(ASSUME ebod) in
    let (th_b,th_s) =
      let hths = CONJUNCTS hth in
      el (if th = BOUND_THEOREM_DIV then 6 else 4) hths,
      el (if th = BOUND_THEOREM_DIV then 11 else 9) hths in
    let bths = calc [] (th_b,th_s) n in
    let tths_lo =
      calc bths (SPEC (if th = BOUND_THEOREM_DIV then `&1 / &4` else `&1 / &2`)
                 th0,
            SPEC (if th = BOUND_THEOREM_DIV then `&1 / &4` else `&1 / &2`)
                 (GEN_REWRITE_RULE I [SWAP_FORALL_THM] th1)) n
    and tths_hi =
      calc bths (SPEC `&1:real` th0,
            SPEC `&1:real` (GEN_REWRITE_RULE I [SWAP_FORALL_THM] th1)) n in
    let aths = map
     (CONV_RULE REAL_RAT_REDUCE_CONV o
      REWRITE_RULE(tths_lo@tths_hi) o
      C SPEC bth o mk_small_numeral) (0--n) in
    let weaken th =
      let th1 = MATCH_MP pth th in
      let th2 = GEN_REWRITE_CONV RAND_CONV bths (lhand(concl th1)) in
      let th3 = CONV_RULE(RAND_CONV REAL_RAT_REDUCE_CONV) th2 in
      let th4 = MP th1 (EQT_ELIM th3) in
      let rr = rat_of_term(lhand(lhand(snd(dest_forall(concl th4))))) in
      let yy = pow10 d in
      let xx = ceiling_num(yy */ rr) in
      let th5 = SPECL [mk_numeral xx; mk_numeral yy] DECIMAL in
      let th6 = SPEC (lhand(concl th5)) th4 in
      MP th6 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th6)))) in
    let ath = end_itlist CONJ (map weaken aths) in
    GENL avs (DISCH_ALL (CHOOSE(ev,eth) ath));;

(* ------------------------------------------------------------------------- *)
(* A slightly larger / more complicated example as a stress-test.            *)
(* ------------------------------------------------------------------------- *)

BOUNDS_INSTATIATION BOUND_THEOREM_SQRT
 `(\i. if i = 2 then &32 else if i = 5 then &64 else &128):num->real`
 `inv(&2 pow 8):real`
 `(\i. if i = 0 then &1 / &2 else &9 / &16):num->real`
 7 6;;

(* ------------------------------------------------------------------------- *)
(* The actual examples in the table.                                         *)
(* ------------------------------------------------------------------------- *)

let TABLE_PART_1 = BOUNDS_INSTATIATION BOUND_THEOREM_DIV
 `(\i. &128):num->real`
 `inv(&2 pow 9):real`
 `(\i. &5 / &8):num->real`
 4 4;;

let TABLE_PART_2 = BOUNDS_INSTATIATION BOUND_THEOREM_DIV
 `(\i. if i = 2 then &32 else &128):num->real`
 `inv(&2 pow 9):real`
 `(\i. &5 / &8):num->real`
 4 4;;

let TABLE_PART_3 = BOUNDS_INSTATIATION BOUND_THEOREM_SQRT
 `(\i. &128):num->real`
 `inv(&2 pow 9):real`
 `(\i. &5 / &8):num->real`
 4 4;;

let TABLE_PART_4 = BOUNDS_INSTATIATION BOUND_THEOREM_SQRT
 `(\i. if i = 2 then &32 else &128):num->real`
 `inv(&2 pow 9):real`
 `(\i. &5 / &8):num->real`
 4 4;;