1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
|
(* ========================================================================= *)
(* Mangoldt function and elementary Chebyshev/Mertens results. *)
(* ========================================================================= *)
needs "Library/pocklington.ml";;
needs "Multivariate/transcendentals.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Useful approximation/bound lemmas, simple rather than sharp. *)
(* ------------------------------------------------------------------------- *)
let LOG_FACT = prove
(`!n. log(&(FACT n)) = sum(1..n) (\d. log(&d))`,
INDUCT_TAC THEN
SIMP_TAC[FACT; SUM_CLAUSES_NUMSEG; LOG_1; ARITH; ARITH_RULE `1 <= SUC n`] THEN
SIMP_TAC[GSYM REAL_OF_NUM_MUL; LOG_MUL; REAL_OF_NUM_LT; FACT_LT; LT_0] THEN
ASM_REWRITE_TAC[ADD1] THEN REWRITE_TAC[ADD_AC; REAL_ADD_AC]);;
let SUM_DIVISORS_FLOOR_LEMMA = prove
(`!n d. ~(d = 0)
==> sum(1..n) (\m. if d divides m then &1 else &0) = floor(&n / &d)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FLOOR_DIV_DIV] THEN
SIMP_TAC[GSYM SUM_RESTRICT_SET; FINITE_NUMSEG; SUM_CONST; FINITE_RESTRICT;
REAL_MUL_RID; REAL_OF_NUM_EQ] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_1] THEN
MATCH_MP_TAC BIJECTIONS_CARD_EQ THEN
MAP_EVERY EXISTS_TAC [`\m:num. m DIV d`; `\m:num. m * d`] THEN
ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG; LE_1; DIV_MULT; DIVIDES_DIV_MULT;
FINITE_NUMSEG; ONCE_REWRITE_RULE[MULT_SYM] DIV_MULT;
DIV_MONO; LE_1] THEN
ASM_SIMP_TAC[LE_RDIV_EQ; MULT_EQ_0; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN
CONJ_TAC THENL [GEN_TAC THEN STRIP_TAC; ARITH_TAC] THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN ASM_SIMP_TAC[DIV_EQ_0] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [ARITH_RULE `d = 1 * d`] THEN
ASM_SIMP_TAC[LT_MULT_RCANCEL; ARITH_RULE `n < 1 <=> n = 0`] THEN
ASM_MESON_TAC[MULT_CLAUSES]);;
let LOG_2_BOUNDS = prove
(`&1 / &2 <= log(&2) /\ log(&2) <= &1`,
CONJ_TAC THENL
[GEN_REWRITE_TAC LAND_CONV [GSYM LOG_EXP] THEN
MP_TAC(SPEC `inv(&2)` REAL_EXP_BOUND_LEMMA);
GEN_REWRITE_TAC RAND_CONV [GSYM LOG_EXP] THEN
MP_TAC(SPEC `&1` REAL_EXP_LE_X)] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN MATCH_MP_TAC EQ_IMP THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC LOG_MONO_LE THEN
REWRITE_TAC[REAL_EXP_POS_LT; REAL_OF_NUM_LT; ARITH]);;
let LOG_LE_REFL = prove
(`!n. ~(n = 0) ==> log(&n) <= &n`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(REAL_ARITH `x <= y - &1 ==> x <= y`) THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV)
[REAL_ARITH `n = &1 + (n - &1)`] THEN
MATCH_MP_TAC LOG_LE THEN
REWRITE_TAC[REAL_LE_SUB_LADD; REAL_OF_NUM_ADD; REAL_OF_NUM_LE] THEN
UNDISCH_TAC `~(n = 0)` THEN ARITH_TAC);;
let LOG_FACT_BOUNDS = prove
(`!n. ~(n = 0)
==> abs(log(&(FACT n)) - (&n * log(&n) - &n + &1)) <= &2 * log(&n)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 1` THENL
[ASM_REWRITE_TAC[num_CONV `1`; FACT] THEN
REWRITE_TAC[ARITH; LOG_1] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
ASM_SIMP_TAC[LOG_FACT] THEN
REWRITE_TAC[REAL_ARITH `abs(x - y) <= e <=> x <= y + e /\ y - e <= x`] THEN
CONJ_TAC THENL
[MP_TAC(ISPECL[`\z. clog(z)`; `\z. z * clog z - z`; `1`; `n:num`]
SUM_INTEGRAL_UBOUND_INCREASING) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
CONJ_TAC THENL
[REWRITE_TAC[IN_SEGMENT_CX_GEN] THEN REPEAT STRIP_TAC THENL
[COMPLEX_DIFF_TAC THEN CONJ_TAC THEN UNDISCH_TAC `&1 <= Re x` THENL
[REAL_ARITH_TAC; ALL_TAC] THEN
ASM_CASES_TAC `x = Cx(&0)` THEN ASM_REWRITE_TAC[RE_CX] THENL
[REAL_ARITH_TAC;
UNDISCH_TAC `~(x = Cx(&0))` THEN CONV_TAC COMPLEX_FIELD];
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM LT_NZ]) THEN
REWRITE_TAC[GSYM REAL_OF_NUM_LT] THEN
ASM_REAL_ARITH_TAC];
MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN STRIP_TAC THEN
SUBGOAL_THEN `&0 < a /\ &0 < b` ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[GSYM CX_LOG; RE_CX; LOG_MONO_LE_IMP]];
ALL_TAC];
ASM_SIMP_TAC[SUM_CLAUSES_LEFT; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN
REWRITE_TAC[LOG_1; REAL_ADD_LID; ARITH] THEN
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
`~(n = 0) ==> n = 1 \/ 2 <= n`))
THENL
[ASM_REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN
REWRITE_TAC[LOG_1; SUM_CLAUSES] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
MP_TAC(ISPECL[`\z. clog(z)`; `\z. z * clog z - z`; `2`; `n:num`]
SUM_INTEGRAL_LBOUND_INCREASING) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[CONJ_TAC THENL [POP_ASSUM MP_TAC THEN ARITH_TAC; ALL_TAC] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN CONJ_TAC THENL
[REWRITE_TAC[IN_SEGMENT_CX_GEN] THEN REPEAT STRIP_TAC THENL
[COMPLEX_DIFF_TAC THEN CONJ_TAC THEN UNDISCH_TAC `&1 <= Re x` THENL
[REAL_ARITH_TAC; ALL_TAC] THEN
ASM_CASES_TAC `x = Cx(&0)` THEN ASM_REWRITE_TAC[RE_CX] THENL
[REAL_ARITH_TAC;
UNDISCH_TAC `~(x = Cx(&0))` THEN CONV_TAC COMPLEX_FIELD];
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM REAL_OF_NUM_LE]) THEN
ASM_REAL_ARITH_TAC];
MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN STRIP_TAC THEN
SUBGOAL_THEN `&0 < a /\ &0 < b` ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[GSYM CX_LOG; RE_CX; LOG_MONO_LE_IMP]];
ALL_TAC]] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
MATCH_MP_TAC(REAL_ARITH `y <= x /\ a <= b ==> x <= a ==> y <= b`) THEN
ASM_SIMP_TAC[GSYM CX_LOG; SUM_EQ_NUMSEG; REAL_OF_NUM_LT; LE_1; CLOG_1;
ARITH_RULE `2 <= n ==> 0 < n`; RE_CX;
REAL_ARITH `&0 < &n + &1`; REAL_EQ_IMP_LE] THEN
REWRITE_TAC[GSYM CX_MUL; GSYM CX_SUB; GSYM CX_ADD; RE_CX] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_SUB_RNEG] THENL
[REWRITE_TAC[REAL_ARITH
`(n + &1) * l' - (n + &1) + &1 <= (n * l - n + &1) + k * l <=>
(n + &1) * l' <= (n + k) * l + &1`] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `(&n + &1) * (log(&n) + &1 / &n)` THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_LMUL THEN
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[REAL_ARITH `x <= y + z <=> x - y <= z`] THEN
ASM_SIMP_TAC[GSYM LOG_DIV; REAL_OF_NUM_LT; LT_NZ;
REAL_ARITH `&0 < &n + &1`;
REAL_FIELD `&0 < x ==> (x + &1) / x = &1 + &1 / x`] THEN
MATCH_MP_TAC LOG_LE THEN SIMP_TAC[REAL_LE_DIV; REAL_POS];
ALL_TAC] THEN
REWRITE_TAC[REAL_ARITH
`(n + &1) * (l + n') <= (n + k) * l + &1 <=>
n' * (n + &1) <= (k - &1) * l + &1`] THEN
ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_LE_RADD; REAL_FIELD
`~(n = &0) ==> &1 / n * (n + &1) = inv(n) + &1`] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&2)` THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_INV2 THEN
REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN
ASM_ARITH_TAC;
ALL_TAC] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_MUL_LID] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `log(&2)` THEN
REWRITE_TAC[LOG_2_BOUNDS] THEN MATCH_MP_TAC LOG_MONO_LE_IMP THEN
REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LE] THEN ASM_ARITH_TAC;
SUBGOAL_THEN `&0 <= log(&n)` MP_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN
MATCH_MP_TAC LOG_POS THEN REWRITE_TAC[REAL_OF_NUM_LE] THEN
ASM_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* The Mangoldt function and its key expansion. *)
(* ------------------------------------------------------------------------- *)
let mangoldt = new_definition
`mangoldt n = if ?p k. 1 <= k /\ prime p /\ n = p EXP k
then log(&(@p. prime p /\ p divides n))
else &0`;;
let MANGOLDT_1 = prove
(`mangoldt 1 = &0`,
REWRITE_TAC[mangoldt] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
REWRITE_TAC[EXP_EQ_1] THEN MESON_TAC[PRIME_1; ARITH_RULE `~(1 <= 0)`]);;
let MANGOLDT_PRIMEPOW = prove
(`!p k. prime p ==> mangoldt(p EXP k) = if 1 <= k then log(&p) else &0`,
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[mangoldt] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> ~(a /\ b ==> ~c)`] THEN
ASM_SIMP_TAC[EQ_PRIME_EXP; LE_1] THEN
REWRITE_TAC[TAUT `~(a /\ b ==> ~(c /\ d)) <=> d /\ c /\ a /\ b`] THEN
ASM_REWRITE_TAC[UNWIND_THM1] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT AP_TERM_TAC THEN
ASM_SIMP_TAC[DIVIDES_PRIMEPOW] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
ASM_MESON_TAC[PRIME_DIVEXP; prime; PRIME_1; DIVIDES_REFL; EXP_1]);;
let MANGOLDT_POS_LE = prove
(`!n. &0 <= mangoldt n`,
GEN_TAC THEN ASM_CASES_TAC `?p k. 1 <= k /\ prime p /\ n = p EXP k` THENL
[FIRST_X_ASSUM(REPEAT_TCL CHOOSE_THEN STRIP_ASSUME_TAC) THEN
ASM_SIMP_TAC[MANGOLDT_PRIMEPOW] THEN MATCH_MP_TAC LOG_POS THEN
REWRITE_TAC[REAL_OF_NUM_LE] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC;
ASM_REWRITE_TAC[mangoldt; REAL_LE_REFL]]);;
let LOG_MANGOLDT_SUM = prove
(`!n. ~(n = 0) ==> log(&n) = sum {d | d divides n} (\d. mangoldt(d))`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 1` THENL
[ASM_REWRITE_TAC[LOG_1; DIVIDES_ONE; SET_RULE `{x | x = a} = {a}`] THEN
REWRITE_TAC[SUM_SING; mangoldt] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
REWRITE_TAC[EXP_EQ_1] THEN MESON_TAC[PRIME_1; ARITH_RULE `~(1 <= 0)`];
ALL_TAC] THEN
SUBGOAL_THEN `1 < n` MP_TAC THENL
[ASM_ARITH_TAC; ALL_TAC] THEN
SPEC_TAC(`n:num`,`n:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
MATCH_MP_TAC INDUCT_COPRIME THEN REPEAT STRIP_TAC THENL
[ASM_SIMP_TAC[LOG_MUL; GSYM REAL_OF_NUM_MUL; REAL_OF_NUM_LT;
ARITH_RULE `1 < a ==> 0 < a`] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC
`sum ({d | d divides a} UNION {d | d divides b}) (\d. mangoldt d)` THEN
CONJ_TAC THEN CONV_TAC SYM_CONV THENL
[MATCH_MP_TAC SUM_UNION_NONZERO THEN REWRITE_TAC[IN_INTER] THEN
ASM_SIMP_TAC[FINITE_DIVISORS; ARITH_RULE `1 < n ==> ~(n = 0)`] THEN
REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[coprime; MANGOLDT_1];
MATCH_MP_TAC SUM_SUPERSET THEN REWRITE_TAC[UNION_SUBSET; IN_UNION] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; DIVIDES_LMUL; DIVIDES_RMUL] THEN
X_GEN_TAC `d:num` THEN STRIP_TAC THEN REWRITE_TAC[mangoldt] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[PRIME_DIVPROD_POW]];
ALL_TAC] THEN
ASM_SIMP_TAC[DIVIDES_PRIMEPOW; GSYM REAL_OF_NUM_POW] THEN
REWRITE_TAC[SET_RULE `{d | ?i. i <= k /\ d = p EXP i} =
IMAGE (\i. p EXP i) {i | i <= k}`] THEN
ASM_SIMP_TAC[EQ_EXP; SUM_IMAGE; PRIME_GE_2;
ARITH_RULE `2 <= p ==> ~(p = 0) /\ ~(p = 1)`] THEN
ASM_SIMP_TAC[MANGOLDT_PRIMEPOW; o_DEF] THEN
ASM_SIMP_TAC[GSYM SUM_RESTRICT_SET; IN_ELIM_THM; FINITE_NUMSEG_LE] THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[GSYM numseg] THEN
ASM_SIMP_TAC[LOG_POW; PRIME_IMP_NZ; REAL_OF_NUM_LT; LT_NZ] THEN
SIMP_TAC[SUM_CONST; CARD_NUMSEG_1; FINITE_NUMSEG]);;
let MANGOLDT = prove
(`!n. log(&(FACT n)) = sum(1..n) (\d. mangoldt(d) * floor(&n / &d))`,
GEN_TAC THEN REWRITE_TAC[LOG_FACT] THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `sum(1..n) (\m. sum {d | d divides m} (\d. mangoldt d))` THEN
SIMP_TAC[LOG_MANGOLDT_SUM; SUM_EQ_NUMSEG; LE_1] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC
`sum (1..n) (\m. sum (1..n)
(\d. mangoldt d * (if d divides m then &1 else &0)))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `m:num` THEN
STRIP_TAC THEN REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC SUM_EQ_SUPERSET THEN
ASM_SIMP_TAC[LE_1; FINITE_DIVISORS; IN_ELIM_THM; REAL_MUL_RZERO;
REAL_MUL_RID; SUBSET; IN_NUMSEG] THEN
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN
ASM_ARITH_TAC;
GEN_REWRITE_TAC LAND_CONV [SUM_SWAP_NUMSEG] THEN
MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `d:num` THEN
ASM_SIMP_TAC[SUM_DIVISORS_FLOOR_LEMMA; LE_1; SUM_LMUL]]);;
(* ------------------------------------------------------------------------- *)
(* The Chebyshev psi function and the key bounds on it. *)
(* ------------------------------------------------------------------------- *)
let PSI_BOUND_INDUCT = prove
(`!n. ~(n = 0)
==> sum(1..2*n) (\d. mangoldt(d)) -
sum(1..n) (\d. mangoldt(d)) <= &9 * &n`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum (n+1..2 * n) (\d. mangoldt d)` THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_EQ_IMP_LE THEN REWRITE_TAC[REAL_EQ_SUB_RADD] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_UNION_EQ THEN
ONCE_REWRITE_TAC[UNION_COMM] THEN REWRITE_TAC[FINITE_NUMSEG] THEN
ASM_SIMP_TAC[NUMSEG_COMBINE_R; ARITH_RULE
`~(n = 0) ==> 1 <= n + 1 /\ n <= 2 * n`] THEN
REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY; IN_NUMSEG] THEN ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
`sum (n+1..2*n)
(\d. mangoldt(d) * (floor(&(2 * n) / &d) - &2 * floor(&n / &d)))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `r:num` THEN STRIP_TAC THEN
REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[MANGOLDT_POS_LE] THEN
MATCH_MP_TAC(REAL_ARITH `&1 <= a /\ b = &0 ==> &1 <= a - &2 * b`) THEN
SUBGOAL_THEN `~(r = 0)` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[FLOOR_DIV_DIV; FLOOR_NUM; REAL_OF_NUM_LE; REAL_OF_NUM_EQ] THEN
ASM_SIMP_TAC[DIV_EQ_0; LE_RDIV_EQ] THEN ASM_ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
`sum (1..2*n)
(\d. mangoldt(d) * (floor(&(2 * n) / &d) - &2 * floor(&n / &d)))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_SUBSET THEN
REWRITE_TAC[FINITE_NUMSEG; IN_DIFF; IN_NUMSEG] THEN
CONJ_TAC THENL [ARITH_TAC; ALL_TAC] THEN
X_GEN_TAC `r:num` THEN STRIP_TAC THEN
SUBGOAL_THEN `~(r = 0)` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[MANGOLDT_POS_LE] THEN
ASM_SIMP_TAC[FLOOR_DIV_DIV; REAL_NEG_SUB; REAL_SUB_LE] THEN
ASM_SIMP_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LE; MULT_DIV_LE];
ALL_TAC] THEN
REWRITE_TAC[REAL_ARITH `m * (f1 - &2 * f2) = m * f1 - &2 * m * f2`] THEN
REWRITE_TAC[SUM_SUB_NUMSEG; SUM_LMUL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum(1..2*n) (\d. mangoldt(d) * floor(&(2 * n) / &d)) -
&2 * sum(1..n) (\d. mangoldt(d) * floor(&n / &d))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC(REAL_ARITH `y' <= y ==> x - y <= x - y'`) THEN
MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_POS] THEN
MATCH_MP_TAC SUM_SUBSET THEN
REWRITE_TAC[FINITE_NUMSEG; IN_DIFF; IN_NUMSEG] THEN
SIMP_TAC[FLOOR_DIV_DIV; LE_1; FLOOR_NUM; REAL_LE_MUL; REAL_POS;
MANGOLDT_POS_LE] THEN
ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[GSYM MANGOLDT] THEN
MAP_EVERY (MP_TAC o C SPEC LOG_FACT_BOUNDS) [`n:num`; `2 * n`] THEN
ASM_REWRITE_TAC[MULT_EQ_0; ARITH_EQ] THEN
MATCH_MP_TAC(REAL_ARITH
`a2 + e2 + &2 * (e1 - a1) <= m
==> abs(f2 - a2) <= e2 ==> abs(f1 - a1) <= e1 ==> f2 - &2 * f1 <= m`) THEN
ASM_SIMP_TAC[GSYM REAL_OF_NUM_MUL; LOG_MUL; REAL_OF_NUM_LT; LT_NZ; ARITH] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC
`&6 * log(&n) + (&2 * log(&2) - &1) * &1 + (&2 * log(&2)) * &n` THEN
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `&6 * &n + (&2 * log(&2) - &1) * &n + (&2 * log(&2)) * &n` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_ADD2 THEN
ASM_SIMP_TAC[LOG_LE_REFL; REAL_LE_LMUL; REAL_POS; REAL_LE_RADD] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN
ASM_REWRITE_TAC[REAL_OF_NUM_LE; ARITH_RULE `1 <= n <=> ~(n = 0)`];
REWRITE_TAC[GSYM REAL_ADD_RDISTRIB] THEN
MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_POS]] THEN
MP_TAC LOG_2_BOUNDS THEN REAL_ARITH_TAC);;
let PSI_BOUND_EXP = prove
(`!n. sum(1..2 EXP n) (\d. mangoldt(d)) <= &9 * &(2 EXP n)`,
INDUCT_TAC THEN
SIMP_TAC[EXP; SUM_SING_NUMSEG; MANGOLDT_1; REAL_LE_MUL; REAL_POS] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`s1 <= &9 * e ==> s2 - s1 <= &9 * e ==> s2 <= &9 * &2 * e`)) THEN
MATCH_MP_TAC PSI_BOUND_INDUCT THEN
REWRITE_TAC[EXP_EQ_0; ARITH]);;
let PSI_BOUND = prove
(`!n. sum(1..n) (\d. mangoldt(d)) <= &18 * &n`,
GEN_TAC THEN ASM_CASES_TAC `n <= 1` THENL
[MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum(1..1) (\d. mangoldt d)` THEN CONJ_TAC THENL
[MATCH_MP_TAC SUM_SUBSET; ALL_TAC] THEN
REWRITE_TAC[SUM_SING_NUMSEG; FINITE_NUMSEG; IN_DIFF; IN_NUMSEG] THEN
SIMP_TAC[MANGOLDT_POS_LE; MANGOLDT_1; REAL_LE_MUL; REAL_POS] THEN
ASM_ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `?k. n <= 2 EXP k /\ !l. l < k ==> ~(n <= 2 EXP l)`
STRIP_ASSUME_TAC THENL
[REWRITE_TAC[GSYM num_WOP] THEN EXISTS_TAC `n:num` THEN
MP_TAC(SPEC `n:num` LT_POW2_REFL) THEN REWRITE_TAC[EXP] THEN ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum(1..2 EXP k) (\d. mangoldt d)` THEN CONJ_TAC THENL
[MATCH_MP_TAC SUM_SUBSET THEN
REWRITE_TAC[FINITE_NUMSEG; IN_DIFF; IN_NUMSEG; MANGOLDT_POS_LE] THEN
ASM_ARITH_TAC;
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&9 * &(2 EXP k)` THEN
REWRITE_TAC[PSI_BOUND_EXP] THEN
ASM_CASES_TAC `k = 0` THENL
[FIRST_X_ASSUM SUBST_ALL_TAC THEN ASM_ARITH_TAC; ALL_TAC] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
`~(k = 0) ==> k = SUC(k - 1)`)) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `k - 1`) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[REAL_OF_NUM_MUL; EXP; REAL_OF_NUM_LE] THEN ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Now Mertens's first theorem. *)
(* ------------------------------------------------------------------------- *)
let MERTENS_LEMMA = prove
(`!n. ~(n = 0) ==> abs(sum(1..n) (\d. mangoldt(d) / &d) - log(&n)) <= &21`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN
EXISTS_TAC `&n` THEN ASM_SIMP_TAC[REAL_OF_NUM_LT; LT_NZ] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM REAL_ABS_NUM] THEN
REWRITE_TAC[GSYM REAL_ABS_MUL; REAL_SUB_LDISTRIB; GSYM SUM_LMUL] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP LOG_FACT_BOUNDS) THEN REWRITE_TAC[MANGOLDT] THEN
MATCH_MP_TAC(REAL_ARITH
`abs(n - &1) <= n /\ abs(s' - s) <= (k - &1) * n - a
==> abs(s' - (nl - n + &1)) <= a
==> abs(s - nl) <= n * k`) THEN
CONJ_TAC THENL
[MATCH_MP_TAC(REAL_ARITH `&1 <= x ==> abs(x - &1) <= x`) THEN
REWRITE_TAC[REAL_OF_NUM_LE] THEN ASM_ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[GSYM SUM_SUB_NUMSEG] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
ONCE_REWRITE_TAC[REAL_ARITH `n * i / x:real = i * n / x`] THEN
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum(1..n) (\i. mangoldt i)` THEN CONJ_TAC THENL
[MATCH_MP_TAC(REAL_ARITH `&0 <= --x /\ --x <= y ==> abs(x) <= y`) THEN
REWRITE_TAC[GSYM SUM_NEG; REAL_ARITH
`--(a * (x - y)):real = a * (y - x)`] THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN SIMP_TAC[] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_MUL;
MATCH_MP_TAC SUM_LE_NUMSEG THEN SIMP_TAC[] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC REAL_LE_LMUL] THEN
ASM_REWRITE_TAC[MANGOLDT_POS_LE; REAL_SUB_LE; REAL_LE_SUB_RADD] THEN
MP_TAC(SPEC `&n / &i` FLOOR) THEN REAL_ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH
`x <= (k - &2) * n /\ l <= n ==> x <= k * n - &2 * l`) THEN
ASM_SIMP_TAC[LOG_LE_REFL] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
ASM_REWRITE_TAC[PSI_BOUND]);;
let MERTENS_MANGOLDT_VERSUS_LOG = prove
(`!n s. s SUBSET (1..n)
==> abs (sum s (\d. mangoldt d / &d) -
sum {p | prime p /\ p IN s} (\p. log (&p) / &p)) <= &3`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[NUMSEG_CLAUSES; ARITH; SUBSET_EMPTY] THEN
DISCH_THEN SUBST_ALL_TAC THEN
REWRITE_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; SUM_CLAUSES] THEN REAL_ARITH_TAC;
DISCH_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `abs(sum (1..n) (\d. mangoldt d / &d) -
sum {p | prime p /\ p IN 1..n} (\p. log (&p) / &p))` THEN
CONJ_TAC THENL
[SUBGOAL_THEN `FINITE(s:num->bool)` ASSUME_TAC THENL
[ASM_MESON_TAC[FINITE_SUBSET; FINITE_NUMSEG]; ALL_TAC] THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN
ASM_SIMP_TAC[SUM_RESTRICT_SET; FINITE_NUMSEG] THEN
ASM_SIMP_TAC[GSYM SUM_SUB; FINITE_NUMSEG] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= y ==> abs x <= abs y`) THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_POS_LE; MATCH_MP_TAC SUM_SUBSET_SIMPLE] THEN
ASM_SIMP_TAC[IN_DIFF; FINITE_NUMSEG; REAL_SUB_LE] THEN
X_GEN_TAC `x:num` THEN STRIP_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[REAL_LE_DIV; MANGOLDT_POS_LE; REAL_POS] THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM EXP_1] THEN
ASM_SIMP_TAC[MANGOLDT_PRIMEPOW; LE_REFL; REAL_LE_REFL];
ALL_TAC] THEN
SUBGOAL_THEN `{p | prime p /\ p IN 1..n} = {p | prime p /\ p <= n}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN
MESON_TAC[ARITH_RULE `2 <= p ==> 1 <= p`; PRIME_GE_2];
ALL_TAC] THEN
SUBGOAL_THEN
`sum(1..n) (\d. mangoldt d / &d) -
sum {p | prime p /\ p <= n} (\p. log (&p) / &p) =
sum {p EXP k | prime p /\ p EXP k <= n /\ k >= 2} (\d. mangoldt d / &d)`
SUBST1_TAC THENL
[SUBGOAL_THEN
`sum {p | prime p /\ p <= n} (\p. log (&p) / &p) =
sum {p | prime p /\ p <= n} (\d. mangoldt d / &d)`
SUBST1_TAC THENL
[MATCH_MP_TAC SUM_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM EXP_1] THEN
ASM_SIMP_TAC[MANGOLDT_PRIMEPOW; ARITH];
ALL_TAC] THEN
REWRITE_TAC[REAL_EQ_SUB_RADD] THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC
`sum {p EXP k | prime p /\ p EXP k <= n /\ k >= 1}
(\d. mangoldt d / &d)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_SUPERSET THEN
SIMP_TAC[IN_ELIM_THM; SUBSET; IN_NUMSEG] THEN
CONJ_TAC THEN GEN_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`; EXP_EQ_0] THENL
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
REWRITE_TAC[real_div; REAL_ENTIRE] THEN DISJ1_TAC THEN
REWRITE_TAC[mangoldt] THEN ASM_MESON_TAC[GE];
ALL_TAC] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_UNION_EQ THEN CONJ_TAC THENL
[MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; FINITE_NUMSEG; IN_NUMSEG; LE_0] THEN
MESON_TAC[];
ALL_TAC] THEN
CONJ_TAC THENL
[REWRITE_TAC[EXTENSION; IN_INTER; IN_ELIM_THM; NOT_IN_EMPTY] THEN
MESON_TAC[PRIME_EXP; ARITH_RULE `~(1 >= 2)`];
REWRITE_TAC[ARITH_RULE `k >= 1 <=> k >= 2 \/ k = 1`] THEN
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[EXP_1]];
ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= y ==> abs(x) <= y`) THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_POS_LE THEN
SIMP_TAC[REAL_LE_DIV; REAL_POS; MANGOLDT_POS_LE]THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; FINITE_NUMSEG; IN_NUMSEG; LE_0] THEN
MESON_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC
`sum {p | p IN 1..n /\ prime p}
(\p. sum (2..n) (\k. log(&p) / &p pow k))` THEN
CONJ_TAC THENL
[SIMP_TAC[SUM_SUM_PRODUCT; FINITE_NUMSEG; FINITE_RESTRICT] THEN
MATCH_MP_TAC SUM_LE_INCLUDED THEN EXISTS_TAC `\(p,k). p EXP k` THEN
SIMP_TAC[FINITE_PRODUCT; FINITE_NUMSEG; FINITE_RESTRICT] THEN
CONJ_TAC THENL
[MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; FINITE_NUMSEG; IN_NUMSEG; LE_0] THEN
MESON_TAC[];
ALL_TAC] THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; EXISTS_PAIR_THM] THEN
SIMP_TAC[IN_ELIM_THM; IN_NUMSEG; REAL_LE_DIV; REAL_POW_LE; REAL_POS;
LOG_POS; REAL_OF_NUM_LE] THEN
X_GEN_TAC `x:num` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:num` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_SIMP_TAC[MANGOLDT_PRIMEPOW; GSYM REAL_OF_NUM_POW; REAL_LE_REFL;
ARITH_RULE `k >= 2 ==> 1 <= k /\ 2 <= k`] THEN
ASM_SIMP_TAC[PRIME_IMP_NZ; ARITH_RULE `1 <= k <=> ~(k = 0)`] THEN
CONJ_TAC THENL
[MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `p EXP k` THEN ASM_SIMP_TAC[] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN
ASM_SIMP_TAC[PRIME_IMP_NZ; LE_EXP] THEN ASM_ARITH_TAC;
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `p EXP k` THEN ASM_SIMP_TAC[] THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `2 EXP k` THEN
ASM_SIMP_TAC[LT_POW2_REFL; LT_IMP_LE; EXP_MONO_LE; PRIME_GE_2]];
ALL_TAC] THEN
REWRITE_TAC[real_div; SUM_LMUL; GSYM REAL_POW_INV; SUM_GP] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum {p | p IN 1..n /\ prime p}
(\p. log(&p) / (&p * (&p - &1)))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_LE THEN SIMP_TAC[FINITE_NUMSEG; FINITE_RESTRICT] THEN
X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_ELIM_THM; IN_NUMSEG] THEN
ASM_SIMP_TAC[REAL_INV_EQ_1; REAL_OF_NUM_EQ; PRIME_GE_2;
ARITH_RULE `2 <= p ==> ~(p = 1)`] THEN
STRIP_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[REAL_MUL_RZERO; REAL_LE_DIV; REAL_LE_MUL; REAL_SUB_LE;
REAL_OF_NUM_LE; LOG_POS; LE_0] THEN
REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LE_LMUL THEN
ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE] THEN
MATCH_MP_TAC(REAL_ARITH
`&0 <= y * z /\ x * z <= a ==> (x - y) * z <= a`) THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_MUL THEN
ASM_SIMP_TAC[REAL_POW_LE; REAL_LE_INV_EQ; REAL_POS; REAL_SUB_LE] THEN
MATCH_MP_TAC REAL_INV_LE_1 THEN ASM_REWRITE_TAC[REAL_OF_NUM_LE];
ALL_TAC] THEN
MATCH_MP_TAC REAL_EQ_IMP_LE THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN
REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN CONV_TAC REAL_FIELD;
ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum (2..n) (\p. log(&p) / (&p * (&p - &1)))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_SUBSET THEN SIMP_TAC[FINITE_NUMSEG; FINITE_RESTRICT] THEN
REWRITE_TAC[IN_DIFF; IN_NUMSEG; IN_ELIM_THM] THEN
CONJ_TAC THENL [MESON_TAC[PRIME_GE_2]; ALL_TAC] THEN
ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE; ARITH_RULE `2 <= p ==> 1 <= p`;
REAL_LE_MUL; REAL_POS; REAL_SUB_LE; REAL_LE_DIV];
ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum (2..n) (\m. log(&m) / (&m - &1) pow 2)` THEN CONJ_TAC THENL
[MATCH_MP_TAC SUM_LE_NUMSEG THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LE_LMUL THEN
ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE; ARITH_RULE `2 <= p ==> 1 <= p`] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN
ASM_SIMP_TAC[REAL_POW_2; REAL_LE_RMUL_EQ; REAL_LT_MUL; REAL_LT_IMP_LE;
REAL_SUB_LT; REAL_OF_NUM_LT; ARITH_RULE `1 < p <=> 2 <= p`;
REAL_ARITH `x - &1 <= x`];
ALL_TAC] THEN
ASM_CASES_TAC `n < 2` THENL
[RULE_ASSUM_TAC(REWRITE_RULE[GSYM NUMSEG_EMPTY]);
RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT])] THEN
ASM_SIMP_TAC[SUM_CLAUSES] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
ASM_SIMP_TAC[SUM_CLAUSES_LEFT; ARITH] THEN
MATCH_MP_TAC(REAL_ARITH
`x <= &1 /\ y <= e - &1 ==> x + y <= e`) THEN
CONJ_TAC THENL [MP_TAC LOG_2_BOUNDS THEN REAL_ARITH_TAC; ALL_TAC] THEN
ASM_CASES_TAC `n < 3` THENL
[RULE_ASSUM_TAC(REWRITE_RULE[GSYM NUMSEG_EMPTY]);
RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT])] THEN
ASM_SIMP_TAC[SUM_CLAUSES] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
MP_TAC(ISPECL
[`\z. clog(z) / (z - Cx(&1)) pow 2`;
`\z. clog(z - Cx(&1)) - clog(z) - clog(z) / (z - Cx(&1))`;
`3`; `n:num`] SUM_INTEGRAL_UBOUND_DECREASING) THEN
ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ANTS_TAC THENL
[CONJ_TAC THENL
[REWRITE_TAC[IN_SEGMENT_CX_GEN] THEN X_GEN_TAC `z:complex` THEN
STRIP_TAC THENL
[COMPLEX_DIFF_TAC THEN SIMP_TAC[COMPLEX_SUB_RZERO; COMPLEX_MUL_LID] THEN
ASM_SIMP_TAC[RE_SUB; RE_CX; REAL_SUB_LT] THEN
ASM_SIMP_TAC[REAL_ARITH `&2 <= x ==> &1 < x /\ &0 < x`] THEN
SUBGOAL_THEN `~(z = Cx(&0)) /\ ~(z = Cx(&1))` MP_TAC THENL
[ALL_TAC; CONV_TAC COMPLEX_FIELD] THEN
REPEAT STRIP_TAC THEN UNDISCH_TAC `&2 <= Re z` THEN
ASM_REWRITE_TAC[RE_CX] THEN REAL_ARITH_TAC;
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN
ASM_ARITH_TAC];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN
MP_TAC(SPECL [`\z. clog(z) / (z - Cx(&1)) pow 2`;
`\z. inv(z * (z - Cx(&1)) pow 2) -
Cx(&2) * clog(z) / (z - Cx(&1)) pow 3`;
`Cx(x)`; `Cx(y)`] COMPLEX_MVT_LINE) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[REWRITE_TAC[IN_SEGMENT_CX_GEN] THEN X_GEN_TAC `z:complex` THEN
REWRITE_TAC[REAL_ARITH `a <= x /\ x <= b \/ b <= x /\ x <= a <=>
a <= x /\ x <= b \/ b < a /\ b <= x /\ x <= a`] THEN
STRIP_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN
COMPLEX_DIFF_TAC THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN
CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
CONV_TAC NUM_REDUCE_CONV THEN
SUBGOAL_THEN `~(z = Cx(&0)) /\ ~(z = Cx(&1))` MP_TAC THENL
[ALL_TAC; CONV_TAC COMPLEX_FIELD] THEN
CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[RE_CX; IM_CX] THEN
REAL_ARITH_TAC;
ALL_TAC] THEN
GEN_REWRITE_TAC RAND_CONV [REAL_ARITH `x <= y <=> x - y <= &0`] THEN
DISCH_THEN(X_CHOOSE_THEN `w:complex`
(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN
REWRITE_TAC[GSYM CX_SUB; RE_MUL_CX] THEN
REWRITE_TAC[REAL_ARITH `a * (y - x) <= &0 <=> &0 <= --a * (y - x)`] THEN
MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[REAL_SUB_LE] THEN
REWRITE_TAC[RE_SUB; REAL_NEG_SUB; REAL_SUB_LE] THEN
SUBGOAL_THEN `real w` ASSUME_TAC THENL
[ASM_MESON_TAC[REAL_SEGMENT; REAL_CX]; ALL_TAC] THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM o GEN_REWRITE_RULE I [REAL]) THEN
ABBREV_TAC `u = Re w` THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_SEGMENT_CX]) THEN
ASM_SIMP_TAC[REAL_ARITH
`x <= y
==> (x <= u /\ u <= y \/ y <= u /\ u <= x <=> x <= u /\ u <= y)`] THEN
STRIP_TAC THEN
SUBGOAL_THEN `&0 < u /\ &1 < u /\ &2 <= u` STRIP_ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[GSYM CX_LOG; GSYM CX_SUB; GSYM CX_POW; GSYM CX_DIV;
GSYM CX_MUL; GSYM CX_INV; RE_CX] THEN
REWRITE_TAC[REAL_POW_2; real_div; REAL_INV_MUL; REAL_MUL_ASSOC;
REAL_RING `(x:real) pow 3 = x * x pow 2`] THEN
ASM_SIMP_TAC[REAL_LE_RMUL_EQ; REAL_LT_INV_EQ; REAL_SUB_LT] THEN
ASM_SIMP_TAC[GSYM real_div; REAL_LE_RDIV_EQ; REAL_SUB_LT] THEN
MATCH_MP_TAC(REAL_ARITH
`a * b <= &1 /\ &1 / &2 <= c ==> b * a <= &2 * c`) THEN
ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ] THEN
CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `log(&2)` THEN
REWRITE_TAC[LOG_2_BOUNDS] THEN MATCH_MP_TAC LOG_MONO_LE_IMP THEN
ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
MATCH_MP_TAC(REAL_ARITH `x = y /\ a <= b ==> x <= a ==> y <= b`) THEN
CONJ_TAC THENL [MATCH_MP_TAC SUM_EQ_NUMSEG; ALL_TAC] THEN
ASM_SIMP_TAC[GSYM CX_SUB; GSYM CX_LOG; GSYM CX_DIV; REAL_SUB_LT; ARITH;
RE_CX; REAL_OF_NUM_LT; ARITH_RULE `3 <= n ==> 0 < n /\ 1 < n`;
GSYM CX_POW] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[LOG_1; REAL_ARITH `a - (&0 - x - x / &1) = a + &2 * x`] THEN
MATCH_MP_TAC(REAL_ARITH
`a <= e - &2 /\ x <= &1 ==> a + &2 * x <= e`) THEN
REWRITE_TAC[LOG_2_BOUNDS] THEN
MATCH_MP_TAC(REAL_ARITH `a <= b /\ --c <= e ==> a - b - c <= e`) THEN
REWRITE_TAC[REAL_SUB_REFL; REAL_ARITH `--x <= &0 <=> &0 <= x`] THEN
ASM_SIMP_TAC[REAL_LE_DIV; REAL_SUB_LE; LOG_POS; REAL_OF_NUM_LE;
REAL_OF_NUM_LT; LOG_MONO_LE_IMP; REAL_ARITH `x - &1 <= x`; REAL_SUB_LT;
LE_0; ARITH_RULE `3 <= n ==> 1 <= n /\ 1 < n`]);;
let MERTENS = prove
(`!n. ~(n = 0)
==> abs(sum {p | prime p /\ p <= n}
(\p. log(&p) / &p) - log(&n)) <= &24`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP MERTENS_LEMMA) THEN
MATCH_MP_TAC(REAL_ARITH
`abs(s1 - s2) <= k - e ==> abs(s1 - l) <= e ==> abs(s2 - l) <= k`) THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
SUBGOAL_THEN `{p | prime p /\ p <= n} = {p | prime p /\ p IN 1..n}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN
MESON_TAC[ARITH_RULE `2 <= p ==> 1 <= p`; PRIME_GE_2];
MATCH_MP_TAC MERTENS_MANGOLDT_VERSUS_LOG THEN
EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[SUBSET_REFL]]);;
|