File: mangoldt.ml

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (671 lines) | stat: -rw-r--r-- 33,226 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
(* ========================================================================= *)
(* Mangoldt function and elementary Chebyshev/Mertens results.               *)
(* ========================================================================= *)

needs "Library/pocklington.ml";;
needs "Multivariate/transcendentals.ml";;

prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* Useful approximation/bound lemmas, simple rather than sharp.              *)
(* ------------------------------------------------------------------------- *)

let LOG_FACT = prove
 (`!n. log(&(FACT n)) = sum(1..n) (\d. log(&d))`,
  INDUCT_TAC THEN
  SIMP_TAC[FACT; SUM_CLAUSES_NUMSEG; LOG_1; ARITH; ARITH_RULE `1 <= SUC n`] THEN
  SIMP_TAC[GSYM REAL_OF_NUM_MUL; LOG_MUL; REAL_OF_NUM_LT; FACT_LT; LT_0] THEN
  ASM_REWRITE_TAC[ADD1] THEN REWRITE_TAC[ADD_AC; REAL_ADD_AC]);;

let SUM_DIVISORS_FLOOR_LEMMA = prove
 (`!n d. ~(d = 0)
         ==> sum(1..n) (\m. if d divides m then &1 else &0) = floor(&n / &d)`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FLOOR_DIV_DIV] THEN
  SIMP_TAC[GSYM SUM_RESTRICT_SET; FINITE_NUMSEG; SUM_CONST; FINITE_RESTRICT;
           REAL_MUL_RID; REAL_OF_NUM_EQ] THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_1] THEN
  MATCH_MP_TAC BIJECTIONS_CARD_EQ THEN
  MAP_EVERY EXISTS_TAC [`\m:num. m DIV d`; `\m:num. m * d`] THEN
  ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG; LE_1; DIV_MULT; DIVIDES_DIV_MULT;
               FINITE_NUMSEG; ONCE_REWRITE_RULE[MULT_SYM] DIV_MULT;
               DIV_MONO; LE_1] THEN
  ASM_SIMP_TAC[LE_RDIV_EQ; MULT_EQ_0; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN
  CONJ_TAC THENL [GEN_TAC THEN STRIP_TAC; ARITH_TAC] THEN
  FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN ASM_SIMP_TAC[DIV_EQ_0] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [ARITH_RULE `d = 1 * d`] THEN
  ASM_SIMP_TAC[LT_MULT_RCANCEL; ARITH_RULE `n < 1 <=> n = 0`] THEN
  ASM_MESON_TAC[MULT_CLAUSES]);;

let LOG_2_BOUNDS = prove
 (`&1 / &2 <= log(&2) /\ log(&2) <= &1`,
  CONJ_TAC THENL
   [GEN_REWRITE_TAC LAND_CONV [GSYM LOG_EXP] THEN
    MP_TAC(SPEC `inv(&2)` REAL_EXP_BOUND_LEMMA);
    GEN_REWRITE_TAC RAND_CONV [GSYM LOG_EXP] THEN
    MP_TAC(SPEC `&1` REAL_EXP_LE_X)] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN MATCH_MP_TAC EQ_IMP THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC LOG_MONO_LE THEN
  REWRITE_TAC[REAL_EXP_POS_LT; REAL_OF_NUM_LT; ARITH]);;

let LOG_LE_REFL = prove
 (`!n. ~(n = 0) ==> log(&n) <= &n`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(REAL_ARITH `x <= y - &1 ==> x <= y`) THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV)
   [REAL_ARITH `n = &1 + (n  - &1)`] THEN
  MATCH_MP_TAC LOG_LE THEN
  REWRITE_TAC[REAL_LE_SUB_LADD; REAL_OF_NUM_ADD; REAL_OF_NUM_LE] THEN
  UNDISCH_TAC `~(n = 0)` THEN ARITH_TAC);;

let LOG_FACT_BOUNDS = prove
 (`!n. ~(n = 0)
       ==> abs(log(&(FACT n)) - (&n * log(&n) - &n + &1)) <= &2 * log(&n)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 1` THENL
   [ASM_REWRITE_TAC[num_CONV `1`; FACT] THEN
    REWRITE_TAC[ARITH; LOG_1] THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  ASM_SIMP_TAC[LOG_FACT] THEN
  REWRITE_TAC[REAL_ARITH `abs(x - y) <= e <=> x <= y + e /\ y - e <= x`] THEN
  CONJ_TAC THENL
   [MP_TAC(ISPECL[`\z. clog(z)`; `\z. z * clog z - z`; `1`; `n:num`]
                 SUM_INTEGRAL_UBOUND_INCREASING) THEN
    REWRITE_TAC[] THEN ANTS_TAC THENL
     [CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
      CONJ_TAC THENL
       [REWRITE_TAC[IN_SEGMENT_CX_GEN] THEN REPEAT STRIP_TAC THENL
         [COMPLEX_DIFF_TAC THEN CONJ_TAC THEN UNDISCH_TAC `&1 <= Re x` THENL
           [REAL_ARITH_TAC; ALL_TAC] THEN
          ASM_CASES_TAC `x = Cx(&0)` THEN ASM_REWRITE_TAC[RE_CX] THENL
           [REAL_ARITH_TAC;
            UNDISCH_TAC `~(x = Cx(&0))` THEN CONV_TAC COMPLEX_FIELD];
          FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM LT_NZ]) THEN
          REWRITE_TAC[GSYM REAL_OF_NUM_LT] THEN
          ASM_REAL_ARITH_TAC];
        MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN STRIP_TAC THEN
        SUBGOAL_THEN `&0 < a /\ &0 < b` ASSUME_TAC THENL
         [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
        ASM_SIMP_TAC[GSYM CX_LOG; RE_CX; LOG_MONO_LE_IMP]];
        ALL_TAC];
     ASM_SIMP_TAC[SUM_CLAUSES_LEFT; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN
     REWRITE_TAC[LOG_1; REAL_ADD_LID; ARITH] THEN
     FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
      `~(n = 0) ==> n = 1 \/ 2 <= n`))
     THENL
      [ASM_REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN
       REWRITE_TAC[LOG_1; SUM_CLAUSES] THEN REAL_ARITH_TAC;
       ALL_TAC] THEN
     MP_TAC(ISPECL[`\z. clog(z)`; `\z. z * clog z - z`; `2`; `n:num`]
                  SUM_INTEGRAL_LBOUND_INCREASING) THEN
     REWRITE_TAC[] THEN ANTS_TAC THENL
      [CONJ_TAC THENL [POP_ASSUM MP_TAC THEN ARITH_TAC; ALL_TAC] THEN
       CONV_TAC REAL_RAT_REDUCE_CONV THEN CONJ_TAC THENL
        [REWRITE_TAC[IN_SEGMENT_CX_GEN] THEN REPEAT STRIP_TAC THENL
          [COMPLEX_DIFF_TAC THEN CONJ_TAC THEN UNDISCH_TAC `&1 <= Re x` THENL
            [REAL_ARITH_TAC; ALL_TAC] THEN
           ASM_CASES_TAC `x = Cx(&0)` THEN ASM_REWRITE_TAC[RE_CX] THENL
            [REAL_ARITH_TAC;
             UNDISCH_TAC `~(x = Cx(&0))` THEN CONV_TAC COMPLEX_FIELD];
           FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM REAL_OF_NUM_LE]) THEN
           ASM_REAL_ARITH_TAC];
        MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN STRIP_TAC THEN
        SUBGOAL_THEN `&0 < a /\ &0 < b` ASSUME_TAC THENL
         [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
        ASM_SIMP_TAC[GSYM CX_LOG; RE_CX; LOG_MONO_LE_IMP]];
       ALL_TAC]] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN
  MATCH_MP_TAC(REAL_ARITH `y <= x /\ a <= b ==> x <= a ==> y <= b`) THEN
  ASM_SIMP_TAC[GSYM CX_LOG; SUM_EQ_NUMSEG; REAL_OF_NUM_LT; LE_1; CLOG_1;
               ARITH_RULE `2 <= n ==> 0 < n`; RE_CX;
               REAL_ARITH `&0 < &n + &1`; REAL_EQ_IMP_LE] THEN
  REWRITE_TAC[GSYM CX_MUL; GSYM CX_SUB; GSYM CX_ADD; RE_CX] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_SUB_RNEG] THENL
   [REWRITE_TAC[REAL_ARITH
     `(n + &1) * l' - (n + &1) + &1 <= (n * l - n + &1) + k * l <=>
      (n + &1) * l' <= (n + k) * l + &1`] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `(&n + &1) * (log(&n) + &1 / &n)` THEN CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LE_LMUL THEN
      CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
      REWRITE_TAC[REAL_ARITH `x <= y + z <=> x - y <= z`] THEN
      ASM_SIMP_TAC[GSYM LOG_DIV; REAL_OF_NUM_LT; LT_NZ;
                   REAL_ARITH `&0 < &n + &1`;
                   REAL_FIELD `&0 < x ==> (x + &1) / x = &1 + &1 / x`] THEN
      MATCH_MP_TAC LOG_LE THEN SIMP_TAC[REAL_LE_DIV; REAL_POS];
      ALL_TAC] THEN
    REWRITE_TAC[REAL_ARITH
    `(n + &1) * (l + n') <= (n + k) * l + &1 <=>
      n' * (n + &1) <= (k - &1) * l + &1`] THEN
    ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_LE_RADD; REAL_FIELD
     `~(n = &0) ==> &1 / n * (n + &1) = inv(n) + &1`] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&2)` THEN CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LE_INV2 THEN
      REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN
      ASM_ARITH_TAC;
      ALL_TAC] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_MUL_LID] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `log(&2)` THEN
    REWRITE_TAC[LOG_2_BOUNDS] THEN MATCH_MP_TAC LOG_MONO_LE_IMP THEN
    REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LE] THEN ASM_ARITH_TAC;
    SUBGOAL_THEN `&0 <= log(&n)` MP_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN
    MATCH_MP_TAC LOG_POS THEN REWRITE_TAC[REAL_OF_NUM_LE] THEN
    ASM_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* The Mangoldt function and its key expansion.                              *)
(* ------------------------------------------------------------------------- *)

let mangoldt = new_definition
 `mangoldt n = if ?p k. 1 <= k /\ prime p /\ n = p EXP k
               then log(&(@p. prime p /\ p divides n))
               else &0`;;

let MANGOLDT_1 = prove
 (`mangoldt 1 = &0`,
  REWRITE_TAC[mangoldt] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
  REWRITE_TAC[EXP_EQ_1] THEN MESON_TAC[PRIME_1; ARITH_RULE `~(1 <= 0)`]);;

let MANGOLDT_PRIMEPOW = prove
 (`!p k. prime p ==> mangoldt(p EXP k) = if 1 <= k then log(&p) else &0`,
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[mangoldt] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> ~(a /\ b ==> ~c)`] THEN
  ASM_SIMP_TAC[EQ_PRIME_EXP; LE_1] THEN
  REWRITE_TAC[TAUT `~(a /\ b ==> ~(c /\ d)) <=> d /\ c /\ a /\ b`] THEN
  ASM_REWRITE_TAC[UNWIND_THM1] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT AP_TERM_TAC THEN
  ASM_SIMP_TAC[DIVIDES_PRIMEPOW] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
  ASM_MESON_TAC[PRIME_DIVEXP; prime; PRIME_1; DIVIDES_REFL; EXP_1]);;

let MANGOLDT_POS_LE = prove
 (`!n. &0 <= mangoldt n`,
  GEN_TAC THEN ASM_CASES_TAC `?p k. 1 <= k /\ prime p /\ n = p EXP k` THENL
   [FIRST_X_ASSUM(REPEAT_TCL CHOOSE_THEN STRIP_ASSUME_TAC) THEN
    ASM_SIMP_TAC[MANGOLDT_PRIMEPOW] THEN MATCH_MP_TAC LOG_POS THEN
    REWRITE_TAC[REAL_OF_NUM_LE] THEN
    FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC;
    ASM_REWRITE_TAC[mangoldt; REAL_LE_REFL]]);;

let LOG_MANGOLDT_SUM = prove
 (`!n. ~(n = 0) ==> log(&n) = sum {d | d divides n} (\d. mangoldt(d))`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 1` THENL
   [ASM_REWRITE_TAC[LOG_1; DIVIDES_ONE; SET_RULE `{x | x = a} = {a}`] THEN
    REWRITE_TAC[SUM_SING; mangoldt] THEN
    GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
    REWRITE_TAC[EXP_EQ_1] THEN MESON_TAC[PRIME_1; ARITH_RULE `~(1 <= 0)`];
    ALL_TAC] THEN
  SUBGOAL_THEN `1 < n` MP_TAC THENL
   [ASM_ARITH_TAC; ALL_TAC] THEN
  SPEC_TAC(`n:num`,`n:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
  MATCH_MP_TAC INDUCT_COPRIME THEN REPEAT STRIP_TAC THENL
   [ASM_SIMP_TAC[LOG_MUL; GSYM REAL_OF_NUM_MUL; REAL_OF_NUM_LT;
                 ARITH_RULE `1 < a ==> 0 < a`] THEN
    MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC
     `sum ({d | d divides a} UNION {d | d divides b}) (\d. mangoldt d)` THEN
    CONJ_TAC THEN CONV_TAC SYM_CONV THENL
     [MATCH_MP_TAC SUM_UNION_NONZERO THEN REWRITE_TAC[IN_INTER] THEN
      ASM_SIMP_TAC[FINITE_DIVISORS; ARITH_RULE `1 < n ==> ~(n = 0)`] THEN
      REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[coprime; MANGOLDT_1];
      MATCH_MP_TAC SUM_SUPERSET THEN REWRITE_TAC[UNION_SUBSET; IN_UNION] THEN
      SIMP_TAC[SUBSET; IN_ELIM_THM; DIVIDES_LMUL; DIVIDES_RMUL] THEN
      X_GEN_TAC `d:num` THEN STRIP_TAC THEN REWRITE_TAC[mangoldt] THEN
      COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
      ASM_MESON_TAC[PRIME_DIVPROD_POW]];
    ALL_TAC] THEN
  ASM_SIMP_TAC[DIVIDES_PRIMEPOW; GSYM REAL_OF_NUM_POW] THEN
  REWRITE_TAC[SET_RULE `{d | ?i. i <= k /\ d = p EXP i} =
                        IMAGE (\i. p EXP i) {i | i <= k}`] THEN
  ASM_SIMP_TAC[EQ_EXP; SUM_IMAGE; PRIME_GE_2;
               ARITH_RULE `2 <= p ==> ~(p = 0) /\ ~(p = 1)`] THEN
  ASM_SIMP_TAC[MANGOLDT_PRIMEPOW; o_DEF] THEN
  ASM_SIMP_TAC[GSYM SUM_RESTRICT_SET; IN_ELIM_THM; FINITE_NUMSEG_LE] THEN
  ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[GSYM numseg] THEN
  ASM_SIMP_TAC[LOG_POW; PRIME_IMP_NZ; REAL_OF_NUM_LT; LT_NZ] THEN
  SIMP_TAC[SUM_CONST; CARD_NUMSEG_1; FINITE_NUMSEG]);;

let MANGOLDT = prove
 (`!n. log(&(FACT n)) = sum(1..n) (\d. mangoldt(d) * floor(&n / &d))`,
  GEN_TAC THEN REWRITE_TAC[LOG_FACT] THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `sum(1..n) (\m. sum {d | d divides m} (\d. mangoldt d))` THEN
  SIMP_TAC[LOG_MANGOLDT_SUM; SUM_EQ_NUMSEG; LE_1] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC
   `sum (1..n) (\m. sum (1..n)
     (\d. mangoldt d * (if d divides m then &1 else &0)))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `m:num` THEN
    STRIP_TAC THEN REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC SUM_EQ_SUPERSET THEN
    ASM_SIMP_TAC[LE_1; FINITE_DIVISORS; IN_ELIM_THM; REAL_MUL_RZERO;
                 REAL_MUL_RID; SUBSET; IN_NUMSEG] THEN
    GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN
    ASM_ARITH_TAC;
    GEN_REWRITE_TAC LAND_CONV [SUM_SWAP_NUMSEG] THEN
    MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `d:num` THEN
    ASM_SIMP_TAC[SUM_DIVISORS_FLOOR_LEMMA; LE_1; SUM_LMUL]]);;

(* ------------------------------------------------------------------------- *)
(* The Chebyshev psi function and the key bounds on it.                      *)
(* ------------------------------------------------------------------------- *)

let PSI_BOUND_INDUCT = prove
 (`!n. ~(n = 0)
       ==> sum(1..2*n) (\d. mangoldt(d)) -
           sum(1..n) (\d. mangoldt(d)) <= &9 * &n`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum (n+1..2 * n) (\d. mangoldt d)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_EQ_IMP_LE THEN REWRITE_TAC[REAL_EQ_SUB_RADD] THEN
    CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_UNION_EQ THEN
    ONCE_REWRITE_TAC[UNION_COMM] THEN REWRITE_TAC[FINITE_NUMSEG] THEN
    ASM_SIMP_TAC[NUMSEG_COMBINE_R; ARITH_RULE
     `~(n = 0) ==> 1 <= n + 1 /\ n <= 2 * n`] THEN
    REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY; IN_NUMSEG] THEN ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
   `sum (n+1..2*n)
        (\d. mangoldt(d) * (floor(&(2 * n) / &d) - &2 * floor(&n / &d)))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `r:num` THEN STRIP_TAC THEN
    REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[MANGOLDT_POS_LE] THEN
    MATCH_MP_TAC(REAL_ARITH `&1 <= a /\ b = &0 ==> &1 <= a - &2 * b`) THEN
    SUBGOAL_THEN `~(r = 0)` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
    ASM_SIMP_TAC[FLOOR_DIV_DIV; FLOOR_NUM; REAL_OF_NUM_LE; REAL_OF_NUM_EQ] THEN
    ASM_SIMP_TAC[DIV_EQ_0; LE_RDIV_EQ] THEN ASM_ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
   `sum (1..2*n)
        (\d. mangoldt(d) * (floor(&(2 * n) / &d) - &2 * floor(&n / &d)))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC SUM_SUBSET THEN
    REWRITE_TAC[FINITE_NUMSEG; IN_DIFF; IN_NUMSEG] THEN
    CONJ_TAC THENL [ARITH_TAC; ALL_TAC] THEN
    X_GEN_TAC `r:num` THEN STRIP_TAC THEN
    SUBGOAL_THEN `~(r = 0)` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
    MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[MANGOLDT_POS_LE] THEN
    ASM_SIMP_TAC[FLOOR_DIV_DIV; REAL_NEG_SUB; REAL_SUB_LE] THEN
    ASM_SIMP_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LE; MULT_DIV_LE];
    ALL_TAC] THEN
  REWRITE_TAC[REAL_ARITH `m * (f1 - &2 * f2) = m * f1 - &2 * m * f2`] THEN
  REWRITE_TAC[SUM_SUB_NUMSEG; SUM_LMUL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum(1..2*n) (\d. mangoldt(d) * floor(&(2 * n) / &d)) -
              &2 * sum(1..n) (\d. mangoldt(d) * floor(&n / &d))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC(REAL_ARITH `y' <= y ==> x - y <= x - y'`) THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_POS] THEN
    MATCH_MP_TAC SUM_SUBSET THEN
    REWRITE_TAC[FINITE_NUMSEG; IN_DIFF; IN_NUMSEG] THEN
    SIMP_TAC[FLOOR_DIV_DIV; LE_1; FLOOR_NUM; REAL_LE_MUL; REAL_POS;
             MANGOLDT_POS_LE] THEN
    ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[GSYM MANGOLDT] THEN
  MAP_EVERY (MP_TAC o C SPEC LOG_FACT_BOUNDS) [`n:num`; `2 * n`] THEN
  ASM_REWRITE_TAC[MULT_EQ_0; ARITH_EQ] THEN
  MATCH_MP_TAC(REAL_ARITH
    `a2 + e2 + &2 * (e1 - a1) <= m
     ==> abs(f2 - a2) <= e2 ==> abs(f1 - a1) <= e1 ==> f2 - &2 * f1 <= m`) THEN
  ASM_SIMP_TAC[GSYM REAL_OF_NUM_MUL; LOG_MUL; REAL_OF_NUM_LT; LT_NZ; ARITH] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC
   `&6 * log(&n) + (&2 * log(&2) - &1) * &1 + (&2 * log(&2)) * &n` THEN
  CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `&6 * &n + (&2 * log(&2) - &1) * &n + (&2 * log(&2)) * &n` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LE_ADD2 THEN
    ASM_SIMP_TAC[LOG_LE_REFL; REAL_LE_LMUL; REAL_POS; REAL_LE_RADD] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN
    ASM_REWRITE_TAC[REAL_OF_NUM_LE; ARITH_RULE `1 <= n <=> ~(n = 0)`];
    REWRITE_TAC[GSYM REAL_ADD_RDISTRIB] THEN
    MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_POS]] THEN
  MP_TAC LOG_2_BOUNDS THEN REAL_ARITH_TAC);;

let PSI_BOUND_EXP = prove
 (`!n. sum(1..2 EXP n) (\d. mangoldt(d)) <= &9 * &(2 EXP n)`,
  INDUCT_TAC THEN
  SIMP_TAC[EXP; SUM_SING_NUMSEG; MANGOLDT_1; REAL_LE_MUL; REAL_POS] THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
   `s1 <= &9 * e ==> s2 - s1 <= &9 * e ==> s2 <= &9 * &2 * e`)) THEN
  MATCH_MP_TAC PSI_BOUND_INDUCT THEN
  REWRITE_TAC[EXP_EQ_0; ARITH]);;

let PSI_BOUND = prove
 (`!n. sum(1..n) (\d. mangoldt(d)) <= &18 * &n`,
  GEN_TAC THEN ASM_CASES_TAC `n <= 1` THENL
   [MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum(1..1) (\d. mangoldt d)` THEN CONJ_TAC THENL
     [MATCH_MP_TAC SUM_SUBSET; ALL_TAC] THEN
    REWRITE_TAC[SUM_SING_NUMSEG; FINITE_NUMSEG; IN_DIFF; IN_NUMSEG] THEN
    SIMP_TAC[MANGOLDT_POS_LE; MANGOLDT_1; REAL_LE_MUL; REAL_POS] THEN
    ASM_ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `?k. n <= 2 EXP k /\ !l. l < k ==> ~(n <= 2 EXP l)`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[GSYM num_WOP] THEN EXISTS_TAC `n:num` THEN
    MP_TAC(SPEC `n:num` LT_POW2_REFL) THEN REWRITE_TAC[EXP] THEN ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum(1..2 EXP k) (\d. mangoldt d)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC SUM_SUBSET THEN
    REWRITE_TAC[FINITE_NUMSEG; IN_DIFF; IN_NUMSEG; MANGOLDT_POS_LE] THEN
    ASM_ARITH_TAC;
    MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&9 * &(2 EXP k)` THEN
    REWRITE_TAC[PSI_BOUND_EXP] THEN
    ASM_CASES_TAC `k = 0` THENL
     [FIRST_X_ASSUM SUBST_ALL_TAC THEN ASM_ARITH_TAC; ALL_TAC] THEN
    FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
     `~(k = 0) ==> k = SUC(k - 1)`)) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `k - 1`) THEN
    ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[REAL_OF_NUM_MUL; EXP; REAL_OF_NUM_LE] THEN ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Now Mertens's first theorem.                                              *)
(* ------------------------------------------------------------------------- *)

let MERTENS_LEMMA = prove
 (`!n. ~(n = 0) ==> abs(sum(1..n) (\d. mangoldt(d) / &d) - log(&n)) <= &21`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN
  EXISTS_TAC `&n` THEN ASM_SIMP_TAC[REAL_OF_NUM_LT; LT_NZ] THEN
  GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM REAL_ABS_NUM] THEN
  REWRITE_TAC[GSYM REAL_ABS_MUL; REAL_SUB_LDISTRIB; GSYM SUM_LMUL] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP LOG_FACT_BOUNDS) THEN REWRITE_TAC[MANGOLDT] THEN
  MATCH_MP_TAC(REAL_ARITH
   `abs(n - &1) <= n /\ abs(s' - s) <= (k - &1) * n - a
    ==> abs(s' - (nl - n + &1)) <= a
        ==> abs(s - nl) <= n * k`) THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC(REAL_ARITH `&1 <= x ==> abs(x - &1) <= x`) THEN
    REWRITE_TAC[REAL_OF_NUM_LE] THEN ASM_ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[GSYM SUM_SUB_NUMSEG] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
  ONCE_REWRITE_TAC[REAL_ARITH `n * i / x:real = i * n / x`] THEN
  REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum(1..n) (\i. mangoldt i)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC(REAL_ARITH `&0 <= --x /\ --x <= y ==> abs(x) <= y`) THEN
    REWRITE_TAC[GSYM SUM_NEG; REAL_ARITH
     `--(a * (x - y)):real = a * (y - x)`] THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN SIMP_TAC[] THEN
      X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_MUL;
      MATCH_MP_TAC SUM_LE_NUMSEG THEN SIMP_TAC[] THEN
       X_GEN_TAC `i:num` THEN STRIP_TAC THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
      MATCH_MP_TAC REAL_LE_LMUL] THEN
    ASM_REWRITE_TAC[MANGOLDT_POS_LE; REAL_SUB_LE; REAL_LE_SUB_RADD] THEN
    MP_TAC(SPEC `&n / &i` FLOOR) THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC(REAL_ARITH
   `x <= (k - &2) * n /\ l <= n ==> x <= k * n - &2 * l`) THEN
  ASM_SIMP_TAC[LOG_LE_REFL] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
  ASM_REWRITE_TAC[PSI_BOUND]);;

let MERTENS_MANGOLDT_VERSUS_LOG = prove
 (`!n s. s SUBSET (1..n)
         ==> abs (sum s (\d. mangoldt d / &d) -
                  sum {p | prime p /\ p IN s} (\p. log (&p) / &p)) <= &3`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[NUMSEG_CLAUSES; ARITH; SUBSET_EMPTY] THEN
    DISCH_THEN SUBST_ALL_TAC THEN
    REWRITE_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; SUM_CLAUSES] THEN REAL_ARITH_TAC;
    DISCH_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `abs(sum (1..n) (\d. mangoldt d / &d) -
                  sum {p | prime p /\ p IN 1..n} (\p. log (&p) / &p))` THEN
  CONJ_TAC THENL
   [SUBGOAL_THEN `FINITE(s:num->bool)` ASSUME_TAC THENL
     [ASM_MESON_TAC[FINITE_SUBSET; FINITE_NUMSEG]; ALL_TAC] THEN
    ONCE_REWRITE_TAC[CONJ_SYM] THEN
    ASM_SIMP_TAC[SUM_RESTRICT_SET; FINITE_NUMSEG] THEN
    ASM_SIMP_TAC[GSYM SUM_SUB; FINITE_NUMSEG] THEN
    MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= y ==> abs x <= abs y`) THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC SUM_POS_LE; MATCH_MP_TAC SUM_SUBSET_SIMPLE] THEN
    ASM_SIMP_TAC[IN_DIFF; FINITE_NUMSEG; REAL_SUB_LE] THEN
    X_GEN_TAC `x:num` THEN STRIP_TAC THEN COND_CASES_TAC THEN
    ASM_SIMP_TAC[REAL_LE_DIV; MANGOLDT_POS_LE; REAL_POS] THEN
    GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM EXP_1] THEN
    ASM_SIMP_TAC[MANGOLDT_PRIMEPOW; LE_REFL; REAL_LE_REFL];
    ALL_TAC] THEN
  SUBGOAL_THEN `{p | prime p /\ p IN 1..n} = {p | prime p /\ p <= n}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN
    MESON_TAC[ARITH_RULE `2 <= p ==> 1 <= p`; PRIME_GE_2];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `sum(1..n) (\d. mangoldt d / &d) -
    sum {p | prime p /\ p <= n} (\p. log (&p) / &p) =
    sum {p EXP k | prime p /\ p EXP k <= n /\ k >= 2} (\d. mangoldt d / &d)`
  SUBST1_TAC THENL
   [SUBGOAL_THEN
     `sum {p | prime p /\ p <= n} (\p. log (&p) / &p) =
      sum {p | prime p /\ p <= n} (\d. mangoldt d / &d)`
    SUBST1_TAC THENL
     [MATCH_MP_TAC SUM_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN
      REPEAT STRIP_TAC THEN
      GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM EXP_1] THEN
      ASM_SIMP_TAC[MANGOLDT_PRIMEPOW; ARITH];
      ALL_TAC] THEN
    REWRITE_TAC[REAL_EQ_SUB_RADD] THEN MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC
     `sum {p EXP k | prime p /\ p EXP k <= n /\ k >= 1}
          (\d. mangoldt d / &d)` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC SUM_SUPERSET THEN
      SIMP_TAC[IN_ELIM_THM; SUBSET; IN_NUMSEG] THEN
      CONJ_TAC THEN GEN_TAC THEN STRIP_TAC THEN
      ASM_REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`; EXP_EQ_0] THENL
       [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
      REWRITE_TAC[real_div; REAL_ENTIRE] THEN DISJ1_TAC THEN
      REWRITE_TAC[mangoldt] THEN ASM_MESON_TAC[GE];
      ALL_TAC] THEN
    CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_UNION_EQ THEN CONJ_TAC THENL
     [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
      REWRITE_TAC[SUBSET; IN_ELIM_THM; FINITE_NUMSEG; IN_NUMSEG; LE_0] THEN
      MESON_TAC[];
      ALL_TAC] THEN
    CONJ_TAC THENL
     [REWRITE_TAC[EXTENSION; IN_INTER; IN_ELIM_THM; NOT_IN_EMPTY] THEN
      MESON_TAC[PRIME_EXP; ARITH_RULE `~(1 >= 2)`];
      REWRITE_TAC[ARITH_RULE `k >= 1 <=> k >= 2 \/ k = 1`] THEN
      REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[EXP_1]];
    ALL_TAC] THEN
  MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= y ==> abs(x) <= y`) THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC SUM_POS_LE THEN
    SIMP_TAC[REAL_LE_DIV; REAL_POS; MANGOLDT_POS_LE]THEN
    MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM; FINITE_NUMSEG; IN_NUMSEG; LE_0] THEN
    MESON_TAC[];
    ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC
   `sum {p | p IN 1..n /\ prime p}
        (\p. sum (2..n) (\k. log(&p) / &p pow k))` THEN
  CONJ_TAC THENL
   [SIMP_TAC[SUM_SUM_PRODUCT; FINITE_NUMSEG; FINITE_RESTRICT] THEN
    MATCH_MP_TAC SUM_LE_INCLUDED THEN EXISTS_TAC `\(p,k). p EXP k` THEN
    SIMP_TAC[FINITE_PRODUCT; FINITE_NUMSEG; FINITE_RESTRICT] THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
      REWRITE_TAC[SUBSET; IN_ELIM_THM; FINITE_NUMSEG; IN_NUMSEG; LE_0] THEN
      MESON_TAC[];
      ALL_TAC] THEN
    REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; EXISTS_PAIR_THM] THEN
    SIMP_TAC[IN_ELIM_THM; IN_NUMSEG; REAL_LE_DIV; REAL_POW_LE; REAL_POS;
             LOG_POS; REAL_OF_NUM_LE] THEN
    X_GEN_TAC `x:num` THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:num` THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN
    STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
    ASM_SIMP_TAC[MANGOLDT_PRIMEPOW; GSYM REAL_OF_NUM_POW; REAL_LE_REFL;
                 ARITH_RULE `k >= 2 ==> 1 <= k /\ 2 <= k`] THEN
    ASM_SIMP_TAC[PRIME_IMP_NZ; ARITH_RULE `1 <= k <=> ~(k = 0)`] THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `p EXP k` THEN ASM_SIMP_TAC[] THEN
      GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN
      ASM_SIMP_TAC[PRIME_IMP_NZ; LE_EXP] THEN ASM_ARITH_TAC;
      MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `p EXP k` THEN ASM_SIMP_TAC[] THEN
      MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `2 EXP k` THEN
      ASM_SIMP_TAC[LT_POW2_REFL; LT_IMP_LE; EXP_MONO_LE; PRIME_GE_2]];
    ALL_TAC] THEN
  REWRITE_TAC[real_div; SUM_LMUL; GSYM REAL_POW_INV; SUM_GP] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum {p | p IN 1..n /\ prime p}
                  (\p. log(&p) / (&p * (&p - &1)))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC SUM_LE THEN SIMP_TAC[FINITE_NUMSEG; FINITE_RESTRICT] THEN
    X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_ELIM_THM; IN_NUMSEG] THEN
    ASM_SIMP_TAC[REAL_INV_EQ_1; REAL_OF_NUM_EQ; PRIME_GE_2;
                 ARITH_RULE `2 <= p ==> ~(p = 1)`] THEN
    STRIP_TAC THEN COND_CASES_TAC THEN
    ASM_SIMP_TAC[REAL_MUL_RZERO; REAL_LE_DIV; REAL_LE_MUL; REAL_SUB_LE;
                 REAL_OF_NUM_LE; LOG_POS; LE_0] THEN
    REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LE_LMUL THEN
    ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE] THEN
    MATCH_MP_TAC(REAL_ARITH
     `&0 <= y * z /\ x * z <= a ==> (x - y) * z <= a`) THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LE_MUL THEN
      ASM_SIMP_TAC[REAL_POW_LE; REAL_LE_INV_EQ; REAL_POS; REAL_SUB_LE] THEN
      MATCH_MP_TAC REAL_INV_LE_1 THEN ASM_REWRITE_TAC[REAL_OF_NUM_LE];
      ALL_TAC] THEN
    MATCH_MP_TAC REAL_EQ_IMP_LE THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN
    REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN CONV_TAC REAL_FIELD;
    ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum (2..n)  (\p. log(&p) / (&p * (&p - &1)))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC SUM_SUBSET THEN SIMP_TAC[FINITE_NUMSEG; FINITE_RESTRICT] THEN
    REWRITE_TAC[IN_DIFF; IN_NUMSEG; IN_ELIM_THM] THEN
    CONJ_TAC THENL [MESON_TAC[PRIME_GE_2]; ALL_TAC] THEN
    ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE; ARITH_RULE `2 <= p ==> 1 <= p`;
                 REAL_LE_MUL; REAL_POS; REAL_SUB_LE; REAL_LE_DIV];
    ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum (2..n) (\m. log(&m) / (&m - &1) pow 2)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC SUM_LE_NUMSEG THEN REPEAT STRIP_TAC THEN
    REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LE_LMUL THEN
    ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE; ARITH_RULE `2 <= p ==> 1 <= p`] THEN
    MATCH_MP_TAC REAL_LE_INV2 THEN
    ASM_SIMP_TAC[REAL_POW_2; REAL_LE_RMUL_EQ; REAL_LT_MUL; REAL_LT_IMP_LE;
                 REAL_SUB_LT; REAL_OF_NUM_LT; ARITH_RULE `1 < p <=> 2 <= p`;
                 REAL_ARITH `x - &1 <= x`];
    ALL_TAC] THEN
  ASM_CASES_TAC `n < 2` THENL
   [RULE_ASSUM_TAC(REWRITE_RULE[GSYM NUMSEG_EMPTY]);
    RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT])] THEN
  ASM_SIMP_TAC[SUM_CLAUSES] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
  ASM_SIMP_TAC[SUM_CLAUSES_LEFT; ARITH] THEN
  MATCH_MP_TAC(REAL_ARITH
    `x <= &1 /\ y <= e - &1 ==> x + y <= e`) THEN
  CONJ_TAC THENL [MP_TAC LOG_2_BOUNDS THEN REAL_ARITH_TAC; ALL_TAC] THEN
  ASM_CASES_TAC `n < 3` THENL
   [RULE_ASSUM_TAC(REWRITE_RULE[GSYM NUMSEG_EMPTY]);
    RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT])] THEN
  ASM_SIMP_TAC[SUM_CLAUSES] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
  MP_TAC(ISPECL
   [`\z. clog(z) / (z - Cx(&1)) pow 2`;
    `\z. clog(z - Cx(&1)) - clog(z) - clog(z) / (z - Cx(&1))`;
    `3`; `n:num`] SUM_INTEGRAL_UBOUND_DECREASING) THEN
  ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ANTS_TAC THENL
   [CONJ_TAC THENL
     [REWRITE_TAC[IN_SEGMENT_CX_GEN] THEN X_GEN_TAC `z:complex` THEN
      STRIP_TAC THENL
       [COMPLEX_DIFF_TAC THEN SIMP_TAC[COMPLEX_SUB_RZERO; COMPLEX_MUL_LID] THEN
        ASM_SIMP_TAC[RE_SUB; RE_CX; REAL_SUB_LT] THEN
        ASM_SIMP_TAC[REAL_ARITH `&2 <= x ==> &1 < x /\ &0 < x`] THEN
        SUBGOAL_THEN `~(z = Cx(&0)) /\ ~(z = Cx(&1))` MP_TAC THENL
         [ALL_TAC; CONV_TAC COMPLEX_FIELD] THEN
        REPEAT STRIP_TAC THEN UNDISCH_TAC `&2 <= Re z` THEN
        ASM_REWRITE_TAC[RE_CX] THEN REAL_ARITH_TAC;
        RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN
        ASM_ARITH_TAC];
      ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN
    MP_TAC(SPECL [`\z. clog(z) / (z - Cx(&1)) pow 2`;
                  `\z. inv(z * (z - Cx(&1)) pow 2) -
                       Cx(&2) * clog(z) / (z - Cx(&1)) pow 3`;
                  `Cx(x)`; `Cx(y)`] COMPLEX_MVT_LINE) THEN
    REWRITE_TAC[] THEN ANTS_TAC THENL
     [REWRITE_TAC[IN_SEGMENT_CX_GEN] THEN X_GEN_TAC `z:complex` THEN
      REWRITE_TAC[REAL_ARITH `a <= x /\ x <= b \/ b <= x /\ x <= a <=>
                         a <= x /\ x <= b \/ b < a /\ b <= x /\ x <= a`] THEN
      STRIP_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN
      COMPLEX_DIFF_TAC THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN
      CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
      CONV_TAC NUM_REDUCE_CONV THEN
      SUBGOAL_THEN `~(z = Cx(&0)) /\ ~(z = Cx(&1))` MP_TAC THENL
       [ALL_TAC; CONV_TAC COMPLEX_FIELD] THEN
      CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN
      REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[RE_CX; IM_CX] THEN
      REAL_ARITH_TAC;
      ALL_TAC] THEN
    GEN_REWRITE_TAC RAND_CONV [REAL_ARITH `x <= y <=> x - y <= &0`] THEN
    DISCH_THEN(X_CHOOSE_THEN `w:complex`
     (CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN
    REWRITE_TAC[GSYM CX_SUB; RE_MUL_CX] THEN
    REWRITE_TAC[REAL_ARITH `a * (y - x) <= &0 <=> &0 <= --a * (y - x)`] THEN
    MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[REAL_SUB_LE] THEN
    REWRITE_TAC[RE_SUB; REAL_NEG_SUB; REAL_SUB_LE] THEN
    SUBGOAL_THEN `real w` ASSUME_TAC THENL
     [ASM_MESON_TAC[REAL_SEGMENT; REAL_CX]; ALL_TAC] THEN
    FIRST_X_ASSUM(SUBST_ALL_TAC o SYM o GEN_REWRITE_RULE I [REAL]) THEN
    ABBREV_TAC `u = Re w` THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_SEGMENT_CX]) THEN
    ASM_SIMP_TAC[REAL_ARITH
     `x <= y
      ==> (x <= u /\ u <= y \/ y <= u /\ u <= x <=> x <= u /\ u <= y)`] THEN
    STRIP_TAC THEN
    SUBGOAL_THEN `&0 < u /\ &1 < u /\ &2 <= u` STRIP_ASSUME_TAC THENL
     [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    ASM_SIMP_TAC[GSYM CX_LOG; GSYM CX_SUB; GSYM CX_POW; GSYM CX_DIV;
                 GSYM CX_MUL; GSYM CX_INV; RE_CX] THEN
    REWRITE_TAC[REAL_POW_2; real_div; REAL_INV_MUL; REAL_MUL_ASSOC;
                REAL_RING `(x:real) pow 3 = x * x pow 2`] THEN
    ASM_SIMP_TAC[REAL_LE_RMUL_EQ; REAL_LT_INV_EQ; REAL_SUB_LT] THEN
    ASM_SIMP_TAC[GSYM real_div; REAL_LE_RDIV_EQ; REAL_SUB_LT] THEN
    MATCH_MP_TAC(REAL_ARITH
     `a * b <= &1 /\ &1 / &2 <= c ==> b * a <= &2 * c`) THEN
    ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ] THEN
    CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `log(&2)` THEN
    REWRITE_TAC[LOG_2_BOUNDS] THEN MATCH_MP_TAC LOG_MONO_LE_IMP THEN
    ASM_REAL_ARITH_TAC;
    ALL_TAC] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN
  MATCH_MP_TAC(REAL_ARITH `x = y /\ a <= b ==> x <= a ==> y <= b`) THEN
  CONJ_TAC THENL [MATCH_MP_TAC SUM_EQ_NUMSEG; ALL_TAC] THEN
  ASM_SIMP_TAC[GSYM CX_SUB; GSYM CX_LOG; GSYM CX_DIV; REAL_SUB_LT; ARITH;
      RE_CX; REAL_OF_NUM_LT; ARITH_RULE `3 <= n ==> 0 < n /\ 1 < n`;
      GSYM CX_POW] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN
  REWRITE_TAC[LOG_1; REAL_ARITH `a - (&0 - x - x / &1) = a + &2 * x`] THEN
  MATCH_MP_TAC(REAL_ARITH
   `a <= e - &2 /\ x <= &1 ==> a + &2 * x <= e`) THEN
  REWRITE_TAC[LOG_2_BOUNDS] THEN
  MATCH_MP_TAC(REAL_ARITH `a <= b /\ --c <= e ==> a - b - c <= e`) THEN
  REWRITE_TAC[REAL_SUB_REFL; REAL_ARITH `--x <= &0 <=> &0 <= x`] THEN
  ASM_SIMP_TAC[REAL_LE_DIV; REAL_SUB_LE; LOG_POS; REAL_OF_NUM_LE;
    REAL_OF_NUM_LT; LOG_MONO_LE_IMP; REAL_ARITH `x - &1 <= x`; REAL_SUB_LT;
    LE_0; ARITH_RULE `3 <= n ==> 1 <= n /\ 1 < n`]);;

let MERTENS = prove
 (`!n. ~(n = 0)
       ==> abs(sum {p | prime p /\ p <= n}
                   (\p. log(&p) / &p) - log(&n)) <= &24`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP MERTENS_LEMMA) THEN
  MATCH_MP_TAC(REAL_ARITH
   `abs(s1 - s2) <= k - e ==> abs(s1 - l) <= e ==> abs(s2 - l) <= k`) THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN
  SUBGOAL_THEN `{p | prime p /\ p <= n} = {p | prime p /\ p IN 1..n}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN
    MESON_TAC[ARITH_RULE `2 <= p ==> 1 <= p`; PRIME_GE_2];
    MATCH_MP_TAC MERTENS_MANGOLDT_VERSUS_LOG THEN
    EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[SUBSET_REFL]]);;