1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
(* ========================================================================= *)
(* Mizar-style proofs integrated with the HOL goalstack. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* ========================================================================= *)
let old_parse_term = parse_term;;
(* ------------------------------------------------------------------------- *)
(* This version of CHOOSE is more convenient to "itlist". *)
(* ------------------------------------------------------------------------- *)
let IMP_CHOOSE_RULE =
let P = `P:A->bool`
and Q = `Q:bool`
and pth = prove
(`(!x:A. P x ==> Q) ==> ((?) P ==> Q)`,
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM]) in
fun v th ->
let ant,con = dest_imp (concl th) in
let pred = mk_abs(v,ant) in
let tm = concl th in
let q = rand tm in
let th1 = BETA_CONV(mk_comb(pred,v)) in
let th2 = PINST [type_of v,aty] [pred,P; q,Q] pth in
let th3 = AP_THM (AP_TERM (rator(rator tm)) th1) q in
let th4 = GEN v (EQ_MP (SYM th3) th) in
MP th2 th4;;
(* ------------------------------------------------------------------------- *)
(* Some preterm operations we need. *)
(* ------------------------------------------------------------------------- *)
let rec split_ppair ptm =
match ptm with
Combp(Combp(Varp(",",dpty),ptm1),ptm2) -> ptm1::(split_ppair ptm2)
| _ -> [ptm];;
let pmk_conj(ptm1,ptm2) =
Combp(Combp(Varp("/\\",dpty),ptm1),ptm2);;
let pmk_exists(v,ptm) =
Combp(Varp("?",dpty),Absp(v,ptm));;
(* ------------------------------------------------------------------------- *)
(* Typecheck a preterm into a term in an environment of (typed) variables. *)
(* ------------------------------------------------------------------------- *)
let typecheck_in_env env ptm =
let penv = itlist
(fun v acc -> let n,ty = dest_var v in (n,pretype_of_type ty)::acc)
env [] in
(term_of_preterm o retypecheck penv) ptm;;
(* ------------------------------------------------------------------------- *)
(* Converts a labelled preterm (using "and"s) into a single conjunction. *)
(* ------------------------------------------------------------------------- *)
let delabel lfs = end_itlist (curry pmk_conj) (map snd lfs);;
(* ------------------------------------------------------------------------- *)
(* These special constants are replaced by useful bits when encountered: *)
(* *)
(* thesis -- Current thesis (i.e. conclusion of goal). *)
(* *)
(* antecedent -- antecedent of goal, if applicable *)
(* *)
(* contradiction -- falsity *)
(* *)
(* ... -- Right hand side of previous conclusion. *)
(* ------------------------------------------------------------------------- *)
let thesis = new_definition
`thesis = F`;;
let antecedent = new_definition
`antecedent = F`;;
let contradiction = new_definition
`contradiction = F`;;
let iter_rhs = new_definition
`... = @x:A. F`;;
(* ------------------------------------------------------------------------- *)
(* This function performs the replacement, and typechecks in current env. *)
(* *)
(* The replacement of "..." is done specially, since it also adds a "then". *)
(* ------------------------------------------------------------------------- *)
let mizarate_term =
let atm = `antecedent`
and ttm = `thesis`
and ctm = `contradiction` in
let f_tm = `F` in
let filter_env fvs =
let env1 = map dest_var fvs in
let sizes = map
(fun (v,_) -> v,length (filter ((=) v o fst) env1)) env1 in
let env2 = filter (fun (v,_) -> assoc v sizes = 1) env1 in
map mk_var env2 in
let goal_lconsts (asl,w) =
itlist (union o frees o concl o snd) asl (frees w) in
fun (asl,w as gl) ptm ->
let lconsts = goal_lconsts gl in
let tm = typecheck_in_env (filter_env lconsts) ptm in
let ant = try fst(dest_imp w) with Failure _ -> atm in
subst [w,ttm; ant,atm; f_tm,ctm] tm;;
(* ------------------------------------------------------------------------- *)
(* The following is occasionally useful as a hack. *)
(* ------------------------------------------------------------------------- *)
let LIMITED_REWRITE_CONV =
let LIMITED_ONCE_REWRITE_CONV ths =
GEN_REWRITE_CONV ONCE_DEPTH_CONV ths THENC
GENERAL_REWRITE_CONV true TOP_DEPTH_CONV (basic_net()) [] in
fun n ths tm ->
funpow n (CONV_RULE(RAND_CONV(LIMITED_ONCE_REWRITE_CONV ths)))
(REFL tm);;
(* ------------------------------------------------------------------------- *)
(* The default prover. *)
(* ------------------------------------------------------------------------- *)
let DEFAULT_PROVER =
let FREEZE_THENL fn ths x =
let ths' = map (ASSUME o concl) ths in
let th = fn ths' x in
itlist PROVE_HYP ths th in
let REWRITE_PROVER ths tm =
if length ths < 2 then
EQT_ELIM(LIMITED_REWRITE_CONV 3 ths tm)
else
let ths' = tl ths in
let th' = CONV_RULE (LIMITED_REWRITE_CONV 4 ths') (hd ths) in
EQT_ELIM(LIMITED_REWRITE_CONV 4 (th'::ths') tm) in
fun ths tm ->
let sths = itlist (union o CONJUNCTS) ths [] in
try prove(tm,MAP_FIRST MATCH_ACCEPT_TAC sths)
with Failure _ -> try
FREEZE_THENL REWRITE_PROVER ths tm
with Failure _ ->
prove(tm,GEN_MESON_TAC 0 30 1 ths);;
let default_prover = ref DEFAULT_PROVER;;
let prover_list = ref
["rewriting",(fun ths tm -> EQT_ELIM(REWRITE_CONV ths tm))];;
(* ------------------------------------------------------------------------- *)
(* "arithmetic",(fun ths tm -> *)
(* let tm' = itlist (curry mk_imp o concl) ths tm in *)
(* let th = REAL_ARITH tm' in *)
(* rev_itlist (C MP) ths th);; *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Produce a "default" label for various constructs where applicable. *)
(* ------------------------------------------------------------------------- *)
let default_assumptions = ref false;;
let mklabel s =
if s = "" && !default_assumptions then "*"
else s;;
(* ------------------------------------------------------------------------- *)
(* Augment assumptions, throwing away an *unnamed* previous step. *)
(* ------------------------------------------------------------------------- *)
let augments =
let augment nw asl =
if asl = [] then [nw]
else if fst(hd asl) = "" then nw::(tl asl)
else nw::asl in
fun labs th asl ->
let ths,thl = nsplit CONJ_PAIR (tl labs) th in
itlist augment (zip (map mklabel labs) (ths@[thl])) asl;;
(* ------------------------------------------------------------------------- *)
(* Wrapper for labels in justification list (use K for preproved theorems). *)
(* ------------------------------------------------------------------------- *)
let L s asl =
if s = "" then snd(hd asl) else ((assoc s asl):thm);;
(* ------------------------------------------------------------------------- *)
(* Perform justification, given asl and target. *)
(* ------------------------------------------------------------------------- *)
let JUSTIFY (prover,tlist) asl tm =
let xthms = map (C I asl) tlist in
let proof_fn =
if prover = "" then !default_prover
else assoc prover (!prover_list) in
let ithms = map snd (filter ((=) "*" o fst) asl) in
proof_fn (xthms @ ithms) tm;;
(* ------------------------------------------------------------------------- *)
(* Either do justification or split off subproof then call ttac with result. *)
(* ------------------------------------------------------------------------- *)
let JUSTIFY_THEN wtm ((pr,tls) as jdata) ttac (asl,w as gl) =
if pr = "proof" then
SUBGOAL_THEN wtm ttac gl
else
let wth = JUSTIFY jdata asl wtm in
ttac wth gl;;
(* ------------------------------------------------------------------------- *)
(* Utilise a conclusion. *)
(* ------------------------------------------------------------------------- *)
let (MIZAR_CONCLUSION_TAC:thm_tactic) =
let t_tm = `T` in
let CONJ_ASSOC_RULE =
EQT_ELIM o
GEN_REWRITE_RULE RAND_CONV [EQT_INTRO(SPEC_ALL EQ_REFL)] o
PURE_REWRITE_CONV[GSYM CONJ_ASSOC] in
fun th (asl,w as gl) ->
let cjs = conjuncts(concl th) in
let cjs1,cjs2 = chop_list(length cjs) (conjuncts w) in
if cjs2 = [] then
let th' = EQ_MP (CONJ_ASSOC_RULE(mk_eq(concl th,w))) th in
null_meta,[asl,t_tm],fun i _ -> INSTANTIATE i th'
else
let w1 = list_mk_conj cjs1
and w2 = list_mk_conj cjs2 in
let w12 = mk_conj(w1,w2) in
let th' = EQ_MP (CONJ_ASSOC_RULE(mk_eq(concl th,w1))) th in
let wth = CONJ_ASSOC_RULE(mk_eq(w,w12)) in
(SUBST1_TAC wth THEN CONJ_TAC THENL [ACCEPT_TAC th'; ALL_TAC]) gl;;
(* ------------------------------------------------------------------------- *)
(* Transitivity chain stuff; store a list of useful transitivity theorems. *)
(* ------------------------------------------------------------------------- *)
let mizar_transitivity_net = ref empty_net;;
let add_mizar_transitivity_theorem th =
let pat = fst(dest_imp(snd(strip_forall(concl th)))) in
mizar_transitivity_net :=
enter [] (pat,MATCH_MP th) (!mizar_transitivity_net);;
let TRANSITIVITY_CHAIN th1 th2 ttac =
let tm1 = concl th1
and tm2 = concl th2 in
let th =
if is_eq tm1 then
EQ_MP (SYM (AP_THM (AP_TERM (rator(rator tm2)) th1) (rand tm2))) th2
else if is_eq tm2 then
EQ_MP (AP_TERM (rator tm1) th2) th1
else
let th12 = CONJ th1 th2 in
tryfind (fun rule -> rule th12)
(lookup (concl th12) (!mizar_transitivity_net)) in
ttac th;;
(* ------------------------------------------------------------------------- *)
(* Perform terminal or initial step. *)
(* ------------------------------------------------------------------------- *)
let MIZAR_SUBSTEP_TAC =
fun labs thm (asl,w) ->
let asl' = augments labs thm asl in
null_meta,[asl',w],
K(function [th] -> PROVE_HYP thm th | _ -> fail());;
let MIZAR_BISTEP_TAC =
fun termflag labs jth ->
if termflag then
MIZAR_SUBSTEP_TAC labs jth THEN
MIZAR_CONCLUSION_TAC jth
else
MIZAR_SUBSTEP_TAC labs jth;;
let MIZAR_STEP_TAC =
fun termflag lfs (pr,tls as jdata) (asl,w as gl) ->
let tm = mizarate_term gl (delabel lfs) in
if try fst(dest_const(lhand tm)) = "..." with Failure _ -> false then
let thp = snd(hd asl) in
let lhd = rand(concl thp) in
let tm' = mk_comb(mk_comb(rator(rator tm),lhd),rand tm) in
JUSTIFY_THEN tm' (pr,tls)
(fun th -> TRANSITIVITY_CHAIN thp th
(MIZAR_BISTEP_TAC termflag (map fst lfs))) gl
else
JUSTIFY_THEN tm (pr,tls)
(MIZAR_BISTEP_TAC termflag (map fst lfs)) gl;;
(* ------------------------------------------------------------------------- *)
(* Perform an "end": finish the trivial goal. *)
(* ------------------------------------------------------------------------- *)
let MIZAR_END_TAC = ACCEPT_TAC TRUTH;;
(* ------------------------------------------------------------------------- *)
(* Perform "assume <lform>" *)
(* ------------------------------------------------------------------------- *)
let (MIZAR_ASSUME_TAC: (string * preterm) list -> tactic) =
let f_tm = `F`
and CONTRA_HACK = CONV_RULE(REWR_CONV(TAUT `(~p ==> F) <=> p`)) in
fun lfs (asl,w as gl) ->
let tm = mizarate_term gl (delabel lfs) in
if try aconv (dest_neg tm) w with Failure _ -> false then
(null_meta,[augments (map fst lfs) (ASSUME tm) asl,f_tm],
(fun i -> function [th] -> CONTRA_HACK(DISCH (instantiate i tm) th)
| _ -> fail()))
else if try aconv tm (fst(dest_imp w)) with Failure _ -> false then
(null_meta,[augments (map fst lfs) (ASSUME tm) asl,rand w],
(fun i -> function [th] -> DISCH (instantiate i tm) th
| _ -> fail()))
else failwith "MIZAR_ASSUME_REF: Bad thesis";;
(* ------------------------------------------------------------------------- *)
(* Perform "let <v1>,...,<vn> [be <type>]" *)
(* ------------------------------------------------------------------------- *)
let (MIZAR_LET_TAC: preterm list * hol_type list -> tactic) =
fun (vlist,tys) (asl,w as gl) ->
let ty = if tys = [] then type_of(fst(dest_forall w)) else hd tys in
let pty = pretype_of_type ty in
let mk_varb v =
(term_of_preterm o retypecheck []) (Typing(v,pty)) in
let vs = map mk_varb vlist in
MAP_EVERY X_GEN_TAC vs gl;;
(* ------------------------------------------------------------------------- *)
(* Perform "take <tm>" *)
(* ------------------------------------------------------------------------- *)
let (MIZAR_TAKE_TAC: preterm -> tactic) =
fun ptm (asl,w as gl) ->
let ptm' = Typing(ptm,pretype_of_type(type_of(fst(dest_exists w)))) in
let tm = mizarate_term (asl,w) ptm' in
EXISTS_TAC tm gl;;
(* ------------------------------------------------------------------------- *)
(* Perform "suffices to prove <form> by <just>". *)
(* ------------------------------------------------------------------------- *)
let MIZAR_SUFFICES_TAC =
fun new0 ((pr,tlist) as jdata) (asl,w as gl) ->
let nw = mizarate_term gl (end_itlist (curry pmk_conj) new0) in
JUSTIFY_THEN (mk_imp(nw,w)) jdata
(fun jth (asl,w) ->
null_meta,[asl,nw],
(fun i -> function [th] -> MP (INSTANTIATE_ALL i jth) th
| _ -> fail())) gl;;
(* ------------------------------------------------------------------------- *)
(* Perform "set <lform>" *)
(* ------------------------------------------------------------------------- *)
let MIZAR_SET_TAC =
fun (lab,ptm) (asl,w as gl) ->
let tm = mizarate_term gl ptm in
let v,t = dest_eq tm in
CHOOSE_THEN (fun th -> SUBST_ALL_TAC th THEN
LABEL_TAC (mklabel lab) (SYM th))
(EXISTS(mk_exists(v,mk_eq(t,v)),t) (REFL t)) gl;;
(* ------------------------------------------------------------------------- *)
(* Perform "consider <vars> such that <lform> by <just>". *)
(* ------------------------------------------------------------------------- *)
let MIZAR_CONSIDER_TAC =
fun vars0 lfs ((pr,tls) as jdata) (asl,w as gl) ->
let ptm = itlist (curry pmk_exists) vars0 (delabel lfs) in
let etm = mizarate_term gl ptm in
let vars,tm = nsplit dest_exists vars0 etm in
JUSTIFY_THEN etm jdata
(fun jth (asl,w) ->
null_meta,[augments (map fst lfs) (ASSUME tm) asl,w],
(fun i -> function [th] -> MP (itlist IMP_CHOOSE_RULE vars
(DISCH (instantiate i tm) th)) jth
| _ -> fail())) gl;;
(* ------------------------------------------------------------------------- *)
(* Perform "given <terms> such that <lform>". *)
(* ------------------------------------------------------------------------- *)
let MIZAR_GIVEN_TAC =
fun vars0 lfs (asl,w as gl) ->
let ant = fst(dest_imp w) in
let gvars,gbod = nsplit dest_exists vars0 ant in
let tvars = map2
(fun p v -> Typing(p,pretype_of_type(snd(dest_var v)))) vars0 gvars in
let ptm = itlist (curry pmk_exists) tvars (delabel lfs) in
let etm = mizarate_term gl ptm in
let vars,tm = nsplit dest_exists vars0 etm in
if try aconv ant etm with Failure _ -> false then
null_meta,[augments (map fst lfs) (ASSUME tm) asl,rand w],
(fun i -> function [th] -> DISCH ant
(MP (itlist IMP_CHOOSE_RULE vars
(DISCH (instantiate i tm) th))
(ASSUME ant))
| _ -> fail())
else failwith "MIZAR_GIVEN_TAC: Bad thesis";;
(* ------------------------------------------------------------------------- *)
(* Initialize a case split. *)
(* ------------------------------------------------------------------------- *)
let MIZAR_PER_CASES_TAC =
fun jdata (asl,w as gl) ->
null_meta,[gl],
K(function [th] ->
let ghyps = itlist (union o hyp o snd) asl [] in
let rogues = subtract (hyp th) ghyps in
if rogues = [] then th
else if tl rogues = [] then
let thm = JUSTIFY jdata asl (hd rogues) in
PROVE_HYP thm th
else failwith "MIZAR_PER_CASES_ATAC: Too many suppositions"
| _ -> fail());;
(* ------------------------------------------------------------------------- *)
(* Perform a case split. NB! This tactic is not "valid" in the LCF sense. *)
(* We could make it so, but that would force classical logic! *)
(* ------------------------------------------------------------------------- *)
let MIZAR_SUPPOSE_TAC =
fun lfs (asl,w as gl) ->
let asm = mizarate_term gl (delabel lfs) in
let ghyps = itlist (union o hyp o snd) asl [] in
null_meta,
[augments (map fst lfs) (ASSUME asm) asl,w; gl],
K(function [th1; th2] ->
let hyp1 = hyp th1
and hyp2 = hyp th2 in
let asm1 = subtract hyp1 ghyps
and asm2 = subtract hyp2 ghyps in
if asm1 = [] then th1 else if asm2 = [] then th2
else if tl asm1 = [] && tl asm2 = [] then
DISJ_CASES (ASSUME(mk_disj(hd asm1,hd asm2))) th1 th2
else failwith "MIZAR_SUPPOSE_TAC: Too many suppositions"
| _ -> fail());;
let MIZAR_SUPPOSE_REF lfs =
by (MIZAR_SUPPOSE_TAC lfs) o by (TRY MIZAR_END_TAC);;
(* ------------------------------------------------------------------------- *)
(* Terminate a case split. *)
(* ------------------------------------------------------------------------- *)
let MIZAR_RAW_ENDCASE_TAC =
let pth = ITAUT `F ==> p`
and p = `p:bool` in
fun (asl,w) ->
let th = UNDISCH (INST [w,p] pth) in
null_meta,[],fun _ _ -> th;;
let MIZAR_ENDCASE_REF =
by MIZAR_RAW_ENDCASE_TAC o by (TRY MIZAR_END_TAC);;
(* ------------------------------------------------------------------------- *)
(* Parser-processor for textual version of Mizar proofs. *)
(* ------------------------------------------------------------------------- *)
let add_mizar_words,subtract_mizar_words =
let l = ["assume"; "take"; "set"; "given"; "such"; "that";
"proof"; "end"; "consider"; "suffices"; "to"; "show";
"per"; "cases"; "endcase"; "suppose"; "be";
"then"; "thus"; "hence"; "by"; "so"] in
(fun () -> reserve_words l),
(fun () -> unreserve_words l);;
let parse_preform l =
let ptm,rst = parse_preterm l in
let ptm' = Typing(ptm,Ptycon("bool",[])) in
ptm',rst;;
let parse_fulltype l =
let pty,rst = parse_pretype l in
type_of_pretype pty,rst;;
let parse_ident l =
match (hd l) with
Ident n -> n,tl l
| _ -> raise Noparse;;
let parse_string l =
match (hd l) with
Ident n -> n,tl l
| Resword n -> n,tl l;;
let rec parse_lform oldlab l =
match l with
(Ident n)::(Resword ":")::rst ->
if oldlab = "" then parse_lform n rst
else failwith "Too many labels"
| _ -> let fm,rst = parse_preform l in (oldlab,fm),rst;;
let parse_lforms oldlab =
listof (parse_lform oldlab) (a (Resword "and")) "labelled formula";;
let parse_just tlink l =
if l = [] then
if tlink then ("",[L""]),l
else ("",[]),l else
match (hd l) with
Resword "by" ->
let pot,rem = parse_string (tl l) in
if rem = [] || hd rem <> Ident "," && hd rem <> Ident "with" then
if can (assoc pot) (!prover_list) then
(pot,if tlink then [L""] else []),rem
else
("",if tlink then [L""; L pot] else [L pot]),rem
else if hd rem = Ident "," then
let oths,rst = listof parse_string (a (Ident ",")) "theorem name"
(tl rem) in
let ths = if tlink then ""::pot::oths else pot::oths in
("",map L ths),rst
else
let oths,rst = listof parse_string (a (Ident ",")) "theorem name"
(tl rem) in
let ths = if tlink then ""::oths else oths in
(pot,map L ths),rst
| Resword "proof" ->
("proof",[]),tl l
| _ ->
if tlink then ("",[L""]),l
else ("",[]),l;;
let rec parse_step tlink l =
(a (Resword "assume") ++ parse_lforms ""
>> (by o MIZAR_ASSUME_TAC o snd)
||| (a (Resword "let") ++ (parse_preterm >> split_ppair) ++
possibly (a (Resword "be") ++ parse_fulltype >> snd)
>> (fun ((_,vnames),ty) -> by (MIZAR_LET_TAC (vnames,ty))))
||| (a (Resword "take") ++ parse_preterm
>> (by o MIZAR_TAKE_TAC o snd))
||| (a (Resword "set") ++ parse_lforms ""
>> (itlist (by o MIZAR_SET_TAC) o snd))
||| (a (Resword "consider") ++
(parse_preterm >> split_ppair) ++
a (Resword "such") ++
a (Resword "that") ++
parse_lforms "" ++
parse_just tlink
>> (fun (((((_,vars),_),_),lf),jst) -> by (MIZAR_CONSIDER_TAC vars lf jst)))
||| (a (Resword "given") ++
(parse_preterm >> split_ppair) ++
a (Resword "such") ++
a (Resword "that") ++
parse_lforms ""
>> (fun ((((_,vars),_),_),lf) -> by (MIZAR_GIVEN_TAC vars lf)))
||| (a (Resword "suffices") ++
a (Resword "to") ++
a (Resword "show") ++
parse_lforms "" ++
parse_just tlink
>> (fun ((((_,_),_),lf),jst) -> by (MIZAR_SUFFICES_TAC (map snd lf) jst)))
||| (a (Resword "per") ++
a (Resword "cases") ++
parse_just tlink
>> (fun ((_,_),jst) -> by (MIZAR_PER_CASES_TAC jst)))
||| (a (Resword "suppose") ++
parse_lforms ""
>> (fun (_,lf) -> MIZAR_SUPPOSE_REF lf))
||| (a (Resword "endcase")
>> K MIZAR_ENDCASE_REF)
||| (a (Resword "end")
>> K (by MIZAR_END_TAC))
||| (a (Resword "then") ++ parse_step true
>> snd)
||| (a (Resword "so") ++ parse_step true
>> snd)
||| (a (Resword "hence") ++
parse_lforms "" ++
parse_just true
>> (fun ((_,lf),jst) -> by (MIZAR_STEP_TAC true lf jst)))
||| (a (Resword "thus") ++
parse_lforms "" ++
parse_just tlink
>> (fun ((_,lf),jst) -> by (MIZAR_STEP_TAC true lf jst)))
||| (parse_lforms "" ++ parse_just tlink
>> (fun (lf,jst) -> by (MIZAR_STEP_TAC false lf jst)))) l;;
(* ------------------------------------------------------------------------- *)
(* From now on, quotations evaluate to preterms. *)
(* ------------------------------------------------------------------------- *)
let run_steps lexemes =
let rec compose_steps lexemes gs =
if lexemes = [] then gs else
let rf,rest = parse_step false lexemes in
let gs' = rf gs in
if rest <> [] && hd rest = Resword ";" then compose_steps (tl rest) gs'
else compose_steps rest gs' in
refine (compose_steps lexemes);;
(* ------------------------------------------------------------------------- *)
(* Include some theorems. *)
(* ------------------------------------------------------------------------- *)
do_list add_mizar_transitivity_theorem
[LE_TRANS; LT_TRANS; LET_TRANS; LTE_TRANS];;
do_list add_mizar_transitivity_theorem
[INT_LE_TRANS; INT_LT_TRANS; INT_LET_TRANS; INT_LTE_TRANS];;
do_list add_mizar_transitivity_theorem
[REAL_LE_TRANS; REAL_LT_TRANS; REAL_LET_TRANS; REAL_LTE_TRANS];;
do_list add_mizar_transitivity_theorem
[SUBSET_TRANS; PSUBSET_TRANS; PSUBSET_SUBSET_TRANS; SUBSET_PSUBSET_TRANS];;
(* ------------------------------------------------------------------------- *)
(* Simple example: Knaster-Tarski fixpoint theorem. *)
(* ------------------------------------------------------------------------- *)
add_mizar_words();;
hide_constant "<=";;
(*** Set up goal ***)
g `!f. (!x y. x <= y /\ y <= x ==> (x = y)) /\
(!x y z. x <= y /\ y <= z ==> x <= z) /\
(!x y. x <= y ==> f x <= f y) /\
(!X. ?s:A. (!x. x IN X ==> s <= x) /\
(!s'. (!x. x IN X ==> s' <= x) ==> s' <= s))
==> ?x. f x = x`;;
(*** Start parsing quotations as Mizar directives ***)
let parse_term = run_steps o lex o explode;;
(*** Label the external facts needed ***)
e(LABEL_TAC "IN_ELIM_THM" IN_ELIM_THM);;
e(LABEL_TAC "BETA_THM" BETA_THM);;
(*** The proof itself ***)
`let f be A->A;
assume L:antecedent;
antisymmetry: (!x y. x <= y /\ y <= x ==> (x = y)) by L;
transitivity: (!x y z. x <= y /\ y <= z ==> x <= z) by L;
monotonicity: (!x y. x <= y ==> f x <= f y) by L;
least_upper_bound:
(!X. ?s:A. (!x. x IN X ==> s <= x) /\
(!s'. (!x. x IN X ==> s' <= x) ==> s' <= s)) by L;
set Y_def: Y = {b | f b <= b};
Y_thm: !b. b IN Y <=> f b <= b by Y_def,IN_ELIM_THM,BETA_THM;
consider a such that
lub: (!x. x IN Y ==> a <= x) /\
(!a'. (!x. x IN Y ==> a' <= x) ==> a' <= a)
by least_upper_bound;
take a;
!b. b IN Y ==> f a <= b
proof
let b be A;
assume b_in_Y: b IN Y;
then L0: f b <= b by Y_thm;
a <= b by b_in_Y, lub;
so f a <= f b by monotonicity;
hence f a <= b by L0, transitivity;
end;
so Part1: f(a) <= a by lub;
so f(f(a)) <= f(a) by monotonicity;
so f(a) IN Y by Y_thm;
so a <= f(a) by lub;
hence thesis by Part1, antisymmetry;
end`;;
(*** Get the theorem ***)
top_thm();;
(* ------------------------------------------------------------------------- *)
(* Back to normal. *)
(* ------------------------------------------------------------------------- *)
let parse_term = old_parse_term;;
|