1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
|
(* ========================================================================= *)
(* Construction of p-adic numbers. *)
(* ========================================================================= *)
needs "Library/prime.ml";; (* For the "index" function only *)
needs "Multivariate/metric.ml";; (* For metric spaces *)
(* ------------------------------------------------------------------------- *)
(* p-adic norm on the rationals (call it "qnorm" then extend it to "pnorm"). *)
(* ------------------------------------------------------------------------- *)
let [qnorm_def; QNORM_EQ_0; QNORM_ABS] =
let qnorm_exists = prove
(`?qnorm.
(!p m n. prime p /\ ~(m = 0) /\ ~(n = 0)
==> qnorm p (&m / &n) =
&p pow (index p n) / &p pow (index p m)) /\
(!p x. qnorm p x = &0 <=> ~prime p \/ ~rational x \/ x = &0) /\
(!p x. qnorm p (abs x) = qnorm p x)`,
SUBGOAL_THEN
`?padic. !p m n.
padic p (&m / &n) =
if ~prime p \/ m = 0 \/ n = 0 then &0
else &p pow (index p n) / &p pow (index p m)`
STRIP_ASSUME_TAC THENL
[REWRITE_TAC[GSYM SKOLEM_THM] THEN GEN_TAC THEN
REWRITE_TAC[FORALL_UNPAIR_THM] THEN
GEN_REWRITE_TAC BINDER_CONV [GSYM FUN_EQ_THM] THEN
GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV) [GSYM o_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN
GEN_REWRITE_TAC I [GSYM FUNCTION_FACTORS_LEFT] THEN
REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`; `a2:num`; `b2:num`] THEN
ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[real_div] THEN
MAP_EVERY (fun t ->
ASM_CASES_TAC t THENL
[ASM_REWRITE_TAC[] THEN
ASM_METIS_TAC[REAL_INV_EQ_0; REAL_ENTIRE; REAL_OF_NUM_EQ];
ALL_TAC]) [`a1 = 0`; `a2 = 0`; `b1 = 0`; `b2 = 0`] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN
ASM_SIMP_TAC[REAL_POW_EQ_0; REAL_OF_NUM_EQ; REAL_FIELD
`~(y1 = &0) /\ ~(y2 = &0)
==> (x1 * inv y1 = x2 * inv y2 <=> x1 * y2 = x2 * y1)`] THEN
REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_POW; REAL_OF_NUM_EQ] THEN
REWRITE_TAC[GSYM EXP_ADD] THEN DISCH_THEN(MP_TAC o AP_TERM `index p`) THEN
ASM_SIMP_TAC[ONCE_REWRITE_RULE[ADD_SYM] INDEX_MUL];
EXISTS_TAC `\p x. if rational x then (padic:num->real->real) p (abs x)
else &0` THEN
ASM_SIMP_TAC[RATIONAL_ABS_EQ; REAL_ABS_ABS; RATIONAL_CLOSED] THEN
REWRITE_TAC[MESON[]
`((if q then y else &0) = &0 <=> ~p \/ ~q \/ x = &0) <=>
(q ==> (y = &0 <=> ~p \/ x = &0))`] THEN
REWRITE_TAC[RATIONAL_ALT; LEFT_IMP_EXISTS_THM] THEN
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NUM] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `x:real`; `m:num`; `n:num`] THEN
ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN REWRITE_TAC[REAL_DIV_EQ_0; REAL_POW_EQ_0] THEN
ASM_SIMP_TAC[REAL_ABS_ZERO; real_div; REAL_MUL_LZERO; INDEX_EQ_0] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN
ASM_SIMP_TAC[REAL_OF_NUM_EQ] THEN MATCH_MP_TAC(REAL_ARITH
`~(a = &0) ==> abs x = a ==> ~(x = &0)`) THEN
ASM_REWRITE_TAC[REAL_ENTIRE; REAL_INV_EQ_0; REAL_OF_NUM_EQ]]) in
CONJUNCTS(new_specification ["qnorm"] qnorm_exists);;
let qnorm = prove
(`!p m n. qnorm p (&m / &n) =
if ~prime p \/ m = 0 \/ n = 0 then &0
else &p pow (index p n) / &p pow (index p m)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[RATIONAL_CLOSED; QNORM_EQ_0; REAL_DIV_EQ_0; REAL_OF_NUM_EQ] THEN
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN ASM_SIMP_TAC[qnorm_def]);;
let QNORM_NEG = prove
(`!p x. qnorm p (--x) = qnorm p x`,
MESON_TAC[QNORM_ABS; REAL_ABS_NEG]);;
let QNORM_0 = prove
(`!p. qnorm p (&0) = &0`,
REWRITE_TAC[QNORM_EQ_0]);;
let QNORM_MUL = prove
(`!p x y. (rational (x * y) ==> rational x /\ rational y)
==> qnorm p (x * y) = qnorm p x * qnorm p y`,
REPEAT GEN_TAC THEN MAP_EVERY
(fun t -> ASM_CASES_TAC t THENL
[ALL_TAC; ASM_METIS_TAC[QNORM_EQ_0; REAL_ENTIRE]])
[`prime p`; `rational x`; `rational y`] THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM QNORM_ABS] THEN
REWRITE_TAC[REAL_ABS_MUL] THEN
MAP_EVERY UNDISCH_TAC [`rational y`; `rational x`] THEN
SIMP_TAC[RATIONAL_ALT; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`] THEN STRIP_TAC THEN
MAP_EVERY X_GEN_TAC [`a2:num`; `b2:num`] THEN STRIP_TAC THEN
REWRITE_TAC[REAL_ARITH
`a1 / b1 * a2 / b2:real = (a1 * a2) * inv b1 * inv b2`] THEN
REWRITE_TAC[GSYM REAL_INV_MUL; REAL_OF_NUM_MUL] THEN
ASM_REWRITE_TAC[qnorm; GSYM real_div; MULT_EQ_0] THEN
ASM_CASES_TAC `a1 = 0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO] THEN
ASM_CASES_TAC `a2 = 0` THEN ASM_REWRITE_TAC[REAL_MUL_RZERO] THEN
ASM_SIMP_TAC[INDEX_MUL; REAL_POW_ADD] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_IMP_NZ) THEN
REWRITE_TAC[GSYM REAL_OF_NUM_EQ] THEN CONV_TAC REAL_FIELD);;
let QNORM_1 = prove
(`!p. qnorm p (&1) = if prime p then &1 else &0`,
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[QNORM_EQ_0] THEN
MATCH_MP_TAC(REAL_RING `~(x = &0) /\ x * x = x ==> x = &1`) THEN
ASM_SIMP_TAC[QNORM_EQ_0; RATIONAL_CLOSED; GSYM QNORM_MUL] THEN
REWRITE_TAC[REAL_MUL_LID] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
let QNORM_INV = prove
(`!p x. rational x ==> qnorm p (inv x) = inv(qnorm p x)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `x:real = &0` THEN
ASM_REWRITE_TAC[REAL_INV_0; QNORM_0] THEN ASM_CASES_TAC `prime p` THENL
[ALL_TAC; ASM_METIS_TAC[QNORM_EQ_0; REAL_INV_0]] THEN
MATCH_MP_TAC(REAL_FIELD `x * y = &1 ==> x = inv y`) THEN
ASM_SIMP_TAC[GSYM QNORM_MUL; RATIONAL_CLOSED] THEN
ASM_SIMP_TAC[REAL_MUL_LINV; QNORM_1]);;
let QNORM_POS_LE = prove
(`!p x. &0 <= qnorm p x`,
REPEAT GEN_TAC THEN
MATCH_MP_TAC(REAL_ARITH `(~(x = &0) ==> &0 <= x) ==> &0 <= x`) THEN
REWRITE_TAC[QNORM_EQ_0; DE_MORGAN_THM] THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[GSYM QNORM_ABS] THEN
MAP_EVERY UNDISCH_TAC [`~(x = &0)`; `rational x`] THEN
SIMP_TAC[RATIONAL_ALT; LEFT_IMP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[GSYM REAL_ABS_ZERO] THEN
SIMP_TAC[REAL_DIV_EQ_0; REAL_OF_NUM_EQ] THEN
ASM_SIMP_TAC[qnorm_def; REAL_LE_DIV; REAL_POW_LE; REAL_POS]);;
let QNORM_POS_LT = prove
(`!p x. &0 < qnorm p x <=> prime p /\ rational x /\ ~(x = &0)`,
REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
REWRITE_TAC[QNORM_POS_LE; QNORM_EQ_0] THEN CONV_TAC TAUT);;
let QNORM_ULTRA = prove
(`!p x y. (rational(x + y) ==> rational x /\ rational y)
==> qnorm p (x + y) <= max (qnorm p x) (qnorm p y)`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `x = &0` THEN
ASM_REWRITE_TAC[REAL_ADD_LID; REAL_ARITH `y <= max x y`] THEN
ASM_CASES_TAC `y = &0` THEN
ASM_REWRITE_TAC[REAL_ADD_RID; REAL_ARITH `x <= max x y`] THEN
ASM_CASES_TAC `prime p` THENL
[ALL_TAC; ASM_METIS_TAC[QNORM_EQ_0; REAL_ARITH `x <= max x x`]] THEN
ASM_CASES_TAC `rational(x + y)` THEN
ASM_REWRITE_TAC[] THENL
[REPEAT(POP_ASSUM MP_TAC);
MATCH_MP_TAC(REAL_ARITH `x = &0 /\ &0 <= y ==> x <= max y z`) THEN
ASM_REWRITE_TAC[QNORM_POS_LE; QNORM_EQ_0]] THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`y:real`; `x:real`] THEN
MATCH_MP_TAC(MESON[REAL_LE_TOTAL]
`(!x y. P x y ==> P y x) /\ (!x y. abs y <= abs x ==> P x y)
==> (!x y. P x y)`) THEN
CONJ_TAC THENL
[MESON_TAC[REAL_ADD_SYM; REAL_ARITH `max a b = max b a`];
REPEAT STRIP_TAC] THEN
MAP_EVERY UNDISCH_TAC
[`~(x = &0)`; `~(y = &0)`; `rational y`; `rational x`] THEN
SIMP_TAC[RATIONAL_ALT; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`] THEN STRIP_TAC THEN
MAP_EVERY X_GEN_TAC [`a2:num`; `b2:num`] THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[GSYM REAL_ABS_ZERO] THEN ASM_REWRITE_TAC[REAL_DIV_EQ_0] THEN
ASM_REWRITE_TAC[REAL_OF_NUM_EQ] THEN REPEAT DISCH_TAC THEN
ONCE_REWRITE_TAC[GSYM QNORM_ABS] THEN
FIRST_ASSUM(DISJ_CASES_THEN SUBST1_TAC o MATCH_MP
(REAL_ARITH `abs y <= abs x ==> abs(x + y) = abs x + abs y \/
abs(x + y) = abs x - abs y`)) THEN
UNDISCH_TAC `abs y <= abs x` THEN
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
ONCE_REWRITE_TAC[REAL_ARITH `a / b * c:real = (a * c) / b`] THEN
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_FIELD
`~(b1 = &0) /\ ~(b2 = &0)
==> a1 / b1 + a2 / b2 = (a1 * b2 + a2 * b1) / (b1 * b2) /\
a1 / b1 - a2 / b2 = (a1 * b2 - a2 * b1) / (b1 * b2)`] THEN
REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_ADD; REAL_OF_NUM_LE] THEN
SIMP_TAC[REAL_OF_NUM_SUB] THEN DISCH_TAC THEN
ASM_REWRITE_TAC[qnorm; MULT_EQ_0; REAL_LE_MAX; ADD_EQ_0] THEN
TRY COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_LE_DIV; REAL_POW_LE; REAL_POS] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1; REAL_POW_LT] THEN
ONCE_REWRITE_TAC[REAL_ARITH `a / b * c:real = (a * c) / b`] THEN
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1; REAL_POW_LT] THEN
REWRITE_TAC[GSYM REAL_POW_ADD] THEN MATCH_MP_TAC(MESON[REAL_POW_MONO]
`&1 <= p /\ (u <= v \/ x <= y)
==> p pow u <= p pow v \/ p pow x <= p pow y`) THEN
ASM_SIMP_TAC[REAL_OF_NUM_LE; PRIME_IMP_NZ; LE_1; INDEX_MUL] THEN
REWRITE_TAC[ARITH_RULE `(b1 + b2) + a1:num <= b1 + c <=> b2 + a1 <= c`] THEN
REWRITE_TAC[ARITH_RULE `(b1 + b2) + a1:num <= b2 + c <=> b1 + a1 <= c`] THEN
ASM_SIMP_TAC[GSYM INDEX_MUL] THEN
REWRITE_TAC[ARITH_RULE `x <= z \/ y <= z <=> MIN x y <= z`] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
REWRITE_TAC[INDEX_ADD_MIN] THEN MATCH_MP_TAC INDEX_SUB_MIN THEN
ASM_ARITH_TAC);;
let QNORM_TRIANGLE = prove
(`!p x y. (rational(x + y) ==> rational x /\ rational y)
==> qnorm p (x + y) <= qnorm p x + qnorm p y`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o SPEC `p:num` o MATCH_MP QNORM_ULTRA) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ &0 <= y ==> max x y <= x + y`) THEN
REWRITE_TAC[QNORM_POS_LE]);;
(* ------------------------------------------------------------------------- *)
(* p-adic metric on the rationals. To keep theorems cleaner, we default to *)
(* p = 2 in the case where p is non-prime. *)
(* ------------------------------------------------------------------------- *)
let qadic_metric = new_definition
`qadic_metric p =
metric(rational,(\(x,y). qnorm (if prime p then p else 2) (x - y)))`;;
let QADIC_METRIC = prove
(`(!p. mspace(qadic_metric p) = rational) /\
(!p x y. mdist(qadic_metric p) (x,y) =
if prime p then qnorm p (x - y)
else qnorm 2 (x - y))`,
REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `p:num` THEN
MP_TAC(ISPECL [`rational`;
`\(x,y). qnorm (if prime p then p else 2) (x - y)`] METRIC) THEN
ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[qadic_metric] THEN
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[is_metric_space] THEN
ASM_SIMP_TAC[QNORM_POS_LE; QNORM_EQ_0; RATIONAL_CLOSED; REAL_SUB_0;
PRIME_2; IN] THEN
(CONJ_TAC THENL [MESON_TAC[QNORM_ABS; REAL_ABS_SUB]; ALL_TAC]) THEN
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`; `z:real`] THEN STRIP_TAC THEN
SUBST1_TAC(REAL_ARITH `x - z:real = (x - y) + (y - z)`) THEN
ASM_SIMP_TAC[QNORM_TRIANGLE; RATIONAL_CLOSED]);;
let QADIC_ULTRAMETRIC = prove
(`!p x y z.
x IN mspace(qadic_metric p) /\
y IN mspace(qadic_metric p) /\
z IN mspace(qadic_metric p)
==> mdist(qadic_metric p) (x,z) <=
max (mdist(qadic_metric p) (x,y)) (mdist(qadic_metric p) (y,z))`,
GEN_TAC THEN ASM_CASES_TAC `prime p` THEN
ASM_REWRITE_TAC[QADIC_METRIC] THEN REWRITE_TAC[IN] THEN
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`; `z:real`] THEN STRIP_TAC THEN
SUBST1_TAC(REAL_ARITH `x - z:real = (x - y) + (y - z)`) THEN
ASM_SIMP_TAC[QNORM_ULTRA; RATIONAL_CLOSED]);;
(* ------------------------------------------------------------------------- *)
(* Actual padics; make them a whole type ":padic", overlaying the versions *)
(* for different p's with the same embedding of the rationals (using some *)
(* arbitrary countably infinite subset that's the same for each value of p). *)
(* ------------------------------------------------------------------------- *)
let padic_tybij =
let th = prove(`?x:real. T`,REWRITE_TAC[]) in
REWRITE_RULE[] (new_type_definition "padic" ("mk_padic","dest_padic") th);;
let CARD_EQ_PADIC = prove
(`(:padic) =_c (:real)`,
REWRITE_TAC[EQ_C_BIJECTIONS; IN_UNIV] THEN
MAP_EVERY EXISTS_TAC [`dest_padic`; `mk_padic`] THEN
MESON_TAC[padic_tybij]);;
let prational =
let th = prove
(`?s:padic->bool. s =_c (:num)`,
REWRITE_TAC[CARD_LE_EQ_SUBSET_UNIV] THEN
TRANS_TAC CARD_LE_TRANS `(:real)` THEN
SIMP_TAC[CARD_LT_NUM_REAL; CARD_LT_IMP_LE] THEN
MATCH_MP_TAC CARD_EQ_IMP_LE THEN
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN
MATCH_ACCEPT_TAC CARD_EQ_PADIC) in
new_specification ["prational"] th;;
let padic_of_rational,rational_of_padic =
let th = prove
(`prational =_c rational`,
TRANS_TAC CARD_EQ_TRANS `(:num)` THEN
MESON_TAC[CARD_EQ_RATIONAL; CARD_EQ_SYM; prational]) in
CONJ_PAIR(new_specification ["rational_of_padic"; "padic_of_rational"]
(REWRITE_RULE[EQ_C_BIJECTIONS; IN_UNIV] th));;
let IMAGE_PADIC_OF_RATIONAL_RATIONAL = prove
(`IMAGE padic_of_rational rational = prational`,
MP_TAC padic_of_rational THEN MP_TAC rational_of_padic THEN SET_TAC[]);;
let padic_metric =
let PADICS_EXIST = prove
(`!p. ?(m:padic metric).
mcomplete m /\
mspace m = (:padic) /\
mtopology m closure_of prational = (:padic) /\
mtopology m derived_set_of prational = (:padic) /\
!x y. rational x /\ rational y
==> mdist m (padic_of_rational x,padic_of_rational y) =
qnorm (if prime p then p else 2) (x - y)`,
X_GEN_TAC `p:num` THEN
MP_TAC(ISPEC `qadic_metric p` METRIC_COMPLETION_EXPLICIT) THEN
REWRITE_TAC[QADIC_METRIC; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`s:(real->real)->bool`; `f:real->real->real`] THEN
ABBREV_TAC `m = funspace rational real_euclidean_metric` THEN
STRIP_TAC THEN
SUBGOAL_THEN
`mtopology (submetric m s) derived_set_of
(IMAGE f rational):(real->real)->bool = s`
ASSUME_TAC THENL
[MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL
[TRANS_TAC SUBSET_TRANS
`mtopology (submetric m s) derived_set_of s:(real->real)->bool` THEN
ASM_SIMP_TAC[DERIVED_SET_OF_MONO] THEN
REWRITE_TAC[DERIVED_SET_SUBSET_GEN; TOPSPACE_MTOPOLOGY] THEN
MATCH_MP_TAC MCOMPLETE_IMP_CLOSED_IN THEN
REWRITE_TAC[INTER_SUBSET; SUBMETRIC; SUBMETRIC_SUBMETRIC] THEN
ASM_SIMP_TAC[SET_RULE
`s SUBSET m ==> s INTER (s INTER m) INTER s = s`];
TRANS_TAC SUBSET_TRANS
`mtopology(submetric m s) closure_of
(IMAGE (f:real->real->real) rational)` THEN
CONJ_TAC THENL
[REWRITE_TAC[MTOPOLOGY_SUBMETRIC; CLOSURE_OF_SUBTOPOLOGY] THEN
ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> s INTER t = t`; SUBSET_REFL];
ALL_TAC] THEN
REWRITE_TAC[CLOSURE_OF] THEN MATCH_MP_TAC(SET_RULE
`u SUBSET v /\ t SUBSET u ==> s INTER (t UNION u) SUBSET v`) THEN
ASM_SIMP_TAC[DERIVED_SET_OF_MONO] THEN
REWRITE_TAC[METRIC_DERIVED_SET_OF; SUBSET; FORALL_IN_IMAGE] THEN
ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; IN_ELIM_THM; IN_MBALL; SUBMETRIC] THEN
X_GEN_TAC `x:real` THEN DISCH_TAC THEN CONJ_TAC THENL
[ASM SET_TAC[]; X_GEN_TAC `r:real` THEN DISCH_TAC] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN REWRITE_TAC[IN] THEN
RULE_ASSUM_TAC(REWRITE_RULE[MESON[]
`(if prime p then qnorm p x else qnorm q x) =
qnorm (if prime p then p else q) x`]) THEN
ABBREV_TAC `p' = if prime p then p else 2` THEN
SUBGOAL_THEN `prime p' /\ 2 <= p'` STRIP_ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_2; PRIME_GE_2]; ALL_TAC] THEN
MP_TAC(ISPECL [`inv(&p')`; `r:real`] REAL_ARCH_POW_INV) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[MATCH_MP_TAC REAL_INV_LT_1 THEN REWRITE_TAC[REAL_OF_NUM_LT] THEN
ASM_ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN
ABBREV_TAC `y = x + &p' pow n` THEN EXISTS_TAC `y:real` THEN
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN
CONJ_TAC THENL [ASM_MESON_TAC[RATIONAL_CLOSED]; DISCH_TAC] THEN
REWRITE_TAC[INTER; IN_ELIM_THM] THEN ONCE_REWRITE_TAC[TAUT
`p /\ q /\ r /\ s <=> (q /\ r) /\ (q /\ r ==> p /\ s)`] THEN
CONJ_TAC THENL [ASM SET_TAC[]; STRIP_TAC] THEN
MP_TAC(ISPEC `m:(real->real)metric` (GSYM MDIST_0)) THEN
ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN
EXPAND_TAC "y" THEN REWRITE_TAC[REAL_ADD_SUB] THEN
ONCE_REWRITE_TAC[GSYM QNORM_ABS] THEN
REWRITE_TAC[REAL_ARITH `abs(x - (x + y)) = abs y`] THEN
ONCE_REWRITE_TAC[REAL_ARITH `abs x = abs(x / &1)`] THEN
ASM_REWRITE_TAC[QNORM_ABS; qnorm; REAL_OF_NUM_POW] THEN
CONV_TAC NUM_REDUCE_CONV THEN ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ] THEN
ASM_SIMP_TAC[INDEX_1; INDEX_EXP; INDEX_REFL; EXP] THEN
ASM_REWRITE_TAC[ARITH_RULE `p <= 1 <=> ~(2 <= p)`] THEN
REWRITE_TAC[real_div; MULT_CLAUSES; REAL_MUL_LID] THEN
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_POW; REAL_INV_POW] THEN
REWRITE_TAC[REAL_POW_EQ_0; REAL_INV_EQ_0; REAL_OF_NUM_EQ] THEN
ASM_SIMP_TAC[PRIME_IMP_NZ]];
ALL_TAC] THEN
SUBGOAL_THEN `(s:(real->real)->bool) =_c (:real)` ASSUME_TAC THENL
[REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL
[TRANS_TAC CARD_LE_TRANS `mspace m:(real->real)->bool` THEN
ASM_SIMP_TAC[CARD_LE_SUBSET] THEN EXPAND_TAC "m" THEN
TRANS_TAC CARD_LE_TRANS `(:real) ^_c rational` THEN CONJ_TAC THENL
[REWRITE_TAC[EXP_C; FUNSPACE; REAL_EUCLIDEAN_METRIC] THEN
MATCH_MP_TAC CARD_LE_SUBSET THEN SET_TAC[];
SIMP_TAC[CARD_EXP_LE_REAL; CARD_LE_REFL; COUNTABLE_RATIONAL]];
MATCH_MP_TAC CARD_GE_PERFECT_SET THEN
EXISTS_TAC `mtopology(submetric m (s:(real->real)->bool))` THEN
ASM_SIMP_TAC[COMPLETELY_METRIZABLE_SPACE_MTOPOLOGY] THEN
ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN CONJ_TAC THENL
[ALL_TAC; MP_TAC RATIONAL_NUM THEN ASM SET_TAC[]] THEN
MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL
[W(MP_TAC o PART_MATCH lhand DERIVED_SET_OF_SUBSET_CLOSURE_OF o
lhand o snd) THEN
REWRITE_TAC[CLOSURE_OF_SUBTOPOLOGY; MTOPOLOGY_SUBMETRIC] THEN
ASM SET_TAC[];
TRANS_TAC SUBSET_TRANS
`mtopology (submetric m s) derived_set_of
(IMAGE f rational):(real->real)->bool` THEN
ASM_SIMP_TAC[DERIVED_SET_OF_MONO; SUBSET_REFL]]];
ALL_TAC] THEN
MP_TAC(fst(EQ_IMP_RULE(ISPECL [`f:real->real->real`; `rational`]
INJECTIVE_ON_LEFT_INVERSE))) THEN
ANTS_TAC THENL
[MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]) THEN
ASM_REWRITE_TAC[] THEN
W(MP_TAC o PART_MATCH (lhand o rand) MDIST_REFL o lhand o lhand o
snd) THEN
ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN
CONV_TAC(LAND_CONV SYM_CONV) THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[QNORM_EQ_0; PRIME_2; RATIONAL_CLOSED] THEN
REAL_ARITH_TAC;
DISCH_THEN(X_CHOOSE_TAC `f':(real->real)->real`)] THEN
MP_TAC(ISPECL
[`padic_of_rational o (f':(real->real)->real)`;
`(f:real->real->real) o rational_of_padic`;
`IMAGE (f:real->real->real) rational`; `s:(real->real)->bool`;
`prational`; `(:padic)`] EQ_C_BIJECTIONS_EXTEND) THEN
ASM_REWRITE_TAC[IN_UNIV; SUBSET_UNIV] THEN ANTS_TAC THENL
[CONJ_TAC THENL
[MATCH_MP_TAC CARD_DIFF_CONG THEN ASM_REWRITE_TAC[SUBSET_UNIV] THEN
REPEAT CONJ_TAC THENL
[TRANS_TAC CARD_EQ_TRANS `(:real)` THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[CARD_EQ_PADIC];
TRANS_TAC CARD_EQ_TRANS `rational` THEN CONJ_TAC THENL
[MATCH_MP_TAC CARD_EQ_IMAGE THEN ASM SET_TAC[];
TRANS_TAC CARD_EQ_TRANS `(:num)` THEN
REWRITE_TAC[CARD_EQ_RATIONAL] THEN
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[prational]];
DISCH_THEN(K ALL_TAC) THEN TRANS_TAC CARD_LET_TRANS `rational` THEN
REWRITE_TAC[CARD_LE_IMAGE] THEN
TRANS_TAC CARD_LET_TRANS `(:num)` THEN
SIMP_TAC[CARD_EQ_RATIONAL; CARD_EQ_IMP_LE] THEN
TRANS_TAC CARD_LTE_TRANS `(:real)` THEN
REWRITE_TAC[CARD_LT_NUM_REAL] THEN
ASM_MESON_TAC[CARD_EQ_IMP_LE; CARD_EQ_SYM]];
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM] THEN
MP_TAC rational_of_padic THEN MP_TAC padic_of_rational THEN
ASM SET_TAC[]];
REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_IN_IMAGE; IN_UNIV]] THEN
MAP_EVERY X_GEN_TAC [`g:(real->real)->padic`; `h:padic->(real->real)`] THEN
ASM_SIMP_TAC[FORALL_AND_THM; o_THM] THEN STRIP_TAC THEN
ABBREV_TAC `m' = metric(IMAGE (g:(real->real)->padic) s,
(\(x,y). mdist m ((h:padic->real->real) x,h y)))` THEN
EXISTS_TAC `m':padic metric` THEN
MP_TAC(ISPECL
[`IMAGE (g:(real->real)->padic) s`;
`\(x,y). mdist m ((h:padic->real->real) x,h y)`] METRIC) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[REWRITE_TAC[is_metric_space; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN
ASM_SIMP_TAC[MDIST_POS_LE; MDIST_0; MDIST_TRIANGLE] THEN
ASM_MESON_TAC[MDIST_SYM];
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [FUN_EQ_THM] THEN
REWRITE_TAC[FORALL_PAIR_THM] THEN STRIP_TAC] THEN
REWRITE_TAC[IMAGE_o; o_THM] THEN CONJ_TAC THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [mcomplete]) THEN
REWRITE_TAC[CAUCHY_IN_SUBMETRIC; mcomplete; LIMIT_METRIC] THEN
REWRITE_TAC[SUBMETRIC; cauchy_in] THEN DISCH_THEN(LABEL_TAC "*") THEN
X_GEN_TAC `x:num->padic` THEN STRIP_TAC THEN FIRST_X_ASSUM
(MP_TAC o SPEC `(h:padic->real->real) o (x:num->padic)`) THEN
ASM_REWRITE_TAC[o_THM] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; IN_INTER] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `l:real->real` THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN
GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
ASM SET_TAC[];
ALL_TAC] THEN
CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`prational = IMAGE (g:(real->real)->padic)
(IMAGE (f:real->real->real) rational)`
SUBST1_TAC THENL
[MP_TAC rational_of_padic THEN MP_TAC padic_of_rational THEN
ASM SET_TAC[];
ALL_TAC] THEN
UNDISCH_TAC
`!x. x IN rational
==> g ((f:real->real->real) x) = padic_of_rational x` THEN
REWRITE_TAC[IN] THEN
DISCH_THEN(fun th -> SIMP_TAC[GSYM th]) THEN
REPEAT(FIRST_X_ASSUM(K ALL_TAC o check (free_in `prational` o concl))) THEN
MATCH_MP_TAC(TAUT `(q ==> p) /\ q /\ r ==> p /\ q /\ r`) THEN
REPEAT CONJ_TAC THENL
[REWRITE_TAC[CLOSURE_OF; TOPSPACE_MTOPOLOGY] THEN ASM SET_TAC[];
REWRITE_TAC[METRIC_DERIVED_SET_OF] THEN
ASM_REWRITE_TAC[SET_RULE `{y | y IN IMAGE f s /\ P y} =
IMAGE f {x | x IN s /\ P(f x)}`] THEN
SUBGOAL_THEN `(:padic) = IMAGE (g:(real->real)->padic) s`
SUBST1_TAC THENL [ASM SET_TAC[]; AP_TERM_TAC] THEN
FIRST_X_ASSUM
(MP_TAC o GEN_REWRITE_RULE LAND_CONV [METRIC_DERIVED_SET_OF]) THEN
ASM_REWRITE_TAC[SUBMETRIC; IN_MBALL] THEN
ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; IN_MBALL; SUBMETRIC] THEN
ASM_SIMP_TAC[SET_RULE `s SUBSET m ==> s INTER m = s`] THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `k:real->real` THEN
ASM_CASES_TAC `(k:real->real) IN s` THEN ASM_REWRITE_TAC[] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `r:real` THEN ASM_CASES_TAC `&0 < r` THEN
ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM SET_TAC[];
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]) THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]) in
new_specification ["padic_metric"]
(REWRITE_RULE[SKOLEM_THM] PADICS_EXIST);;
(* ------------------------------------------------------------------------- *)
(* Extract the individual characteristics. *)
(* ------------------------------------------------------------------------- *)
let MSPACE_PADIC_METRIC = prove
(`!p. mspace(padic_metric p) = (:padic)`,
REWRITE_TAC[padic_metric]);;
let MCOMPLETE_PADIC_METRIC = prove
(`!p. mcomplete (padic_metric p)`,
REWRITE_TAC[padic_metric]);;
let padic_topology = new_definition
`padic_topology p = mtopology (padic_metric p)`;;
let TOPSPACE_PADIC_TOPOLOGY = prove
(`!p. topspace(padic_topology p) = (:padic)`,
REWRITE_TAC[padic_topology; TOPSPACE_MTOPOLOGY; MSPACE_PADIC_METRIC]);;
let HAUSDORFF_SPACE_PADIC_TOPOLOGY = prove
(`!p. hausdorff_space (padic_topology p)`,
REWRITE_TAC[padic_topology; HAUSDORFF_SPACE_MTOPOLOGY]);;
let CLOSURE_OF_PRATIONAL = prove
(`!p. (padic_topology p) closure_of prational = (:padic)`,
REWRITE_TAC[padic_topology; padic_metric]);;
let DERIVED_SET_OF_PRATIONAL = prove
(`!p. (padic_topology p) derived_set_of prational = (:padic)`,
REWRITE_TAC[padic_topology; padic_metric]);;
let pdist = new_definition
`pdist p = mdist (padic_metric p)`;;
let PDIST_GEN = prove
(`!p q r. rational q /\ rational r
==> pdist p (padic_of_rational q,padic_of_rational r) =
if prime p then qnorm p (q - r) else qnorm 2 (q - r)`,
SIMP_TAC[pdist; padic_metric] THEN MESON_TAC[]);;
let PDIST = prove
(`!p q r. prime p /\ rational q /\ rational r
==> pdist p (padic_of_rational q,padic_of_rational r) =
qnorm p (q - r)`,
SIMP_TAC[PDIST_GEN]);;
let PDIST_ALT = prove
(`!p q r. rational q /\ rational r
==> pdist p (padic_of_rational q,padic_of_rational r) =
qnorm (if prime p then p else 2) (q - r)`,
SIMP_TAC[PDIST_GEN] THEN MESON_TAC[]);;
let PDIST_POS_LE = prove
(`!p x y. &0 <= pdist p (x,y)`,
SIMP_TAC[pdist; MDIST_POS_LE; MSPACE_PADIC_METRIC; IN_UNIV]);;
let PDIST_REFL = prove
(`!p x. pdist p (x,x) = &0`,
SIMP_TAC[pdist; MDIST_REFL; MSPACE_PADIC_METRIC; IN_UNIV]);;
let PDIST_SYM = prove
(`!p x y. pdist p (x,y) = pdist p (y,x)`,
SIMP_TAC[pdist; MDIST_SYM; MSPACE_PADIC_METRIC; IN_UNIV]);;
let PDIST_EQ_0 = prove
(`!p x y. pdist p (x,y) = &0 <=> x = y`,
SIMP_TAC[pdist; MDIST_0; MSPACE_PADIC_METRIC; IN_UNIV]);;
let PDIST_TRIANGLE = prove
(`!p x y z.
pdist p (x,z) <= pdist p (x,y) + pdist p (y,z)`,
SIMP_TAC[pdist; MDIST_TRIANGLE; MSPACE_PADIC_METRIC; IN_UNIV]);;
let PDIST_ULTRA = prove
(`!p x y z.
pdist p (x,z) <= max (pdist p (x,y)) (pdist p (y,z))`,
let lemma = prove
(`!p. (\(x,y,z). &0 <= f x y z) p <=>
f (FST p) (FST(SND p)) (SND(SND p)) IN {t | &0 <= t}`,
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM]) in
GEN_TAC THEN
MP_TAC(ISPECL
[`prod_topology (padic_topology p)
(prod_topology (padic_topology p) (padic_topology p))`;
`\(x,y,z). pdist p (x,z)
<= max (pdist p (x,y)) (pdist p (y,z))`;
`prational CROSS prational CROSS prational`]
FORALL_IN_CLOSURE_OF) THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; CLOSURE_OF_CROSS] THEN
REWRITE_TAC[CLOSURE_OF_PRATIONAL; IN_UNIV] THEN DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ; FORALL_IN_IMAGE] THEN
CONJ_TAC THENL
[REWRITE_TAC[IN] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[PDIST_GEN] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
W(MP_TAC o PART_MATCH (rand o rand) QNORM_ULTRA o rand o snd) THEN
ASM_SIMP_TAC[RATIONAL_CLOSED] THEN MATCH_MP_TAC EQ_IMP THEN
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REAL_ARITH_TAC;
ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN PURE_REWRITE_TAC[lemma] THEN
MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN
EXISTS_TAC `euclideanreal` THEN CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[GSYM REAL_CLOSED_IN; GSYM real_ge;
REAL_CLOSED_HALFSPACE_GE]] THEN
MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB THEN CONJ_TAC THEN
TRY(MATCH_MP_TAC CONTINUOUS_MAP_REAL_MAX THEN CONJ_TAC) THEN
PURE_REWRITE_TAC[pdist] THEN MATCH_MP_TAC CONTINUOUS_MAP_MDIST THEN
REWRITE_TAC[GSYM padic_topology] THEN
REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND] THEN TRY CONJ_TAC THEN
REPEAT(MATCH_MP_TAC CONTINUOUS_MAP_FST_OF ORELSE
MATCH_MP_TAC CONTINUOUS_MAP_SND_OF) THEN
MESON_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND]]);;
(* ------------------------------------------------------------------------- *)
(* Extend addition and multiplication operations from the rationals. *)
(* Also introduce a few natural derived operations. *)
(* ------------------------------------------------------------------------- *)
let CONTINUOUS_MAP_PADIC_ADDITION,PADIC_ADD_OF_RATIONAL =
let lemma = prove
(`!p x y. cauchy_in (qadic_metric p) x /\ cauchy_in (qadic_metric p) y
==> cauchy_in (qadic_metric p) (\n. x n + y n)`,
GEN_TAC THEN REWRITE_TAC[cauchy_in; QADIC_METRIC] THEN
ONCE_REWRITE_TAC[GSYM COND_RATOR] THEN REWRITE_TAC[ETA_AX] THEN
ONCE_REWRITE_TAC[GSYM COND_RAND] THEN
ABBREV_TAC `p' = if prime p then p else 2` THEN
SUBGOAL_THEN `prime p'` MP_TAC THENL [ASM_MESON_TAC[PRIME_2]; ALL_TAC] THEN
SPEC_TAC(`p':num`,`p':num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
X_GEN_TAC `p:num` THEN DISCH_TAC THEN REWRITE_TAC[IN] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[RATIONAL_CLOSED] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `e:real`)) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `M:num` THEN DISCH_TAC THEN
X_GEN_TAC `N:num` THEN DISCH_TAC THEN EXISTS_TAC `MAX M N` THEN
REWRITE_TAC[ARITH_RULE `MAX M N <= n <=> M <= n /\ N <= n`] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH
`(x + y) - (x' + y'):real = (x - x') + (y - y')`] THEN
W(MP_TAC o PART_MATCH (lhand o rand) QNORM_ULTRA o lhand o snd) THEN
ASM_SIMP_TAC[RATIONAL_CLOSED] THEN MATCH_MP_TAC(REAL_ARITH
`a < e /\ b < e ==> x <= max a b ==> x < e`) THEN
ASM_SIMP_TAC[]) in
let padic_addition_exists = prove
(`!p. ?plus.
continuous_map
(prod_topology (padic_topology p) (padic_topology p),padic_topology p)
(\(a,b). plus a b) /\
!x y. rational x /\ rational y
==> plus (padic_of_rational x) (padic_of_rational y) =
padic_of_rational (x + y)`,
GEN_TAC THEN
MP_TAC(ISPECL
[`prod_metric (padic_metric p) (padic_metric p)`;
`padic_metric p`;
`\(x,y). padic_of_rational
(rational_of_padic x + rational_of_padic y)`;
`prational CROSS prational`]
CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CONTINUOUS_CLOSURE_OF) THEN
REWRITE_TAC[MTOPOLOGY_PROD_METRIC; CLOSURE_OF_CROSS] THEN
REWRITE_TAC[GSYM padic_topology; CLOSURE_OF_PRATIONAL] THEN
REWRITE_TAC[CROSS_UNIV; SUBTOPOLOGY_UNIV] THEN
REWRITE_TAC[MCOMPLETE_PADIC_METRIC; SUBMETRIC_PROD_METRIC] THEN
ANTS_TAC THENL
[REWRITE_TAC[cauchy_continuous_map; FORALL_PAIR_FUN_THM] THEN
REWRITE_TAC[CAUCHY_IN_PROD_METRIC; o_DEF; ETA_AX] THEN
REWRITE_TAC[CAUCHY_IN_SUBMETRIC; TAUT
`(p /\ p') /\ q /\ q' ==> r <=> p ==> q ==> p' /\ q' ==> r`] THEN
REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; IN_IMAGE] THEN
REWRITE_TAC[SKOLEM_THM; RIGHT_FORALL_IMP_THM; FORALL_AND_THM] THEN
ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
REWRITE_TAC[IMP_CONJ; FORALL_UNWIND_THM2] THEN
X_GEN_TAC `x:num->real` THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
REWRITE_TAC[FORALL_UNWIND_THM2] THEN
X_GEN_TAC `y:num->real` THEN DISCH_TAC THEN
REWRITE_TAC[cauchy_in; MSPACE_PADIC_METRIC; IN_UNIV] THEN
ASM_SIMP_TAC[rational_of_padic; GSYM pdist] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN
ASM_SIMP_TAC[PDIST_ALT; RATIONAL_CLOSED] THEN
MP_TAC(ISPECL [`p:num`; `x:num->real`; `y:num->real`] lemma) THEN
ASM_REWRITE_TAC[cauchy_in; QADIC_METRIC] THEN
ASM_CASES_TAC `prime p` THEN ASM_SIMP_TAC[IN; RATIONAL_CLOSED];
REWRITE_TAC[EXISTS_CURRY; FORALL_PAIR_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `plus:padic->padic->padic` THEN
REWRITE_TAC[IN_CROSS] THEN
REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; FORALL_IN_IMAGE_2] THEN
SIMP_TAC[rational_of_padic] THEN SIMP_TAC[IN]]) in
let th = new_specification ["padic_add"]
(REWRITE_RULE[SKOLEM_THM] padic_addition_exists) in
CONJ_PAIR(REWRITE_RULE[FORALL_AND_THM] th);;
let CONTINUOUS_MAP_PADIC_MULTIPLICATION,PADIC_MUL_OF_RATIONAL =
let sublemma = prove
(`!p x. prime p /\ cauchy_in (qadic_metric p) x
==> ?b. &0 < b /\ !n. qnorm p (x n) <= b`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP CAUCHY_IN_IMP_MBOUNDED) THEN
REWRITE_TAC[MBOUNDED_POS; mcball; QADIC_METRIC] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; SUBSET; FORALL_IN_GSPEC] THEN
MAP_EVERY X_GEN_TAC [`c:real`; `b:real`] THEN
ASM_REWRITE_TAC[IN_UNIV; IN_ELIM_THM; FORALL_AND_THM] THEN
REWRITE_TAC[IN] THEN STRIP_TAC THEN EXISTS_TAC `qnorm p c + b` THEN
ASM_SIMP_TAC[REAL_LET_ADD; QNORM_POS_LE] THEN X_GEN_TAC `n:num` THEN
SUBST1_TAC(REAL_ARITH `(x:num->real) n = --(c - x n) + c`) THEN
W(MP_TAC o PART_MATCH (lhand o rand) QNORM_TRIANGLE o lhand o snd) THEN
ASM_SIMP_TAC[RATIONAL_CLOSED; QNORM_NEG] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `n:num`)) THEN REAL_ARITH_TAC) in
let lemma = prove
(`!p x y. cauchy_in (qadic_metric p) x /\ cauchy_in (qadic_metric p) y
==> cauchy_in (qadic_metric p) (\n. x n * y n)`,
REPEAT GEN_TAC THEN
ABBREV_TAC `p' = if prime p then p else 2` THEN
SUBGOAL_THEN `qadic_metric p = qadic_metric p'` SUBST1_TAC THENL
[EXPAND_TAC "p'" THEN REWRITE_TAC[qadic_metric] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[PRIME_2];
SUBGOAL_THEN `prime p'` MP_TAC THENL
[ASM_MESON_TAC[PRIME_2]; POP_ASSUM_LIST(K ALL_TAC)] THEN
SPEC_TAC(`p':num`,`p:num`)] THEN
GEN_TAC THEN DISCH_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN
`?B. &0 < B /\
(!n:num. qnorm p (x n) <= B) /\
(!n:num. qnorm p (y n) <= B)`
STRIP_ASSUME_TAC THENL
[MP_TAC(SPEC `p:num` sublemma) THEN DISCH_THEN(fun th ->
MP_TAC(SPEC `y:num->real` th) THEN MP_TAC(SPEC `x:num->real` th)) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `B:real` THEN STRIP_TAC THEN
X_GEN_TAC `C:real` THEN STRIP_TAC THEN
EXISTS_TAC `max B C:real` THEN
ASM_REWRITE_TAC[REAL_LT_MAX; REAL_LE_MAX];
FIRST_X_ASSUM(CONJUNCTS_THEN MP_TAC)] THEN
ASM_SIMP_TAC[cauchy_in; QADIC_METRIC; IN; RATIONAL_CLOSED; IMP_IMP] THEN
DISCH_THEN(CONJUNCTS_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
REWRITE_TAC[IMP_IMP; AND_FORALL_THM] THEN DISCH_TAC THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e / &3 / B`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_ARITH `&0 < &3`] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_TAC `M:num`) (X_CHOOSE_TAC `N:num`)) THEN
EXISTS_TAC `MAX M N` THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
REWRITE_TAC[ARITH_RULE `MAX M N <= n <=> M <= n /\ N <= n`] THEN
STRIP_TAC THEN SUBST1_TAC(REAL_ARITH
`(x:num->real) m * y m - x n * y n =
x m * (y m - y n) + y n * (x m - x n)`) THEN
W(MP_TAC o PART_MATCH (lhand o rand) QNORM_TRIANGLE o lhand o snd) THEN
ASM_SIMP_TAC[RATIONAL_CLOSED; QNORM_MUL] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LET_TRANS) THEN
TRANS_TAC REAL_LET_TRANS `B * e / &3 / B + B * e / &3 / B` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THEN
MATCH_MP_TAC REAL_LE_MUL2 THEN
ASM_SIMP_TAC[QNORM_POS_LE; REAL_LT_IMP_LE];
ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN ASM_REAL_ARITH_TAC]) in
let padic_multiplication_exists = prove
(`!p. ?plus.
continuous_map
(prod_topology (padic_topology p) (padic_topology p),padic_topology p)
(\(a,b). plus a b) /\
!x y. rational x /\ rational y
==> plus (padic_of_rational x) (padic_of_rational y) =
padic_of_rational (x * y)`,
GEN_TAC THEN
MP_TAC(ISPECL
[`prod_metric (padic_metric p) (padic_metric p)`;
`padic_metric p`;
`\(x,y). padic_of_rational
(rational_of_padic x * rational_of_padic y)`;
`prational CROSS prational`]
CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CONTINUOUS_CLOSURE_OF) THEN
REWRITE_TAC[MTOPOLOGY_PROD_METRIC; CLOSURE_OF_CROSS] THEN
REWRITE_TAC[GSYM padic_topology; CLOSURE_OF_PRATIONAL] THEN
REWRITE_TAC[CROSS_UNIV; SUBTOPOLOGY_UNIV] THEN
REWRITE_TAC[MCOMPLETE_PADIC_METRIC; SUBMETRIC_PROD_METRIC] THEN
ANTS_TAC THENL
[REWRITE_TAC[cauchy_continuous_map; FORALL_PAIR_FUN_THM] THEN
REWRITE_TAC[CAUCHY_IN_PROD_METRIC; o_DEF; ETA_AX] THEN
REWRITE_TAC[CAUCHY_IN_SUBMETRIC; TAUT
`(p /\ p') /\ q /\ q' ==> r <=> p ==> q ==> p' /\ q' ==> r`] THEN
REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; IN_IMAGE] THEN
REWRITE_TAC[SKOLEM_THM; RIGHT_FORALL_IMP_THM; FORALL_AND_THM] THEN
ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
REWRITE_TAC[IMP_CONJ; FORALL_UNWIND_THM2] THEN
X_GEN_TAC `x:num->real` THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
REWRITE_TAC[FORALL_UNWIND_THM2] THEN
X_GEN_TAC `y:num->real` THEN DISCH_TAC THEN
REWRITE_TAC[cauchy_in; MSPACE_PADIC_METRIC; IN_UNIV] THEN
ASM_SIMP_TAC[rational_of_padic; GSYM pdist] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN
ASM_SIMP_TAC[PDIST_ALT; RATIONAL_CLOSED] THEN
MP_TAC(ISPECL [`p:num`; `x:num->real`; `y:num->real`] lemma) THEN
ASM_REWRITE_TAC[cauchy_in; QADIC_METRIC] THEN
ASM_CASES_TAC `prime p` THEN ASM_SIMP_TAC[IN; RATIONAL_CLOSED];
REWRITE_TAC[EXISTS_CURRY; FORALL_PAIR_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `plus:padic->padic->padic` THEN
REWRITE_TAC[IN_CROSS] THEN
REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; FORALL_IN_IMAGE_2] THEN
SIMP_TAC[rational_of_padic] THEN SIMP_TAC[IN]]) in
let th = new_specification ["padic_mul"]
(REWRITE_RULE[SKOLEM_THM] padic_multiplication_exists) in
CONJ_PAIR(REWRITE_RULE[FORALL_AND_THM] th);;
let padic_of_num = new_definition
`padic_of_num n = padic_of_rational(&n)`;;
let padic_neg = new_definition
`padic_neg p x = padic_mul p (padic_of_rational(-- &1)) x`;;
let padic_sub = new_definition
`padic_sub p x y = padic_add p x (padic_neg p y)`;;
let PADIC_NEG_OF_RATIONAL = prove
(`!p x. rational x
==> padic_neg p (padic_of_rational x) =
padic_of_rational (--x)`,
SIMP_TAC[padic_neg; PADIC_MUL_OF_RATIONAL; RATIONAL_CLOSED] THEN
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_LID]);;
let PADIC_SUB_OF_RATIONAL = prove
(`!p x y.
rational x /\ rational y
==> padic_sub p (padic_of_rational x) (padic_of_rational y) =
padic_of_rational (x - y)`,
SIMP_TAC[padic_sub; PADIC_NEG_OF_RATIONAL; PADIC_ADD_OF_RATIONAL;
RATIONAL_CLOSED; real_sub]);;
(* ------------------------------------------------------------------------- *)
(* Continuity lemmas. *)
(* ------------------------------------------------------------------------- *)
let CONTINUOUS_MAP_PADIC_ADD = prove
(`!p top f g:A->padic.
continuous_map (top,padic_topology p) f /\
continuous_map (top,padic_topology p) g
==> continuous_map (top,padic_topology p) (\x. padic_add p (f x) (g x))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(\x. padic_add p (f x) (g x)) =
(\(x,y). padic_add p x y) o (\a. (f:A->padic) a,g a)`
SUBST1_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; o_THM; FORALL_PAIR_THM]; ALL_TAC] THEN
MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN
EXISTS_TAC `prod_topology (padic_topology p) (padic_topology p)` THEN
REWRITE_TAC[CONTINUOUS_MAP_PADIC_ADDITION] THEN
REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF] THEN
ASM_REWRITE_TAC[ETA_AX]);;
let CONTINUOUS_MAP_PADIC_MUL = prove
(`!p top f g:A->padic.
continuous_map (top,padic_topology p) f /\
continuous_map (top,padic_topology p) g
==> continuous_map (top,padic_topology p) (\x. padic_mul p (f x) (g x))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(\x. padic_mul p (f x) (g x)) =
(\(x,y). padic_mul p x y) o (\a. (f:A->padic) a,g a)`
SUBST1_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; o_THM; FORALL_PAIR_THM]; ALL_TAC] THEN
MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN
EXISTS_TAC `prod_topology (padic_topology p) (padic_topology p)` THEN
REWRITE_TAC[CONTINUOUS_MAP_PADIC_MULTIPLICATION] THEN
REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF] THEN
ASM_REWRITE_TAC[ETA_AX]);;
let CONTINUOUS_MAP_PADIC_NEG = prove
(`!p top f:A->padic.
continuous_map (top,padic_topology p) f
==> continuous_map (top,padic_topology p) (\x. padic_neg p (f x))`,
SIMP_TAC[padic_neg; CONTINUOUS_MAP_PADIC_MUL; CONTINUOUS_MAP_CONST;
TOPSPACE_PADIC_TOPOLOGY; IN_UNIV]);;
let CONTINUOUS_MAP_PADIC_SUB = prove
(`!p top f g:A->padic.
continuous_map (top,padic_topology p) f /\
continuous_map (top,padic_topology p) g
==> continuous_map (top,padic_topology p) (\x. padic_sub p (f x) (g x))`,
SIMP_TAC[padic_sub; CONTINUOUS_MAP_PADIC_ADD; CONTINUOUS_MAP_PADIC_NEG]);;
(* ------------------------------------------------------------------------- *)
(* Bootstrap some basic field properties by continuity. *)
(* ------------------------------------------------------------------------- *)
let FORALL_IN_PADIC_CLOSURE_OF = prove
(`!p top s f g:A->padic.
(continuous_map (top,padic_topology p) f /\
continuous_map (top,padic_topology p) g) /\
(!x. x IN s ==> f x = g x)
==> (!x. x IN top closure_of s ==> f x = g x)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC FORALL_IN_CLOSURE_OF_EQ THEN
EXISTS_TAC `padic_topology p` THEN
ASM_REWRITE_TAC[HAUSDORFF_SPACE_PADIC_TOPOLOGY]);;
let SIMPLE_PADIC_ARITH_TAC =
TRY(X_GEN_TAC `p:num`) THEN
REWRITE_TAC[FORALL_UNPAIR_THM] THEN
ONCE_REWRITE_TAC[SET_RULE `(!x. P x) <=> (!x. x IN UNIV ==> P x)`] THEN
REWRITE_TAC[GSYM CROSS_UNIV] THEN
REWRITE_TAC[GSYM CLOSURE_OF_PRATIONAL] THEN
REWRITE_TAC[GSYM CLOSURE_OF_CROSS] THEN
MATCH_MP_TAC FORALL_IN_PADIC_CLOSURE_OF THEN EXISTS_TAC `p:num` THEN
CONJ_TAC THENL
[CONJ_TAC THEN
REPEAT((MATCH_MP_TAC CONTINUOUS_MAP_PADIC_ADD THEN CONJ_TAC) ORELSE
(MATCH_MP_TAC CONTINUOUS_MAP_PADIC_SUB THEN CONJ_TAC) ORELSE
(MATCH_MP_TAC CONTINUOUS_MAP_PADIC_MUL THEN CONJ_TAC) ORELSE
(MATCH_MP_TAC CONTINUOUS_MAP_PADIC_NEG)) THEN
REPEAT(GEN_REWRITE_TAC I
[CONTINUOUS_MAP_OF_FST; CONTINUOUS_MAP_OF_SND] THEN
DISJ2_TAC) THEN
REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND;
CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST] THEN
REWRITE_TAC[TOPSPACE_PADIC_TOPOLOGY; IN_UNIV];
REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL] THEN
REWRITE_TAC[FORALL_IN_IMAGE] THEN
REWRITE_TAC[IN; RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN
SIMP_TAC[padic_of_num; PADIC_ADD_OF_RATIONAL; PADIC_SUB_OF_RATIONAL;
PADIC_NEG_OF_RATIONAL; PADIC_MUL_OF_RATIONAL; RATIONAL_CLOSED] THEN
REPEAT GEN_TAC THEN DISCH_THEN(K ALL_TAC) THEN AP_TERM_TAC THEN
CONV_TAC REAL_RING];;
let PADIC_ADD_SYM = prove
(`!p x y. padic_add p x y = padic_add p y x`,
SIMPLE_PADIC_ARITH_TAC);;
let PADIC_ADD_ASSOC = prove
(`!p x y z. padic_add p x (padic_add p y z) =
padic_add p (padic_add p x y) z`,
SIMPLE_PADIC_ARITH_TAC);;
let PADIC_ADD_LID = prove
(`!p x. padic_add p (padic_of_num 0) x = x`,
SIMPLE_PADIC_ARITH_TAC);;
let PADIC_ADD_LINV = prove
(`!p x. padic_add p (padic_neg p x) x = padic_of_num 0`,
SIMPLE_PADIC_ARITH_TAC);;
let PADIC_MUL_SYM = prove
(`!p x y. padic_mul p x y = padic_mul p y x`,
SIMPLE_PADIC_ARITH_TAC);;
let PADIC_MUL_ASSOC = prove
(`!p x y z. padic_mul p x (padic_mul p y z) =
padic_mul p (padic_mul p x y) z`,
SIMPLE_PADIC_ARITH_TAC);;
let PADIC_MUL_LID = prove
(`!p x. padic_mul p (padic_of_num 1) x = x`,
SIMPLE_PADIC_ARITH_TAC);;
let PADIC_ADD_LDISTRIB = prove
(`!p x y z. padic_mul p x (padic_add p y z) =
padic_add p (padic_mul p x y) (padic_mul p x z)`,
SIMPLE_PADIC_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Also define the padic norm explicitly. Our connection to qnorm is a bit *)
(* roundabout because we are using completion machinery that is specifically *)
(* about metric spaces. So we go qnorm -> qdist -> pdist -> pnorm. *)
(* ------------------------------------------------------------------------- *)
let pnorm = new_definition
`pnorm p x = pdist p (padic_of_num 0,x)`;;
let PDIST_PNORM = prove
(`!p x y. pdist p (x,y) = pnorm p (padic_sub p x y)`,
REWRITE_TAC[pnorm] THEN X_GEN_TAC `p:num` THEN
REWRITE_TAC[FORALL_UNPAIR_THM] THEN
ONCE_REWRITE_TAC[SET_RULE `(!x. P x) <=> (!x. x IN UNIV ==> P x)`] THEN
REWRITE_TAC[GSYM CROSS_UNIV] THEN
REWRITE_TAC[GSYM CLOSURE_OF_PRATIONAL] THEN
REWRITE_TAC[GSYM CLOSURE_OF_CROSS] THEN
MATCH_MP_TAC FORALL_IN_CLOSURE_OF_EQ THEN
EXISTS_TAC `euclideanreal` THEN
REWRITE_TAC[HAUSDORFF_SPACE_EUCLIDEANREAL; CONJ_ASSOC] THEN CONJ_TAC THENL
[CONJ_TAC THEN REWRITE_TAC[pdist] THEN
MATCH_MP_TAC CONTINUOUS_MAP_MDIST_ALT THEN
REWRITE_TAC[GSYM padic_topology; CONTINUOUS_MAP_ID] THEN
REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF] THEN
REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_PADIC_TOPOLOGY; IN_UNIV] THEN
MATCH_MP_TAC CONTINUOUS_MAP_PADIC_SUB THEN
REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND];
REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; pdist] THEN
REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; FORALL_IN_IMAGE_2] THEN
SIMP_TAC[IN; padic_metric; padic_of_num; RATIONAL_CLOSED;
PADIC_SUB_OF_RATIONAL] THEN
REWRITE_TAC[REAL_SUB_LZERO; QNORM_NEG]]);;
let PNORM_0 = prove
(`!p. pnorm p (padic_of_num 0) = &0`,
REWRITE_TAC[pnorm; PDIST_REFL]);;
let PNORM_RATIONAL = prove
(`!p x. rational x
==> pnorm p (padic_of_rational x) =
qnorm (if prime p then p else 2) x`,
REWRITE_TAC[pnorm; pdist; padic_of_num] THEN
SIMP_TAC[padic_metric; RATIONAL_CLOSED] THEN
REWRITE_TAC[REAL_SUB_LZERO; QNORM_NEG]);;
let PNORM_1 = prove
(`!p. pnorm p (padic_of_num 1) = &1`,
SIMP_TAC[PNORM_RATIONAL; padic_of_num; RATIONAL_CLOSED] THEN
REWRITE_TAC[QNORM_1] THEN MESON_TAC[PRIME_2]);;
let PNORM_NEG = prove
(`!p x. pnorm p (padic_neg p x) = pnorm p x`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC RAND_CONV [pnorm] THEN REWRITE_TAC[PDIST_PNORM] THEN
AP_TERM_TAC THEN SPEC_TAC(`x:padic`,`x:padic`) THEN
SIMPLE_PADIC_ARITH_TAC);;
let PNORM_POS_LE = prove
(`!p x. &0 <= pnorm p x`,
REWRITE_TAC[pnorm; PDIST_POS_LE]);;
let PNORM_0 = prove
(`!p x. pnorm p (padic_of_num 0) = &0`,
REWRITE_TAC[pnorm; PDIST_REFL]);;
let PNORM_EQ_0 = prove
(`!p x. pnorm p x = &0 <=> x = padic_of_num 0`,
REWRITE_TAC[pnorm; PDIST_EQ_0] THEN MESON_TAC[]);;
let PNORM_POS_LT = prove
(`!p x. &0 < pnorm p x <=> ~(x = padic_of_num 0)`,
REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
REWRITE_TAC[PNORM_POS_LE; PNORM_EQ_0]);;
let PNORM_ULTRA = prove
(`!p x y. pnorm p (padic_add p x y) <= max (pnorm p x) (pnorm p y)`,
REPEAT GEN_TAC THEN
TRANS_TAC REAL_LE_TRANS `pnorm p (padic_sub p x (padic_neg p y))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_EQ_IMP_LE THEN AP_TERM_TAC THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`y:padic`; `x:padic`] THEN
SIMPLE_PADIC_ARITH_TAC;
REWRITE_TAC[GSYM PDIST_PNORM] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM PNORM_NEG] THEN
REWRITE_TAC[pnorm] THEN MP_TAC(ISPECL
[`p:num`; `x:padic`; `padic_of_num 0`; `padic_neg p y`]
PDIST_ULTRA) THEN
REWRITE_TAC[PDIST_SYM]]);;
let PNORM_TRIANGLE = prove
(`!p x y. pnorm p (padic_add p x y) <= pnorm p x + pnorm p y`,
REPEAT GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH
`x <= max y z /\ &0 <= y /\ &0 <= z ==> x <= y + z`) THEN
REWRITE_TAC[PNORM_ULTRA; PNORM_POS_LE]);;
let PNORM_MUL = prove
(`!p x y. pnorm p (padic_mul p x y) = pnorm p x * pnorm p y`,
REWRITE_TAC[pnorm] THEN X_GEN_TAC `p:num` THEN
REWRITE_TAC[FORALL_UNPAIR_THM] THEN
ONCE_REWRITE_TAC[SET_RULE `(!x. P x) <=> (!x. x IN UNIV ==> P x)`] THEN
REWRITE_TAC[GSYM CROSS_UNIV] THEN
REWRITE_TAC[GSYM CLOSURE_OF_PRATIONAL] THEN
REWRITE_TAC[GSYM CLOSURE_OF_CROSS] THEN
MATCH_MP_TAC FORALL_IN_CLOSURE_OF_EQ THEN
EXISTS_TAC `euclideanreal` THEN
REWRITE_TAC[HAUSDORFF_SPACE_EUCLIDEANREAL; CONJ_ASSOC] THEN CONJ_TAC THENL
[CONJ_TAC THEN REWRITE_TAC[pdist] THEN
TRY(MATCH_MP_TAC CONTINUOUS_MAP_REAL_MUL THEN CONJ_TAC) THEN
MATCH_MP_TAC CONTINUOUS_MAP_MDIST_ALT THEN
REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF] THEN
REWRITE_TAC[GSYM padic_topology; CONTINUOUS_MAP_ID] THEN
REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_PADIC_TOPOLOGY; IN_UNIV] THEN
TRY(MATCH_MP_TAC CONTINUOUS_MAP_PADIC_MUL) THEN
REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND; ETA_AX];
REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; pdist] THEN
REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; FORALL_IN_IMAGE_2] THEN
SIMP_TAC[IN; padic_metric; padic_of_num; RATIONAL_CLOSED;
PADIC_MUL_OF_RATIONAL] THEN
REWRITE_TAC[REAL_SUB_LZERO; QNORM_NEG] THEN
SIMP_TAC[QNORM_MUL]]);;
(* ------------------------------------------------------------------------- *)
(* Deduce the existence of multiplicative inverses. *)
(* ------------------------------------------------------------------------- *)
let PADIC_ENTIRE = prove
(`!p x y. padic_mul p x y = padic_of_num 0 <=>
x = padic_of_num 0 \/ y = padic_of_num 0`,
REWRITE_TAC[GSYM PNORM_EQ_0; PNORM_MUL; REAL_ENTIRE]);;
let padic_inv = new_definition
`padic_inv p x = if x = padic_of_num 0 then padic_of_num 0
else @y. padic_mul p x y = padic_of_num 1`;;
let PADIC_INV_0 = prove
(`!p. padic_inv p (padic_of_num 0) = padic_of_num 0`,
REWRITE_TAC[padic_inv]);;
let PADIC_MUL_RINV = prove
(`!p x. ~(x = padic_of_num 0)
==> padic_mul p x (padic_inv p x) = padic_of_num 1`,
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[padic_inv] THEN
CONV_TAC SELECT_CONV THEN
MP_TAC(ISPECL [`padic_metric p`; `prational`] CLOSURE_OF_SEQUENTIALLY) THEN
REWRITE_TAC[CLOSURE_OF_PRATIONAL; MSPACE_PADIC_METRIC;
GSYM padic_topology; INTER_UNIV; IN_UNIV] THEN
REWRITE_TAC[EXTENSION; IN_UNIV; IN_ELIM_THM] THEN
REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL] THEN
DISCH_THEN(MP_TAC o SPEC `x:padic`) THEN REWRITE_TAC[IN_IMAGE] THEN
REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM] THEN
ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2; IN] THEN
DISCH_THEN(X_CHOOSE_THEN `q:num->real` STRIP_ASSUME_TAC) THEN
ABBREV_TAC `e = pnorm p x / &2` THEN
SUBGOAL_THEN `&0 < e` ASSUME_TAC THENL
[EXPAND_TAC "e" THEN REWRITE_TAC[REAL_HALF; PNORM_POS_LT] THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`eventually (\n. ~(q n = &0) /\
e <= pnorm p (padic_of_rational(q n)))
sequentially`
ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIMIT_METRIC] o
REWRITE_RULE[padic_topology]) THEN
DISCH_THEN(MP_TAC o SPEC `e / &2` o CONJUNCT2) THEN
ASM_REWRITE_TAC[REAL_HALF] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT
`(q ==> ~r) /\ (p ==> r) ==> p ==> ~q /\ r`) THEN
SIMP_TAC[GSYM padic_of_num; PNORM_0] THEN
ASM_REWRITE_TAC[REAL_NOT_LE; pnorm; pdist] THEN MATCH_MP_TAC(METRIC_ARITH
`mdist m (z:padic,x) / &2 = e /\ z IN mspace m /\ x IN mspace m
==> q IN mspace m /\ mdist m (q,x) < e / &2
==> e <= mdist m (z,q)`) THEN
REWRITE_TAC[MSPACE_PADIC_METRIC; IN_UNIV; GSYM pdist; GSYM pnorm] THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
MP_TAC(SPEC `p:num` MCOMPLETE_PADIC_METRIC) THEN REWRITE_TAC[mcomplete] THEN
DISCH_THEN(MP_TAC o SPEC `padic_of_rational o inv o (q:num->real)`) THEN
ANTS_TAC THENL
[REWRITE_TAC[cauchy_in; MSPACE_PADIC_METRIC; IN_UNIV] THEN
X_GEN_TAC `d:real` THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o
MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CONVERGENT_IMP_CAUCHY_IN) o
REWRITE_RULE[padic_topology]) THEN
REWRITE_TAC[cauchy_in; MSPACE_PADIC_METRIC; IN_UNIV] THEN
DISCH_THEN(MP_TAC o SPEC `(d:real) * e pow 2`) THEN
ASM_SIMP_TAC[REAL_LT_MUL; REAL_POW_LT] THEN
DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVENTUALLY_SEQUENTIALLY]) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `M:num` THEN DISCH_TAC THEN
EXISTS_TAC `MAX M N` THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
REWRITE_TAC[ARITH_RULE `MAX M N <= n <=> M <= n /\ N <= n`] THEN
STRIP_TAC THEN REWRITE_TAC[o_THM; GSYM pdist; PDIST_PNORM] THEN
ASM_SIMP_TAC[PADIC_SUB_OF_RATIONAL; RATIONAL_CLOSED] THEN
ASM_SIMP_TAC[REAL_FIELD
`~(x = &0) /\ ~(y = &0)
==> inv x - inv y = --(x - y) * inv(x) * inv(y)`] THEN
ASM_SIMP_TAC[GSYM PADIC_MUL_OF_RATIONAL; RATIONAL_CLOSED] THEN
REWRITE_TAC[PNORM_MUL] THEN
ASM_SIMP_TAC[PNORM_RATIONAL; RATIONAL_CLOSED; QNORM_INV] THEN
ASM_SIMP_TAC[GSYM PNORM_RATIONAL] THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN
SUBGOAL_THEN `!x. e <= x ==> &0 < x` MP_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_LT_LDIV_EQ] THEN DISCH_THEN(K ALL_TAC) THEN
ASM_SIMP_TAC[GSYM PNORM_RATIONAL; PNORM_NEG; RATIONAL_CLOSED;
GSYM PADIC_NEG_OF_RATIONAL] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`m:num`; `n:num`]) THEN
ASM_REWRITE_TAC[GSYM pdist; PDIST_PNORM] THEN
ASM_SIMP_TAC[PADIC_SUB_OF_RATIONAL] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LTE_TRANS) THEN
ASM_SIMP_TAC[GSYM REAL_MUL_ASSOC; REAL_POW_2; REAL_LE_LMUL_EQ] THEN
ASM_SIMP_TAC[REAL_LE_MUL2; REAL_LT_IMP_LE];
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:padic` THEN DISCH_TAC THEN
MATCH_MP_TAC(ISPEC `sequentially` LIMIT_METRIC_UNIQUE) THEN
EXISTS_TAC `padic_metric p` THEN
EXISTS_TAC `(\(x,y). padic_mul p x y) o
(\n:num. padic_of_rational (q n),padic_of_rational (inv(q n)))` THEN
REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN CONJ_TAC THENL
[SUBGOAL_THEN `padic_mul p x y = (\(x,y). padic_mul p x y) (x,y)`
SUBST1_TAC THENL [REWRITE_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC CONTINUOUS_MAP_LIMIT THEN
EXISTS_TAC `prod_topology (padic_topology p) (padic_topology p)` THEN
SIMP_TAC[CONTINUOUS_MAP_PADIC_MULTIPLICATION; GSYM padic_topology] THEN
RULE_ASSUM_TAC(REWRITE_RULE[o_DEF; GSYM padic_topology]) THEN
ASM_REWRITE_TAC[LIMIT_PAIRWISE; o_DEF];
MATCH_MP_TAC LIMIT_EVENTUALLY THEN
REWRITE_TAC[o_DEF; GSYM padic_topology; TOPSPACE_PADIC_TOPOLOGY] THEN
ASM_SIMP_TAC[IN_UNIV; PADIC_MUL_OF_RATIONAL; RATIONAL_CLOSED] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
EVENTUALLY_MONO)) THEN
X_GEN_TAC `n:num` THEN SIMP_TAC[REAL_MUL_RINV; padic_of_num]]]);;
let PADIC_MUL_LINV = prove
(`!p x. ~(x = padic_of_num 0)
==> padic_mul p (padic_inv p x) x = padic_of_num 1`,
ONCE_REWRITE_TAC[PADIC_MUL_SYM] THEN REWRITE_TAC[PADIC_MUL_RINV]);;
let PNORM_INV = prove
(`!p x. pnorm p (padic_inv p x) = inv(pnorm p x)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `x = padic_of_num 0` THEN
ASM_REWRITE_TAC[REAL_INV_0; PADIC_INV_0; PNORM_0] THEN
MATCH_MP_TAC(REAL_FIELD `x * y = &1 ==> x = inv y`) THEN
ASM_SIMP_TAC[GSYM PNORM_MUL; PADIC_MUL_LINV; PNORM_1]);;
|