File: padics.ml

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (1211 lines) | stat: -rw-r--r-- 57,555 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
(* ========================================================================= *)
(* Construction of p-adic numbers.                                           *)
(* ========================================================================= *)

needs "Library/prime.ml";;              (* For the "index" function only *)
needs "Multivariate/metric.ml";;        (* For metric spaces             *)

(* ------------------------------------------------------------------------- *)
(* p-adic norm on the rationals (call it "qnorm" then extend it to "pnorm"). *)
(* ------------------------------------------------------------------------- *)

let [qnorm_def; QNORM_EQ_0; QNORM_ABS] =
  let qnorm_exists = prove
   (`?qnorm.
          (!p m n. prime p /\ ~(m = 0) /\ ~(n = 0)
                   ==> qnorm p (&m / &n) =
                       &p pow (index p n) / &p pow (index p m)) /\
          (!p x. qnorm p x = &0 <=> ~prime p \/ ~rational x \/ x = &0) /\
          (!p x. qnorm p (abs x) = qnorm p x)`,
    SUBGOAL_THEN
     `?padic. !p m n.
          padic p (&m / &n) =
          if ~prime p \/ m = 0 \/ n = 0 then &0
          else &p pow (index p n) / &p pow (index p m)`
    STRIP_ASSUME_TAC THENL
     [REWRITE_TAC[GSYM SKOLEM_THM] THEN GEN_TAC THEN
      REWRITE_TAC[FORALL_UNPAIR_THM] THEN
      GEN_REWRITE_TAC BINDER_CONV [GSYM FUN_EQ_THM] THEN
      GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV) [GSYM o_DEF] THEN
      CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN
      GEN_REWRITE_TAC I [GSYM FUNCTION_FACTORS_LEFT] THEN
      REWRITE_TAC[FORALL_PAIR_THM] THEN
      MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`; `a2:num`; `b2:num`] THEN
      ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[real_div] THEN
      MAP_EVERY (fun t ->
        ASM_CASES_TAC t THENL
         [ASM_REWRITE_TAC[] THEN
          ASM_METIS_TAC[REAL_INV_EQ_0; REAL_ENTIRE; REAL_OF_NUM_EQ];
          ALL_TAC]) [`a1 = 0`; `a2 = 0`; `b1 = 0`; `b2 = 0`] THEN
      FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN
      ASM_SIMP_TAC[REAL_POW_EQ_0; REAL_OF_NUM_EQ; REAL_FIELD
       `~(y1 = &0) /\ ~(y2 = &0)
        ==> (x1 * inv y1 = x2 * inv y2 <=> x1 * y2 = x2 * y1)`] THEN
      REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_POW; REAL_OF_NUM_EQ] THEN
      REWRITE_TAC[GSYM EXP_ADD] THEN DISCH_THEN(MP_TAC o AP_TERM `index p`) THEN
      ASM_SIMP_TAC[ONCE_REWRITE_RULE[ADD_SYM] INDEX_MUL];
      EXISTS_TAC `\p x. if rational x then (padic:num->real->real) p (abs x)
                        else &0` THEN
      ASM_SIMP_TAC[RATIONAL_ABS_EQ; REAL_ABS_ABS; RATIONAL_CLOSED] THEN
      REWRITE_TAC[MESON[]
       `((if q then y else &0) = &0 <=> ~p \/ ~q \/ x = &0) <=>
        (q ==> (y = &0 <=> ~p \/ x = &0))`] THEN
      REWRITE_TAC[RATIONAL_ALT; LEFT_IMP_EXISTS_THM] THEN
      ASM_SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NUM] THEN
      MAP_EVERY X_GEN_TAC [`p:num`; `x:real`; `m:num`; `n:num`] THEN
      ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[] THEN
      ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
      COND_CASES_TAC THEN REWRITE_TAC[REAL_DIV_EQ_0; REAL_POW_EQ_0] THEN
      ASM_SIMP_TAC[REAL_ABS_ZERO; real_div; REAL_MUL_LZERO; INDEX_EQ_0] THEN
      FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN
      ASM_SIMP_TAC[REAL_OF_NUM_EQ] THEN MATCH_MP_TAC(REAL_ARITH
       `~(a = &0) ==> abs x = a ==> ~(x = &0)`) THEN
      ASM_REWRITE_TAC[REAL_ENTIRE; REAL_INV_EQ_0; REAL_OF_NUM_EQ]]) in
  CONJUNCTS(new_specification ["qnorm"] qnorm_exists);;

let qnorm = prove
 (`!p m n. qnorm p (&m / &n) =
           if ~prime p \/ m = 0 \/ n = 0 then &0
           else &p pow (index p n) / &p pow (index p m)`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[RATIONAL_CLOSED; QNORM_EQ_0; REAL_DIV_EQ_0; REAL_OF_NUM_EQ] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN ASM_SIMP_TAC[qnorm_def]);;

let QNORM_NEG = prove
 (`!p x. qnorm p (--x) = qnorm p x`,
  MESON_TAC[QNORM_ABS; REAL_ABS_NEG]);;

let QNORM_0 = prove
 (`!p. qnorm p (&0) = &0`,
  REWRITE_TAC[QNORM_EQ_0]);;

let QNORM_MUL = prove
 (`!p x y. (rational (x * y) ==> rational x /\ rational y)
           ==> qnorm p (x * y) = qnorm p x * qnorm p y`,
  REPEAT GEN_TAC THEN MAP_EVERY
   (fun t -> ASM_CASES_TAC t THENL
   [ALL_TAC; ASM_METIS_TAC[QNORM_EQ_0; REAL_ENTIRE]])
   [`prime p`; `rational x`; `rational y`] THEN
  ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM QNORM_ABS] THEN
  REWRITE_TAC[REAL_ABS_MUL] THEN
  MAP_EVERY UNDISCH_TAC [`rational y`; `rational x`] THEN
  SIMP_TAC[RATIONAL_ALT; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`] THEN STRIP_TAC THEN
  MAP_EVERY X_GEN_TAC [`a2:num`; `b2:num`] THEN STRIP_TAC THEN
  REWRITE_TAC[REAL_ARITH
    `a1 / b1 * a2 / b2:real = (a1 * a2) * inv b1 * inv b2`] THEN
  REWRITE_TAC[GSYM REAL_INV_MUL; REAL_OF_NUM_MUL] THEN
  ASM_REWRITE_TAC[qnorm; GSYM real_div; MULT_EQ_0] THEN
  ASM_CASES_TAC `a1 = 0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO] THEN
  ASM_CASES_TAC `a2 = 0` THEN ASM_REWRITE_TAC[REAL_MUL_RZERO] THEN
  ASM_SIMP_TAC[INDEX_MUL; REAL_POW_ADD] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_IMP_NZ) THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_EQ] THEN CONV_TAC REAL_FIELD);;

let QNORM_1 = prove
 (`!p. qnorm p (&1) = if prime p then &1 else &0`,
  GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[QNORM_EQ_0] THEN
  MATCH_MP_TAC(REAL_RING `~(x = &0) /\ x * x = x ==> x = &1`) THEN
  ASM_SIMP_TAC[QNORM_EQ_0; RATIONAL_CLOSED; GSYM QNORM_MUL] THEN
  REWRITE_TAC[REAL_MUL_LID] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;

let QNORM_INV = prove
 (`!p x. rational x ==> qnorm p (inv x) = inv(qnorm p x)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `x:real = &0` THEN
  ASM_REWRITE_TAC[REAL_INV_0; QNORM_0] THEN ASM_CASES_TAC `prime p` THENL
   [ALL_TAC; ASM_METIS_TAC[QNORM_EQ_0; REAL_INV_0]] THEN
  MATCH_MP_TAC(REAL_FIELD `x * y = &1 ==> x = inv y`) THEN
  ASM_SIMP_TAC[GSYM QNORM_MUL; RATIONAL_CLOSED] THEN
  ASM_SIMP_TAC[REAL_MUL_LINV; QNORM_1]);;

let QNORM_POS_LE = prove
 (`!p x. &0 <= qnorm p x`,
  REPEAT GEN_TAC THEN
  MATCH_MP_TAC(REAL_ARITH `(~(x = &0) ==> &0 <= x) ==> &0 <= x`) THEN
  REWRITE_TAC[QNORM_EQ_0; DE_MORGAN_THM] THEN STRIP_TAC THEN
  ONCE_REWRITE_TAC[GSYM QNORM_ABS] THEN
  MAP_EVERY UNDISCH_TAC [`~(x = &0)`; `rational x`] THEN
  SIMP_TAC[RATIONAL_ALT; LEFT_IMP_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[GSYM REAL_ABS_ZERO] THEN
  SIMP_TAC[REAL_DIV_EQ_0; REAL_OF_NUM_EQ] THEN
  ASM_SIMP_TAC[qnorm_def; REAL_LE_DIV; REAL_POW_LE; REAL_POS]);;

let QNORM_POS_LT = prove
 (`!p x. &0 < qnorm p x <=> prime p /\ rational x /\ ~(x = &0)`,
  REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
  REWRITE_TAC[QNORM_POS_LE; QNORM_EQ_0] THEN CONV_TAC TAUT);;

let QNORM_ULTRA = prove
 (`!p x y. (rational(x + y) ==> rational x /\ rational y)
           ==> qnorm p (x + y) <= max (qnorm p x) (qnorm p y)`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `x = &0` THEN
  ASM_REWRITE_TAC[REAL_ADD_LID; REAL_ARITH `y <= max x y`] THEN
  ASM_CASES_TAC `y = &0` THEN
  ASM_REWRITE_TAC[REAL_ADD_RID; REAL_ARITH `x <= max x y`] THEN
  ASM_CASES_TAC `prime p` THENL
   [ALL_TAC; ASM_METIS_TAC[QNORM_EQ_0; REAL_ARITH `x <= max x x`]] THEN
  ASM_CASES_TAC `rational(x + y)` THEN
  ASM_REWRITE_TAC[] THENL
   [REPEAT(POP_ASSUM MP_TAC);
    MATCH_MP_TAC(REAL_ARITH `x = &0 /\ &0 <= y ==> x <= max y z`) THEN
    ASM_REWRITE_TAC[QNORM_POS_LE; QNORM_EQ_0]] THEN
  MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`y:real`; `x:real`] THEN
  MATCH_MP_TAC(MESON[REAL_LE_TOTAL]
   `(!x y. P x y ==> P y x) /\ (!x y. abs y <= abs x ==> P x y)
    ==> (!x y. P x y)`) THEN
  CONJ_TAC THENL
   [MESON_TAC[REAL_ADD_SYM; REAL_ARITH `max a b = max b a`];
    REPEAT STRIP_TAC] THEN
  MAP_EVERY UNDISCH_TAC
   [`~(x = &0)`; `~(y = &0)`; `rational y`; `rational x`] THEN
  SIMP_TAC[RATIONAL_ALT; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`] THEN STRIP_TAC THEN
  MAP_EVERY X_GEN_TAC [`a2:num`; `b2:num`] THEN STRIP_TAC THEN
  ONCE_REWRITE_TAC[GSYM REAL_ABS_ZERO] THEN ASM_REWRITE_TAC[REAL_DIV_EQ_0] THEN
  ASM_REWRITE_TAC[REAL_OF_NUM_EQ] THEN REPEAT DISCH_TAC THEN
  ONCE_REWRITE_TAC[GSYM QNORM_ABS] THEN
  FIRST_ASSUM(DISJ_CASES_THEN SUBST1_TAC o MATCH_MP
   (REAL_ARITH `abs y <= abs x ==> abs(x + y) = abs x + abs y \/
                                   abs(x + y) = abs x - abs y`)) THEN
  UNDISCH_TAC `abs y <= abs x` THEN
  ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
  ONCE_REWRITE_TAC[REAL_ARITH `a / b * c:real = (a * c) / b`] THEN
  ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
  ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_FIELD
   `~(b1 = &0) /\ ~(b2 = &0)
    ==> a1 / b1 + a2 / b2 = (a1 * b2 + a2 * b1) / (b1 * b2) /\
        a1 / b1 - a2 / b2 = (a1 * b2 - a2 * b1) / (b1 * b2)`] THEN
  REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_ADD; REAL_OF_NUM_LE] THEN
  SIMP_TAC[REAL_OF_NUM_SUB] THEN DISCH_TAC THEN
  ASM_REWRITE_TAC[qnorm; MULT_EQ_0; REAL_LE_MAX; ADD_EQ_0] THEN
  TRY COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_LE_DIV; REAL_POW_LE; REAL_POS] THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN
  ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1; REAL_POW_LT] THEN
  ONCE_REWRITE_TAC[REAL_ARITH `a / b * c:real = (a * c) / b`] THEN
  ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1; REAL_POW_LT] THEN
  REWRITE_TAC[GSYM REAL_POW_ADD] THEN MATCH_MP_TAC(MESON[REAL_POW_MONO]
   `&1 <= p /\ (u <= v \/ x <= y)
    ==> p pow u <= p pow v \/ p pow x <= p pow y`) THEN
  ASM_SIMP_TAC[REAL_OF_NUM_LE; PRIME_IMP_NZ; LE_1; INDEX_MUL] THEN
  REWRITE_TAC[ARITH_RULE `(b1 + b2) + a1:num <= b1 + c <=> b2 + a1 <= c`] THEN
  REWRITE_TAC[ARITH_RULE `(b1 + b2) + a1:num <= b2 + c <=> b1 + a1 <= c`] THEN
  ASM_SIMP_TAC[GSYM INDEX_MUL] THEN
  REWRITE_TAC[ARITH_RULE `x <= z \/ y <= z <=> MIN x y <= z`] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
  REWRITE_TAC[INDEX_ADD_MIN] THEN MATCH_MP_TAC INDEX_SUB_MIN THEN
  ASM_ARITH_TAC);;

let QNORM_TRIANGLE = prove
 (`!p x y. (rational(x + y) ==> rational x /\ rational y)
           ==> qnorm p (x + y) <= qnorm p x + qnorm p y`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(MP_TAC o SPEC `p:num` o MATCH_MP QNORM_ULTRA) THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
  MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ &0 <= y ==> max x y <= x + y`) THEN
  REWRITE_TAC[QNORM_POS_LE]);;

(* ------------------------------------------------------------------------- *)
(* p-adic metric on the rationals. To keep theorems cleaner, we default to   *)
(* p = 2 in the case where p is non-prime.                                   *)
(* ------------------------------------------------------------------------- *)

let qadic_metric = new_definition
  `qadic_metric p =
        metric(rational,(\(x,y). qnorm (if prime p then p else 2) (x - y)))`;;

let QADIC_METRIC = prove
 (`(!p. mspace(qadic_metric p) = rational) /\
   (!p x y. mdist(qadic_metric p) (x,y) =
                if prime p then qnorm p (x - y)
                else qnorm 2 (x - y))`,
  REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `p:num` THEN
  MP_TAC(ISPECL [`rational`;
    `\(x,y). qnorm (if prime p then p else 2) (x - y)`] METRIC) THEN
  ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[qadic_metric] THEN
  REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN DISCH_THEN MATCH_MP_TAC THEN
  REWRITE_TAC[is_metric_space] THEN
  ASM_SIMP_TAC[QNORM_POS_LE; QNORM_EQ_0; RATIONAL_CLOSED; REAL_SUB_0;
               PRIME_2; IN] THEN
  (CONJ_TAC THENL [MESON_TAC[QNORM_ABS; REAL_ABS_SUB]; ALL_TAC]) THEN
  MAP_EVERY X_GEN_TAC [`x:real`; `y:real`; `z:real`] THEN STRIP_TAC THEN
  SUBST1_TAC(REAL_ARITH `x - z:real = (x - y) + (y - z)`) THEN
  ASM_SIMP_TAC[QNORM_TRIANGLE; RATIONAL_CLOSED]);;

let QADIC_ULTRAMETRIC = prove
 (`!p x y z.
        x IN mspace(qadic_metric p) /\
        y IN mspace(qadic_metric p) /\
        z IN mspace(qadic_metric p)
        ==> mdist(qadic_metric p) (x,z) <=
            max (mdist(qadic_metric p) (x,y)) (mdist(qadic_metric p) (y,z))`,
  GEN_TAC THEN ASM_CASES_TAC `prime p` THEN
  ASM_REWRITE_TAC[QADIC_METRIC] THEN REWRITE_TAC[IN] THEN
  MAP_EVERY X_GEN_TAC [`x:real`; `y:real`; `z:real`] THEN STRIP_TAC THEN
  SUBST1_TAC(REAL_ARITH `x - z:real = (x - y) + (y - z)`) THEN
  ASM_SIMP_TAC[QNORM_ULTRA; RATIONAL_CLOSED]);;

(* ------------------------------------------------------------------------- *)
(* Actual padics; make them a whole type ":padic", overlaying the versions   *)
(* for different p's with the same embedding of the rationals (using some    *)
(* arbitrary countably infinite subset that's the same for each value of p). *)
(* ------------------------------------------------------------------------- *)

let padic_tybij =
  let th = prove(`?x:real. T`,REWRITE_TAC[]) in
  REWRITE_RULE[] (new_type_definition "padic" ("mk_padic","dest_padic") th);;

let CARD_EQ_PADIC = prove
 (`(:padic) =_c (:real)`,
  REWRITE_TAC[EQ_C_BIJECTIONS; IN_UNIV] THEN
  MAP_EVERY EXISTS_TAC [`dest_padic`; `mk_padic`] THEN
  MESON_TAC[padic_tybij]);;

let prational =
  let th = prove
   (`?s:padic->bool. s =_c (:num)`,
    REWRITE_TAC[CARD_LE_EQ_SUBSET_UNIV] THEN
    TRANS_TAC CARD_LE_TRANS `(:real)` THEN
    SIMP_TAC[CARD_LT_NUM_REAL; CARD_LT_IMP_LE] THEN
    MATCH_MP_TAC CARD_EQ_IMP_LE THEN
    ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN
    MATCH_ACCEPT_TAC CARD_EQ_PADIC) in
  new_specification ["prational"] th;;

let padic_of_rational,rational_of_padic =
  let th = prove
   (`prational =_c rational`,
    TRANS_TAC CARD_EQ_TRANS `(:num)` THEN
    MESON_TAC[CARD_EQ_RATIONAL; CARD_EQ_SYM; prational]) in
  CONJ_PAIR(new_specification ["rational_of_padic"; "padic_of_rational"]
   (REWRITE_RULE[EQ_C_BIJECTIONS; IN_UNIV] th));;

let IMAGE_PADIC_OF_RATIONAL_RATIONAL = prove
 (`IMAGE padic_of_rational rational = prational`,
  MP_TAC padic_of_rational THEN MP_TAC rational_of_padic THEN SET_TAC[]);;

let padic_metric =
  let PADICS_EXIST = prove
   (`!p. ?(m:padic metric).
          mcomplete m /\
          mspace m = (:padic) /\
          mtopology m closure_of prational = (:padic) /\
          mtopology m derived_set_of prational = (:padic) /\
          !x y. rational x /\ rational y
                ==> mdist m (padic_of_rational x,padic_of_rational y) =
                    qnorm (if prime p then p else 2) (x - y)`,
    X_GEN_TAC `p:num` THEN
    MP_TAC(ISPEC `qadic_metric p` METRIC_COMPLETION_EXPLICIT) THEN
    REWRITE_TAC[QADIC_METRIC; LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`s:(real->real)->bool`; `f:real->real->real`] THEN
    ABBREV_TAC `m = funspace rational real_euclidean_metric` THEN
    STRIP_TAC THEN
    SUBGOAL_THEN
     `mtopology (submetric m s) derived_set_of
                (IMAGE f rational):(real->real)->bool = s`
    ASSUME_TAC THENL
     [MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL
       [TRANS_TAC SUBSET_TRANS
         `mtopology (submetric m s) derived_set_of s:(real->real)->bool` THEN
        ASM_SIMP_TAC[DERIVED_SET_OF_MONO] THEN
        REWRITE_TAC[DERIVED_SET_SUBSET_GEN; TOPSPACE_MTOPOLOGY] THEN
        MATCH_MP_TAC MCOMPLETE_IMP_CLOSED_IN THEN
        REWRITE_TAC[INTER_SUBSET; SUBMETRIC; SUBMETRIC_SUBMETRIC] THEN
        ASM_SIMP_TAC[SET_RULE
         `s SUBSET m ==> s INTER (s INTER m) INTER s = s`];
        TRANS_TAC SUBSET_TRANS
          `mtopology(submetric m s) closure_of
           (IMAGE (f:real->real->real) rational)` THEN
        CONJ_TAC THENL
         [REWRITE_TAC[MTOPOLOGY_SUBMETRIC; CLOSURE_OF_SUBTOPOLOGY] THEN
          ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> s INTER t = t`; SUBSET_REFL];
          ALL_TAC] THEN
        REWRITE_TAC[CLOSURE_OF] THEN MATCH_MP_TAC(SET_RULE
         `u SUBSET v /\ t SUBSET u ==> s INTER (t UNION u) SUBSET v`) THEN
        ASM_SIMP_TAC[DERIVED_SET_OF_MONO] THEN
        REWRITE_TAC[METRIC_DERIVED_SET_OF; SUBSET; FORALL_IN_IMAGE] THEN
        ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN
        REWRITE_TAC[EXISTS_IN_IMAGE; IN_ELIM_THM; IN_MBALL; SUBMETRIC] THEN
        X_GEN_TAC `x:real` THEN DISCH_TAC THEN CONJ_TAC THENL
         [ASM SET_TAC[]; X_GEN_TAC `r:real` THEN DISCH_TAC] THEN
        RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN REWRITE_TAC[IN] THEN
        RULE_ASSUM_TAC(REWRITE_RULE[MESON[]
         `(if prime p then qnorm p x else qnorm q x) =
          qnorm (if prime p then p else q) x`]) THEN
        ABBREV_TAC `p' = if prime p then p else 2` THEN
        SUBGOAL_THEN `prime p' /\ 2 <= p'` STRIP_ASSUME_TAC THENL
         [ASM_MESON_TAC[PRIME_2; PRIME_GE_2]; ALL_TAC] THEN
        MP_TAC(ISPECL [`inv(&p')`; `r:real`] REAL_ARCH_POW_INV) THEN
        ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
         [MATCH_MP_TAC REAL_INV_LT_1 THEN REWRITE_TAC[REAL_OF_NUM_LT] THEN
          ASM_ARITH_TAC;
          ALL_TAC] THEN
        DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN
        ABBREV_TAC `y = x + &p' pow n` THEN EXISTS_TAC `y:real` THEN
        MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN
        CONJ_TAC THENL [ASM_MESON_TAC[RATIONAL_CLOSED]; DISCH_TAC] THEN
        REWRITE_TAC[INTER; IN_ELIM_THM] THEN ONCE_REWRITE_TAC[TAUT
         `p /\ q /\ r /\ s <=> (q /\ r) /\ (q /\ r ==> p /\ s)`] THEN
        CONJ_TAC THENL [ASM SET_TAC[]; STRIP_TAC] THEN
        MP_TAC(ISPEC `m:(real->real)metric` (GSYM MDIST_0)) THEN
        ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN
        EXPAND_TAC "y" THEN REWRITE_TAC[REAL_ADD_SUB] THEN
        ONCE_REWRITE_TAC[GSYM QNORM_ABS] THEN
        REWRITE_TAC[REAL_ARITH `abs(x - (x + y)) = abs y`] THEN
        ONCE_REWRITE_TAC[REAL_ARITH `abs x = abs(x / &1)`] THEN
        ASM_REWRITE_TAC[QNORM_ABS; qnorm; REAL_OF_NUM_POW] THEN
        CONV_TAC NUM_REDUCE_CONV THEN ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ] THEN
        ASM_SIMP_TAC[INDEX_1; INDEX_EXP; INDEX_REFL; EXP] THEN
        ASM_REWRITE_TAC[ARITH_RULE `p <= 1 <=> ~(2 <= p)`] THEN
        REWRITE_TAC[real_div; MULT_CLAUSES; REAL_MUL_LID] THEN
        ASM_REWRITE_TAC[GSYM REAL_OF_NUM_POW; REAL_INV_POW] THEN
        REWRITE_TAC[REAL_POW_EQ_0; REAL_INV_EQ_0; REAL_OF_NUM_EQ] THEN
        ASM_SIMP_TAC[PRIME_IMP_NZ]];
      ALL_TAC] THEN
    SUBGOAL_THEN `(s:(real->real)->bool) =_c (:real)` ASSUME_TAC THENL
     [REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL
       [TRANS_TAC CARD_LE_TRANS `mspace m:(real->real)->bool` THEN
        ASM_SIMP_TAC[CARD_LE_SUBSET] THEN EXPAND_TAC "m" THEN
        TRANS_TAC CARD_LE_TRANS `(:real) ^_c rational` THEN CONJ_TAC THENL
         [REWRITE_TAC[EXP_C; FUNSPACE; REAL_EUCLIDEAN_METRIC] THEN
          MATCH_MP_TAC CARD_LE_SUBSET THEN SET_TAC[];
          SIMP_TAC[CARD_EXP_LE_REAL; CARD_LE_REFL; COUNTABLE_RATIONAL]];
        MATCH_MP_TAC CARD_GE_PERFECT_SET THEN
        EXISTS_TAC `mtopology(submetric m (s:(real->real)->bool))` THEN
        ASM_SIMP_TAC[COMPLETELY_METRIZABLE_SPACE_MTOPOLOGY] THEN
        ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN CONJ_TAC THENL
         [ALL_TAC; MP_TAC RATIONAL_NUM THEN ASM SET_TAC[]] THEN
        MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL
         [W(MP_TAC o PART_MATCH lhand DERIVED_SET_OF_SUBSET_CLOSURE_OF o
            lhand o snd) THEN
          REWRITE_TAC[CLOSURE_OF_SUBTOPOLOGY; MTOPOLOGY_SUBMETRIC] THEN
          ASM SET_TAC[];
          TRANS_TAC SUBSET_TRANS
           `mtopology (submetric m s) derived_set_of
              (IMAGE f rational):(real->real)->bool` THEN
          ASM_SIMP_TAC[DERIVED_SET_OF_MONO; SUBSET_REFL]]];
      ALL_TAC] THEN
    MP_TAC(fst(EQ_IMP_RULE(ISPECL [`f:real->real->real`; `rational`]
        INJECTIVE_ON_LEFT_INVERSE))) THEN
    ANTS_TAC THENL
     [MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN
      FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]) THEN
      ASM_REWRITE_TAC[] THEN
      W(MP_TAC o PART_MATCH (lhand o rand) MDIST_REFL o lhand o lhand o
        snd) THEN
      ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN
      CONV_TAC(LAND_CONV SYM_CONV) THEN COND_CASES_TAC THEN
      ASM_SIMP_TAC[QNORM_EQ_0; PRIME_2; RATIONAL_CLOSED] THEN
      REAL_ARITH_TAC;
      DISCH_THEN(X_CHOOSE_TAC `f':(real->real)->real`)] THEN
    MP_TAC(ISPECL
     [`padic_of_rational o (f':(real->real)->real)`;
      `(f:real->real->real) o rational_of_padic`;
      `IMAGE (f:real->real->real) rational`; `s:(real->real)->bool`;
      `prational`; `(:padic)`] EQ_C_BIJECTIONS_EXTEND) THEN
    ASM_REWRITE_TAC[IN_UNIV; SUBSET_UNIV] THEN ANTS_TAC THENL
     [CONJ_TAC THENL
       [MATCH_MP_TAC CARD_DIFF_CONG THEN ASM_REWRITE_TAC[SUBSET_UNIV] THEN
        REPEAT CONJ_TAC THENL
         [TRANS_TAC CARD_EQ_TRANS `(:real)` THEN ASM_REWRITE_TAC[] THEN
          ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[CARD_EQ_PADIC];
          TRANS_TAC CARD_EQ_TRANS `rational` THEN CONJ_TAC THENL
           [MATCH_MP_TAC CARD_EQ_IMAGE THEN ASM SET_TAC[];
            TRANS_TAC CARD_EQ_TRANS `(:num)` THEN
            REWRITE_TAC[CARD_EQ_RATIONAL] THEN
            ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[prational]];
          DISCH_THEN(K ALL_TAC) THEN TRANS_TAC CARD_LET_TRANS `rational` THEN
          REWRITE_TAC[CARD_LE_IMAGE] THEN
          TRANS_TAC CARD_LET_TRANS `(:num)` THEN
          SIMP_TAC[CARD_EQ_RATIONAL; CARD_EQ_IMP_LE] THEN
          TRANS_TAC CARD_LTE_TRANS `(:real)` THEN
          REWRITE_TAC[CARD_LT_NUM_REAL] THEN
          ASM_MESON_TAC[CARD_EQ_IMP_LE; CARD_EQ_SYM]];
        ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM] THEN
        MP_TAC rational_of_padic THEN MP_TAC padic_of_rational THEN
        ASM SET_TAC[]];
      REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_IN_IMAGE; IN_UNIV]] THEN
    MAP_EVERY X_GEN_TAC [`g:(real->real)->padic`; `h:padic->(real->real)`] THEN
    ASM_SIMP_TAC[FORALL_AND_THM; o_THM] THEN STRIP_TAC THEN
    ABBREV_TAC `m' = metric(IMAGE (g:(real->real)->padic) s,
                   (\(x,y). mdist m ((h:padic->real->real) x,h y)))` THEN
    EXISTS_TAC `m':padic metric` THEN
    MP_TAC(ISPECL
     [`IMAGE (g:(real->real)->padic) s`;
      `\(x,y). mdist m ((h:padic->real->real) x,h y)`] METRIC) THEN
    ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
     [REWRITE_TAC[is_metric_space; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
      REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN
      ASM_SIMP_TAC[MDIST_POS_LE; MDIST_0; MDIST_TRIANGLE] THEN
      ASM_MESON_TAC[MDIST_SYM];
      GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [FUN_EQ_THM] THEN
      REWRITE_TAC[FORALL_PAIR_THM] THEN STRIP_TAC] THEN
    REWRITE_TAC[IMAGE_o; o_THM] THEN CONJ_TAC THENL
     [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [mcomplete]) THEN
      REWRITE_TAC[CAUCHY_IN_SUBMETRIC; mcomplete; LIMIT_METRIC] THEN
      REWRITE_TAC[SUBMETRIC; cauchy_in] THEN DISCH_THEN(LABEL_TAC "*") THEN
      X_GEN_TAC `x:num->padic` THEN STRIP_TAC THEN FIRST_X_ASSUM
       (MP_TAC o SPEC `(h:padic->real->real) o (x:num->padic)`) THEN
      ASM_REWRITE_TAC[o_THM] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
      REWRITE_TAC[EXISTS_IN_IMAGE; IN_INTER] THEN MATCH_MP_TAC MONO_EXISTS THEN
      X_GEN_TAC `l:real->real` THEN
      DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
      ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN
      GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
      ASM SET_TAC[];
      ALL_TAC] THEN
    CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN
     `prational = IMAGE (g:(real->real)->padic)
                        (IMAGE (f:real->real->real) rational)`
    SUBST1_TAC THENL
     [MP_TAC rational_of_padic THEN MP_TAC padic_of_rational THEN
      ASM SET_TAC[];
      ALL_TAC] THEN
    UNDISCH_TAC
     `!x. x IN rational
          ==> g ((f:real->real->real) x) = padic_of_rational x` THEN
    REWRITE_TAC[IN] THEN
    DISCH_THEN(fun th -> SIMP_TAC[GSYM th]) THEN
    REPEAT(FIRST_X_ASSUM(K ALL_TAC o check (free_in `prational` o concl))) THEN
    MATCH_MP_TAC(TAUT `(q ==> p) /\ q /\ r ==> p /\ q /\ r`) THEN
    REPEAT CONJ_TAC THENL
     [REWRITE_TAC[CLOSURE_OF; TOPSPACE_MTOPOLOGY] THEN ASM SET_TAC[];
      REWRITE_TAC[METRIC_DERIVED_SET_OF] THEN
      ASM_REWRITE_TAC[SET_RULE `{y | y IN IMAGE f s /\ P y} =
          IMAGE f {x | x IN s /\ P(f x)}`] THEN
      SUBGOAL_THEN `(:padic) = IMAGE (g:(real->real)->padic) s`
      SUBST1_TAC THENL [ASM SET_TAC[]; AP_TERM_TAC] THEN
      FIRST_X_ASSUM
       (MP_TAC o GEN_REWRITE_RULE LAND_CONV [METRIC_DERIVED_SET_OF]) THEN
      ASM_REWRITE_TAC[SUBMETRIC; IN_MBALL] THEN
      ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN
      REWRITE_TAC[EXISTS_IN_IMAGE; IN_MBALL; SUBMETRIC] THEN
      ASM_SIMP_TAC[SET_RULE `s SUBSET m ==> s INTER m = s`] THEN
      MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
      REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `k:real->real` THEN
      ASM_CASES_TAC `(k:real->real) IN s` THEN ASM_REWRITE_TAC[] THEN
      AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
      X_GEN_TAC `r:real` THEN ASM_CASES_TAC `&0 < r` THEN
      ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM SET_TAC[];
      MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN
      FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]) THEN
      COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]) in
  new_specification ["padic_metric"]
   (REWRITE_RULE[SKOLEM_THM] PADICS_EXIST);;

(* ------------------------------------------------------------------------- *)
(* Extract the individual characteristics.                                   *)
(* ------------------------------------------------------------------------- *)

let MSPACE_PADIC_METRIC = prove
 (`!p. mspace(padic_metric p) = (:padic)`,
  REWRITE_TAC[padic_metric]);;

let MCOMPLETE_PADIC_METRIC = prove
 (`!p. mcomplete (padic_metric p)`,
  REWRITE_TAC[padic_metric]);;

let padic_topology = new_definition
 `padic_topology p = mtopology (padic_metric p)`;;

let TOPSPACE_PADIC_TOPOLOGY = prove
 (`!p. topspace(padic_topology p) = (:padic)`,
  REWRITE_TAC[padic_topology; TOPSPACE_MTOPOLOGY; MSPACE_PADIC_METRIC]);;

let HAUSDORFF_SPACE_PADIC_TOPOLOGY = prove
 (`!p. hausdorff_space (padic_topology p)`,
  REWRITE_TAC[padic_topology; HAUSDORFF_SPACE_MTOPOLOGY]);;

let CLOSURE_OF_PRATIONAL = prove
 (`!p. (padic_topology p) closure_of prational = (:padic)`,
  REWRITE_TAC[padic_topology; padic_metric]);;

let DERIVED_SET_OF_PRATIONAL = prove
 (`!p. (padic_topology p) derived_set_of prational = (:padic)`,
  REWRITE_TAC[padic_topology; padic_metric]);;

let pdist = new_definition
 `pdist p = mdist (padic_metric p)`;;

let PDIST_GEN = prove
 (`!p q r. rational q /\ rational r
         ==> pdist p (padic_of_rational q,padic_of_rational r) =
             if prime p then qnorm p (q - r) else qnorm 2 (q - r)`,
  SIMP_TAC[pdist; padic_metric] THEN MESON_TAC[]);;

let PDIST = prove
 (`!p q r. prime p /\ rational q /\ rational r
           ==> pdist p (padic_of_rational q,padic_of_rational r) =
               qnorm p (q - r)`,
  SIMP_TAC[PDIST_GEN]);;

let PDIST_ALT = prove
 (`!p q r. rational q /\ rational r
           ==> pdist p (padic_of_rational q,padic_of_rational r) =
               qnorm (if prime p then p else 2) (q - r)`,
  SIMP_TAC[PDIST_GEN] THEN MESON_TAC[]);;

let PDIST_POS_LE = prove
 (`!p x y. &0 <= pdist p (x,y)`,
  SIMP_TAC[pdist; MDIST_POS_LE; MSPACE_PADIC_METRIC; IN_UNIV]);;

let PDIST_REFL = prove
 (`!p x. pdist p (x,x) = &0`,
  SIMP_TAC[pdist; MDIST_REFL; MSPACE_PADIC_METRIC; IN_UNIV]);;

let PDIST_SYM = prove
 (`!p x y. pdist p (x,y) = pdist p (y,x)`,
  SIMP_TAC[pdist; MDIST_SYM; MSPACE_PADIC_METRIC; IN_UNIV]);;

let PDIST_EQ_0 = prove
 (`!p x y. pdist p (x,y) = &0 <=> x = y`,
  SIMP_TAC[pdist; MDIST_0; MSPACE_PADIC_METRIC; IN_UNIV]);;

let PDIST_TRIANGLE = prove
 (`!p x y z.
        pdist p (x,z) <= pdist p (x,y) + pdist p (y,z)`,
  SIMP_TAC[pdist; MDIST_TRIANGLE; MSPACE_PADIC_METRIC; IN_UNIV]);;

let PDIST_ULTRA = prove
 (`!p x y z.
        pdist p (x,z) <= max (pdist p (x,y)) (pdist p (y,z))`,
  let lemma = prove
   (`!p. (\(x,y,z). &0 <= f x y z) p <=>
         f (FST p) (FST(SND p)) (SND(SND p)) IN {t | &0 <= t}`,
    REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM]) in
  GEN_TAC THEN
  MP_TAC(ISPECL
   [`prod_topology (padic_topology p)
                   (prod_topology (padic_topology p) (padic_topology p))`;
    `\(x,y,z). pdist p (x,z)
               <= max (pdist p (x,y)) (pdist p (y,z))`;
    `prational CROSS prational CROSS prational`]
    FORALL_IN_CLOSURE_OF) THEN
  REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; CLOSURE_OF_CROSS] THEN
  REWRITE_TAC[CLOSURE_OF_PRATIONAL; IN_UNIV] THEN DISCH_THEN MATCH_MP_TAC THEN
  REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ; FORALL_IN_IMAGE] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[IN] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[PDIST_GEN] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    W(MP_TAC o PART_MATCH (rand o rand) QNORM_ULTRA o rand o snd) THEN
    ASM_SIMP_TAC[RATIONAL_CLOSED] THEN MATCH_MP_TAC EQ_IMP THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REAL_ARITH_TAC;

    ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN PURE_REWRITE_TAC[lemma] THEN
    MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN
    EXISTS_TAC `euclideanreal` THEN CONJ_TAC THENL
     [ALL_TAC;
      REWRITE_TAC[GSYM REAL_CLOSED_IN; GSYM real_ge;
                  REAL_CLOSED_HALFSPACE_GE]] THEN
    MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB THEN CONJ_TAC THEN
    TRY(MATCH_MP_TAC CONTINUOUS_MAP_REAL_MAX THEN CONJ_TAC) THEN
    PURE_REWRITE_TAC[pdist] THEN MATCH_MP_TAC CONTINUOUS_MAP_MDIST THEN
    REWRITE_TAC[GSYM padic_topology] THEN
    REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND] THEN TRY CONJ_TAC THEN
    REPEAT(MATCH_MP_TAC CONTINUOUS_MAP_FST_OF ORELSE
           MATCH_MP_TAC CONTINUOUS_MAP_SND_OF) THEN
    MESON_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND]]);;

(* ------------------------------------------------------------------------- *)
(* Extend addition and multiplication operations from the rationals.         *)
(* Also introduce a few natural derived operations.                          *)
(* ------------------------------------------------------------------------- *)

let CONTINUOUS_MAP_PADIC_ADDITION,PADIC_ADD_OF_RATIONAL =
  let lemma = prove
   (`!p x y. cauchy_in (qadic_metric p) x /\ cauchy_in (qadic_metric p) y
           ==> cauchy_in (qadic_metric p) (\n. x n + y n)`,
    GEN_TAC THEN REWRITE_TAC[cauchy_in; QADIC_METRIC] THEN
    ONCE_REWRITE_TAC[GSYM COND_RATOR] THEN REWRITE_TAC[ETA_AX] THEN
    ONCE_REWRITE_TAC[GSYM COND_RAND] THEN
    ABBREV_TAC `p' = if prime p then p else 2` THEN
    SUBGOAL_THEN `prime p'` MP_TAC THENL [ASM_MESON_TAC[PRIME_2]; ALL_TAC] THEN
    SPEC_TAC(`p':num`,`p':num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
    X_GEN_TAC `p:num` THEN DISCH_TAC THEN REWRITE_TAC[IN] THEN
    REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[RATIONAL_CLOSED] THEN
    X_GEN_TAC `e:real` THEN DISCH_TAC THEN
    REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `e:real`)) THEN
    ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `M:num` THEN DISCH_TAC THEN
    X_GEN_TAC `N:num` THEN DISCH_TAC THEN EXISTS_TAC `MAX M N` THEN
    REWRITE_TAC[ARITH_RULE `MAX M N <= n <=> M <= n /\ N <= n`] THEN
    REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH
     `(x + y) - (x' + y'):real = (x - x') + (y - y')`] THEN
    W(MP_TAC o PART_MATCH (lhand o rand) QNORM_ULTRA o lhand o snd) THEN
    ASM_SIMP_TAC[RATIONAL_CLOSED] THEN MATCH_MP_TAC(REAL_ARITH
     `a < e /\ b < e ==> x <= max a b ==> x < e`) THEN
    ASM_SIMP_TAC[]) in
  let padic_addition_exists = prove
   (`!p. ?plus.
        continuous_map
         (prod_topology (padic_topology p) (padic_topology p),padic_topology p)
         (\(a,b). plus a b) /\
        !x y. rational x /\ rational y
              ==> plus (padic_of_rational x) (padic_of_rational y) =
                  padic_of_rational (x + y)`,
    GEN_TAC THEN
    MP_TAC(ISPECL
     [`prod_metric (padic_metric p) (padic_metric p)`;
      `padic_metric p`;
      `\(x,y). padic_of_rational
           (rational_of_padic x + rational_of_padic y)`;
      `prational CROSS prational`]
     CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CONTINUOUS_CLOSURE_OF) THEN
    REWRITE_TAC[MTOPOLOGY_PROD_METRIC; CLOSURE_OF_CROSS] THEN
    REWRITE_TAC[GSYM padic_topology; CLOSURE_OF_PRATIONAL] THEN
    REWRITE_TAC[CROSS_UNIV; SUBTOPOLOGY_UNIV] THEN
    REWRITE_TAC[MCOMPLETE_PADIC_METRIC; SUBMETRIC_PROD_METRIC] THEN
    ANTS_TAC THENL
     [REWRITE_TAC[cauchy_continuous_map; FORALL_PAIR_FUN_THM] THEN
      REWRITE_TAC[CAUCHY_IN_PROD_METRIC; o_DEF; ETA_AX] THEN
      REWRITE_TAC[CAUCHY_IN_SUBMETRIC; TAUT
       `(p /\ p') /\ q /\ q' ==> r <=> p ==> q ==> p' /\ q' ==> r`] THEN
      REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; IN_IMAGE] THEN
      REWRITE_TAC[SKOLEM_THM; RIGHT_FORALL_IMP_THM; FORALL_AND_THM] THEN
      ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN
      REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
      ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
      REWRITE_TAC[IMP_CONJ; FORALL_UNWIND_THM2] THEN
      X_GEN_TAC `x:num->real` THEN DISCH_TAC THEN
      ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
      REWRITE_TAC[FORALL_UNWIND_THM2] THEN
      X_GEN_TAC `y:num->real` THEN DISCH_TAC THEN
      REWRITE_TAC[cauchy_in; MSPACE_PADIC_METRIC; IN_UNIV] THEN
      ASM_SIMP_TAC[rational_of_padic; GSYM pdist] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN
      ASM_SIMP_TAC[PDIST_ALT; RATIONAL_CLOSED] THEN
      MP_TAC(ISPECL [`p:num`; `x:num->real`; `y:num->real`] lemma) THEN
      ASM_REWRITE_TAC[cauchy_in; QADIC_METRIC] THEN
      ASM_CASES_TAC `prime p` THEN ASM_SIMP_TAC[IN; RATIONAL_CLOSED];
      REWRITE_TAC[EXISTS_CURRY; FORALL_PAIR_THM] THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `plus:padic->padic->padic` THEN
      REWRITE_TAC[IN_CROSS] THEN
      REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; FORALL_IN_IMAGE_2] THEN
      SIMP_TAC[rational_of_padic] THEN SIMP_TAC[IN]]) in
  let th = new_specification ["padic_add"]
    (REWRITE_RULE[SKOLEM_THM] padic_addition_exists) in
  CONJ_PAIR(REWRITE_RULE[FORALL_AND_THM] th);;

let CONTINUOUS_MAP_PADIC_MULTIPLICATION,PADIC_MUL_OF_RATIONAL =
  let sublemma = prove
   (`!p x. prime p /\ cauchy_in (qadic_metric p) x
           ==> ?b. &0 < b /\ !n. qnorm p (x n) <= b`,
    REPEAT STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o MATCH_MP CAUCHY_IN_IMP_MBOUNDED) THEN
    REWRITE_TAC[MBOUNDED_POS; mcball; QADIC_METRIC] THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM; SUBSET; FORALL_IN_GSPEC] THEN
    MAP_EVERY X_GEN_TAC [`c:real`; `b:real`] THEN
    ASM_REWRITE_TAC[IN_UNIV; IN_ELIM_THM; FORALL_AND_THM] THEN
    REWRITE_TAC[IN] THEN STRIP_TAC THEN EXISTS_TAC `qnorm p c + b` THEN
    ASM_SIMP_TAC[REAL_LET_ADD; QNORM_POS_LE] THEN X_GEN_TAC `n:num` THEN
    SUBST1_TAC(REAL_ARITH `(x:num->real) n = --(c - x n) + c`) THEN
    W(MP_TAC o PART_MATCH (lhand o rand) QNORM_TRIANGLE o lhand o snd) THEN
    ASM_SIMP_TAC[RATIONAL_CLOSED; QNORM_NEG] THEN
    REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `n:num`)) THEN REAL_ARITH_TAC) in
  let lemma = prove
   (`!p x y. cauchy_in (qadic_metric p) x /\ cauchy_in (qadic_metric p) y
           ==> cauchy_in (qadic_metric p) (\n. x n * y n)`,
    REPEAT GEN_TAC THEN
    ABBREV_TAC `p' = if prime p then p else 2` THEN
    SUBGOAL_THEN `qadic_metric p = qadic_metric p'` SUBST1_TAC THENL
     [EXPAND_TAC "p'" THEN REWRITE_TAC[qadic_metric] THEN
      POP_ASSUM_LIST(K ALL_TAC) THEN
      ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[PRIME_2];
      SUBGOAL_THEN `prime p'` MP_TAC THENL
       [ASM_MESON_TAC[PRIME_2]; POP_ASSUM_LIST(K ALL_TAC)] THEN
      SPEC_TAC(`p':num`,`p:num`)] THEN
    GEN_TAC THEN DISCH_TAC THEN DISCH_TAC THEN
    SUBGOAL_THEN
     `?B. &0 < B /\
          (!n:num. qnorm p (x n) <= B) /\
          (!n:num. qnorm p (y n) <= B)`
    STRIP_ASSUME_TAC THENL
     [MP_TAC(SPEC `p:num` sublemma) THEN DISCH_THEN(fun th ->
        MP_TAC(SPEC `y:num->real` th) THEN MP_TAC(SPEC `x:num->real` th)) THEN
      ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
      X_GEN_TAC `B:real` THEN STRIP_TAC THEN
      X_GEN_TAC `C:real` THEN STRIP_TAC THEN
      EXISTS_TAC `max B C:real` THEN
      ASM_REWRITE_TAC[REAL_LT_MAX; REAL_LE_MAX];
      FIRST_X_ASSUM(CONJUNCTS_THEN MP_TAC)] THEN
    ASM_SIMP_TAC[cauchy_in; QADIC_METRIC; IN; RATIONAL_CLOSED; IMP_IMP] THEN
    DISCH_THEN(CONJUNCTS_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    REWRITE_TAC[IMP_IMP; AND_FORALL_THM] THEN DISCH_TAC THEN
    X_GEN_TAC `e:real` THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `e / &3 / B`) THEN
    ASM_SIMP_TAC[REAL_LT_DIV; REAL_ARITH `&0 < &3`] THEN
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_TAC `M:num`) (X_CHOOSE_TAC `N:num`)) THEN
    EXISTS_TAC `MAX M N` THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
    REWRITE_TAC[ARITH_RULE `MAX M N <= n <=> M <= n /\ N <= n`] THEN
    STRIP_TAC THEN SUBST1_TAC(REAL_ARITH
     `(x:num->real) m * y m - x n * y n =
      x m * (y m - y n) + y n * (x m - x n)`) THEN
    W(MP_TAC o PART_MATCH (lhand o rand) QNORM_TRIANGLE o lhand o snd)  THEN
    ASM_SIMP_TAC[RATIONAL_CLOSED; QNORM_MUL] THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LET_TRANS) THEN
    TRANS_TAC REAL_LET_TRANS `B * e / &3 / B + B * e / &3 / B` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THEN
      MATCH_MP_TAC REAL_LE_MUL2 THEN
      ASM_SIMP_TAC[QNORM_POS_LE; REAL_LT_IMP_LE];
      ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN ASM_REAL_ARITH_TAC]) in
  let padic_multiplication_exists = prove
   (`!p. ?plus.
        continuous_map
         (prod_topology (padic_topology p) (padic_topology p),padic_topology p)
         (\(a,b). plus a b) /\
        !x y. rational x /\ rational y
              ==> plus (padic_of_rational x) (padic_of_rational y) =
                  padic_of_rational (x * y)`,
    GEN_TAC THEN
    MP_TAC(ISPECL
     [`prod_metric (padic_metric p) (padic_metric p)`;
      `padic_metric p`;
      `\(x,y). padic_of_rational
           (rational_of_padic x * rational_of_padic y)`;
      `prational CROSS prational`]
     CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CONTINUOUS_CLOSURE_OF) THEN
    REWRITE_TAC[MTOPOLOGY_PROD_METRIC; CLOSURE_OF_CROSS] THEN
    REWRITE_TAC[GSYM padic_topology; CLOSURE_OF_PRATIONAL] THEN
    REWRITE_TAC[CROSS_UNIV; SUBTOPOLOGY_UNIV] THEN
    REWRITE_TAC[MCOMPLETE_PADIC_METRIC; SUBMETRIC_PROD_METRIC] THEN
    ANTS_TAC THENL
     [REWRITE_TAC[cauchy_continuous_map; FORALL_PAIR_FUN_THM] THEN
      REWRITE_TAC[CAUCHY_IN_PROD_METRIC; o_DEF; ETA_AX] THEN
      REWRITE_TAC[CAUCHY_IN_SUBMETRIC; TAUT
       `(p /\ p') /\ q /\ q' ==> r <=> p ==> q ==> p' /\ q' ==> r`] THEN
      REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; IN_IMAGE] THEN
      REWRITE_TAC[SKOLEM_THM; RIGHT_FORALL_IMP_THM; FORALL_AND_THM] THEN
      ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN
      REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
      ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
      REWRITE_TAC[IMP_CONJ; FORALL_UNWIND_THM2] THEN
      X_GEN_TAC `x:num->real` THEN DISCH_TAC THEN
      ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
      REWRITE_TAC[FORALL_UNWIND_THM2] THEN
      X_GEN_TAC `y:num->real` THEN DISCH_TAC THEN
      REWRITE_TAC[cauchy_in; MSPACE_PADIC_METRIC; IN_UNIV] THEN
      ASM_SIMP_TAC[rational_of_padic; GSYM pdist] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN
      ASM_SIMP_TAC[PDIST_ALT; RATIONAL_CLOSED] THEN
      MP_TAC(ISPECL [`p:num`; `x:num->real`; `y:num->real`] lemma) THEN
      ASM_REWRITE_TAC[cauchy_in; QADIC_METRIC] THEN
      ASM_CASES_TAC `prime p` THEN ASM_SIMP_TAC[IN; RATIONAL_CLOSED];
      REWRITE_TAC[EXISTS_CURRY; FORALL_PAIR_THM] THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `plus:padic->padic->padic` THEN
      REWRITE_TAC[IN_CROSS] THEN
      REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; FORALL_IN_IMAGE_2] THEN
      SIMP_TAC[rational_of_padic] THEN SIMP_TAC[IN]]) in
  let th = new_specification ["padic_mul"]
    (REWRITE_RULE[SKOLEM_THM] padic_multiplication_exists) in
  CONJ_PAIR(REWRITE_RULE[FORALL_AND_THM] th);;

let padic_of_num = new_definition
 `padic_of_num n = padic_of_rational(&n)`;;

let padic_neg = new_definition
 `padic_neg p x = padic_mul p (padic_of_rational(-- &1)) x`;;

let padic_sub = new_definition
 `padic_sub p x y = padic_add p x (padic_neg p y)`;;

let PADIC_NEG_OF_RATIONAL = prove
 (`!p x. rational x
         ==> padic_neg p (padic_of_rational x) =
             padic_of_rational (--x)`,
  SIMP_TAC[padic_neg; PADIC_MUL_OF_RATIONAL; RATIONAL_CLOSED] THEN
  REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_LID]);;

let PADIC_SUB_OF_RATIONAL = prove
 (`!p x y.
         rational x /\ rational y
         ==> padic_sub p (padic_of_rational x) (padic_of_rational y) =
             padic_of_rational (x - y)`,
  SIMP_TAC[padic_sub; PADIC_NEG_OF_RATIONAL; PADIC_ADD_OF_RATIONAL;
           RATIONAL_CLOSED; real_sub]);;

(* ------------------------------------------------------------------------- *)
(* Continuity lemmas.                                                        *)
(* ------------------------------------------------------------------------- *)

let CONTINUOUS_MAP_PADIC_ADD = prove
 (`!p top f g:A->padic.
      continuous_map (top,padic_topology p) f /\
      continuous_map (top,padic_topology p) g
      ==> continuous_map (top,padic_topology p) (\x. padic_add p (f x) (g x))`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `(\x. padic_add p (f x) (g x)) =
    (\(x,y). padic_add p x y) o (\a. (f:A->padic) a,g a)`
  SUBST1_TAC THENL
   [REWRITE_TAC[FUN_EQ_THM; o_THM; FORALL_PAIR_THM]; ALL_TAC] THEN
  MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN
  EXISTS_TAC `prod_topology (padic_topology p) (padic_topology p)` THEN
  REWRITE_TAC[CONTINUOUS_MAP_PADIC_ADDITION] THEN
  REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF] THEN
  ASM_REWRITE_TAC[ETA_AX]);;

let CONTINUOUS_MAP_PADIC_MUL = prove
 (`!p top f g:A->padic.
      continuous_map (top,padic_topology p) f /\
      continuous_map (top,padic_topology p) g
      ==> continuous_map (top,padic_topology p) (\x. padic_mul p (f x) (g x))`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `(\x. padic_mul p (f x) (g x)) =
    (\(x,y). padic_mul p x y) o (\a. (f:A->padic) a,g a)`
  SUBST1_TAC THENL
   [REWRITE_TAC[FUN_EQ_THM; o_THM; FORALL_PAIR_THM]; ALL_TAC] THEN
  MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN
  EXISTS_TAC `prod_topology (padic_topology p) (padic_topology p)` THEN
  REWRITE_TAC[CONTINUOUS_MAP_PADIC_MULTIPLICATION] THEN
  REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF] THEN
  ASM_REWRITE_TAC[ETA_AX]);;

let CONTINUOUS_MAP_PADIC_NEG = prove
 (`!p top f:A->padic.
        continuous_map (top,padic_topology p) f
        ==> continuous_map (top,padic_topology p) (\x. padic_neg p (f x))`,
  SIMP_TAC[padic_neg; CONTINUOUS_MAP_PADIC_MUL; CONTINUOUS_MAP_CONST;
           TOPSPACE_PADIC_TOPOLOGY; IN_UNIV]);;

let CONTINUOUS_MAP_PADIC_SUB = prove
 (`!p top f g:A->padic.
      continuous_map (top,padic_topology p) f /\
      continuous_map (top,padic_topology p) g
      ==> continuous_map (top,padic_topology p) (\x. padic_sub p (f x) (g x))`,
  SIMP_TAC[padic_sub; CONTINUOUS_MAP_PADIC_ADD; CONTINUOUS_MAP_PADIC_NEG]);;

(* ------------------------------------------------------------------------- *)
(* Bootstrap some basic field properties by continuity.                      *)
(* ------------------------------------------------------------------------- *)

let FORALL_IN_PADIC_CLOSURE_OF = prove
 (`!p top s f g:A->padic.
        (continuous_map (top,padic_topology p) f /\
         continuous_map (top,padic_topology p) g) /\
        (!x. x IN s ==> f x = g x)
        ==> (!x. x IN top closure_of s ==> f x = g x)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MATCH_MP_TAC FORALL_IN_CLOSURE_OF_EQ THEN
  EXISTS_TAC `padic_topology p` THEN
  ASM_REWRITE_TAC[HAUSDORFF_SPACE_PADIC_TOPOLOGY]);;

let SIMPLE_PADIC_ARITH_TAC =
  TRY(X_GEN_TAC `p:num`) THEN
  REWRITE_TAC[FORALL_UNPAIR_THM] THEN
  ONCE_REWRITE_TAC[SET_RULE `(!x. P x) <=> (!x. x IN UNIV ==> P x)`] THEN
  REWRITE_TAC[GSYM CROSS_UNIV] THEN
  REWRITE_TAC[GSYM CLOSURE_OF_PRATIONAL] THEN
  REWRITE_TAC[GSYM CLOSURE_OF_CROSS] THEN
  MATCH_MP_TAC FORALL_IN_PADIC_CLOSURE_OF THEN EXISTS_TAC `p:num` THEN
  CONJ_TAC THENL
   [CONJ_TAC THEN
    REPEAT((MATCH_MP_TAC CONTINUOUS_MAP_PADIC_ADD THEN CONJ_TAC) ORELSE
           (MATCH_MP_TAC CONTINUOUS_MAP_PADIC_SUB THEN CONJ_TAC) ORELSE
           (MATCH_MP_TAC CONTINUOUS_MAP_PADIC_MUL THEN CONJ_TAC) ORELSE
           (MATCH_MP_TAC CONTINUOUS_MAP_PADIC_NEG)) THEN
    REPEAT(GEN_REWRITE_TAC I 
             [CONTINUOUS_MAP_OF_FST; CONTINUOUS_MAP_OF_SND] THEN
           DISJ2_TAC) THEN
    REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND;
                CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST] THEN
    REWRITE_TAC[TOPSPACE_PADIC_TOPOLOGY; IN_UNIV];
    REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; GSYM CONJ_ASSOC] THEN
    REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
    REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL] THEN
    REWRITE_TAC[FORALL_IN_IMAGE] THEN
    REWRITE_TAC[IN; RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN
    SIMP_TAC[padic_of_num; PADIC_ADD_OF_RATIONAL; PADIC_SUB_OF_RATIONAL;
      PADIC_NEG_OF_RATIONAL; PADIC_MUL_OF_RATIONAL; RATIONAL_CLOSED] THEN
    REPEAT GEN_TAC THEN DISCH_THEN(K ALL_TAC) THEN AP_TERM_TAC THEN
    CONV_TAC REAL_RING];;

let PADIC_ADD_SYM = prove
 (`!p x y. padic_add p x y = padic_add p y x`,
  SIMPLE_PADIC_ARITH_TAC);;

let PADIC_ADD_ASSOC = prove
 (`!p x y z. padic_add p x (padic_add p y z) =
             padic_add p (padic_add p x y) z`,
  SIMPLE_PADIC_ARITH_TAC);;

let PADIC_ADD_LID = prove
 (`!p x. padic_add p (padic_of_num 0) x = x`,
  SIMPLE_PADIC_ARITH_TAC);;

let PADIC_ADD_LINV = prove
 (`!p x. padic_add p (padic_neg p x) x = padic_of_num 0`,
  SIMPLE_PADIC_ARITH_TAC);;

let PADIC_MUL_SYM = prove
 (`!p x y. padic_mul p x y = padic_mul p y x`,
  SIMPLE_PADIC_ARITH_TAC);;

let PADIC_MUL_ASSOC = prove
 (`!p x y z. padic_mul p x (padic_mul p y z) =
             padic_mul p (padic_mul p x y) z`,
  SIMPLE_PADIC_ARITH_TAC);;

let PADIC_MUL_LID = prove
 (`!p x. padic_mul p (padic_of_num 1) x = x`,
  SIMPLE_PADIC_ARITH_TAC);;

let PADIC_ADD_LDISTRIB = prove
 (`!p x y z. padic_mul p x (padic_add p y z) =
             padic_add p (padic_mul p x y)  (padic_mul p x z)`,
  SIMPLE_PADIC_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Also define the padic norm explicitly. Our connection to qnorm is a bit   *)
(* roundabout because we are using completion machinery that is specifically *)
(* about metric spaces. So we go qnorm -> qdist -> pdist -> pnorm.           *)
(* ------------------------------------------------------------------------- *)

let pnorm = new_definition
 `pnorm p x = pdist p (padic_of_num 0,x)`;;

let PDIST_PNORM = prove
 (`!p x y. pdist p (x,y) = pnorm p (padic_sub p x y)`,
  REWRITE_TAC[pnorm] THEN X_GEN_TAC `p:num` THEN
  REWRITE_TAC[FORALL_UNPAIR_THM] THEN
  ONCE_REWRITE_TAC[SET_RULE `(!x. P x) <=> (!x. x IN UNIV ==> P x)`] THEN
  REWRITE_TAC[GSYM CROSS_UNIV] THEN
  REWRITE_TAC[GSYM CLOSURE_OF_PRATIONAL] THEN
  REWRITE_TAC[GSYM CLOSURE_OF_CROSS] THEN
  MATCH_MP_TAC FORALL_IN_CLOSURE_OF_EQ THEN
  EXISTS_TAC `euclideanreal` THEN
  REWRITE_TAC[HAUSDORFF_SPACE_EUCLIDEANREAL; CONJ_ASSOC] THEN CONJ_TAC THENL
   [CONJ_TAC THEN REWRITE_TAC[pdist] THEN
    MATCH_MP_TAC CONTINUOUS_MAP_MDIST_ALT THEN
    REWRITE_TAC[GSYM padic_topology; CONTINUOUS_MAP_ID] THEN
    REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF] THEN
    REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_PADIC_TOPOLOGY; IN_UNIV] THEN
    MATCH_MP_TAC CONTINUOUS_MAP_PADIC_SUB THEN
    REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND];
    REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; pdist] THEN
    REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; FORALL_IN_IMAGE_2] THEN
    SIMP_TAC[IN; padic_metric; padic_of_num; RATIONAL_CLOSED;
             PADIC_SUB_OF_RATIONAL] THEN
    REWRITE_TAC[REAL_SUB_LZERO; QNORM_NEG]]);;

let PNORM_0 = prove
 (`!p. pnorm p (padic_of_num 0) = &0`,
  REWRITE_TAC[pnorm; PDIST_REFL]);;

let PNORM_RATIONAL = prove
 (`!p x. rational x
         ==> pnorm p (padic_of_rational x) =
             qnorm (if prime p then p else 2) x`,
  REWRITE_TAC[pnorm; pdist; padic_of_num] THEN
  SIMP_TAC[padic_metric; RATIONAL_CLOSED] THEN
  REWRITE_TAC[REAL_SUB_LZERO; QNORM_NEG]);;

let PNORM_1 = prove
 (`!p. pnorm p (padic_of_num 1) = &1`,
  SIMP_TAC[PNORM_RATIONAL; padic_of_num; RATIONAL_CLOSED] THEN
  REWRITE_TAC[QNORM_1] THEN MESON_TAC[PRIME_2]);;

let PNORM_NEG = prove
 (`!p x. pnorm p (padic_neg p x) = pnorm p x`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC RAND_CONV [pnorm] THEN REWRITE_TAC[PDIST_PNORM] THEN
  AP_TERM_TAC THEN SPEC_TAC(`x:padic`,`x:padic`) THEN
  SIMPLE_PADIC_ARITH_TAC);;

let PNORM_POS_LE = prove
 (`!p x. &0 <= pnorm p x`,
  REWRITE_TAC[pnorm; PDIST_POS_LE]);;

let PNORM_0 = prove
 (`!p x. pnorm p (padic_of_num 0) = &0`,
  REWRITE_TAC[pnorm; PDIST_REFL]);;

let PNORM_EQ_0 = prove
 (`!p x. pnorm p x = &0 <=> x = padic_of_num 0`,
  REWRITE_TAC[pnorm; PDIST_EQ_0] THEN MESON_TAC[]);;

let PNORM_POS_LT = prove
 (`!p x. &0 < pnorm p x <=> ~(x = padic_of_num 0)`,
  REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
  REWRITE_TAC[PNORM_POS_LE; PNORM_EQ_0]);;

let PNORM_ULTRA = prove
 (`!p x y. pnorm p (padic_add p x y) <= max (pnorm p x) (pnorm p y)`,
  REPEAT GEN_TAC THEN
  TRANS_TAC REAL_LE_TRANS `pnorm p (padic_sub p x (padic_neg p y))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC REAL_EQ_IMP_LE THEN AP_TERM_TAC THEN
    MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`y:padic`; `x:padic`] THEN
    SIMPLE_PADIC_ARITH_TAC;
    REWRITE_TAC[GSYM PDIST_PNORM] THEN
    GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM PNORM_NEG] THEN
    REWRITE_TAC[pnorm] THEN MP_TAC(ISPECL
     [`p:num`; `x:padic`; `padic_of_num 0`; `padic_neg p y`]
        PDIST_ULTRA) THEN
    REWRITE_TAC[PDIST_SYM]]);;

let PNORM_TRIANGLE = prove
 (`!p x y. pnorm p (padic_add p x y) <= pnorm p x + pnorm p y`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH
   `x <= max y z /\ &0 <= y /\ &0 <= z ==> x <= y + z`) THEN
  REWRITE_TAC[PNORM_ULTRA; PNORM_POS_LE]);;

let PNORM_MUL = prove
 (`!p x y. pnorm p (padic_mul p x y) = pnorm p x * pnorm p y`,
  REWRITE_TAC[pnorm] THEN X_GEN_TAC `p:num` THEN
  REWRITE_TAC[FORALL_UNPAIR_THM] THEN
  ONCE_REWRITE_TAC[SET_RULE `(!x. P x) <=> (!x. x IN UNIV ==> P x)`] THEN
  REWRITE_TAC[GSYM CROSS_UNIV] THEN
  REWRITE_TAC[GSYM CLOSURE_OF_PRATIONAL] THEN
  REWRITE_TAC[GSYM CLOSURE_OF_CROSS] THEN
  MATCH_MP_TAC FORALL_IN_CLOSURE_OF_EQ THEN
  EXISTS_TAC `euclideanreal` THEN
  REWRITE_TAC[HAUSDORFF_SPACE_EUCLIDEANREAL; CONJ_ASSOC] THEN CONJ_TAC THENL
   [CONJ_TAC THEN REWRITE_TAC[pdist] THEN
    TRY(MATCH_MP_TAC CONTINUOUS_MAP_REAL_MUL THEN CONJ_TAC) THEN
    MATCH_MP_TAC CONTINUOUS_MAP_MDIST_ALT THEN
    REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF] THEN
    REWRITE_TAC[GSYM padic_topology; CONTINUOUS_MAP_ID] THEN
    REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_PADIC_TOPOLOGY; IN_UNIV] THEN
    TRY(MATCH_MP_TAC CONTINUOUS_MAP_PADIC_MUL) THEN
    REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND; ETA_AX];
    REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; pdist] THEN
    REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL; FORALL_IN_IMAGE_2] THEN
    SIMP_TAC[IN; padic_metric; padic_of_num; RATIONAL_CLOSED;
             PADIC_MUL_OF_RATIONAL] THEN
    REWRITE_TAC[REAL_SUB_LZERO; QNORM_NEG] THEN
    SIMP_TAC[QNORM_MUL]]);;

(* ------------------------------------------------------------------------- *)
(* Deduce the existence of multiplicative inverses.                          *)
(* ------------------------------------------------------------------------- *)

let PADIC_ENTIRE = prove
 (`!p x y. padic_mul p x y = padic_of_num 0 <=>
          x = padic_of_num 0 \/ y = padic_of_num 0`,
  REWRITE_TAC[GSYM PNORM_EQ_0; PNORM_MUL; REAL_ENTIRE]);;

let padic_inv = new_definition
 `padic_inv p x = if x = padic_of_num 0 then padic_of_num 0
                  else @y. padic_mul p x y = padic_of_num 1`;;

let PADIC_INV_0 = prove
 (`!p. padic_inv p (padic_of_num 0) = padic_of_num 0`,
  REWRITE_TAC[padic_inv]);;

let PADIC_MUL_RINV = prove
 (`!p x. ~(x = padic_of_num 0)
         ==> padic_mul p x (padic_inv p x) = padic_of_num 1`,
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[padic_inv] THEN
  CONV_TAC SELECT_CONV THEN
  MP_TAC(ISPECL [`padic_metric p`; `prational`] CLOSURE_OF_SEQUENTIALLY) THEN
  REWRITE_TAC[CLOSURE_OF_PRATIONAL; MSPACE_PADIC_METRIC;
              GSYM padic_topology; INTER_UNIV; IN_UNIV] THEN
  REWRITE_TAC[EXTENSION; IN_UNIV; IN_ELIM_THM] THEN
  REWRITE_TAC[GSYM IMAGE_PADIC_OF_RATIONAL_RATIONAL] THEN
  DISCH_THEN(MP_TAC o SPEC `x:padic`) THEN REWRITE_TAC[IN_IMAGE] THEN
  REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM] THEN
  ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2; IN] THEN
  DISCH_THEN(X_CHOOSE_THEN `q:num->real` STRIP_ASSUME_TAC) THEN
  ABBREV_TAC `e = pnorm p x / &2` THEN
  SUBGOAL_THEN `&0 < e` ASSUME_TAC THENL
   [EXPAND_TAC "e" THEN REWRITE_TAC[REAL_HALF; PNORM_POS_LT] THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `eventually (\n. ~(q n = &0) /\
                    e <= pnorm p (padic_of_rational(q n)))
               sequentially`
  ASSUME_TAC THENL
   [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIMIT_METRIC] o
      REWRITE_RULE[padic_topology]) THEN
    DISCH_THEN(MP_TAC o SPEC `e / &2` o CONJUNCT2) THEN
    ASM_REWRITE_TAC[REAL_HALF] THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
    X_GEN_TAC `n:num` THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT
     `(q ==> ~r) /\ (p ==> r) ==> p ==> ~q /\ r`) THEN
    SIMP_TAC[GSYM padic_of_num; PNORM_0] THEN
    ASM_REWRITE_TAC[REAL_NOT_LE; pnorm; pdist] THEN MATCH_MP_TAC(METRIC_ARITH
     `mdist m (z:padic,x) / &2 = e /\ z IN mspace m /\ x IN mspace m
      ==> q IN mspace m /\ mdist m (q,x) < e / &2
          ==> e <= mdist m (z,q)`) THEN
    REWRITE_TAC[MSPACE_PADIC_METRIC; IN_UNIV; GSYM pdist; GSYM pnorm] THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  MP_TAC(SPEC `p:num` MCOMPLETE_PADIC_METRIC) THEN REWRITE_TAC[mcomplete] THEN
  DISCH_THEN(MP_TAC o SPEC `padic_of_rational o inv o (q:num->real)`) THEN
  ANTS_TAC THENL
   [REWRITE_TAC[cauchy_in; MSPACE_PADIC_METRIC; IN_UNIV] THEN
    X_GEN_TAC `d:real` THEN DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o
      MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CONVERGENT_IMP_CAUCHY_IN) o
      REWRITE_RULE[padic_topology]) THEN
    REWRITE_TAC[cauchy_in; MSPACE_PADIC_METRIC; IN_UNIV] THEN
    DISCH_THEN(MP_TAC o SPEC `(d:real) * e pow 2`) THEN
    ASM_SIMP_TAC[REAL_LT_MUL; REAL_POW_LT] THEN
    DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVENTUALLY_SEQUENTIALLY]) THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `M:num` THEN DISCH_TAC THEN
    EXISTS_TAC `MAX M N` THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
    REWRITE_TAC[ARITH_RULE `MAX M N <= n <=> M <= n /\ N <= n`] THEN
    STRIP_TAC THEN REWRITE_TAC[o_THM; GSYM pdist; PDIST_PNORM] THEN
    ASM_SIMP_TAC[PADIC_SUB_OF_RATIONAL; RATIONAL_CLOSED] THEN
    ASM_SIMP_TAC[REAL_FIELD
     `~(x = &0) /\ ~(y = &0)
      ==> inv x - inv y = --(x - y) * inv(x) * inv(y)`] THEN
    ASM_SIMP_TAC[GSYM PADIC_MUL_OF_RATIONAL; RATIONAL_CLOSED] THEN
    REWRITE_TAC[PNORM_MUL] THEN
    ASM_SIMP_TAC[PNORM_RATIONAL; RATIONAL_CLOSED; QNORM_INV] THEN
    ASM_SIMP_TAC[GSYM PNORM_RATIONAL] THEN
    REWRITE_TAC[REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN
    SUBGOAL_THEN `!x. e <= x ==> &0 < x` MP_TAC THENL
     [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    ASM_SIMP_TAC[REAL_LT_LDIV_EQ] THEN DISCH_THEN(K ALL_TAC) THEN
    ASM_SIMP_TAC[GSYM PNORM_RATIONAL; PNORM_NEG; RATIONAL_CLOSED;
                 GSYM PADIC_NEG_OF_RATIONAL] THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`m:num`; `n:num`]) THEN
    ASM_REWRITE_TAC[GSYM pdist; PDIST_PNORM] THEN
    ASM_SIMP_TAC[PADIC_SUB_OF_RATIONAL] THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LTE_TRANS) THEN
    ASM_SIMP_TAC[GSYM REAL_MUL_ASSOC; REAL_POW_2; REAL_LE_LMUL_EQ] THEN
    ASM_SIMP_TAC[REAL_LE_MUL2; REAL_LT_IMP_LE];
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:padic` THEN DISCH_TAC THEN
    MATCH_MP_TAC(ISPEC `sequentially` LIMIT_METRIC_UNIQUE) THEN
    EXISTS_TAC `padic_metric p` THEN
    EXISTS_TAC `(\(x,y). padic_mul p x y) o
           (\n:num. padic_of_rational (q n),padic_of_rational (inv(q n)))` THEN
    REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN CONJ_TAC THENL
     [SUBGOAL_THEN `padic_mul p x y = (\(x,y). padic_mul p x y) (x,y)`
      SUBST1_TAC THENL [REWRITE_TAC[]; ALL_TAC] THEN
      MATCH_MP_TAC CONTINUOUS_MAP_LIMIT THEN
      EXISTS_TAC `prod_topology (padic_topology p) (padic_topology p)` THEN
      SIMP_TAC[CONTINUOUS_MAP_PADIC_MULTIPLICATION; GSYM padic_topology] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[o_DEF; GSYM padic_topology]) THEN
      ASM_REWRITE_TAC[LIMIT_PAIRWISE; o_DEF];
      MATCH_MP_TAC LIMIT_EVENTUALLY THEN
      REWRITE_TAC[o_DEF; GSYM padic_topology; TOPSPACE_PADIC_TOPOLOGY] THEN
      ASM_SIMP_TAC[IN_UNIV; PADIC_MUL_OF_RATIONAL; RATIONAL_CLOSED] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
        EVENTUALLY_MONO)) THEN
      X_GEN_TAC `n:num` THEN SIMP_TAC[REAL_MUL_RINV; padic_of_num]]]);;

let PADIC_MUL_LINV = prove
 (`!p x. ~(x = padic_of_num 0)
         ==> padic_mul p (padic_inv p x) x = padic_of_num 1`,
  ONCE_REWRITE_TAC[PADIC_MUL_SYM] THEN REWRITE_TAC[PADIC_MUL_RINV]);;

let PNORM_INV = prove
 (`!p x. pnorm p (padic_inv p x) = inv(pnorm p x)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `x = padic_of_num 0` THEN
  ASM_REWRITE_TAC[REAL_INV_0; PADIC_INV_0; PNORM_0] THEN
  MATCH_MP_TAC(REAL_FIELD `x * y = &1 ==> x = inv y`) THEN
  ASM_SIMP_TAC[GSYM PNORM_MUL; PADIC_MUL_LINV; PNORM_1]);;