File: cfunspace.ml

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (2790 lines) | stat: -rw-r--r-- 111,705 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
(* ========================================================================= *)
(*                                                                           *)
(*           Library of complex function vector spaces.                      *)
(*                                                                           *)
(*   (c) Copyright, Mohamed Yousri Mahmoud, Vincent Aravantinos, 2012-2013   *)
(*                  Hardware Verification Group,                             *)
(*                  Concordia University                                     *)
(*                                                                           *)
(*           Contact: <mosolim@ece.concordia.ca>, <vincent@ece.concordia.ca> *)
(*   Last update: April 2016                                                 *)
(* ========================================================================= *)

needs "Functionspaces/utils.ml";;

(* ------------------------------------------------------------------------- *)
(* EMBEDDING OF REALS IN COMPLEX NUMBERS                                     *)
(* ------------------------------------------------------------------------- *)

let real_of_complex = new_definition
  `real_of_complex c = @r. c = Cx r`;;

let REAL_OF_COMPLEX = prove
  (`!c. real c ==> Cx(real_of_complex c) = c`,
  MESON_TAC[REAL;real_of_complex]);;

let REAL_OF_COMPLEX_RE = prove
  (`!c. real c ==> real_of_complex c = Re c`,
  MESON_TAC[RE_CX;REAL_OF_COMPLEX]);;

let REAL_OF_COMPLEX_CX = prove
  (`!r. real_of_complex (Cx r) = r`,
  SIMP_TAC[REAL_CX;REAL_OF_COMPLEX_RE;RE_CX]);;

let REAL_OF_COMPLEX_NORM = prove
  (`!c. real c ==> norm c = abs (real_of_complex c)`,
  IMP_REWRITE_TAC[REAL_NORM;REAL_OF_COMPLEX_RE]);;

let REAL_OF_COMPLEX_ADD = prove
  (`!x y. real x /\ real y ==>
    real_of_complex (x+y) = real_of_complex x + real_of_complex y`,
  MESON_TAC[REAL_ADD;REAL_OF_COMPLEX_RE;RE_ADD]);;

let REAL_OF_COMPLEX_SUB = prove
  (`!x y. real x /\ real y ==>
    real_of_complex (x-y) = real_of_complex x - real_of_complex y`,
  MESON_TAC[REAL_SUB;REAL_OF_COMPLEX_RE;RE_SUB]);;

let REAL_OF_COMPLEX_ZERO = prove
  (`!x y. real x ==>
    (real_of_complex x = &0 <=> x = Cx(&0))`,
  MESON_TAC[  REAL_OF_COMPLEX_RE;real;
  SIMPLE_COMPLEX_ARITH `Im x = &0 ==> (Re x = &0 <=> x = Cx(&0))`]);;

let REAL_MUL = prove
  (`!x y. real x /\ real y ==> real (x*y)`,
  REWRITE_TAC[real] THEN SIMPLE_COMPLEX_ARITH_TAC);;

let REAL_OF_COMPLEX_MUL = prove
  (`!x y. real x /\ real y ==>
    real_of_complex (x*y) = real_of_complex x * real_of_complex y`,
  MESON_TAC[REAL_MUL;REAL_OF_COMPLEX;CX_MUL;REAL_OF_COMPLEX_CX]);;

let NORM2_ADD_REAL = prove
  (`!x y. real x /\ real y ==>
    norm (x + ii * y) pow 2 = norm x pow 2 + norm y pow 2`,
  SIMP_TAC[real;complex_norm;RE_ADD;IM_ADD;RE_MUL_II;IM_MUL_II;REAL_NEG_0;
    REAL_ADD_LID;REAL_ADD_RID;REAL_POW_ZERO;ARITH_RULE `~(2=0)`;REAL_LE_POW_2;
    SQRT_POW_2;REAL_LE_ADD]);;

let real_thms = ref [];;
let add_real_thm thm = real_thms := GIMP_IMP thm :: !real_thms;;
let add_real_thms = List.iter add_real_thm;;

let REAL_TAC ?(alternatives=[]) g =
  let is_meta_variable v = try (fst (dest_var v)).[0] = '_' with _ -> false in
  let contain_meta_variable = can (find_term is_meta_variable) in
  let MATCH_MP_TAC x =
    (fun g -> MATCH_MP_TAC x g) THEN (fun (_,concl as g) ->
      if contain_meta_variable concl then NO_TAC g else ALL_TAC g) in
  let TRY_REAL_THM = ASM (MAP_FIRST (fun x ->
    MATCH_ACCEPT_TAC x ORELSE MATCH_MP_TAC x)) !real_thms in
  let LOOP = TRY_REAL_THM ORELSE (ASM_SIMP_TAC[] THEN NO_TAC)
    ORELSE (CHANGED_TAC (ASM_SIMP_TAC[real]) THEN CONV_TAC COMPLEX_FIELD)
    ORELSE FIRST alternatives in
  (REPEAT STRIP_TAC
  THEN (fun (_,concl as g) ->
    if not (repeat rator concl = `real :complex -> bool`)
    then FAIL_TAC "bad goal" g
    else CHANGED_TAC (REPEAT (LOOP THEN REPEAT CONJ_TAC)) g)) g;;

add_real_thm REAL_MUL;;


(* ------------------------------------------------------------------------- *)
(* MAP OVER FUNCTIONS                                                        *)
(* ------------------------------------------------------------------------- *)

let fun_map2 = new_definition
  `fun_map2 (f:B->C->D) (g1:A->B) (g2:A->C) = \x. f (g1 x) (g2 x)`;;

let FUN_MAP2_THM = prove
  (`!f g1 g2 x. fun_map2 f g1 g2 x = f (g1 x) (g2 x)`,
  REWRITE_TAC[fun_map2]);;

let K_DEF = new_definition
  `K (x:A) = \y:B. x`;;

let K_THM = prove
  (`!x y. K x y = x`,
  REWRITE_TAC[K_DEF]);;

let fun_map_defs = CONJS [K_DEF;o_DEF;fun_map2];;

let FUN_MAP_THMS = CONJS [K_THM;o_THM;FUN_MAP2_THM];;


(* --------------------------------------------------------------------------- *)
(* COMPLEX VALUED FUNCTIONS                                                    *)
(* --------------------------------------------------------------------------- *)

new_type_abbrev("cfun",`:A->complex`);;
new_type_abbrev("cfunB",`:B->complex`);;
new_type_abbrev("cfunC",`:C->complex`);;

let cfun_add = new_definition
  `cfun_add:cfun->cfun->cfun = fun_map2 (+)`;;

let cfun_smul = new_definition
  `cfun_smul (a:complex) :cfun->cfun = (o) (( * ) a)`;;

let cfun_neg = new_definition
  `cfun_neg:cfun->cfun = (o) (--)`;;

let cfun_sub = new_definition
  `cfun_sub:cfun->cfun->cfun = fun_map2 (-)`;;

let cfun_zero = new_definition
  `cfun_zero:cfun = K (Cx(&0))`;;

let cfun_cnj = new_definition
  `cfun_cnj:cfun->cfun = (o) cnj`;;

let cfun_defs = CONJS [cfun_add;cfun_sub;cfun_smul;cfun_neg;cfun_cnj;cfun_zero];;

make_overloadable "%" `:A->B->B`;;
parse_as_infix("%",(25,"left"));;

let prioritize_cfun () =
  overload_interface("+",`cfun_add:cfun->cfun->cfun`);
  overload_interface("%",`cfun_smul:complex->cfun->cfun`);
  overload_interface("--",`cfun_neg : cfun->cfun`);
  overload_interface("-",`cfun_sub:cfun->cfun->cfun`);;

prioritize_cfun ();;

(* Intended restriction of FUN_EQ_THM to the type :cfun *)
let CFUN_EQ = prove
  (`!f g:cfun. f = g <=> !x. f x = g x`,
  REWRITE_TAC[FUN_EQ_THM]);;

let CFUN_TO_COMPLEX = CONJS [FUN_MAP_THMS;cfun_defs;CFUN_EQ];;


(* General tactic *)

let CFUN_ARITH_TAC =
  let lemma = MESON[] `(!x. P x <=> Q x) ==> (!x. P x) = (!x. Q x)` in
  REWRITE_TAC[CFUN_TO_COMPLEX]
  THEN (CONV_TAC COMPLEX_FIELD
     ORELSE SIMPLE_COMPLEX_ARITH_TAC
    ORELSE (REPEAT STRIP_TAC THEN CONV_TAC PRENEX_CONV
      THEN MATCH_MP_TAC lemma THEN CONV_TAC COMPLEX_FIELD));;

let CFUN_ARITH t = prove(t,CFUN_ARITH_TAC);;


(* Properties *)



let CFUN_SUB = CFUN_ARITH `!f g. f - g = \x. f x - g x`;;

let CFUN_SUB_THM = CFUN_ARITH `!f g. (f - g) x = f x - g x`;;

let CFUN_ADD = CFUN_ARITH `!f g. f + g = \x. f x + g x`;;

let CFUN_ADD_THM = CFUN_ARITH `!f g. (f + g) x =  f x + g x`;;

let CFUN_SMUL = CFUN_ARITH `!a f. a % f = \x. a * f x`;;

let CFUN_NEG_LAMBDA = CFUN_ARITH `!f. --f = \x. --(f x)`;;

let CFUN_SMUL_LNEG = CFUN_ARITH `!a f. (--a) % f = --(a % f)`;;

let CFUN_SMUL_RNEG = CFUN_ARITH `!a f. a % (--f) = --(a % f)`;;

let CFUN_ADD_SYM = CFUN_ARITH `!x y. x + y = y + x`;;

let CFUN_ADD_ASSOC = CFUN_ARITH `!x y z. (x + y) + z = x + y + z`;;

let CFUN_SUB_NEG = CFUN_ARITH `!x y. x - y = x + --y`;;

let CFUN_SMUL_LZERO = CFUN_ARITH `!x. Cx(&0) % x = cfun_zero`;;

let CFUN_ADD_LID = CFUN_ARITH `!x. cfun_zero + x = x`;;

let CFUN_ADD_RID = CFUN_ARITH `!x. x + cfun_zero = x`;;

let CFUN_SUB_RID = CFUN_ARITH `!x. x - cfun_zero = x`;;

let CFUN_SMUL_RZERO = CFUN_ARITH `!a. a % cfun_zero = cfun_zero`;;

let CFUN_SUB_REFL = CFUN_ARITH `!x. x - x = cfun_zero`;;

let CFUN_ZERO_CLAUSES =
  CONJS [CFUN_SUB_REFL;CFUN_ADD_RID;CFUN_SMUL_LZERO;CFUN_SMUL_RZERO];;

let CFUN_SMUL_SYM = CFUN_ARITH `!a b x. a % (b % x) = b % (a % x)`;;

let CFUN_SMUL_DIS = CFUN_ARITH `!a x y. a % (x + y) = a % x + a % y`;;

let CFUN_SMUL_ASSOC = CFUN_ARITH `!a b x. a % (b % x) = (a * b) % x`;;

let CFUN_ADD_RDISTRIB = CFUN_ARITH `!a b x. (a + b) % x = a % x + b % x`;;

let CFUN_SUB_RDISTRIB = CFUN_ARITH `!a b x. (a - b) % x = a % x - b % x`;;

let CFUN_SUB_RADD = CFUN_ARITH `!x y z. x - (y + z) = x - y - z`;;

let CFUN_ADD_RSUB = CFUN_ARITH `!x y z. x + (y - z) = (x + y) - z`;;

let CFUN_SUB_ADD = CFUN_ARITH `!x y z. (x - y) + z= (x + z) - y`;;

let CFUN_SUB_SUB = CFUN_ARITH `!x y z. x - (y - z) = x - y + z`;;

let CFUN_EQ_LSUB = CFUN_ARITH `!x y z. x - y = z <=> x = z + y`;;

let CFUN_EQ_RSUB = CFUN_ARITH `!x y z. x = y - z <=> x + z = y`;;

let CFUN_ZERO_ADD = CFUN_ARITH `!x y. y + x = x <=> y = cfun_zero`;;

let CFUN_SUB_LDISTRIB = CFUN_ARITH `!a x y. a % (x - y) = a % x - a % y`;;

let CFUN_ADD_LDISTRIB = CFUN_ARITH `!a x y. a % (x + y) = a % x + a % y`;;

let CFUN_SMUL_DISTRIB = CFUN_ARITH `!a b f. a % (b % f) = (a * b) % f`;;

let CFUN_SMUL_LID = CFUN_ARITH `!v. Cx(&1) % v = v`;;

let CFUN_SMUL_LID_NEG = CFUN_ARITH `!v. (--Cx(&1)) % v = --v`;;

let CFUN_EQ_NEG2 = CFUN_ARITH `!x y. --x = --y <=> x = y`;;

let CFUN_EQ_ADD_LCANCEL = CFUN_ARITH `!x y z. x + y = x + z <=> y = z`;;

let CFUN_EQ_ADD_RCANCEL = CFUN_ARITH `!x y z. x + z = y + z <=> x = y`;;

let CFUN_EQ_SUB_LCANCEL = CFUN_ARITH `!x y z. x - y = x - z <=> y = z`;;

let CFUN_EQ_SUB_RADD = CFUN_ARITH `!x y z. x - y = z <=> x = z + y`;;

let CFUN_SUB_ADD2 = CFUN_ARITH `!x y. y + x - y = x`;;

let CFUN_SUB_0 = CFUN_ARITH `!x y. x - y = cfun_zero <=> x = y`;;

let CFUN_ENTIRE = CFUN_ARITH
  `!a x. a % x = cfun_zero <=> a = Cx(&0) \/ x = cfun_zero`;;

let CFUN_EQ_SMUL_LCANCEL = CFUN_ARITH
  `!x y a. a % x = a % y <=> a = Cx(&0) \/ x = y`;;

let CFUN_EQ_SMUL_LCANCEL2 = prove
  (`!a x y. ~(a=Cx(&0)) ==> (a % x = y <=> x = inv a % y)`,
  REWRITE_TAC[CFUN_TO_COMPLEX] THEN REPEAT STRIP_TAC
  THEN MATCH_MP_TAC (MESON[] `(!x. P x <=> Q x) ==> (!x. P x) = (!x. Q x)`)
  THEN GEN_TAC THEN POP_ASSUM MP_TAC THEN CONV_TAC COMPLEX_FIELD);;

(* Sub-space *)
let is_cfun_subspace = new_definition
  `is_cfun_subspace (spc:cfun->bool) <=>
    cfun_zero IN spc /\
    !x. x IN spc ==> (!a. a % x IN spc) /\ !y. y IN spc ==> x+y IN spc`;;

let CFUN_SUBSPACE_ZERO = prove
  (`!s. is_cfun_subspace s ==> cfun_zero IN s`,
  SIMP_TAC[is_cfun_subspace]);;

let CFUN_SUBSPACE_SMUL = prove
  (`!s a x. is_cfun_subspace s /\ x IN s ==> a%x IN s`,
  SIMP_TAC[is_cfun_subspace]);;

let CFUN_SUBSPACE_ADD = prove
  (`!s x y. is_cfun_subspace s /\ x IN s /\ y IN s ==> x+y IN s`,
  SIMP_TAC[is_cfun_subspace]);;

let CFUN_SUBSPACE_NEG = prove
  (`!s x. is_cfun_subspace s /\ x IN s ==> --x IN s`,
  SIMP_TAC[GSYM CFUN_SMUL_LID_NEG;CFUN_SUBSPACE_SMUL]);;

let CFUN_SUBSPACE_SUB = prove
  (`!s x y. is_cfun_subspace s /\ x IN s /\ y IN s ==> x-y IN s`,
  SIMP_TAC[CFUN_SUB_NEG;CFUN_SUBSPACE_NEG;CFUN_SUBSPACE_ADD]);;

let CFUN_SUBSPACE_SING_CFUNZERO = prove
  (`is_cfun_subspace {cfun_zero}`,
  SIMP_TAC[is_cfun_subspace;IN_SING;CFUN_SMUL_RZERO;CFUN_ADD_RID]);;


(* ------------------------------------------------------------------------- *)
(* EMBEDDING COMPLEX NUMBERS IN CFUNS                                        *)
(* ------------------------------------------------------------------------- *)

let SING_IND,SING_REC = define_type "singleton = SING_ELT";;

let SING_EQ = prove
  (`!x. x = SING_ELT`,
  MATCH_MP_TAC SING_IND THEN REFL_TAC);;

let cfun_of_complex = new_definition
  `cfun_of_complex = K :complex->singleton->complex`;;

let CFUN_OF_COMPLEX_ADD = prove
  (`!x y. cfun_of_complex (x+y) = cfun_of_complex x + cfun_of_complex y`,
  REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;

let CFUN_OF_COMPLEX_SUB = prove
  (`!x y. cfun_of_complex (x-y) = cfun_of_complex x - cfun_of_complex y`,
  REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;

let CFUN_OF_COMPLEX_NEG = prove
  (`!x. cfun_of_complex (--x) = -- cfun_of_complex x`,
  REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;

let CFUN_OF_COMPLEX_SMUL = prove
  (`!a x. cfun_of_complex (a*x) = a % cfun_of_complex x`,
  REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;

let CFUN_OF_COMPLEX_CNJ = prove
  (`!x. cfun_of_complex (cnj x) = cfun_cnj (cfun_of_complex x)`,
  REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;

let CFUN_OF_COMPLEX_ZERO = prove
  (`cfun_of_complex (Cx(&0)) = cfun_zero`,
  REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;

let complex_of_cfun = new_definition
  `complex_of_cfun f :complex = f SING_ELT`;;

let COMPLEX_OF_CFUN_ADD = prove
  (`!x y. complex_of_cfun (x + y) = complex_of_cfun x + complex_of_cfun y`,
  REWRITE_TAC[complex_of_cfun] THEN CFUN_ARITH_TAC);;

let COMPLEX_OF_CFUN_SUB = prove
  (`!x y. complex_of_cfun (x - y) = complex_of_cfun x - complex_of_cfun y`,
  REWRITE_TAC[complex_of_cfun] THEN CFUN_ARITH_TAC);;

let COMPLEX_OF_CFUN_NEG = prove
  (`!x. complex_of_cfun (--x) = -- complex_of_cfun x`,
  REWRITE_TAC[complex_of_cfun] THEN CFUN_ARITH_TAC);;

let COMPLEX_OF_CFUN_SMUL = prove
  (`!a x. complex_of_cfun (a % x) = a * complex_of_cfun x`,
  REWRITE_TAC[complex_of_cfun] THEN CFUN_ARITH_TAC);;

let COMPLEX_OF_CFUN_OF_COMPLEX = prove
  (`complex_of_cfun o cfun_of_complex = I`,
  REWRITE_TAC[complex_of_cfun;cfun_of_complex;o_DEF;K_THM;I_DEF]);;

let CFUN_OF_COMPLEX_OF_CFUN = prove
  (`cfun_of_complex o complex_of_cfun = I`,
  REWRITE_TAC[complex_of_cfun;cfun_of_complex;o_DEF;K_DEF;FUN_EQ_THM;I_THM]
  THEN ONCE_REWRITE_TAC[SING_EQ] THEN REWRITE_TAC[]);;


(* ------------------------------------------------------------------------- *)
(* INNER PRODUCT                                                             *)
(* ------------------------------------------------------------------------- *)

new_type_abbrev("inprod",`:cfun->cfun->complex`);;

parse_as_infix("equv",(24,"left"));;

let are_equv = new_definition
        ` ((f:cfun) equv (g:cfun)) inprod <=> inprod (f-g) (f-g) = Cx(&0)`;;

new_type_abbrev("inner_space",`:(cfun->bool)#inprod`);;

let is_inner_space = new_definition
  `is_inner_space ((s,inprod):inner_space) <=>
    is_cfun_subspace s /\
    !x. x IN s ==>
      real (inprod x x) /\ &0 <= real_of_complex (inprod x x)
      /\ !y. y IN s ==>
             (inprod x x = Cx(&0) ==> inprod y x = Cx(&0))
        /\ cnj (inprod y x) = inprod x y /\
        (!a. inprod x (a%y) = a * (inprod x y))
        /\ !z. z IN s ==> inprod (x+y) z = inprod x z + inprod y z`;;

(* EVERY THEOREM proved using "inner_space_prove" implicitly has the assumption
 * "!s inprod. is_inner_space (s,inprod) ==>"
 *)
let inner_space_parse s =
  parse_term (`!s inprod. is_inner_space (s,inprod) ==> :` ^ s);;

let inner_space_prove (s,p) = prove(gimp_imp (inner_space_parse s),p);;
let inner_space_g s = g (gimp_imp (inner_space_parse s));;

let full_inner_space_parse s = parse_term (`!is. is_inner_space is ==> :` ^ s);;
let full_inner_space_prove (s,p) =
  prove(gimp_imp (full_inner_space_parse s),p);;
let full_inner_space_g s = g (gimp_imp (full_inner_space_parse s));;

let FORALL_INNER_SPACE_THM = prove
  (`!P. (!is:inner_space. P is) <=> !s inprod. P (s,inprod)`,
  REWRITE_TAC[FORALL_PAIR_THM]);;


let INNER_SPACE_IS_SUBSPACE = inner_space_prove
  (`is_cfun_subspace s:`,
  SIMP_TAC[is_inner_space]);;

  let INNER_SPACE_ZERO = inner_space_prove
  (`cfun_zero IN s:`,
  MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_ZERO]);;

let INNER_SPACE_SMUL = inner_space_prove
  (`!x a. x IN s ==> a%x IN s:`,
  MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_SMUL]);;

let INNER_SPACE_ADD = inner_space_prove
  (`!x y. x IN s /\ y IN s ==> x+y IN s:`,
  MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_ADD]);;

let INNER_SPACE_NEG = inner_space_prove
  (`!x. x IN s ==> --x IN s:`,
  MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_NEG]);;

let INNER_SPACE_SUB = inner_space_prove
  (`!x y. x IN s /\ y IN s ==> x-y IN s:`,
  MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_SUB]);;

let INPROD_CNJ = inner_space_prove
  (`!x y. x IN s /\ y IN s ==> cnj(inprod y x) = inprod x y:`,
  SIMP_TAC[is_inner_space]);;

let INPROD_SELF_REAL = inner_space_prove
  (`!x. x IN s ==> real (inprod x x):`,
  SIMP_TAC[is_inner_space]);;

let INPROD_SELF_POS = inner_space_prove
  (`!x. x IN s ==> &0 <= real_of_complex (inprod x x):`,
  SIMP_TAC[is_inner_space]);;

let INPROD_RSMUL = inner_space_prove
  (`!x y a. x IN s /\ y IN s ==> inprod x (a%y) = a * inprod x y:`,
  SIMP_TAC[is_inner_space]);;

let INPROD_ADD_RDIST = inner_space_prove
  (`!x y z. x IN s /\ y IN s /\ z IN s
      ==> inprod (x+y) z = inprod x z + inprod y z:`,
  SIMP_TAC[is_inner_space]);;

let INPROD_ZERO_EQ = inner_space_prove
  (`!x y. x IN s /\ y IN s ==> (inprod x x = Cx(&0) ==> inprod y x = Cx(&0)):`,
  SIMP_TAC[is_inner_space]);;

let INPROD_LZERO_EQ = inner_space_prove
  (`!x y. x IN s /\ y IN s ==> (inprod x x = Cx(&0) ==> inprod x y = Cx(&0)):`,
  MESON_TAC[INPROD_ZERO_EQ;INPROD_CNJ]);;

let INPROD_NORM = inner_space_prove
  (`!x. x IN s ==> real (inprod x x) /\ &0 <= real_of_complex (inprod x x):`,
  SIMP_TAC[is_inner_space]);;

add_real_thm (MESON[INPROD_SELF_REAL]
  `!s inprod x. is_inner_space (s,inprod) /\ x IN s ==> real(inprod x x)`);;

(* More involved properties *)

let INPROD_LSMUL = inner_space_prove
  (`!x y a. x IN s /\ y IN s ==> inprod (a%x) y = cnj a * inprod x y:`,
  MESON_TAC[is_inner_space;is_cfun_subspace;CNJ_MUL]);;

let INPROD_LNEG = inner_space_prove
  (`!x y. x IN s /\ y IN s ==> inprod (--x) y = --inprod x y:`,
  MESON_TAC [GSYM CFUN_SMUL_LID_NEG;INPROD_LSMUL;CNJ_NEG;CNJ_CX;
    COMPLEX_NEG_MINUS1]);;

let INPROD_SUB_RDIST = inner_space_prove
  (`!x y z. x IN s /\ y IN s /\ z IN s ==>
      inprod (x-y) z = inprod x z - inprod y z:`,
  IMP_REWRITE_TAC[CFUN_SUB_NEG;complex_sub;INPROD_ADD_RDIST;INPROD_LNEG;
    CFUN_SUBSPACE_NEG;INNER_SPACE_IS_SUBSPACE]);;

let INPROD_RNEG = inner_space_prove
  (`!x y. x IN s /\ y IN s ==> inprod x (--y) = --inprod x y:`,
  MESON_TAC[GSYM CFUN_SMUL_LID_NEG;INPROD_RSMUL;COMPLEX_NEG_MINUS1]);;

let INPROD_ADD_LDIST = inner_space_prove
  (`!x y z. x IN s /\ y IN s /\ z IN s ==>
      inprod z (x+y) = inprod z x + inprod z y:`,
  MESON_TAC[INPROD_CNJ;INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_ADD;
    INPROD_ADD_RDIST;CNJ_ADD]);;

let INPROD_SUB_LDIST = inner_space_prove
  (`!x y z. x IN s /\ y IN s /\ z IN s ==>
    inprod z (x-y) = inprod z x - inprod z y:`,
  IMP_REWRITE_TAC[CFUN_SUB_NEG;complex_sub;INPROD_ADD_LDIST;INPROD_RNEG;
    CFUN_SUBSPACE_NEG;INNER_SPACE_IS_SUBSPACE]);;

let INPROD_RZERO = inner_space_prove
  (`!x. x IN s ==> inprod x cfun_zero = Cx(&0):`,
  IMP_REWRITE_TAC[GSYM CFUN_SMUL_LZERO;INPROD_RSMUL;COMPLEX_MUL_LZERO]);;

let INPROD_LZERO = inner_space_prove
  (`!x. x IN s ==> inprod cfun_zero x = Cx(&0):`,
  IMP_REWRITE_TAC[GSYM CFUN_SMUL_LZERO;INPROD_LSMUL;CNJ_CX;COMPLEX_MUL_LZERO]);;

let INPROD_ZERO = inner_space_prove
  (`inprod cfun_zero cfun_zero = Cx(&0):`,
  MESON_TAC[INPROD_LZERO;INNER_SPACE_ZERO]);;

let INPROD_SELF_CNJ = inner_space_prove
  (`!x. x IN s ==> cnj (inprod x x) = inprod x x:`,
  SIMP_TAC[GSYM REAL_CNJ;is_inner_space]);;

let INPROD_ADD_CNJ = inner_space_prove
  (`!x y. x IN s /\ y IN s ==> inprod x y + inprod y x =
   Cx(&2 * Re (inprod x y)):`,
  IMP_REWRITE_TAC[GSYM COMPLEX_ADD_CNJ;INPROD_CNJ]);;

let INPROD_SELF_NORM = inner_space_prove
  (`!x. x IN s ==> norm (inprod x x) = real_of_complex (inprod x x):`,
  MESON_TAC[is_inner_space;REAL_OF_COMPLEX;COMPLEX_NORM_CX;REAL_ABS_REFL]);;

let INPROD_SELF_RE = inner_space_prove
  (`!x. x IN s ==> real_of_complex (inprod x x) = Re (inprod x x):`,
  MESON_TAC[is_inner_space;REAL_OF_COMPLEX_RE]);;



let INPROD_NEG = inner_space_prove
  (`!x y. x IN s /\ y IN s ==> inprod (--x) (--y) = inprod x y:`,
   IMP_REWRITE_TAC[CFUN_SUBSPACE_NEG;INNER_SPACE_IS_SUBSPACE;INPROD_RNEG
   ;INPROD_LNEG;COMPLEX_NEG_NEG]);;
(* TODO RIESZ *)


let EQUV_ZERO = prove
        (`!x inprod. inprod x x = Cx(&0) <=> (x equv cfun_zero) inprod`,
        REWRITE_TAC[are_equv;CFUN_SUB_RID]);;

let INPROD_NOT_ZERO = inner_space_prove
 (`!x. x IN s /\ ~(x equv cfun_zero) inprod ==> ~(x = cfun_zero):`,
   MESON_TAC[are_equv;INPROD_ZERO;CFUN_SUB_RID]);;

let EQUV_SUB_ZERO = prove
   (`!x inprod.   (x equv y) inprod  <=> ((x - y) equv cfun_zero) inprod`,
        REWRITE_TAC[are_equv;CFUN_SUB_RID]);;

let INPROD_ZERO_EQUV = inner_space_prove
 (`!x y. x IN s /\ y IN s ==> (x equv cfun_zero) inprod ==> inprod y x = Cx(&0):`,
  MESON_TAC[EQUV_ZERO;INPROD_ZERO_EQ]);;

let INPROD_EQUV_SYM = inner_space_prove
        (`!x y. x IN s /\ y IN s ==>  ((x equv y) inprod <=> (y equv x) inprod):`,
        REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[are_equv] THEN DISCH_TAC
        THEN TARGET_REWRITE_TAC[CFUN_ARITH `! x y. x-y = --(y-x)`]INPROD_NEG
        THEN ASM_MESON_TAC[INNER_SPACE_SUB]);;


let INPROD_EQUV_RREPLACE =      prove
        (`!s inprod x y z.
         (x equv y) inprod ==>
                 is_inner_space (s,inprod) /\
         x IN s /\
         y IN s /\
         z IN s
         ==> inprod z x = inprod z y`,
       ONCE_REWRITE_TAC[GSYM COMPLEX_SUB_0;EQUV_SUB_ZERO] THEN
           REPEAT GEN_TAC THEN
          MESON_TAC[INNER_SPACE_SUB;Pa.SPECL ["s";"inprod";"x-y";"z"]
           (GSYM INPROD_ZERO_EQUV);INPROD_SUB_LDIST]);;

let INPROD_EQUV_LREPLACE =      prove
        (`!s inprod x y z.
         (x equv y) inprod ==>
                 is_inner_space (s,inprod) /\
         x IN s /\
         y IN s /\
         z IN s
         ==> inprod x z = inprod y z`,
       MESON_TAC[GSYM INPROD_CNJ;INPROD_EQUV_RREPLACE]);;

let INPROD_INJ_ALT = inner_space_prove
  (`!x y. x IN s /\ y IN s
    ==> ((x equv y) inprod  <=> (!z. z IN s ==> inprod x z = inprod y z)):`,
  REPEAT STRIP_TAC THEN EQ_TAC THENL[ASM_MESON_TAC[INPROD_EQUV_LREPLACE];ALL_TAC] THEN
  TARGET_REWRITE_TAC[GSYM COMPLEX_SUB_0] (GSYM INPROD_SUB_RDIST)
  THEN ASM_MESON_TAC [are_equv;COMPLEX_SUB_0;CFUN_SUBSPACE_SUB;
  INNER_SPACE_IS_SUBSPACE]);;

let INPROD_EQUV_TAC ths = ASSUM_LIST(fun thl-> let mthl =  map  (fun th->
        try CONJ (MATCH_MP INPROD_EQUV_RREPLACE th)  (MATCH_MP INPROD_EQUV_LREPLACE th) with
                                |Failure explanation -> th
                                ) thl in  IMP_REWRITE_TAC (mthl@ths));;

let INPROD_EQUV_TRANSTIVE = inner_space_prove
        (`!x y z. x IN s /\ y IN s /\ z IN s ==> (x equv y) inprod /\
          (y equv z) inprod ==> (x equv z) inprod:`,
          REPEAT STRIP_TAC THEN
          INPROD_EQUV_TAC[are_equv;INPROD_SUB_RDIST;INPROD_SUB_LDIST;INNER_SPACE_SUB;
          COMPLEX_SUB_REFL]);;

(* ------------------------------------------------------------------------- *)
(* ORTHOGONALITY                                                             *)
(* ------------------------------------------------------------------------- *)

let are_orthogonal = new_definition
  `are_orthogonal1 ((s,inprod):inner_space) u v <=>
    is_inner_space (s,inprod) /\ u IN s /\ v IN s ==> inprod u v = Cx(&0)`;;

let ARE_ORTHOGONAL = inner_space_prove
  (`!u v. u IN s /\ v IN s ==>
      (are_orthogonal1 (s,inprod) u v <=> inprod u v = Cx(&0)):`,
  MESON_TAC [are_orthogonal]);;

let ARE_ORTHOGONAL_SYM = inner_space_prove
  (`!u v. u IN s /\ v IN s
      ==> (are_orthogonal1 (s,inprod) u v <=> are_orthogonal1 (s,inprod) v u):`,
  SIMP_TAC[ARE_ORTHOGONAL] THEN REPEAT (STRIP_TAC ORELSE EQ_TAC)
  THEN ONCE_REWRITE_TAC[GSYM CNJ_INJ] THEN ASM_MESON_TAC[CNJ_CX;INPROD_CNJ]);;

let ARE_ORTHOGONAL_LSCALAR = inner_space_prove
  (`!u v. u IN s /\ v IN s /\ are_orthogonal1 (s,inprod) u v
      ==> !a. are_orthogonal1 (s,inprod) (a % u) v:`,
  IMP_REWRITE_TAC[are_orthogonal;INPROD_LSMUL;COMPLEX_MUL_RZERO]);;

let ORTHOGONAL_SUM_NORM = inner_space_prove
  (`!u v. u IN s /\ v IN s /\ are_orthogonal1 (s,inprod) u v ==>
    inprod (u+v) (u+v) = inprod u u + inprod v v:`,
  IMP_REWRITE_TAC[are_orthogonal;INPROD_ADD_LDIST;INPROD_ADD_RDIST;
    CFUN_SUBSPACE_ADD;INNER_SPACE_IS_SUBSPACE]
  THEN ONCE_REWRITE_TAC[GSYM COMPLEX_SUB_0]
  THEN (CONV_TAC o DEPTH_CONV o CHANGED_CONV) COMPLEX_POLY_CONV
  THEN MESON_TAC[INPROD_CNJ;CNJ_CX]);;

let ORTHOGONAL_DECOMPOS_WRT_CFUN = inner_space_prove
  (`!u v. u IN s /\ v IN s ==>
      let proj_v = inprod v u / inprod v v in
      let orthogonal_component = u - proj_v % v in
      u = proj_v % v + orthogonal_component
      /\ are_orthogonal1 (s,inprod) v orthogonal_component:`,
  REWRITE_TAC[LET_DEFS;CFUN_SUB_ADD2;are_orthogonal]
  THEN IMP_REWRITE_TAC [INPROD_SUB_LDIST;INPROD_RSMUL;CFUN_SUBSPACE_SMUL;
    INNER_SPACE_IS_SUBSPACE]
  THEN REPEAT STRIP_TAC THEN Pa.ASM_CASES_TAC `(v equv cfun_zero) inprod:` THENL [
    INPROD_EQUV_TAC [CFUN_SMUL_RZERO;INPROD_LZERO;CFUN_SUBSPACE_ZERO;
    INNER_SPACE_IS_SUBSPACE];
     IMP_REWRITE_TAC [COMPLEX_DIV_RMUL;INPROD_NOT_ZERO;EQUV_ZERO]
  ] THEN SIMPLE_COMPLEX_ARITH_TAC);;

let ORTHOGONAL_DECOMPOS_WRT_CFUN_DECOMPOSITION = inner_space_prove
  (`!u v. u IN s /\ v IN s ==>
      let proj_v = inprod v u / inprod v v in
      let orthogonal_component = u - proj_v % v in
      u = proj_v % v + orthogonal_component:`,
  REWRITE_TAC [LET_DEFS]
  THEN MESON_TAC[REWRITE_RULE [LET_DEFS] ORTHOGONAL_DECOMPOS_WRT_CFUN]);;

let ORTHOGONAL_DECOMPOS_WRT_CFUN_ORTHOGONAL = inner_space_prove
  (`!u v. u IN s /\ v IN s ==>
      are_orthogonal1 (s,inprod) v (u - (inprod v u / inprod v v) % v):`,
  REWRITE_TAC [LET_DEFS]
  THEN MESON_TAC[REWRITE_RULE [LET_DEFS] ORTHOGONAL_DECOMPOS_WRT_CFUN]);;

let SCHWARZ_INEQUALITY = inner_space_prove
  (`!x y. x IN s /\ y IN s
      ==> norm (inprod x y) pow 2
        <= real_of_complex (inprod x x) * real_of_complex (inprod y y):`,
   IMP_REWRITE_TAC [GSYM INPROD_SELF_NORM;INPROD_SELF_RE]
  THEN REWRITE_TAC[MATCH_MP (TAUT `(A ==> B) ==> ((A ==> C) <=> (A /\ B ==>
    C))`) (SPEC_ALL (REWRITE_RULE [LET_DEFS] ORTHOGONAL_DECOMPOS_WRT_CFUN))]
  THEN REPEAT STRIP_TAC
  THEN FIRST_X_ASSUM (wrap (CHANGED_TAC o GEN_REWRITE_TAC (PATH_CONV "rl" o
    ONCE_DEPTH_CONV)))
  THEN IMP_REWRITE_TAC [ORTHOGONAL_SUM_NORM;ARE_ORTHOGONAL_LSCALAR;
    CFUN_SUBSPACE_SUB;INPROD_RSMUL;CFUN_SUBSPACE_SMUL;INNER_SPACE_IS_SUBSPACE;
    INPROD_LSMUL]
  THEN REWRITE_TAC[complex_div;CNJ_MUL;CNJ_INV]
  THEN IMP_REWRITE_TAC [INPROD_SELF_NORM]
  THEN REWRITE_TAC[GSYM RE_MUL_CX]
  THEN IMP_REWRITE_TAC [REAL_OF_COMPLEX;INPROD_SELF_REAL]
  THEN IMP_REWRITE_TAC [INPROD_SELF_CNJ]
  THEN REWRITE_TAC[COMPLEX_ADD_RDISTRIB;
    Pa.COMPLEX_FIELD `((x*y)*(z*t)*u)*v = (x*z)*(u*t)*(v*y):`;
    ONCE_REWRITE_RULE[GSYM COMPLEX_NORM_CNJ] COMPLEX_MUL_CNJ]
  THEN CASES_REWRITE_TAC COMPLEX_MUL_RINV
  THENL [
    IMP_REWRITE_TAC [INPROD_CNJ]
    THEN REWRITE_TAC[RE_ADD;RE_CX;COMPLEX_MUL_RID;GSYM CX_POW;REAL_LE_ADDR]
    THEN IMP_REWRITE_TAC [GSYM REAL_OF_COMPLEX_RE;REAL_OF_COMPLEX_MUL;
      REAL_LE_MUL;INPROD_SELF_POS;INPROD_SELF_POS;CFUN_SUBSPACE_SUB;
      CFUN_SUBSPACE_SMUL;INNER_SPACE_IS_SUBSPACE ]
    THEN REAL_TAC THEN HINT_EXISTS_TAC
    THEN IMP_REWRITE_TAC
      [CFUN_SUBSPACE_SUB;CFUN_SUBSPACE_SMUL;INNER_SPACE_IS_SUBSPACE]
    THEN ASM_REWRITE_TAC[];
    ASM_REWRITE_TAC[] THEN GCONV_TAC COMPLEX_POLY_CONV
    THEN IMP_REWRITE_TAC [INPROD_ZERO_EQ]
    THEN REWRITE_TAC[COMPLEX_NORM_0;RE_CX] THEN ARITH_TAC
  ]);;

let SCHWARZ_INEQUALITY2 = inner_space_prove
  (`!x y. x IN s /\ y IN s
      ==> norm (inprod x y)
        <= sqrt (real_of_complex (inprod x x)) *
                        sqrt(real_of_complex (inprod y y)):`,
  TARGET_REWRITE_TAC[GSYM (GEN_ALL (Pa.SPEC `norm z:` POW_2_SQRT));GSYM SQRT_MUL]
   SQRT_MONO_LE_EQ THEN
  IMP_REWRITE_TAC[ SCHWARZ_INEQUALITY;
  INPROD_SELF_POS;NORM_POS_LE;REAL_LE_MUL;REAL_LE_POW_2]);;

let SCHWARZ_INEQUALITY_ENHANCED = inner_space_prove
  (`!x y. x IN s /\ y IN s ==>
      real_of_complex ((inprod x y - inprod y x) / (Cx(&2) * ii)) pow 2
        <= real_of_complex (inprod x x) * real_of_complex (inprod y y):`,
  IMP_REWRITE_TAC [MATCH_MP (MESON[REAL_LE_TRANS]
    `!f g. (P ==> f x y <= g x y) ==> P /\ z <= f x y ==> z <= g x y`)
    (SPEC_ALL SCHWARZ_INEQUALITY);
    MATCH_MP (REAL_ARITH `x=y+z ==> &0<=y /\ t=z ==> t<=x`) COMPLEX_SQNORM]
  THEN REWRITE_TAC[REAL_LE_POW_2]
  THEN IMP_REWRITE_TAC [MESON[] `(x:real) = y ==> x pow 2 = y pow 2`]
  THEN ONCE_REWRITE_TAC[GSYM CX_INJ]
  THEN REWRITE_TAC[CX_IM_CNJ;GSYM COMPLEX_INV_II;complex_div;COMPLEX_INV_MUL]
  THEN IMP_REWRITE_TAC [INPROD_CNJ;REAL_OF_COMPLEX]
  THEN REWRITE_TAC[SIMPLE_COMPLEX_ARITH `x*y*inv ii=inv ii*(x*y)`;
    COMPLEX_INV_II;GSYM complex_div]
  THEN MESON_TAC[INPROD_CNJ;CX_IM_CNJ;REAL_CX]);;


(* ------------------------------------------------------------------------- *)
(* OPERATORS                                                                 *)
(* ------------------------------------------------------------------------- *)

(* "cop" stands for "Complex-valued function OPerator" *)

new_type_abbrev ("cop",`:cfunB->cfun`);;
new_type_abbrev ("copB",`:cfunC->cfunB`);;
new_type_abbrev ("cops",`:cfun->cfun`);;

let cop_add = new_definition
  `cop_add:cop->cop->cop = fun_map2 (+)`;;

let cop_sub = new_definition
  `cop_sub:cop->cop->cop = fun_map2 (-)`;;

let cop_neg = new_definition
  `cop_neg:cop->cop = (o) (--)`;;

let cop_mul = new_definition
  `cop_mul:cop->copB->(cfunC->cfun) = (o)`;;

let cop_smul = new_definition
  `cop_smul:complex->cop->cop = (o) o (%)`;;

let cop_zero = new_definition
  `cop_zero:cop = K cfun_zero`;;

let cop_pow = define
  `cop_pow (op:cfun->cfun) 0 = I /\
  cop_pow op (SUC n) = cop_mul op (cop_pow op n)`;;

let cop_cnj = new_definition
  `cop_cnj:cop->cop = (o) cfun_cnj`;;

let cop_defs = CONJS
  [cop_add;cop_sub;cop_neg;cop_mul;cop_smul;cop_zero;I_THM;cop_pow;cop_cnj];;

let prioritize_cop () =
  overload_interface("+",`cop_add:cop->cop->cop`);
  overload_interface("-",`cop_sub:cop->cop->cop`);
  overload_interface("--",`cop_neg:cop->cop`);
  overload_interface("**",`cop_mul:cop->copB->(cfunC->cfun)`);
  overload_interface("pow",`cop_pow:(cfun->cfun)->num->(cfun->cfun)`);
  overload_interface("%",`cop_smul:complex->cop->cop`);;

prioritize_cop ();;

(* Intended restriction of FUN_EQ_THM to the type :cop *)
let COP_EQ = prove
  (`!f g:cop. f = g <=> (!x. f x = g x)`,
  REWRITE_TAC[FUN_EQ_THM]);;

let COP_TO_CFUN = CONJS [FUN_MAP_THMS;o_THM;cop_defs;COP_EQ];;

let COP_POW_CONV =
  let th = REWRITE_CONV[cop_pow;cop_mul;I_O_ID] `cop_pow t (SUC 0)` in
  fun t ->
    let (h,_) = strip_comb t in
    if name_of h = "cop_pow"
    then (CHANGED_CONV (RAND_CONV (REDEPTH_CONV num_CONV)
      THENC REWRITE_CONV[cop_pow;th])) t
    else failwith "COP_POW_CONV";;

let COP_ARITH_TAC =
  let lemma = MESON[] `(!x. P x <=> Q x) ==> (!x. P x) = (!x. Q x)` in
  CONV_TAC (TOP_DEPTH_CONV COP_POW_CONV)
  THEN REWRITE_TAC[COP_TO_CFUN]
  THEN (CFUN_ARITH_TAC
    ORELSE (REPEAT STRIP_TAC THEN CONV_TAC PRENEX_CONV
      THEN MATCH_MP_TAC lemma THEN CFUN_ARITH_TAC));;

let COP_ARITH t = prove(t,COP_ARITH_TAC);;

(* Properties *)
let COP_ZERO = COP_ARITH `!x. cop_zero x = cfun_zero`;;

let COP_SMUL = COP_ARITH `!a op. a % op = \x. a * op x`;;

let COP_SMUL_THM = COP_ARITH `!a op x. (a % op) x = a % op x`;;

let COP_SMUL_ALT = COP_ARITH `!a op. a % op = \x. a * op x`;;

let COP_MUL = COP_ARITH `!op1 op2. op1 ** op2 = \x. op1 (op2 x)`;;

let COP_ADD = COP_ARITH `!op1 op2. op1 + op2 = \x. op1 x + op2 x`;;

let COP_SUB_ABS = COP_ARITH `!op1 op2. op1 - op2 = \x. op1 x - op2 x`;;

let COP_ADD_THM = COP_ARITH `!op1 op2 x. (op1 + op2) x = op1 x + op2 x`;;

let COP_SUB_THM = COP_ARITH `!op1 op2 x. (op1 - op2) x = op1 x - op2 x`;;

let COP_ZERO_THM = COP_ARITH `cop_zero x = cfun_zero`;;

let COP_MUL_LID = COP_ARITH `!op. I ** op = op`;;

let COP_MUL_RID = COP_ARITH `!op. op ** I = op`;;

let COP_I_ID = CONJ COP_MUL_LID COP_MUL_RID;;

let COP_ENTIRE = COP_ARITH
  `!a x. a % x = cop_zero <=> a = Cx(&0) \/ x = cop_zero`;;

let COP_ZERO_NEQ_ID = prove
  (`~(I = cop_zero)`,
  REWRITE_TAC[COP_TO_CFUN;CFUN_TO_COMPLEX;NOT_FORALL_THM]
  THEN Pa.EXISTS_TAC `\x. Cx(&1):` THEN CONV_TAC COMPLEX_FIELD);;

let COP_SMUL_I_ZERO = prove
  (`!a. a % I = cop_zero <=> a = Cx(&0)`,
  REWRITE_TAC[COP_ENTIRE;COP_ZERO_NEQ_ID]);;

let COP_SMUL_I_ONE = prove
  (`!a. a % I = I <=> a = Cx(&1)`,
  REWRITE_TAC[COP_TO_CFUN;CFUN_TO_COMPLEX] THEN GEN_TAC THEN EQ_TAC
  THENL [DISCH_THEN (MP_TAC o Pa.SPEC `\x.Cx(&1):`); ALL_TAC]
  THEN CONV_TAC COMPLEX_FIELD);;

let COP_MUL_I_SYM = COP_ARITH `!op. op ** I = I ** op`;;

let COP_ADD_I_SYM = COP_ARITH `!op. op + I = I + op`;;

let COP_I_SCALAR = COP_ARITH `(\x. a % x)  = a % I`;;

let COP_MUL_THM = COP_ARITH `!x op1 op2. (op1 ** op2) x = op1 (op2 x)`;;

let COP_SMUL_LNEG = COP_ARITH `!a op. --a % op = --(a % op)`;;

let COP_SMUL_RNEG = COP_ARITH `!a op. a % --op = --(a % op)`;;

let COP_SUB = COP_ARITH `!op1 op2. op1 - op2 = op1 + --op2`;;

let COP_SUB_NEG = COP_ARITH `!op1 op2. op1 - op2 = op1 + --op2`;;

let COP_NEG_NEG = COP_ARITH `!op. --(--op) = op`;;

let COP_NEG_ADD = COP_ARITH `!op1 op2. --(op1 + op2) = --op1 + --op2`;;

let COP_NEG_SUB = COP_ARITH `!op1 op2. --(op1 - op2) = --op1 + op2`;;

let COP_NEG_CLAUSES = CONJS [COP_NEG_NEG;COP_NEG_ADD;COP_NEG_SUB;
  COP_SUB;COP_SUB_NEG];;

let COP_SMUL_ASSOC = COP_ARITH `!a b op. a % (b % op) = (a * b) % op`;;

let COP_SMUL_SYM = COP_ARITH `!a b op. a % (b % op) = b % (a % op)`;;

let COP_MUL_LSMUL = COP_ARITH `!op1 op2. a % op1 ** op2 = a % (op1 ** op2)`;;

let COP_ADD_LDISTRIB = COP_ARITH
  `!a op1 op2. a % (op1 + op2) = a % op1 + a % op2`;;

let COP_ADD_RDISTRIB = COP_ARITH `!a b op. (a + b) % op = a % op + b % op`;;

let COP_SMUL_INV_ID = COP_ARITH
  `!a op. ~(a = Cx (&0)) ==> a % (inv a % op) = op`;;

let COP_SUB_LDISTRIB = COP_ARITH `!a x y. a % (x - y) = a % x - a % y`;;

let COP_SUB_RADD = COP_ARITH `!x y z. x - (y + z) = x - y - z`;;

let COP_ADD_RSUB = COP_ARITH `!x y z. x + (y - z) = (x + y) - z`;;

let COP_SUB_SUB = COP_ARITH `!x y z. x - (y - z) = x - y + z`;;

let COP_ADD_SYM = COP_ARITH `!op1 op2. op1 + op2 = op2 + op1`;;

let COP_ADD_ASSOC = COP_ARITH `!x y z. (x + y) + z = x + y + z`;;

let COP_ADD_AC = COP_ARITH
  `!m n p. m + n = n + m /\ (m + n) + p = m + n + p /\ m + n + p = n + m + p`;;

let COP_MUL_ASSOC = COP_ARITH `!x y z . (x ** y) ** z = x ** y ** z`;;

let COP_SUB_ADD = COP_ARITH `!x y z. (x-y)+z= (x+z)-y`;;

let COP_NEG_INJ = COP_ARITH `!x y. --x = --y <=> x = y`;;

let COP_EQ_ADD_LCANCEL = COP_ARITH `!x y z. x + y = x + z <=> y=z`;;

let COP_EQ_ADD_RCANCEL = COP_ARITH `!x y z. x + z = y + z <=> x=y`;;

let COP_EQ_SUB_LCANCEL = COP_ARITH `!x y z. x - y = x - z <=> y=z`;;

let COP_EQ_LSUB = COP_ARITH `!x y z. x - y = z <=> x = z + y`;;

let COP_EQ_RSUB = COP_ARITH `!x y z. x = y - z <=> x + z = y`;;

let COP_MUL_LZERO = COP_ARITH `!op. cop_zero ** op = cop_zero`;;

let COP_SUB_REFL = COP_ARITH `!op. op - op = cop_zero`;;

let COP_SMUL_LID_NEG = COP_ARITH `!x. (--Cx(&1)) % x = --x`;;

let COP_ADD_RID = COP_ARITH `!op. op + cop_zero = op`;;

let COP_ADD_LID = COP_ARITH `!op. cop_zero + op = op`;;

let COP_SMUL_LID = COP_ARITH `!op. Cx(&1) % op = op`;;

let COP_SMUL_RZERO = COP_ARITH `!op. a % cop_zero = cop_zero`;;

let COP_SUB_LZERO = COP_ARITH `!op. cop_zero - op = --op`;;

let COP_SUB_RZERO = COP_ARITH `!op. op - cop_zero  = op`;;

let COP_SMUL_LZERO = COP_ARITH `!x. Cx(&0) % x = cop_zero`;;

let COP_ZERO_CLAUSES = CONJS
  [COP_MUL_LZERO;COP_SUB_REFL;COP_ADD_RID;COP_ADD_LID;COP_SMUL_RZERO];;

let COP_ADD_MUL_RDISTRIB =
  COP_ARITH `!op1 op2 op3. (op1 + op2) ** op3 = op1 ** op3 + op2 ** op3`;;

let COP_SUB_MUL_RDISTRIB =
  COP_ARITH `!op1 op2 op3. (op1 - op2) ** op3 = op1 ** op3 - op2 ** op3`;;

let COP_EQ_LSUB_LSUB = COP_ARITH `!x y z. x - y = z <=> x - z = y`;;

let COP_EQ_LSMUL = COP_ARITH `!a x y. a % x = a % y <=> x = y \/ a = Cx(&0)`;;

let COP_EQ_MUL_LCANCEL2 = prove
  (`!x y z t:cop. ~(x=Cx(&0)) ==> (x % y = z % t <=> y = (z / x) % t)`,
  REWRITE_TAC[COP_TO_CFUN;CFUN_TO_COMPLEX] THEN REPEAT STRIP_TAC
  THEN MATCH_MP_TAC (MESON[]
    `(!x y. P x y <=> Q x y) ==> (!x y. P x y) = !x y. Q x y`)
  THEN REPEAT GEN_TAC THEN POP_ASSUM MP_TAC THEN CONV_TAC COMPLEX_FIELD);;

let COP_POW_2 = COP_ARITH `!op. op pow 2 = op ** op`;;

let COP_POW_I = prove
(`!n. I pow n = I`, INDUCT_TAC THEN ASM_SIMP_TAC[cop_pow;COP_MUL_LID]);;

let COP_POW_ZERO = prove(
 `!n. cop_zero pow  (n+1) = cop_zero`, INDUCT_TAC THEN
  ASM_MESON_TAC[cop_pow;ADD_CLAUSES;ADD1;COP_MUL_LZERO;COP_MUL_RID]);;

let COP_POW_COMMUTE_N = prove
 (`!op1 op2. op1 ** op2 = op2 ** op1 ==>
    !n. op1 ** op2 pow n = op2 pow n ** op1`,
        REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN
        ASM_REWRITE_TAC[cop_pow; GSYM COP_MUL_ASSOC;COP_MUL_LID;COP_MUL_RID] THEN
        ASM_REWRITE_TAC[GSYM cop_pow;COP_MUL_ASSOC]);;

let COP_ADD_2 = COP_ARITH `!op. Cx(&2) % op  = op + op`;;

(* ------------------------------------------------------------------------- *)
(* Bounded OPERATORS                                                          *)
(* ------------------------------------------------------------------------- *)


(* ------------------------------------------------------------------------- *)
(* LINEAR OPERATORS                                                          *)
(* ------------------------------------------------------------------------- *)

let is_linear_cop = new_definition
  `is_linear_cop (op:cop) <=>
    !x y. op (x + y) = op x + op y /\ !a. op (a % x) = a % (op x)`;;

let LINCOP_ADD = prove
  (`!x y op. is_linear_cop op ==> op (x + y) = op x + op y`,
  SIMP_TAC[is_linear_cop]);;

let LINCOP_SMUL = prove
  (`!a x op. is_linear_cop op ==> op (a % x) = a % op x`,
  SIMP_TAC[is_linear_cop]);;

let LINCOP_SUB = prove
  (`!x y op. is_linear_cop op ==> op (x - y) = op x - op y`,
  SIMP_TAC[is_linear_cop;CFUN_SUB_NEG;GSYM CFUN_SMUL_LID_NEG]);;

let LINCOP_MUL_RSMUL = prove
  (`!a op1 op2. is_linear_cop op2 ==> op2 ** (a % op1) = a % (op2 ** op1)`,
  SIMP_TAC[is_linear_cop;COP_TO_CFUN]);;

let LINCOP_SMUL_CLAUSES = CONJS [LINCOP_MUL_RSMUL;COP_ADD_LDISTRIB;
  COP_SUB_LDISTRIB;COP_MUL_LSMUL;COP_MUL_ASSOC;COP_MUL_LID];;

let LINCOP_MUL_RMUL = prove
  (`!op1 op2. is_linear_cop op2 ==> op2 ** (a % op1) = a % (op2 ** op1)`,
  SIMP_TAC[is_linear_cop;COP_TO_CFUN]);;

let LINCOP_ADD_MUL_LDISTRIB = prove
  (`!op1 op2 op3. is_linear_cop op3 ==>
      op3 ** (op1 + op2) = op3 ** op1 + op3 ** op2`,
  SIMP_TAC[is_linear_cop;COP_TO_CFUN]);;

let LINCOP_SUB_MUL_LDISTRIB = prove
  (`!op1 op2 op3. is_linear_cop op3 ==>
      op3 ** (op1 - op2) = op3 ** op1 - op3 ** op2`,
  SIMP_TAC[is_linear_cop;COP_TO_CFUN;LINCOP_SUB]);;

let LINCOP_MUL_DISTRIB_CLAUSES =
  CONJS[COP_ADD_MUL_RDISTRIB;COP_SUB_MUL_RDISTRIB;LINCOP_ADD_MUL_LDISTRIB;
    LINCOP_SUB_MUL_LDISTRIB];;

let LINCOP_CFUN_ZERO = prove
  (`!op. is_linear_cop op ==> op cfun_zero = cfun_zero`,
  MESON_TAC[is_linear_cop;CFUN_SMUL_LZERO]);;

let COP_POW_SMUL = prove
  (`!op. is_linear_cop op ==> !n a. (a % op) pow n = (a pow n) % (op pow n)`,
  REWRITE_TAC[is_linear_cop] THEN REPEAT (INDUCT_TAC ORELSE STRIP_TAC)
  THEN ASM_REWRITE_TAC[COP_TO_CFUN;complex_pow] THEN CFUN_ARITH_TAC);;

let COP_POW_SMUL2 = prove
  (`!op n a. is_linear_cop op ==>  (a % op) pow n = (a pow n) % (op pow n)`,
  MESON_TAC[COP_POW_SMUL]);;


(* Congruence properties *)

let ADD_LINCOP = prove
  (`!op1 op2.
    is_linear_cop op1 /\ is_linear_cop op2 ==> is_linear_cop (op1 + op2)`,
  SIMP_TAC[is_linear_cop;COP_TO_CFUN] THEN REPEAT STRIP_TAC
  THEN COP_ARITH_TAC);;

let SUB_LINCOP = prove
  (`!op1 op2.
    is_linear_cop op1 /\ is_linear_cop op2 ==> is_linear_cop (op1 - op2)`,
  SIMP_TAC[is_linear_cop;COP_TO_CFUN] THEN REPEAT STRIP_TAC
  THEN COP_ARITH_TAC);;

let SMUL_LINCOP = prove
  (`!a op. is_linear_cop op ==> is_linear_cop (a % op)`,
  SIMP_TAC[is_linear_cop;COP_TO_CFUN] THEN REPEAT STRIP_TAC
  THEN COP_ARITH_TAC);;

let MUL_LINCOP = prove
  (`!op1 op2.
    is_linear_cop op1 /\ is_linear_cop op2 ==> is_linear_cop (op1 ** op2)`,
  SIMP_TAC[is_linear_cop;COP_TO_CFUN] THEN REPEAT STRIP_TAC
  THEN COP_ARITH_TAC);;

let ARITH_LINCOP_CLAUSES = CONJS
  [ADD_LINCOP;SUB_LINCOP;SMUL_LINCOP;MUL_LINCOP];;

let linearity_thms = ref [];;
let add_linearity_thm thm =
  let thm = GIMP_IMP thm in
  linearity_thms := thm :: !linearity_thms;
  let eta_thm = SIMP_RULE[ETA_AX] thm in
  if (not (equals_thm thm eta_thm))
  then linearity_thms := eta_thm :: !linearity_thms;;
let add_linearity_thms = List.iter add_linearity_thm;;

add_linearity_thms [ADD_LINCOP;SUB_LINCOP;SMUL_LINCOP;MUL_LINCOP;
  REWRITE_RULE[cop_smul] SMUL_LINCOP];;

let I_LINCOP = prove
  (`is_linear_cop I`,
  REWRITE_TAC[is_linear_cop;I_DEF]);;

let COP_POW_SCALAR = prove
(`!a n. (\x. a % x) pow n = (\x. (a pow n) % x)`,
 SIMP_TAC[COP_ARITH `(\x. a % x)  = a % I`;COP_POW_SMUL;I_LINCOP;COP_POW_I]);;

add_linearity_thms [I_LINCOP;REWRITE_RULE[I_DEF] I_LINCOP];;

let ZERO_LINCOP = prove
  (`is_linear_cop cop_zero`,
  REWRITE_TAC[is_linear_cop;COP_ZERO_THM] THEN COP_ARITH_TAC);;

add_linearity_thms [ZERO_LINCOP];;

let SCALAR_LINCOP = prove
  (`!a. is_linear_cop \x. a % x`,
  REWRITE_TAC[is_linear_cop] THEN CFUN_ARITH_TAC);;

let POW_LINCOP = prove
  (`!op. is_linear_cop op ==> !n. is_linear_cop (op pow n)`,
  REPEAT (INDUCT_TAC ORELSE STRIP_TAC) THEN
  ASM_SIMP_TAC[cop_pow;I_LINCOP;MUL_LINCOP]);;

add_linearity_thms [SCALAR_LINCOP;POW_LINCOP];;

let LINEARITY_TAC g =
  let MATCH_MP_TAC x y = MATCH_MP_TAC x y in
  let TRY_LINEARITY_THM = ASM (MAP_FIRST (fun x ->
    MATCH_ACCEPT_TAC x ORELSE MATCH_MP_TAC x)) !linearity_thms in
  let LOOP = TRY_LINEARITY_THM ORELSE (SIMP_TAC[ETA_AX] THEN TRY_LINEARITY_THM)
    ORELSE (ASM_SIMP_TAC[] THEN NO_TAC) in
  (REPEAT STRIP_TAC THEN CHANGED_TAC (REPEAT (LOOP THEN REPEAT CONJ_TAC))) g;;

let is_set_linear_cop = new_definition
  `is_set_linear_cop s (op:cop) <=>
    !x y. x IN s /\ y IN s ==> op (x + y) = op x + op y /\
                !a. op (a % x) = a % (op x)`;;

let LINCOP_SLINCOP = prove
 (`!s op. is_linear_cop op ==> is_set_linear_cop s op`,
  SIMP_TAC[is_linear_cop;is_set_linear_cop]);;

let SLINCOP_SMUL = prove(`!a x op s. x IN s /\
 is_set_linear_cop s op ==> op (a % x) = a % op x`,
  MESON_TAC[is_set_linear_cop]);;

let SLINCOP_ADD = prove
  (`!x y op s. is_set_linear_cop s op /\ x IN s /\ y IN s
   ==> op (x + y) = op x + op y`,
  SIMP_TAC[is_set_linear_cop]);;

let SLINCOP_SUB = prove
  (`!x y op s.  is_cfun_subspace s /\ is_set_linear_cop s op /\
  x IN s /\ y IN s
   ==> op (x - y) = op x - op y`,
  MESON_TAC[SLINCOP_SMUL;CFUN_SUBSPACE_SMUL
  ;SLINCOP_ADD;CFUN_SUB_NEG;GSYM CFUN_SMUL_LID_NEG]);;

let SLINCOP_CFUN_ZERO = prove
  (`!op s. is_set_linear_cop s op /\ is_cfun_subspace s ==>
    op cfun_zero = cfun_zero`,
  ONCE_REWRITE_TAC[GSYM (Pa.SPEC `cfun_zero:` CFUN_SMUL_LZERO)] THEN
  MESON_TAC[SLINCOP_SMUL;CFUN_SMUL_LZERO;CFUN_SUBSPACE_ZERO]);;



(* ------------------------------------------------------------------------- *)
(* DUAL SPACE                                                                *)
(* ------------------------------------------------------------------------- *)

new_type_abbrev("cfun_dual",`:cfun->complex`);;
new_type_abbrev("cfun_dualB",`:cfunB->complex`);;

(* Note that all the above operations still apply on the dual space since
 * `:cfun_dual` is an instance of `cfun` itself.
 *)

let cfun_dual = new_definition
  `cfun_dual (spc:cfun->bool) =
    { f:cfun->complex | is_linear_cop (cfun_of_complex o f) }`;;

(*
 *let cfun_topological_dual = new_definition
 *  `cfun_topological_dual spc =
 *    { f | f IN cfun_dual spc /\ !x. f continuous (within (:cfun)) }`;;
 *)

let cop_transpose = new_definition
  `cop_transpose (f:cop) :cfun_dual->cfun_dualB = \phi. phi o f`;;


(* ------------------------------------------------------------------------- *)
(* FREQUENTLY USED OPERATORS                                                 *)
(* ------------------------------------------------------------------------- *)

let commutator = new_definition
  `commutator (op1:cfun->cfun) op2 = op1 ** op2 - op2 ** op1`;;

make_overloadable "com" `:A->A->A`;;
parse_as_infix("com",(24,"left"));;
overload_interface("com",`commutator:cops->cops->cops`);;

let COMMUTATOR_NEG = prove
  (`!op1 op2. commutator op1 op2 = -- commutator op2 op1`,
  REWRITE_TAC[commutator] THEN COP_ARITH_TAC);;


let COMMUTATOR_COMPOSIT = prove
 (`!op1 op2 a b c d. is_linear_cop op1 /\ is_linear_cop op2 ==>
  commutator (a%op1+b%op2) (c%op1+d%op2) =
   (a*d)% commutator op1 op2 - (b*c)% commutator op1 op2`,
   SIMP_TAC[commutator;LINCOP_MUL_DISTRIB_CLAUSES;
   LINCOP_SMUL_CLAUSES;COP_SMUL_ASSOC;COP_SUB_RADD] THEN COP_ARITH_TAC);;

let COMMUTATOR_SMUL = GEN_ALL(
   REWRITE_RULE[COP_SMUL_LZERO;COMPLEX_MUL_LZERO;
   COP_SUB_RZERO;COP_ADD_RID;COP_ADD_LID]
  (SPEC_V (`b:`,`Cx(&0):`) (SPEC_V(`c:`,`Cx(&0):`) COMMUTATOR_COMPOSIT)));;

let COMMUTATOR_ZERO_SYM = prove
  (`!op1 op2. commutator op1 op2 = cop_zero <=> commutator op2 op1 = cop_zero`,
  REWRITE_TAC[commutator;COP_EQ_LSUB;COP_ADD_LID] THEN MESON_TAC[]);;

let COMMUTATOR_SCALAR = prove
  (`!op a. is_linear_cop op ==>
  commutator op (\x. a%x) = cop_zero`,
  SIMP_TAC[commutator;COP_SUB_ABS;COP_MUL;LINCOP_SMUL] THEN COP_ARITH_TAC);;

let COMMUTATOR_SCALAR_OP = prove
  (`!op a. is_linear_cop op ==>
  commutator op (a%op) = cop_zero`,
  SIMP_TAC[commutator;LINCOP_MUL_RSMUL] THEN COP_ARITH_TAC);;

let COMMUTATOR_ZERO = prove
  (`!op. is_linear_cop op ==>
  commutator op cop_zero = cop_zero`,
  SIMP_TAC[cop_zero;K_DEF;GSYM CFUN_SMUL_LZERO;commutator;
  COP_SUB_ABS;COP_MUL;LINCOP_SMUL] THEN COP_ARITH_TAC);;

let LINCOP_COMMUTATOR = prove
  (`!op1 op2. is_linear_cop op1 /\ is_linear_cop op2
    ==> is_linear_cop (commutator op1 op2)`,
  REWRITE_TAC[commutator] THEN REPEAT STRIP_TAC THEN LINEARITY_TAC);;

add_linearity_thm LINCOP_COMMUTATOR;;

let expectation = new_definition
  `expectation (inprod:inprod) f op = inprod f (op f)`;;

let deviation = new_definition
  `deviation (inprod:inprod) f op = op - (\x. expectation inprod f op % x)`;;

let DEVIATION_ALT = prove
  (`!inprod f op. deviation inprod f op = op - expectation inprod f op % I`,
  REWRITE_TAC[deviation] THEN COP_ARITH_TAC);;

let LINCOP_DEVIATION = prove
  (`!inprod state op. is_linear_cop op
    ==> is_linear_cop (deviation inprod state op)`,
    REWRITE_TAC[deviation;GSYM COP_SMUL] THEN LINEARITY_TAC);;

add_linearity_thm LINCOP_DEVIATION;;

let variance = new_definition
  `variance  (inprod:inprod) f op =
    expectation inprod f (deviation inprod f op ** deviation inprod f op)`;;

let DEVIATION_COMMUTATOR = prove
  (`!inprod op1 op2 state. is_linear_cop op1 /\ is_linear_cop op2
    ==> commutator (deviation inprod state op1) (deviation inprod state op2)
      = commutator op1 op2`,
  SIMP_TAC[DEVIATION_ALT;commutator] THEN
  IMP_REWRITE_TAC [LINCOP_SUB_MUL_LDISTRIB]
  THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
  THEN ASM_SIMP_TAC[LINCOP_MUL_DISTRIB_CLAUSES;COP_MUL_LSMUL;COP_I_ID;
    LINCOP_MUL_RMUL;MESON[COP_SMUL_SYM]
      `f (a % (b % op)) (b % (a % op)) = f (a % (b % op)) (a % (b % op))`]
  THEN COP_ARITH_TAC);;

let EXPEC_ZERO_STATE = prove
  (`!s inprod op. is_linear_cop op /\ is_inner_space (s,inprod)
    ==> expectation inprod cfun_zero op = Cx(&0)`,
  MESON_TAC[expectation;INPROD_ZERO;LINCOP_CFUN_ZERO]);;


(* ------------------------------------------------------------------------- *)
(* CLOSURE                                                                   *)
(* ------------------------------------------------------------------------- *)

let is_closed_by = new_definition
  `is_closed_by s f <=> !x. x IN s ==> f x IN s`;;

let IS_CLOSED_BY_THM = prove
 (`!x s f. is_closed_by s f /\ x IN s ==> f x IN s`,SIMP_TAC[is_closed_by]);;

let IS_CLOSED_BY_COMPOSE = prove
  (`!s f g. is_closed_by s f /\ is_closed_by s g ==> is_closed_by s (f o g)`,
  REWRITE_TAC[is_closed_by;o_DEF] THEN MESON_TAC[]);;

let IS_CLOSED_BY_I = prove
  (`!s. is_closed_by s I`,
  REWRITE_TAC[is_closed_by;I_THM]);;

let IS_CLOSED_BY_COP_ADD = prove
  (`!s op1 op2.
      is_cfun_subspace s /\ is_closed_by s op1 /\ is_closed_by s op2
        ==> is_closed_by s (op1+op2)`,
  REWRITE_TAC[is_closed_by;COP_TO_CFUN] THEN MESON_TAC[CFUN_SUBSPACE_ADD]);;

let IS_CLOSED_BY_COP_SUB = prove
  (`!s op1 op2.
      is_cfun_subspace s /\ is_closed_by s op1 /\ is_closed_by s op2
        ==> is_closed_by s (op1-op2)`,
  REWRITE_TAC[is_closed_by;COP_TO_CFUN] THEN MESON_TAC[CFUN_SUBSPACE_SUB]);;

let IS_CLOSED_BY_COP_MUL = prove
  (`!s op1 op2.
      is_closed_by s op1 /\ is_closed_by s op2 ==> is_closed_by s (op1**op2)`,
  REWRITE_TAC[is_closed_by;COP_TO_CFUN] THEN MESON_TAC[]);;

let IS_CLOSED_SCALAR = prove
  (`!s a. is_cfun_subspace s ==> is_closed_by s (a % I)`,
  SIMP_TAC[is_closed_by;is_cfun_subspace;COP_TO_CFUN]);;

let IS_CLOSED_INPROD_SCALAR = inner_space_prove
  (`!a. is_closed_by s (a % I):`,
  SIMP_TAC[is_closed_by;is_inner_space;IS_CLOSED_SCALAR]);;

let IS_CLOSED_BY_COP_SMUL = prove
  (`!s a op.
      is_cfun_subspace s /\ is_closed_by s op ==> is_closed_by s (a % op)`,
  IMP_REWRITE_TAC[is_closed_by;COP_TO_CFUN;CFUN_SUBSPACE_SMUL]);;

let IS_CLOSED_BY_COMMUTATOR = prove
  (`!s a op.
      is_cfun_subspace s /\ is_closed_by s op1 /\ is_closed_by s op2
        ==> is_closed_by s (commutator op1 op2)`,
  IMP_REWRITE_TAC[commutator;IS_CLOSED_BY_COP_MUL;IS_CLOSED_BY_COP_SUB]);;



(* ------------------------------------------------------------------------- *)
(* HERMITIAN                                                                 *)
(* ------------------------------------------------------------------------- *)

let is_hermitian = new_definition
  `is_hermitian ((s,inprod):inner_space) op1 op2 <=>
    is_inner_space (s,inprod) ==>
      is_closed_by s op1 /\ is_closed_by s op2
      /\ is_linear_cop op1 /\ is_linear_cop op2
      /\ !x y. x IN s /\ y IN s ==> inprod x (op1 y) = inprod (op2 x) y`;;

let HERM_LINCOP = full_inner_space_prove
  (`!op1 op2. is_hermitian is op1 op2 ==> is_linear_cop op1
                /\ is_linear_cop op2:`,
  SIMP_TAC[FORALL_INNER_SPACE_THM;is_hermitian]);;

let HERM_LINCOP_L = full_inner_space_prove
  (`!op1 op2. is_hermitian is op1 op2 ==> is_linear_cop op1:`,
  SIMP_TAC[FORALL_INNER_SPACE_THM;is_hermitian]);;

let HERM_LINCOP_R = full_inner_space_prove
  (`!op1 op2. is_hermitian is op1 op2 ==> is_linear_cop op2:`,
  SIMP_TAC[FORALL_INNER_SPACE_THM;is_hermitian]);;

let HERM_IS_CLOSED_BY_L = inner_space_prove
  (`!op1 op2. is_hermitian (s,inprod) op1 op2 ==> is_closed_by s op1:`,
  SIMP_TAC[is_hermitian]);;

let HERM_IS_CLOSED_BY_R = inner_space_prove
  (`!op1 op2. is_hermitian (s,inprod) op1 op2 ==> is_closed_by s op2:`,
  SIMP_TAC[is_hermitian]);;


let HERM_ITSELF = inner_space_prove
  (`!op1 op2 x y. is_hermitian (s,inprod) op1 op2 /\ x IN s /\ y IN s ==>
   inprod x (op1 y) = inprod (op2 x) y:`,
  SIMP_TAC[is_hermitian]);;

let ADD_HERM = full_inner_space_prove
  (`!op1 op2 op3 op4.
    is_hermitian is op1 op2 /\ is_hermitian is op3 op4
    ==> is_hermitian is (op1+op3) (op2+op4):`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian;is_closed_by]
  THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
  THEN IMP_REWRITE_TAC [COP_TO_CFUN;CFUN_SUBSPACE_ADD;INNER_SPACE_IS_SUBSPACE;
    INPROD_ADD_LDIST;INPROD_ADD_RDIST]);;

let SUB_HERM = full_inner_space_prove
  (`!op1 op2 op3 op4.
    is_hermitian is op1 op2 /\ is_hermitian is op3 op4
      ==> is_hermitian is (op1-op3) (op2-op4):`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian;is_closed_by]
  THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
  THEN IMP_REWRITE_TAC [COP_TO_CFUN;CFUN_SUBSPACE_SUB;INNER_SPACE_IS_SUBSPACE;
    INPROD_SUB_LDIST;INPROD_SUB_RDIST]);;

let MUL_HERM = full_inner_space_prove
  (`!op1 op2 op3 op4.
    is_hermitian is op1 op2 /\ is_hermitian is op3 op4
      ==> is_hermitian is (op1**op3) (op4**op2):`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian;is_closed_by]
  THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
  THEN REWRITE_TAC[COP_TO_CFUN;cop_mul;o_DEF] THEN ASM_MESON_TAC[]);;

let SMUL_HERM = full_inner_space_prove
  (`!a op1 op2 op3 op4.
    is_hermitian is op1 op2 /\ is_hermitian is op3 op4
      ==> is_hermitian is (a % op1) (cnj a % op2):`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian;is_closed_by]
  THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
  THEN IMP_REWRITE_TAC [COP_TO_CFUN;CFUN_SUBSPACE_SMUL;INNER_SPACE_IS_SUBSPACE;
    INPROD_LSMUL;INPROD_RSMUL]
  THEN ASM_MESON_TAC[CNJ_CNJ]);;

let HERMITAIN_INPROD = inner_space_prove
  (`!op1 op2 op3. is_hermitian (s,inprod) op1 op2 /\ is_closed_by s op3
    ==> !x y. x IN s /\ y IN s
      ==> inprod x ((op1 ** op3) y) = inprod (op2 x) (op3 y):`,
   MESON_TAC[HERM_ITSELF;COP_MUL;is_closed_by]);;

let ZERO_HERM = prove
  (`!is. is_hermitian is cop_zero cop_zero`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian] THEN
  IMP_REWRITE_TAC[is_closed_by;ZERO_LINCOP;
    COP_ZERO_THM;CFUN_SUBSPACE_ZERO;INNER_SPACE_IS_SUBSPACE;INPROD_RZERO;
    INPROD_LZERO]);;

let ARITH_HERM_CLAUSES = CONJS [ADD_HERM;SUB_HERM;MUL_HERM;SMUL_HERM];;

let HERM_SYM = prove
  (`!is op1 op2.
    is_hermitian is op1 op2 <=> is_hermitian is op2 op1`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian;is_closed_by]
  THEN MESON_TAC[CX_INJ;INPROD_CNJ]);;

let HERM_UNIQUENESS = prove
  (`!s inprod op1 op2 op3.
      is_inner_space (s,inprod)
      /\ is_hermitian (s,inprod) op1 op2 /\ is_hermitian (s,inprod) op1 op3
        ==> !x. x IN s ==> (op2 x equv op3 x) inprod`,
  IMP_REWRITE_TAC [is_hermitian;COP_EQ;is_closed_by;INPROD_INJ_ALT]
  THEN ASM_MESON_TAC[]);;

let HERM_UNIQUENESS_ALT = prove
  (`!s inprod op1 op2 op3.
    is_inner_space (s,inprod) /\
    is_hermitian (s,inprod) op2 op1 /\ is_hermitian (s,inprod) op3 op1
      ==> !x. x IN s ==> (op2 x equv op3 x) inprod`,
  MESON_TAC[HERM_SYM;HERM_UNIQUENESS]);;

let HERM_PROP_ADVANCED = inner_space_prove
  (`!a b op1 op2 op3 op4 op5.
    is_hermitian (s,inprod) op1 op2 /\ is_hermitian (s,inprod) op3 op4
    /\ is_hermitian (s,inprod) op5 (a % op1 + b % op3)
      ==> !x. x IN s ==> (op5 x equv (cnj a % op2 + cnj b % op4) x) inprod:`,
  IMP_REWRITE_TAC[COP_EQ;GIMP_IMP HERM_UNIQUENESS_ALT]
  THEN MESON_TAC[ARITH_HERM_CLAUSES;CNJ_CNJ;HERM_SYM]);;


(* ------------------------------------------------------------------------- *)
(* SELF ADJOINT                                                              *)
(* ------------------------------------------------------------------------- *)

let is_self_adjoint = new_definition
  `is_self_adjoint1 is op <=> is_hermitian is op op`;;

let IS_SELF_ADJOINT =
  REWRITE_RULE[FORALL_INNER_SPACE_THM;is_hermitian] is_self_adjoint;;

let SELF_ADJ_IS_LINCOP = full_inner_space_prove
  (`!op. is_self_adjoint1 is op ==> is_linear_cop op:`,
  IMP_REWRITE_TAC[is_self_adjoint;HERM_LINCOP_L]);;

let SELF_ADJ_IS_CLOSED_BY = inner_space_prove
  (`!op. is_self_adjoint1 (s,inprod) op ==> is_closed_by s op:`,
  IMP_REWRITE_TAC[is_self_adjoint;HERM_IS_CLOSED_BY_L]);;

let SELF_ADJ_INPROD = inner_space_prove
  (`!op1 op2. is_self_adjoint1 (s,inprod) op1 /\ is_closed_by s op2
    ==> !x y. x IN s /\ y IN s
      ==> inprod x ((op1 ** op2) y) = inprod (op1 x) (op2 y):`,
  REWRITE_TAC[IS_SELF_ADJOINT;COP_MUL;is_closed_by] THEN MESON_TAC[]);;

let ADD_SELF_ADJ = full_inner_space_prove
  (`!op1 op2. is_self_adjoint1 is op1 /\ is_self_adjoint1 is op2
    ==> is_self_adjoint1 is (op1 + op2):`,
  IMP_REWRITE_TAC[is_self_adjoint;ADD_HERM]);;

let SUB_SELF_ADJ = full_inner_space_prove
  (`!op1 op2. is_self_adjoint1 is op1 /\ is_self_adjoint1 is op2
    ==> is_self_adjoint1 is (op1 - op2):`,
  IMP_REWRITE_TAC[is_self_adjoint;SUB_HERM]);;

let SMUL_SELF_ADJ = full_inner_space_prove
  (`!a op. real a /\ is_self_adjoint1 is op ==> is_self_adjoint1 is (a % op):`,
  MESON_TAC[is_self_adjoint;SMUL_HERM;REAL_CNJ]);;

let MUL_SELF_ADJ = full_inner_space_prove
  (`!op1 op2.
    is_self_adjoint1 is op1 /\ is_self_adjoint1 is op2 /\ op1 ** op2 = op2 ** op1
    ==> is_self_adjoint1 is (op1 ** op2):`,
  MESON_TAC[is_self_adjoint;MUL_HERM]);;

let I_SELF_ADJ = prove
  (`!is. is_self_adjoint1 is I`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM;IS_SELF_ADJOINT;I_LINCOP;I_THM;
    IS_CLOSED_BY_I]);;

let ZERO_SELF_ADJ = prove
  (`!is. is_self_adjoint1 is cop_zero`,
  REWRITE_TAC[is_self_adjoint;ZERO_HERM]);;

let selfadjoint_thms = ref [];;
let add_selfadjoint_thm thm =
  let thm = GIMP_IMP thm in
  selfadjoint_thms := thm :: !selfadjoint_thms;
  let eta_thm = SIMP_RULE[ETA_AX] thm in
  if (not (equals_thm thm eta_thm))
  then selfadjoint_thms := eta_thm :: !selfadjoint_thms;;
let add_selfadjoint_thms = List.iter add_selfadjoint_thm;;

let rec SELF_ADJOINT_TAC g =
  let MATCH_MP_TAC x y = MATCH_MP_TAC x y in
  let TRY_SELFADJOINT_THM =
    ASM (MAP_FIRST (fun x ->
      MATCH_ACCEPT_TAC x ORELSE MATCH_MP_TAC x)) !selfadjoint_thms in
  let LOOP =
    TRY_SELFADJOINT_THM ORELSE (SIMP_TAC[ETA_AX] THEN TRY_SELFADJOINT_THM)
    ORELSE (ASM_SIMP_TAC[] THEN NO_TAC) ORELSE LINEARITY_TAC
    ORELSE REAL_TAC ~alternatives:[SELF_ADJOINT_TAC;LINEARITY_TAC] in
  (REPEAT STRIP_TAC
  THEN (fun (_,c as g) ->
    let head = fst (strip_comb c) in
    if (name_of head = "is_self_adjoint1"
      && can (type_match `:inner_space->cop->bool` (type_of head)) [])
    then CHANGED_TAC (REPEAT (LOOP THEN REPEAT CONJ_TAC)) g
    else FAIL_TAC "bad goal" g)) g;;

let REAL_TAC ?(alternatives=[]) =
  REAL_TAC ~alternatives:(SELF_ADJOINT_TAC::LINEARITY_TAC::alternatives);;

add_selfadjoint_thms [ADD_SELF_ADJ;SUB_SELF_ADJ;SMUL_SELF_ADJ;
  REWRITE_RULE[COP_SMUL] SMUL_SELF_ADJ;MUL_SELF_ADJ;I_SELF_ADJ;ZERO_SELF_ADJ];;

let ANTI_COMMUTATOR_SELF_ADJ = full_inner_space_prove
  (`!op1 op2. is_self_adjoint1 is op1 /\ is_self_adjoint1 is op2
    ==> is_self_adjoint1 is (op1 ** op2 + op2 ** op1):`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM;IS_SELF_ADJOINT]
  THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
  THEN ASM IMP_REWRITE_TAC[IS_CLOSED_BY_COP_ADD;IS_CLOSED_BY_COP_MUL;COP_MUL;
    COP_ADD;IS_CLOSED_BY_COP_MUL;INNER_SPACE_IS_SUBSPACE;INPROD_ADD_LDIST;
    INPROD_ADD_RDIST]
  THEN ASM_MESON_TAC[COMPLEX_ADD_SYM;is_closed_by]);;

add_selfadjoint_thm ANTI_COMMUTATOR_SELF_ADJ;;

let NEG_SELF_ADJ = full_inner_space_prove
  (`!op. is_linear_cop op /\ is_self_adjoint1 is op
    ==> is_self_adjoint1 is (--op):`,
  ONCE_REWRITE_TAC[GSYM COP_SUB_LZERO] THEN SELF_ADJOINT_TAC);;

add_selfadjoint_thm NEG_SELF_ADJ;;

let SCALAR_II_HERM = inner_space_prove
  (`!op. is_linear_cop op /\ (!x y. inprod (op x) y = -- (inprod x (op y)))
      /\ is_closed_by s op
        ==> is_self_adjoint1 (s,inprod) (ii % op):`,
  IMP_REWRITE_TAC[IS_SELF_ADJOINT;COP_SMUL_THM;IS_CLOSED_BY_COP_SMUL;
   is_closed_by;INNER_SPACE_IS_SUBSPACE;INPROD_LSMUL;INPROD_RSMUL;
   CNJ_II;COMPLEX_NEG_MUL2] THEN LINEARITY_TAC);;

add_selfadjoint_thm SCALAR_II_HERM;;

let COMMUTATOR_ANTI_HERM = inner_space_prove
  (`!op1 op2. is_self_adjoint1 (s,inprod) op1 /\ is_self_adjoint1 (s,inprod) op2
    ==> !x y. x IN s /\ y IN s
     ==> inprod (commutator op1 op2 x) y = --(inprod x (commutator op1 op2 y)):`,
  IMP_REWRITE_TAC[commutator;IS_SELF_ADJOINT;COP_MUL_THM;COP_SUB_THM;
  is_closed_by;INPROD_SUB_LDIST;INPROD_SUB_RDIST;COMPLEX_NEG_SUB]);;

add_selfadjoint_thm COMMUTATOR_ANTI_HERM;;

let II_COMMUTATOR_HERM = full_inner_space_prove
  (`!op1 op2. is_self_adjoint1 is op1 /\ is_self_adjoint1 is op2
    ==> is_self_adjoint1 is (ii % commutator op1 op2):`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM;IS_SELF_ADJOINT] THEN
  IMP_REWRITE_TAC[COP_SMUL_THM;INPROD_RSMUL;
    INPROD_LSMUL;IS_CLOSED_BY_COMMUTATOR;IS_CLOSED_BY_COP_SMUL;CNJ_II;II_NZ;
    INNER_SPACE_IS_SUBSPACE;COMPLEX_MUL_LNEG;GSYM COMPLEX_MUL_RNEG;
    COMPLEX_EQ_MUL_LCANCEL;]
  THEN ONCE_REWRITE_TAC[COMPLEX_FIELD `x = --y <=> y = --x:complex`]
  THEN IMP_REWRITE_TAC [GIMP_IMP COMMUTATOR_ANTI_HERM;is_self_adjoint;
  is_hermitian;REWRITE_RULE[is_closed_by] IS_CLOSED_BY_COMMUTATOR;
  INNER_SPACE_IS_SUBSPACE;is_closed_by] THEN LINEARITY_TAC);;

add_selfadjoint_thm II_COMMUTATOR_HERM;;

let EXPEC_HERM_REAL = inner_space_prove
  (`!op state. is_self_adjoint1 (s,inprod) op /\ state IN s
    ==> real (expectation inprod state op):`,
  IMP_REWRITE_TAC[IS_SELF_ADJOINT;expectation;is_closed_by
  ;REAL_CNJ;INPROD_CNJ]);;

add_real_thms [EXPEC_HERM_REAL; REWRITE_RULE[expectation] EXPEC_HERM_REAL];;

let DEVIATION_HERM = inner_space_prove
  (`!op state. is_self_adjoint1 (s,inprod) op /\ state IN s
    ==> is_self_adjoint1 (s,inprod) (deviation inprod state op):`,
  REWRITE_TAC[DEVIATION_ALT] THEN SELF_ADJOINT_TAC THEN ASM_MESON_TAC[]);;

add_selfadjoint_thms [DEVIATION_HERM; REWRITE_RULE[deviation] DEVIATION_HERM];;

let VARIANCE_REAL = inner_space_prove
  (`!op state.  state IN s /\ is_self_adjoint1 (s,inprod) op
    ==> real (variance inprod state op):`,
  REWRITE_TAC[variance] THEN REAL_TAC THEN HINT_EXISTS_TAC
  THEN SELF_ADJOINT_TAC);;

add_real_thm VARIANCE_REAL;;


(* ------------------------------------------------------------------------- *)
(* EIGEN VALUES AND VECTORS                                                  *)
(* ------------------------------------------------------------------------- *)

let is_eigen_pair = new_definition
  `is_eigen_pair (op:cfun->cfun) (x,a) <=>
    is_linear_cop op ==> op x = a % x /\ ~(x = cfun_zero)`;;

let EIGEN_PAIR_SMUL = prove
  (`!op v x. is_eigen_pair op (x,v)
    ==> !a. ~(a = Cx(&0)) ==> is_eigen_pair op (a % x,v)`,
  SIMP_TAC[is_eigen_pair;CFUN_ENTIRE;LINCOP_SMUL;CFUN_SMUL_SYM]);;

let EIGEN_PAIR_ADD = prove
  (`!op v x y. is_eigen_pair op (x,v) /\ is_eigen_pair op (y,v)
        /\ ~(x + y = cfun_zero)
          ==> is_eigen_pair op (x+y,v)`,
  SIMP_TAC[is_eigen_pair;LINCOP_ADD;CFUN_ADD_LDISTRIB]);;

let EIGEN_SPACE_THM = prove
  (`!op. is_linear_cop op ==>
    !a. is_cfun_subspace ({ x | is_eigen_pair op (x,a) } UNION { cfun_zero })`,
  SIMP_TAC[is_cfun_subspace;IN_ELIM_THM;IN_UNION;IN_SING;CFUN_ENTIRE]
  THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CFUN_ADD_RID;CFUN_ADD_LID]
  THEN ASM_MESON_TAC[EIGEN_PAIR_SMUL;EIGEN_PAIR_ADD]);;

let is_eigen_val = new_definition
  `is_eigen_val (op:cfun->cfun) a <=> ?x. is_eigen_pair op (x,a)`;;

let is_eigen_fun = new_definition
  `is_eigen_fun (op:cfun->cfun) x <=> ?a. is_eigen_pair op (x,a)`;;



(*****************************************************************************)
(* Unbounded   Operators                                                     *)
(*****************************************************************************)


(*****************************************************************************)
(*           Linear Operators                                                *)
(*****************************************************************************)


let is_unbounded_linear_cop = new_definition
  `is_unbounded_linear_cop s (op:cop) <=> is_cfun_subspace s /\
    !x y. x IN s /\ y IN s ==> op (x + y) = op x + op y /\
                !a. op (a % x) = a % (op x)`;;

let ULINCOP_SUBSPACE = prove(`!op s.
 is_unbounded_linear_cop s op
   ==> is_cfun_subspace s`,
  MESON_TAC[is_unbounded_linear_cop]);;


let ULINCOP_SMUL = prove(`!op s a x.
 is_unbounded_linear_cop s op /\ x IN s
   ==> op (a % x) = a % op x`,
  MESON_TAC[is_unbounded_linear_cop]);;

let ULINCOP_ADD = prove
  (`!op s x y. is_unbounded_linear_cop s op /\ x IN s /\ y IN s
   ==> op (x + y) = op x + op y`,
  SIMP_TAC[is_unbounded_linear_cop]);;

let ULINCOP_SUBSPACE = prove
  (`!op s. is_unbounded_linear_cop s op
   ==> is_cfun_subspace s`,
  SIMP_TAC[is_unbounded_linear_cop]);;

let ULINCOP_SUB = prove
  (`!x y op s.  is_unbounded_linear_cop s op /\
  x IN s /\ y IN s
   ==> op (x - y) = op x - op y`,
  IMP_REWRITE_TAC[CFUN_SUBSPACE_SMUL;ULINCOP_SUBSPACE
  ;ULINCOP_ADD;CFUN_SUB_NEG;GSYM CFUN_SMUL_LID_NEG]
  THEN ASM_MESON_TAC[ ULINCOP_SMUL]);;

let ULINCOP_ZERO = prove
  (`!op s. is_unbounded_linear_cop s op  ==>
    op cfun_zero = cfun_zero`,
  ONCE_REWRITE_TAC[GSYM (Pa.SPEC `cfun_zero:` CFUN_SMUL_LZERO)] THEN
  MESON_TAC[ULINCOP_SMUL;CFUN_SMUL_LZERO;CFUN_SUBSPACE_ZERO;ULINCOP_SUBSPACE]);;

let SUBSPACE_INTER = prove
(`!s1 s2. is_cfun_subspace s1 /\ is_cfun_subspace s2 ==>
     is_cfun_subspace (s1 INTER s2)`,
         SIMP_TAC[is_cfun_subspace;INTER;IN_ELIM_THM]);;

let CFUN_ADD_AC = CFUN_ARITH
  `!m n p:cfun. m + n = n + m /\ (m + n) + p = m + n + p /\ m + n + p = n + m + p`;;

let ADD_ULINCOP = prove
        (`!s1 s2 op1 op2. is_unbounded_linear_cop s1 op1
        /\ is_unbounded_linear_cop s2 op2
                ==> is_unbounded_linear_cop (s1 INTER s2) (op1+op2)`,
                SIMP_TAC[is_unbounded_linear_cop
                ;SUBSPACE_INTER;IN_INTER;CFUN_ADD_AC;COP_ADD_THM]
                THEN MESON_TAC[CFUN_ADD_LDISTRIB]);;

let SMUL_ULINCOP = prove
        (`!s op a. is_unbounded_linear_cop s op
                ==> is_unbounded_linear_cop s  (a%op)`,
                SIMP_TAC[is_unbounded_linear_cop;COP_TO_CFUN;COP_ADD_THM;CFUN_ADD_LDISTRIB]
                THEN MESON_TAC[COMPLEX_MUL_SYM;CFUN_SMUL_DISTRIB]);;

let SUB_ULINCOP = prove
        (`!s1 s2 op1 op2. is_unbounded_linear_cop s1 op1
        /\ is_unbounded_linear_cop s2 op2
                ==> is_unbounded_linear_cop (s1 INTER s2) (op1-op2)`,
                IMP_REWRITE_TAC[ADD_ULINCOP;REWRITE_RULE[CNJ_CX]
        (SPEC_V ("a","Cx x")SMUL_ULINCOP);COP_SUB;
        GSYM COP_SMUL_LID_NEG;GSYM CX_NEG]);;


let I_ULINCOP = prove
        (`!s1. is_cfun_subspace s1 ==> is_unbounded_linear_cop s1 I`,
        REWRITE_TAC[is_unbounded_linear_cop;I_THM]);;

let MUL_LEMMA = prove
(`!s1 s2 op2. is_cfun_subspace s1 /\
 is_unbounded_linear_cop s2 op2 ==>
  is_cfun_subspace {x| x IN s2 /\ op2 x IN s1}`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[is_cfun_subspace;IN_ELIM_THM] THEN
  IMP_REWRITE_TAC[ULINCOP_SMUL;ULINCOP_SUBSPACE;CFUN_SUBSPACE_SMUL;
  CFUN_SUBSPACE_ADD;ULINCOP_ADD;CFUN_SUBSPACE_ZERO;ULINCOP_ZERO];
  );;

let MUL_ULINCOP = prove
        (`!s1 s2 op1 op2. is_unbounded_linear_cop s1 op1
        /\ is_unbounded_linear_cop s2 op2
                ==> is_unbounded_linear_cop {x| x IN s2 /\ op2 x IN s1} (op1**op2)`,
                REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[is_unbounded_linear_cop]
                THEN  IMP_REWRITE_TAC[MUL_LEMMA;ULINCOP_SUBSPACE] THEN  POP_ASSUM MP_TAC
                THEN POP_ASSUM MP_TAC THEN
                SIMP_TAC[is_unbounded_linear_cop;COP_TO_CFUN;COP_ADD_THM;CFUN_ADD_LDISTRIB
                ;IN_ELIM_THM]
                THEN ASM_MESON_TAC[COMPLEX_MUL_SYM;CFUN_SMUL_DISTRIB]);;

let ulinearity_thms = ref [];;
let add_ulinearity_thm thm =
  let thm = GIMP_IMP thm in
  ulinearity_thms := thm :: !ulinearity_thms;
  let eta_thm = SIMP_RULE[ETA_AX] thm in
  if (not (equals_thm thm eta_thm))
  then ulinearity_thms := eta_thm :: !ulinearity_thms;;
let add_ulinearity_thms = List.iter add_ulinearity_thm;;

add_ulinearity_thms [ADD_ULINCOP;SUB_ULINCOP;SMUL_ULINCOP;MUL_ULINCOP;
  REWRITE_RULE[cop_smul] SMUL_ULINCOP];;

let ULINEARITY_TAC g =
  let MATCH_MP_TAC x y = MATCH_MP_TAC x y in
  let TRY_LINEARITY_THM = ASM (MAP_FIRST (fun x ->
    MATCH_ACCEPT_TAC x ORELSE MATCH_MP_TAC x)) !ulinearity_thms in
  let LOOP = TRY_LINEARITY_THM ORELSE (SIMP_TAC[ETA_AX] THEN TRY_LINEARITY_THM)
    ORELSE (ASM_SIMP_TAC[] THEN NO_TAC) in
  (REPEAT STRIP_TAC THEN CHANGED_TAC (REPEAT (LOOP THEN REPEAT CONJ_TAC))) g;;

let COMMUTAOR_ULINCOP = prove

(`!op1 s1 op2 s2.
   is_unbounded_linear_cop s1 op1 /\ is_unbounded_linear_cop s2 op2
        ==> is_unbounded_linear_cop  ({x|x IN s2 /\ op2 x IN s1}
               INTER {x|x IN s1 /\ op1 x IN s2}) (commutator op1 op2)`,
        REWRITE_TAC[commutator] THEN ULINEARITY_TAC);;

(*****************************************************************************)
(* Adjoints of Unbounded Linear Operators                                    *)
(*****************************************************************************)

let is_hermitian_unbounded = new_definition
  `is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 op1 op2 <=>
    is_inner_space (s,inprod) ==>
       s1 SUBSET s /\ s2 SUBSET s /\
           is_unbounded_linear_cop s1 op1 /\ is_unbounded_linear_cop s2 op2 /\
           (!x. x IN s1 ==> op1 x IN s) /\ (!x. x IN s2 ==> op2 x IN s)
      /\ (!x y. x IN s2 /\ y IN s1  ==> inprod x (op1 y) = inprod (op2 x) y)`;;


let ADD_HERM_UNBOUNDED = prove
(`!op1 op2 op3 op4 s1 s2 s3 s4 s inprod.
  is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 op1 op2 /\
        is_hermitian_unbounded ((s,inprod):inner_space) s3 s4 op3 op4
        ==> is_hermitian_unbounded (
          (s,inprod):inner_space) (s1 INTER s3)  (s2 INTER s4) (op1+op3) (op2+op4)`,
        REWRITE_TAC[is_hermitian_unbounded;IN_INTER]
        THEN REPEAT STRIP_TAC THENL[
        ASSUM_LIST SET_TAC;ASSUM_LIST SET_TAC;ASM_SIMP_TAC[ADD_ULINCOP];
        ASM_SIMP_TAC[ADD_ULINCOP];
        REWRITE_TAC[COP_ADD_THM] THEN ASM_MESON_TAC[INNER_SPACE_ADD;SUBSET];
        REWRITE_TAC[COP_ADD_THM] THEN ASM_MESON_TAC[INNER_SPACE_ADD;SUBSET];
        IMP_REWRITE_TAC[COP_ADD_THM;INPROD_ADD_RDIST;INPROD_ADD_LDIST] THEN
         ASM_MESON_TAC[INNER_SPACE_ADD;SUBSET]
        ]);;

let SMUL_HERM_UNBOUNDED = prove
  (`!a op1 op2 op3 op4 s1 s2 s3 s4 s inprod.
    is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 op1 op2
      ==> is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 (a % op1) (cnj a % op2)`,
  SIMP_TAC[is_hermitian_unbounded;SMUL_ULINCOP]
  THEN REPEAT STRIP_TAC THEN IMP_REWRITE_TAC[INPROD_LSMUL;INPROD_RSMUL;CNJ_CNJ;INNER_SPACE_SMUL;SUBSET;COP_TO_CFUN]
  THEN ASM_MESON_TAC[INNER_SPACE_SMUL;SUBSET;COP_TO_CFUN]);;

let SUB_HERM_UNBOUNDED = prove
(`!op1 op2 op3 op4 s1 s2 s3 s4 s inprod.
  is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 op1 op2 /\
        is_hermitian_unbounded ((s,inprod):inner_space) s3 s4 op3 op4
        ==> is_hermitian_unbounded ((s,inprod):inner_space)
        (s1 INTER s3)  (s2 INTER s4) (op1-op3) (op2-op4)`,
        IMP_REWRITE_TAC[ADD_HERM_UNBOUNDED;REWRITE_RULE[CNJ_CX]
        (SPEC_V ("a","Cx x")SMUL_HERM_UNBOUNDED);COP_SUB;
        GSYM COP_SMUL_LID_NEG;GSYM CX_NEG]);;

let MUL_HERM_UNBOUNDED = prove
(`!op1 op2 op3 op4 s1 s2 s3 s4 s inprod.
  is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 op1 op2 /\
        is_hermitian_unbounded ((s,inprod):inner_space) s3 s4 op3 op4
    ==>
        is_hermitian_unbounded ((s,inprod):inner_space)
        {x| x IN s3 /\ op3 x IN s1}
        {x| x IN s2 /\ op2 x IN s4}  (op1**op3) (op4**op2)`,
        SIMP_TAC[is_hermitian_unbounded;MUL_ULINCOP]
        THEN SIMP_TAC[IN_ELIM_THM;COP_MUL;SUBSET]);;


let HERM_ITSELF_UNBOUNDED = inner_space_prove
  (`!op1 op2 s1 s2 x y.
  is_hermitian_unbounded (s,inprod) s1 s2 op1 op2
  /\ x IN s2 /\ y IN s1 ==>
   inprod x (op1 y) = inprod (op2 x) y:`,
  SIMP_TAC[is_hermitian_unbounded]);;

let HERMITAIN_INPROD_UNBOUNDED = inner_space_prove
  (`!op1 op2 op3 s1 s2. is_hermitian_unbounded (s,inprod) s1 s2 op1 op2
    ==> !x y. x IN s2 /\ op3 y IN s1
      ==> inprod x ((op1 ** op3) y) = inprod (op2 x) (op3 y):`,
   MESON_TAC[HERM_ITSELF_UNBOUNDED;COP_MUL]);;


let HERM_SYM_UNBOUNDED = prove
  (`!is op1 op2 s1 s2.
    is_hermitian_unbounded is s1 s2 op1 op2 <=>
        is_hermitian_unbounded is s2 s1 op2 op1`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian_unbounded]
  THEN MESON_TAC[SUBSET;INPROD_CNJ]);;

(* ------------------------------------------------------------------------- *)
(* SYMMETRIC Operators                                                       *)
(* ------------------------------------------------------------------------- *)

let is_symmetric  = new_definition
  `is_symmetric is s op <=> is_hermitian_unbounded is s s op op`;;

let IS_SYMMETRIC =
  REWRITE_RULE[FORALL_INNER_SPACE_THM;is_hermitian_unbounded] is_symmetric;;

let SYMMETRIC_IS_LINCOP = prove
  (`!op s1 s inprod. is_inner_space (s,inprod) /\
  is_symmetric (s,inprod) s1 op ==> is_unbounded_linear_cop s1 op`,
  MESON_TAC[is_symmetric;is_hermitian_unbounded]);;


let SYMMETRIC_SUBSET = prove
  (`!op s1 s inprod. is_inner_space (s,inprod) /\
  is_symmetric (s,inprod) s1 op ==> s1 SUBSET s`,
  MESON_TAC[is_symmetric;is_hermitian_unbounded]);;

let SYMMETRIC_CLOSURE = prove
  (`!op s1 s inprod. is_inner_space (s,inprod) /\
  is_symmetric (s,inprod) s1 op ==> !x. x IN s1 ==> op x IN s`,
  MESON_TAC[is_symmetric;is_hermitian_unbounded]);;

let SYMMETRIC_ITSELF = prove
  (`!op s1 s inprod. is_inner_space (s,inprod) /\
  is_symmetric (s,inprod) s1 op ==>
  (!x y. x IN s1 /\ y IN s1  ==> inprod x (op y) = inprod (op x) y) `,
  MESON_TAC[is_symmetric;is_hermitian_unbounded]);;

  let IS_SYMMETRIC_INPROD = prove
  (`!op1 op2 s1 s inprod. is_inner_space (s,inprod)
  /\ is_symmetric (s,inprod) s1 op1
    ==> !x y. x IN s1 /\ op2 y IN s1
      ==> inprod x ((op1 ** op2) y) = inprod (op1 x) (op2 y)`,
  MESON_TAC[is_symmetric;HERMITAIN_INPROD_UNBOUNDED]);;

let ADD_SYMMETRIC = prove
  (`!op1 op2 s1 s2 s inprod. is_symmetric (s,inprod)  s1 op1 /\
    is_symmetric (s,inprod)  s2 op2
    ==> is_symmetric (s,inprod)  (s1 INTER s2) (op1 + op2)`,
  MESON_TAC[is_symmetric;ADD_HERM_UNBOUNDED]);;

let SUB_SYMMETRIC = prove
  (`!op1 op2 s1 s2 s inprod. is_symmetric (s,inprod)  s1 op1 /\
    is_symmetric (s,inprod)  s2 op2
    ==> is_symmetric (s,inprod)  (s1 INTER s2) (op1 - op2)`,
  MESON_TAC[is_symmetric;SUB_HERM_UNBOUNDED]);;

let SMUL_SYMMETRIC = prove
  (`!a ops s inprod. real a /\ is_symmetric (s,inprod) s1 op ==>
  is_symmetric (s,inprod) s1 (a % op)`,
  MESON_TAC[is_symmetric;SMUL_HERM_UNBOUNDED;REAL_CNJ]);;


let POW2_SYM_UNBOUNDED = prove
(`!op s1 s inprod.
  is_symmetric (s,inprod)  s1 op
    ==>
        is_symmetric ((s,inprod):inner_space)
        {x| x IN s1 /\ op x IN s1}  (op**op)`,
        SIMP_TAC[is_symmetric;MUL_HERM_UNBOUNDED]);;


let I_SYMMETRIC = prove
  (`!s1 s inprod. s1 SUBSET s /\ is_cfun_subspace s1 ==>  is_symmetric (s,inprod) s1 I`,
  SIMP_TAC[IS_SYMMETRIC;I_ULINCOP;is_unbounded_linear_cop;I_THM;SUBSET]);;

let symmetric_thms = ref [];;
let add_symmetric_thm thm =
  let thm = GIMP_IMP thm in
  symmetric_thms := thm :: !symmetric_thms;
  let eta_thm = SIMP_RULE[ETA_AX] thm in
  if (not (equals_thm thm eta_thm))
  then selfadjoint_thms := eta_thm :: !symmetric_thms;;
let add_symmetric_thms = List.iter add_symmetric_thm;;

add_symmetric_thms [ADD_SYMMETRIC;SUB_SYMMETRIC;SMUL_SYMMETRIC;
    REWRITE_RULE[COP_SMUL] SMUL_SYMMETRIC;I_SYMMETRIC;POW2_SYM_UNBOUNDED];;

let rec SYMMETRIC_TAC g =
  let MATCH_MP_TAC x y = MATCH_MP_TAC x y in
  let TRY_SYMMETRIC_THM =
    ASM (MAP_FIRST (fun x ->
      MATCH_ACCEPT_TAC x ORELSE MATCH_MP_TAC x)) !symmetric_thms in
  let LOOP =
    TRY_SYMMETRIC_THM ORELSE (SIMP_TAC[ETA_AX] THEN TRY_SYMMETRIC_THM)
    ORELSE (ASM_SIMP_TAC[] THEN NO_TAC) ORELSE ULINEARITY_TAC
    ORELSE REAL_TAC ~alternatives:[SYMMETRIC_TAC;ULINEARITY_TAC] in
  (REPEAT STRIP_TAC
  THEN (fun (_,c as g) ->
    let head = fst (strip_comb c) in
    if (name_of head = "is_symmetric"
      && can (type_match `:inner_space->(cfun->boo)->cop->bool` (type_of head)) [])
    then CHANGED_TAC (REPEAT (LOOP THEN REPEAT CONJ_TAC)) g
    else FAIL_TAC "bad goal" g)) g;;

let REAL_TAC ?(alternatives=[]) =
  REAL_TAC ~alternatives:(SYMMETRIC_TAC::ULINEARITY_TAC::SELF_ADJOINT_TAC::LINEARITY_TAC::alternatives);;


let ANTI_COMMUTATOR_SYMMETRIC = prove
  (`!op1 op2 s1 s2 s inprod. is_symmetric (s,inprod) s1  op1 /\ is_symmetric (s,inprod) s2 op2
    ==> is_symmetric (s,inprod)
        ( {x| x IN s2 /\ op2 x IN s1} INTER {x| x IN s1 /\ op1 x IN s2})
        (op1 ** op2 + op2 ** op1)`,
  REWRITE_TAC[IS_SYMMETRIC]
  THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THENL[RULE_ASSUM_TAC (REWRITE_RULE [INTER;IN_ELIM_THM]) THEN
   IMP_REWRITE_TAC[COP_MUL;INPROD_ADD_LDIST;INPROD_ADD_RDIST;SUBSET;INTER;COP_ADD_THM]
   THEN ASM_SIMP_TAC[COMPLEX_ADD_SYM] THEN ASM_MESON_TAC[SUBSET];
   IMP_REWRITE_TAC[SUBSET;INNER_SPACE_ADD;COP_ADD_THM;COP_MUL] THEN ASSUM_LIST SET_TAC;
   ULINEARITY_TAC;
   ASSUM_LIST SET_TAC]);;

add_symmetric_thm ANTI_COMMUTATOR_SYMMETRIC;;

let NEG_SYMMETRIC = prove
  (`!op s1 s inprod. is_symmetric (s,inprod) s1 op
    ==> is_symmetric (s,inprod) s1 (--op)`,
  REWRITE_TAC[COP_ARITH `--op = --Cx(&1) % op`] THEN SYMMETRIC_TAC THEN
  REWRITE_TAC[REAL_CX;GSYM   CX_NEG]);;

add_symmetric_thm NEG_SYMMETRIC;;

let SCALAR_II_HERM_UNBOUND = prove
  (`!op s1 s inprod.
  is_unbounded_linear_cop s1 op /\ s1 SUBSET s  /\ (!x. x IN s1 ==> op x IN s)
  /\ (!x y. x IN s1 /\ y IN s1 ==> inprod (op x) y = -- (inprod x (op y)))
        ==> is_symmetric (s,inprod) s1 (ii % op)`,
  REPEAT STRIP_TAC
  THEN IMP_REWRITE_TAC[IS_SYMMETRIC;COP_SMUL_THM;INPROD_LSMUL;INPROD_RSMUL;
  CNJ_II;COMPLEX_NEG_MUL2;SUBSET
  ;INNER_SPACE_SMUL;SMUL_ULINCOP]
  THEN ASSUM_LIST SET_TAC);;

add_symmetric_thm SCALAR_II_HERM_UNBOUND;;

let COMMUTATOR_ANTI_UNBOUNDED_HERM = prove
  (`!op1 op2 s1 s2 s inprod.
  is_inner_space (s,inprod) /\
  is_symmetric (s,inprod) s1  op1 /\ is_symmetric (s,inprod) s2 op2
    ==> !x y. x IN s2 /\ op2 x IN s1 /\ x IN s1 /\ op1 x IN s2
         /\ y IN s2 /\ op2 y IN s1 /\ y IN s1 /\ op1 y IN s2
      ==> inprod (commutator op1 op2 x) y = --(inprod x (commutator op1 op2 y))`,
  IMP_REWRITE_TAC[commutator;IS_SYMMETRIC;COP_MUL_THM;COP_SUB_THM;INPROD_SUB_LDIST;
  INPROD_SUB_RDIST;COMPLEX_NEG_SUB;INPROD_SUB_LDIST;INPROD_SUB_RDIST;COMPLEX_NEG_SUB]
  THEN SET_TAC[]);;

add_symmetric_thm COMMUTATOR_ANTI_UNBOUNDED_HERM;;


let II_COMMUTATOR_UNBOUNDED_HERM = prove
  (`!op1 op2 s1 s2 s inprod.
  is_inner_space (s,inprod) /\
  is_symmetric (s,inprod) s1  op1 /\ is_symmetric (s,inprod) s2 op2
   ==> is_symmetric (s,inprod) ({x| x IN s2 /\ op2 x IN s1} INTER {x| x IN s1 /\ op1 x IN s2})
   (ii % commutator op1 op2)`,
   SYMMETRIC_TAC THENL [REWRITE_TAC[commutator] THEN ULINEARITY_TAC THEN ASM_MESON_TAC[SYMMETRIC_IS_LINCOP]
   ;REWRITE_TAC[SUBSET;INTER;IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET;SYMMETRIC_SUBSET]
   ; REWRITE_TAC[commutator;INTER;IN_ELIM_THM;COP_SUB_THM;COP_MUL] THEN
   ASM_MESON_TAC[SYMMETRIC_CLOSURE;SYMMETRIC_SUBSET;SUBSET;INNER_SPACE_SUB]
   ;REWRITE_TAC[commutator;INTER;IN_ELIM_THM;COP_SUB_THM;COP_MUL] THEN
   IMP_REWRITE_TAC[INPROD_SUB_RDIST;INPROD_SUB_LDIST] THEN
   IMP_REWRITE_TAC[SYMMETRIC_ITSELF;COMPLEX_FIELD `--(a:complex-b) = b-a`
   ;SYMMETRIC_SUBSET;SYMMETRIC_CLOSURE] THEN ASM_MESON_TAC[SYMMETRIC_SUBSET;SUBSET]]);;

add_symmetric_thm II_COMMUTATOR_UNBOUNDED_HERM;;

let EXPEC_UNBOUNDED_HERM_REAL = prove
  (`!op s1 s inprod.
  is_inner_space (s,inprod) /\ is_symmetric (s,inprod) s1  op
    ==> !state. state IN s1 ==> real (expectation inprod state op)`,
  IMP_REWRITE_TAC[IS_SYMMETRIC;expectation;REAL_CNJ;INPROD_CNJ]
  THEN SIMP_TAC[SUBSET]);;

add_real_thms [EXPEC_UNBOUNDED_HERM_REAL; REWRITE_RULE[expectation] EXPEC_UNBOUNDED_HERM_REAL];;

let DEVIATION_UNBOUNDED_HERM_ALT = prove
  (`!op s1 s inprod state.
  is_inner_space (s,inprod) /\ is_symmetric (s,inprod) s1  op /\
  state IN s1 ==>  is_symmetric (s,inprod) (s1 INTER s1) (deviation inprod state op)`,
  REWRITE_TAC[DEVIATION_ALT] THEN SYMMETRIC_TAC THEN
  ASM_MESON_TAC[SYMMETRIC_SUBSET;SUBSET;SYMMETRIC_IS_LINCOP;ULINCOP_SUBSPACE]);;

let DEVIATION_UNBOUNDED_HERM = REWRITE_RULE [SET_RULE`s INTER s = s`] DEVIATION_UNBOUNDED_HERM_ALT;;


add_symmetric_thms [DEVIATION_UNBOUNDED_HERM; REWRITE_RULE[deviation] DEVIATION_UNBOUNDED_HERM];;


let VARIANCE_UNBOUNDED_REAL = prove
  (`!op s1 s inprod.
  is_inner_space (s,inprod) /\ is_symmetric (s,inprod) s1  op
   ==> !state. state IN s1 /\ deviation inprod state op state IN s1
   ==>  real (variance inprod state op)`,
  REWRITE_TAC[variance] THEN REAL_TAC THEN
  Pa.EXISTS_TAC `{x| x IN s1 /\  deviation inprod state op x IN s1}:` THEN
  Pa.EXISTS_TAC "s" THEN ASM_SIMP_TAC[IN_ELIM_THM]
  THEN SYMMETRIC_TAC);;

add_real_thm VARIANCE_REAL;;

let is_eigen_pair_unbounded = new_definition
  `is_eigen_pair_unbounded s (op:cfun->cfun) (x,a) <=>
    is_unbounded_linear_cop s op ==> x IN s /\ op x = a % x /\ ~(x = cfun_zero)`;;



let EIGEN_PAIR_SMUL_UNBOUNDED = prove
  (`!op s v x. is_eigen_pair_unbounded s op (x,v)
    ==> !a. ~(a = Cx(&0)) ==> is_eigen_pair_unbounded s op (a % x,v)`,
  SIMP_TAC[is_eigen_pair_unbounded;CFUN_ENTIRE] THEN
  MESON_TAC[ULINCOP_SMUL;ULINCOP_SUBSPACE;
  CFUN_SMUL_SYM;CFUN_SUBSPACE_SMUL]);;

let EIGEN_PAIR_ADD_UNBOUNDED = prove
  (`!op s v x y. is_eigen_pair_unbounded s op (x,v) /\
    is_eigen_pair_unbounded s op (y,v)
        /\ ~(x + y = cfun_zero)
          ==> is_eigen_pair_unbounded  s op (x+y,v)`,
  SIMP_TAC[is_eigen_pair_unbounded]THEN
  MESON_TAC[ULINCOP_ADD;CFUN_ADD_LDISTRIB
  ;ULINCOP_SUBSPACE;CFUN_SUBSPACE_ADD]);;

(* ------------------------------------------------------------------------- *)
(*                              cfun norm                                    *)
(* ------------------------------------------------------------------------- *)

let cfun_norm = new_definition
 `cfun_norm inprod (x:cfun) =  sqrt(real_of_complex (inprod x x))`;;

let INPROD_SUB_SELF = inner_space_prove(
  `!x y. x IN s /\ y IN s
     ==> real_of_complex (inprod (x-y) (x-y)) = real_of_complex(inprod x x) +
            real_of_complex(inprod y y) - &2*Re(inprod y x):`,
  IMP_REWRITE_TAC[INNER_SPACE_SUB;INPROD_SUB_LDIST;INPROD_SUB_RDIST;
  COMPLEX_FIELD  `x:complex - y - (z - h) = x + h - (z+y)`;INPROD_ADD_CNJ]
  THEN IMP_REWRITE_TAC[REAL_OF_COMPLEX_ADD;REAL_OF_COMPLEX_CX;
  REAL_OF_COMPLEX_SUB;INPROD_SELF_REAL;REAL_CX;REAL_SUB]);;

let INPROD_ADD_SELF = inner_space_prove(
  `!x y. x IN s /\ y IN s
     ==> real_of_complex (inprod (x+y) (x+y)) = real_of_complex(inprod x x) +
            real_of_complex(inprod y y) + &2*Re(inprod x y):`,
  IMP_REWRITE_TAC[INNER_SPACE_ADD
  ;INPROD_ADD_LDIST;INPROD_ADD_RDIST;
  COMPLEX_FIELD  `((x:complex) + y) + z + h = x + h + (y+z)`;INPROD_ADD_CNJ]
  THEN IMP_REWRITE_TAC[REAL_OF_COMPLEX_ADD;REAL_OF_COMPLEX_CX;
  INPROD_SELF_REAL;REAL_CX;REAL_ADD]);;

let INPROD_TRIANGLE_INEQ = inner_space_prove(
  `!x y. x IN s /\ y IN s
    ==> real_of_complex(inprod (x+y) (x+y)) <=
          (sqrt(real_of_complex (inprod x x)) +
          sqrt(real_of_complex (inprod y y))) pow 2:`,
  REWRITE_TAC[REAL_POW_2] THEN
  SIMP_TAC[REAL_ADD_LDISTRIB;REAL_ADD_RDISTRIB;REAL_MUL_SYM;GSYM REAL_ADD_ASSOC;
  REAL_ARITH `x*x+x*y+x*y+y*y = x pow 2 + y pow 2 + &2*x*y`] THEN
  IMP_REWRITE_TAC[SQRT_POW_2;INPROD_SELF_POS] THEN
  IMP_REWRITE_TAC[INPROD_ADD_SELF;REAL_ADD_ASSOC;REAL_LE_LADD_IMP;
  REAL_LE_LMUL_EQ] THEN
  MESON_TAC[GEN_ALL (Pa.SPEC `Re z:` REAL_ABS_LE);COMPLEX_NORM_GE_RE_IM;
  REAL_INT_LT_CONV  `&0 < &2`;SCHWARZ_INEQUALITY2;REAL_LE_TRANS]);;

let INPROD_TRIANGLE_INEQ2 = inner_space_prove(
  `!x y. x IN s /\ y IN s
    ==> sqrt (real_of_complex(inprod (x+y) (x+y))) <=
          sqrt(real_of_complex (inprod x x)) +
          sqrt(real_of_complex (inprod y y)):`,
  let REAL_MANOP =  GEN_ALL(Pa.SPECL[`sqrt x:`;`sqrt y + sqrt z:`]
  (GEN_ALL(REAL_ARITH `&0 <= x /\ &0<= y ==> ( x <= y <=> abs x <= abs y)`))) in
   IMP_REWRITE_TAC[REAL_MANOP;REAL_LE_SQUARE_ABS;SQRT_POW_2;INPROD_TRIANGLE_INEQ;
   INPROD_SELF_POS;SQRT_POS_LE;INNER_SPACE_ADD;REAL_LE_ADD]);;

let CFUN_NORM_SUB = inner_space_prove(
  `!x y. x IN s /\ y IN s
     ==> cfun_norm inprod (x-y) = cfun_norm inprod (y-x):`,
   IMP_REWRITE_TAC[cfun_norm;INPROD_SUB_SELF] THEN
   ONCE_REWRITE_TAC[GSYM (Pa.SPEC `&2 *Re r:` RE_CX)] THEN
   IMP_REWRITE_TAC[GSYM INPROD_ADD_CNJ] THEN
   ONCE_SIMP_TAC[COMPLEX_ADD_SYM] THEN
   REWRITE_TAC[REAL_ARITH `(x:real)+y-z = y+x-z`]);;

let CFUN_NORM_SUB_INEQ = inner_space_prove(
  `!x y. x IN s /\ y IN s
     ==> cfun_norm inprod x - cfun_norm inprod y <= cfun_norm inprod (x-y):`,
   let arrange =  MESON[CFUN_ARITH `x = (x:cfun) - y + y`]
    `cfun_norm inprod x - cfun_norm inprod y =
        cfun_norm inprod (x-y+y) - cfun_norm inprod y` in
    ONCE_REWRITE_TAC[arrange] THEN
        IMP_REWRITE_TAC[INPROD_TRIANGLE_INEQ2;REAL_LE_SUB_RADD;cfun_norm;
        INNER_SPACE_SUB]);;
let cfun_dist = new_definition
 `cfun_dist (inprod:inprod) (x:cfun) (y:cfun) =
    sqrt (real_of_complex(inprod (x-y) (x-y)))`;;

let CFUN_DIST_TRIANGLE_ADD = inner_space_prove(
  `!x y x' y'. x IN s /\ y IN s /\ x' IN s /\ y' IN s
     ==> cfun_dist inprod (x+y) (x'+y')
           <= cfun_dist inprod x x' + cfun_dist inprod y y':`,
   IMP_REWRITE_TAC[cfun_dist;CFUN_ARITH `((x:cfun)+y)-(x'+y') = x-x'+y-y'`;
   INPROD_TRIANGLE_INEQ2;INNER_SPACE_SUB;INPROD_SELF_POS;SQRT_POS_LE;
   SQRT_MONO_LE;REAL_ABS_REFL;SQRT_POW_2;POW_2_SQRT]);;

let CFUN_DIST_REFL =  inner_space_prove(
 `!x. cfun_dist inprod x x = &0:`,
 REWRITE_TAC[cfun_dist;CFUN_SUB_REFL] THEN
 MESON_TAC[INPROD_ZERO;SQRT_0;REAL_OF_COMPLEX_CX]);;
let CFUN_NORM_0 = inner_space_prove(
  `cfun_norm inprod cfun_zero = &0:`,
  MESON_TAC[cfun_norm;INPROD_ZERO;REAL_OF_COMPLEX_CX;SQRT_0]);;

let CFUN_NORM_EQ_0 = inner_space_prove(
  `!x. x IN s ==> (cfun_norm inprod x = &0 <=> (x  equv cfun_zero) inprod):`,
    MESON_TAC[cfun_norm;SQRT_EQ_0;REAL_OF_COMPLEX_ZERO;INPROD_NORM;GSYM EQUV_ZERO]);;


let CFUN_NORM_POS_LE = inner_space_prove(
  `!x. x IN s ==> &0 <= cfun_norm inprod x :`,
  MESON_TAC[cfun_norm;SQRT_POS_LE;INPROD_SELF_POS]);;

let CFUN_NORM_POW2 = inner_space_prove(
  `!x. x IN s ==> cfun_norm inprod x pow 2 = real_of_complex (inprod x x):`,
  MESON_TAC[cfun_norm;SQRT_POW_2;INPROD_SELF_POS]);;

let CFUN_NORM_INPROD_0 = inner_space_prove(
  `!x. x IN s ==> (cfun_norm inprod x = &0 <=>
                   real_of_complex(inprod x x) = &0):`,
   MESON_TAC[cfun_norm;INPROD_SELF_POS;SQRT_EQ_0]);;

let CFUN_NORM_NZ = inner_space_prove(
  `!x. x IN s ==> (~((x equv cfun_zero) inprod) <=> &0 < cfun_norm inprod x):`,
   IMP_REWRITE_TAC[ GSYM CFUN_NORM_EQ_0] THEN
   MESON_TAC[REAL_ARITH ` y <= x ==>  (~(x=y) <=> y < x)`;CFUN_NORM_POS_LE]
   );;

let CFUN_NORM_SMUL = inner_space_prove(
  `!x a. x IN s ==> cfun_norm inprod (a%x) =  norm a * cfun_norm inprod x:`,
  IMP_REWRITE_TAC[cfun_norm;INPROD_RSMUL;INPROD_LSMUL;INNER_SPACE_SMUL]
  THEN REWRITE_TAC[COMPLEX_MUL_ASSOC;COMPLEX_MUL_CNJ;COMPLEX_POW_2;
  GSYM CX_MUL;GSYM REAL_POW_2] THEN
  IMP_REWRITE_TAC[REAL_CX; INPROD_SELF_REAL;
  REAL_OF_COMPLEX_MUL;REAL_OF_COMPLEX_CX;
  SQRT_MUL;INPROD_SELF_POS;REAL_LE_POW_2;POW_2_SQRT;NORM_POS_LE]);;

let CFUN_DIST_NZ = inner_space_prove(
  `!x y. x IN s /\ y IN s ==>
    (~((x equv y) inprod) <=>  &0 < cfun_dist inprod x y):`,
        ONCE_REWRITE_TAC[GSYM CFUN_SUB_0] THEN
        REWRITE_TAC[cfun_dist;GSYM cfun_norm] THEN
    MESON_TAC[CFUN_NORM_NZ;EQUV_SUB_ZERO;INNER_SPACE_SUB]
        );;
(* ------------------------------------------------------------------------- *)
(* FINITE/INFINITE summation of cfun                                         *)
(* ------------------------------------------------------------------------- *)


let cfun_sum = new_definition`cfun_sum = iterate cfun_add`;;

let NEUTRAL_CFUN_ADD = prove
(`neutral cfun_add = cfun_zero`,REWRITE_TAC[neutral]
THEN MATCH_MP_TAC SELECT_UNIQUE
THEN MESON_TAC[CFUN_ADD_LID;CFUN_ADD_RID]);;

let MONOIDAL_CFUN_ADD = prove
 (`monoidal cfun_add`,
  REWRITE_TAC[monoidal; NEUTRAL_CFUN_ADD] THEN CFUN_ARITH_TAC);;

let CFUN_SUM_CLAUSES = prove
 (`(!f. cfun_sum {} f = cfun_zero) /\
 (!x f s. FINITE s ==>
         cfun_sum (x INSERT s) f =
         (if x IN s then cfun_sum s f else f x + cfun_sum s f))`,
 REWRITE_TAC[cfun_sum; GSYM NEUTRAL_CFUN_ADD] THEN
 ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
 MESON_TAC[ITERATE_CLAUSES;MONOIDAL_CFUN_ADD]);;

let CFUN_SUM_CLAUSES_NUMSEG =
  REWRITE_RULE[GSYM NEUTRAL_CFUN_ADD;  GSYM cfun_sum]
  (MATCH_MP ITERATE_CLAUSES_NUMSEG MONOIDAL_CFUN_ADD);;
 let CFUN_SUM_CLAUSES_LEFT = prove
 (`!f m n. m <= n ==> cfun_sum (m..n) f = f(m) + cfun_sum(m+1..n) f`,
  SIMP_TAC[GSYM NUMSEG_LREC; CFUN_SUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
  ARITH_TAC);;

let CFUN_SUM_IMAGE = prove
 (`!f g s. (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y))
           ==> (cfun_sum (IMAGE f s) g = cfun_sum s (g o f))`,
  REWRITE_TAC[cfun_sum; GSYM NEUTRAL_CFUN_ADD] THEN
  MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_CFUN_ADD]);;

let NUMSEG_EMPTY_IMP = prove(`!m n. n < m ==> (m..n = {}) `,
   SIMP_TAC[NUMSEG_EMPTY] );;

let CFUN_SUM_TRIV_NUMSEG = prove
 (`!m n f. n < m ==> cfun_sum (m..n) f = cfun_zero`,
   SIMP_TAC[NUMSEG_EMPTY_IMP;CFUN_SUM_CLAUSES]);;

let CFUN_SUM_OFFSET = prove
 (`!p f m n. cfun_sum(m+p..n+p) f = cfun_sum(m..n) (\i. f(i + p))`,
  SIMP_TAC[NUMSEG_OFFSET_IMAGE; CFUN_SUM_IMAGE;
           EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN
  REWRITE_TAC[o_DEF]);;

let CFUN_SUM_OFFSET_0 = prove
 (`!f m n. m <= n ==> (cfun_sum(m..n) f = cfun_sum(0..n-m) (\i. f(i + m)))`,
  SIMP_TAC[GSYM CFUN_SUM_OFFSET; ADD_CLAUSES; SUB_ADD]);;

let CFUN_SUM_CONST = prove
 (`!c s. FINITE s ==> (cfun_sum s (\n. c) = Cx(&(CARD s)) % c)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[CFUN_SUM_CLAUSES; CARD_CLAUSES; GSYM REAL_OF_NUM_SUC] THEN
  REPEAT STRIP_TAC THEN CFUN_ARITH_TAC);;

let CFUN_SUM_EQ_0 = prove
 (`!f s. (!x:A. x IN s ==> (f(x) = cfun_zero)) ==> (cfun_sum s f = cfun_zero)`,
  REWRITE_TAC[cfun_sum; GSYM NEUTRAL_CFUN_ADD] THEN
  SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_CFUN_ADD]);;

let CFUN_SUM_0 = prove
 (`!s:A->bool. cfun_sum s (\n. cfun_zero) = cfun_zero`,
  SIMP_TAC[CFUN_SUM_EQ_0]);;



let CFUN_SUM_EQ = prove
 (`!f g s. (!x. x IN s ==> (f x = g x)) ==> (cfun_sum s f = cfun_sum s g)`,
  REWRITE_TAC[cfun_sum] THEN
  MATCH_MP_TAC ITERATE_EQ THEN REWRITE_TAC[MONOIDAL_CFUN_ADD]);;


let CFUN_SUM_SING = prove
 (`!f x. cfun_sum {x} f = f(x)`,
  SIMP_TAC[CFUN_SUM_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; CFUN_ADD_RID]);;

let CFUN_SUM_SING_NUMSEG = prove
 (`!f n. cfun_sum(n..n) f = f(n)`,
  SIMP_TAC[CFUN_SUM_SING; NUMSEG_SING]);;

let CFUN_SUM_EQ_NUMSEG = prove
 (`!f g m n. (!i. m <= i /\ i <= n ==> (f(i) = g(i)))
             ==> (cfun_sum(m..n) f = cfun_sum(m..n) g)`,
  MESON_TAC[CFUN_SUM_EQ; FINITE_NUMSEG; IN_NUMSEG]);;

let CFUN_SUM_IN_SPC = prove
 (`!g spc. is_cfun_subspace spc /\ (!n. g n IN spc) ==> !s. FINITE s
    ==> cfun_sum s g IN spc`,
    REPEAT GEN_TAC THEN DISCH_TAC THEN
    SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
    MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[CFUN_SUM_CLAUSES]
    THEN ASM_SIMP_TAC[CFUN_SUBSPACE_ZERO;CFUN_SUBSPACE_ADD]);;

let SLINEAR_CFUN_SUM = prove
 (`! spc f g.  is_cfun_subspace spc /\  (!n. g n IN spc)
     /\ is_set_linear_cop spc f
   ==> !s. FINITE s  ==> (f(cfun_sum s g) = cfun_sum s (f o g))`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[CFUN_SUM_CLAUSES]
  THEN REPEAT STRIP_TAC
  THENL[ASM_MESON_TAC[SLINCOP_CFUN_ZERO];IMP_REWRITE_TAC[SLINCOP_ADD]]
  THEN Pa.EXISTS_TAC `spc:` THEN ASM_SIMP_TAC[CFUN_SUM_IN_SPC;o_DEF]);;

let SLINEAR_CFUN_SUM_IMP = prove
 (`! spc f g s.  is_cfun_subspace spc /\  (!n. g n IN spc)
   /\ is_set_linear_cop spc f
        /\FINITE s  ==> (f(cfun_sum s g) = cfun_sum s (f o g))`,
 MESON_TAC [SLINEAR_CFUN_SUM]);;

let LINEAR_CFUN_SUM = prove
 (`!f g s. is_linear_cop f /\ FINITE s ==>
        (f(cfun_sum s g) = cfun_sum s (f o g))`,
  GEN_TAC THEN GEN_TAC THEN SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[CFUN_SUM_CLAUSES] THEN FIRST_ASSUM(fun th ->
    SIMP_TAC[MATCH_MP LINCOP_CFUN_ZERO th; MATCH_MP LINCOP_ADD th; o_THM]));;

let CFUN_SUM_ADD = prove
 (`!f g s. FINITE s ==>
        (cfun_sum s (\x. f(x) + g(x)) = cfun_sum s f + cfun_sum s g)`,
  SIMP_TAC[cfun_sum; ITERATE_OP; MONOIDAL_CFUN_ADD]);;

let CFUN_SUM_SMUL = prove
 (`!f a s. FINITE s ==> (cfun_sum s (\x. a % f(x) ) = a % cfun_sum s f)`,
   ONCE_REWRITE_TAC[MESON[] `a % (y:cfun) = (\x. a%x) y`] THEN
   SIMP_TAC[REWRITE_RULE [o_DEF]  (GSYM LINEAR_CFUN_SUM); SCALAR_LINCOP]);;

let CFUN_SUM_SUB = prove
 (`!f g s. FINITE s ==>
        (cfun_sum s (\x. f(x) - g(x)) = cfun_sum s f - cfun_sum s g)`,
  ONCE_REWRITE_TAC[CFUN_SUB_NEG] THEN
  ONCE_REWRITE_TAC[GSYM CFUN_SMUL_LID_NEG] THEN
  SIMP_TAC[CFUN_SUM_SMUL; CFUN_SUM_ADD]);;

let CUN_SUM_ADD_NUMSEG = prove
 (`!f g m n. cfun_sum(m..n) (\i. f(i) + g(i)) =
        cfun_sum(m..n) f + cfun_sum(m..n) g`,
  SIMP_TAC[CFUN_SUM_ADD; FINITE_NUMSEG]);;

let cfun_lim = new_definition
  `cfun_lim1 (s,inprod) f l net <=>
   is_inner_space (s,inprod) /\ l IN s /\ (!x. (f x) IN s) /\
   (!e. &0 < e ==> eventually (\x. cfun_dist inprod (f x) l < e) net)`;;

let CFUN_LIM_INNER_SPACE = prove
 (`!innerspc f l net. cfun_lim1 innerspc f l net ==> is_inner_space innerspc`,
  SIMP_TAC[FORALL_INNER_SPACE_THM;cfun_lim]);;

let is_bounded = new_definition
 `is_bounded1  (s,inprod)  h <=> is_inner_space (s,inprod)
     ==>   ?B. &0 < B /\
         (!x.  x IN s /\ h x IN s ==> sqrt(real_of_complex(inprod (h x) (h x))) <=
           B * sqrt(real_of_complex(inprod x x)))`;;

let is_bounded_linear = new_definition
  `is_bounded_linear1 (s,inprod) h <=> is_inner_space (s,inprod)
     ==> is_linear_cop h /\ is_closed_by s h /\ ?B. &0 < B /\
         (!x. x IN s ==> sqrt(real_of_complex(inprod (h x) (h x))) <=
           B * sqrt(real_of_complex(inprod x x)))`;;

let SCALAR_BOUNDED = prove
 (`!a is. is_bounded1 is (\x:cfun. a % x)`,
        SIMP_TAC[FORALL_INNER_SPACE_THM;is_bounded]
        THEN REPEAT STRIP_TAC
        THEN Pa.ASM_CASES_TAC `a = Cx(&0):`
         THENL[  Pa.EXISTS_TAC `&1:` THEN
             ASM_REWRITE_TAC[REAL_LT_01;CFUN_SMUL_LZERO;REAL_MUL_LID] THEN
                 ASM_MESON_TAC[SQRT_POS_LE;REAL_OF_COMPLEX_CX;SQRT_0;INPROD_ZERO;
                 INPROD_SELF_POS];Pa.EXISTS_TAC `norm a:` THEN
                 IMP_REWRITE_TAC[COMPLEX_NORM_NZ;REAL_LE_REFL;GSYM cfun_norm;
                 CFUN_NORM_SMUL]]);;

let CFUN_LIM_ULINEAR = prove
 (`!net:(A)net h s1 f l s inprod.
        cfun_lim1 (s,inprod) f l net /\ is_unbounded_linear_cop s1 h
                /\ (!x. x IN s1 ==> x IN s /\ h x IN s)
                /\ (!x. f x IN s1) /\ l IN s1 /\
                  is_bounded1 (s,inprod) h
                ==> cfun_lim1 (s,inprod) (\x.h (f x)) (h l) net`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM] THEN
  REPEAT GEN_TAC THEN SIMP_TAC[cfun_lim] THEN STRIP_TAC THEN
  X_GEN_TAC `e:real` THEN DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [is_bounded]) THEN
  ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `B:real` THEN
  STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o  Pa.SPEC `e / B:`) THEN
   ASM_SIMP_TAC[REAL_LT_DIV;cfun_dist;REAL_LT_RDIV_EQ] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
  REWRITE_TAC[] THEN Pa.X_GEN_TAC `x:` THEN
  IMP_REWRITE_TAC[GSYM (Pa.SPEC "s1" ULINCOP_SUB);ULINCOP_SUBSPACE] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LET_TRANS) THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN IMP_REWRITE_TAC[INNER_SPACE_SUB]
  THEN ASM_MESON_TAC[ULINCOP_SUB;INNER_SPACE_SUB]);;

let cfun_sums = new_definition
 `cfun_sums innerspc f l s <=>
    cfun_lim1 innerspc (\n. cfun_sum (s INTER (0..n)) f) l sequentially`;;

let cfun_infsum = new_definition
 `cfun_infsum innerspc s f = @l.  cfun_sums innerspc f l s`;;

let cfun_summable = new_definition
 `cfun_summable innerspc s f = ?l. cfun_sums innerspc f l s`;;



let CFUN_SUMS_INNER_SPACE = prove
 (`!innerspc f l s. cfun_sums innerspc f l s ==> is_inner_space innerspc`,
  SIMP_TAC[FORALL_INNER_SPACE_THM;cfun_sums;cfun_lim]);;



let CFUN_SUMS_SUMMABLE = prove
 (`!f l s innerspc. cfun_sums innerspc f l s
     ==> cfun_summable innerspc s f`,
  REWRITE_TAC[cfun_summable] THEN MESON_TAC[]);;


let CFUN_SUMS_INFSUM = prove
 (`!f s innerspc. cfun_sums innerspc f (cfun_infsum innerspc s f) s <=>
     cfun_summable innerspc s f`,
  REWRITE_TAC[cfun_infsum;cfun_summable] THEN MESON_TAC[]);;




 let CFUN_SUM_RESTRICT = prove
 (`!f s. FINITE s
         ==> (cfun_sum s (\x. if x IN s then f(x) else cfun_zero) =
                                        cfun_sum s f)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_SUM_EQ THEN ASM_SIMP_TAC[]);;

let CFUN_SUM_SUPERSET = prove
 (`!f u v.
        u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> (f(x) = cfun_zero))
        ==> (cfun_sum v f = cfun_sum u f)`,
  SIMP_TAC[cfun_sum; GSYM NEUTRAL_CFUN_ADD; ITERATE_SUPERSET; MONOIDAL_CFUN_ADD]);;

let CFUN_LIM_SEQUENTIALLY = prove
 (`!f l s inprod. cfun_lim1 (s,inprod) f l sequentially <=>
       is_inner_space (s,inprod) /\  l IN s /\
          (!x. f x IN s)
          /\ (!e. &0 < e ==> ?N. !n. N <= n ==> cfun_dist inprod (f n) l < e)`,
  REWRITE_TAC[cfun_lim; EVENTUALLY_SEQUENTIALLY] THEN MESON_TAC[]);;

let CFUN_LIM_NEG = prove
 (`!net f l innerspc.  cfun_lim1 innerspc f l net
     ==> cfun_lim1 innerspc (\x. --(f x)) (--l) net`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM] THEN REPEAT GEN_TAC THEN
  REWRITE_TAC[cfun_lim;cfun_dist] THEN
  IMP_REWRITE_TAC[CFUN_ARITH `--(x:cfun) - --y = --(x - y)`;
        INPROD_NEG;CFUN_SUBSPACE_SUB;CFUN_SUBSPACE_NEG;
        INNER_SPACE_IS_SUBSPACE] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
  MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
  REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[] THEN
  IMP_REWRITE_TAC[CFUN_ARITH `--(x:cfun) - --y = --(x - y)`;
        INPROD_NEG;CFUN_SUBSPACE_SUB;CFUN_SUBSPACE_NEG;
        INNER_SPACE_IS_SUBSPACE]);;

let CFUN_LIM_ADD = prove
 (`!net f g l m innerspc.
    cfun_lim1 innerspc f l net /\ cfun_lim1 innerspc g m net
        ==> cfun_lim1 innerspc (\x. f(x) + g(x)) (l+m) net`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM] THEN REPEAT GEN_TAC
  THEN REWRITE_TAC[cfun_lim;CONJ_ACI] THEN
  IMP_REWRITE_TAC[INNER_SPACE_ADD] THEN STRIP_TAC THEN
  X_GEN_TAC `e:real` THEN DISCH_TAC THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`)) THEN
  ASM_REWRITE_TAC[REAL_HALF; IMP_IMP; GSYM EVENTUALLY_AND] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
  GEN_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH
   `z <= x + y ==> x < e / &2 /\ y < e / &2 ==> z < e`) THEN
  ASM_MESON_TAC[CFUN_DIST_TRIANGLE_ADD]);;

let CFUN_LIM_SUB = prove
 (`!net f g l m innerspc.
    cfun_lim1 innerspc f l net /\ cfun_lim1 innerspc g m net
        ==> cfun_lim1 innerspc (\x. f(x) - g(x)) (l-m) net`,
  REWRITE_TAC[CFUN_SUB_NEG] THEN ASM_SIMP_TAC[CFUN_LIM_ADD;CFUN_LIM_NEG]);;

let CFUN_LIM_CONST = prove
 (`!net s inprod y. y IN s /\ is_inner_space (s,inprod)
     ==> cfun_lim1 (s,inprod) (\x. y) y net`,
  IMP_REWRITE_TAC[cfun_lim; CFUN_DIST_REFL; EVENTUALLY_TRUE]);;

let CFUN_LIM_SMUL = prove
 (`!a net f l  innerspc.
    cfun_lim1 innerspc f l net
        ==> cfun_lim1 innerspc (\x. a% f(x)) (a%l) net`,
          REWRITE_TAC[FORALL_INNER_SPACE_THM] THEN
          REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_LIM_ULINEAR THEN
          Pa.EXISTS_TAC "s" THEN
                  ASM_SIMP_TAC[REWRITE_RULE [ETA_AX]SCALAR_BOUNDED;is_unbounded_linear_cop]
                  THEN RULE_ASSUM_TAC(REWRITE_RULE[cfun_lim]) THEN
                  ASM_MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_SMUL;CFUN_ADD_LDISTRIB;CFUN_SMUL_ASSOC;COMPLEX_MUL_SYM]
                  );;


let CFUN_LIM_NORM_UBOUND = prove
 (`!net:(A)net f l b s inprod.
      ~(trivial_limit net) /\
      cfun_lim1 (s,inprod) f l net /\
      eventually (\x. cfun_norm inprod (f x) <= b) net
      ==> cfun_norm inprod l <= b`,
  let STEP =  MESON[CFUN_NORM_SUB_INEQ;CFUN_NORM_SUB;
  REAL_ARITH `z <= b /\  x-z <= y ==> x  <= y+b`]
  `is_inner_space (s,inprod) /\ l IN s /\ f IN s
    ==> cfun_norm inprod l <= cfun_norm inprod (f-l) + b \/
         ~(cfun_norm inprod f <= b)` in
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN
  REWRITE_TAC[REAL_ARITH `~(l <= b) <=> &0 < l - b`] THEN DISCH_TAC THEN
  REWRITE_TAC[cfun_lim] THEN
  DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
  FIRST_X_ASSUM(ANTE_RES_THEN MP_TAC) THEN
  REWRITE_TAC[TAUT `p ==> q ==> F <=> ~(p /\ q)`; GSYM EVENTUALLY_AND] THEN
  DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_HAPPENS) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `x:A` MP_TAC) THEN
  REWRITE_TAC[REAL_NOT_LT; REAL_LE_SUB_RADD; DE_MORGAN_THM;
  cfun_dist;GSYM cfun_norm] THEN MATCH_MP_TAC STEP THEN ASM_REWRITE_TAC[]
  );;


let CFUN_LIM_UNIQUE = prove
 (`!net:(A)net f l l' s inprod.
      ~(trivial_limit net) /\ cfun_lim1 (s,inprod) f l net
      /\ cfun_lim1 (s,inprod) f l' net ==> (l equv l') inprod`,
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN (fun thm -> ASSUME_TAC (REWRITE_RULE[cfun_lim] thm) THEN
  (ASSUME_TAC  (REWRITE_RULE[CFUN_SUB_REFL]  (MATCH_MP CFUN_LIM_SUB thm)))) THEN
  Pa.SUBGOAL_THEN `!e. &0 < e ==> cfun_norm inprod (l-l') <= e:` MP_TAC
  THENL
   [GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CFUN_LIM_NORM_UBOUND THEN
    MAP_EVERY Pa.EXISTS_TAC [`net:(A)net:`; `\x:A. cfun_zero:`;`s:`] THEN
    ASM_REWRITE_TAC[] THEN  IMP_REWRITE_TAC[CFUN_NORM_0; REAL_LT_IMP_LE] THEN
    ASM_MESON_TAC[eventually];
    DISCH_THEN(MP_TAC o Pa.SPEC `cfun_norm inprod (l-l') / &2:`) THEN
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    IMP_REWRITE_TAC[CFUN_DIST_NZ] THEN REWRITE_TAC[cfun_dist;GSYM cfun_norm] THEN
    DISCH_THEN (fun thm ->
     ASSUM_LIST(fun thms ->
       MP_TAC (REWRITE_RULE thms (Pa.SPECL [`s:`] thm)))) THEN
    ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
         REAL_ARITH_TAC]);;

let CFUN_SERIES_ADD = prove
 (`!f g l l' s innerspc. cfun_sums innerspc f l s /\ cfun_sums innerspc g l' s
   ==> cfun_sums innerspc (\n.f n + g n) (l+l') s`,
  SIMP_TAC[cfun_sums; FINITE_INTER_NUMSEG; CFUN_SUM_ADD; CFUN_LIM_ADD]);;

let CFUN_SERIES_SUB = prove
 (`!f g l l' s innerspc. cfun_sums innerspc f l s /\ cfun_sums innerspc g l' s
   ==> cfun_sums innerspc (\n.f n - g n) (l-l') s`,
  SIMP_TAC[cfun_sums; FINITE_INTER_NUMSEG; CFUN_SUM_SUB; CFUN_LIM_SUB]);;

let CFUN_SERIES_SMUL = prove
 (`!a f l s innerspc. cfun_sums innerspc f l s
   ==> cfun_sums innerspc (\n.a% (f n))  (a%l) s`,
  SIMP_TAC[cfun_sums; FINITE_INTER_NUMSEG; CFUN_SUM_SMUL; CFUN_LIM_SMUL]);;

let CFUN_SERIES_UNIQUE = prove
 (`!f l l' s s1 inprod. cfun_sums (s1,inprod) f l s /\ cfun_sums (s1,inprod) f l' s
                        ==> (l equv l') inprod`,
  REWRITE_TAC[cfun_sums] THEN MESON_TAC[TRIVIAL_LIMIT_SEQUENTIALLY;
  CFUN_LIM_UNIQUE]);;

let CFUN_INFSUM_UNIQUE = prove
 (`!f l s s1 inprod. cfun_sums (s1,inprod) f l s ==> (cfun_infsum (s1,inprod) s f equv l) inprod`,
  MESON_TAC[CFUN_SERIES_UNIQUE; CFUN_SUMS_INFSUM; cfun_summable]);;

let INFSUM_IN_SPC = prove
(`!spc inprod f l s. cfun_summable (spc,inprod) s f ==>
    (cfun_infsum (spc,inprod) s f) IN spc`,
        REWRITE_TAC[cfun_summable;cfun_lim;cfun_infsum;cfun_sums]
        THEN MESON_TAC[CFUN_LIM_UNIQUE]);;

let CFUN_SERIES_0 = prove
 (`!s spc inprod. is_inner_space (spc,inprod) ==>
  cfun_sums (spc,inprod)  (\n. cfun_zero) (cfun_zero) s`,
  IMP_REWRITE_TAC[cfun_sums; CFUN_SUM_0; CFUN_LIM_CONST;INNER_SPACE_ZERO]);;

 let CFUN_SERIES_FINITE = prove
 (`!f s spc inprod. (!x. f x IN spc)  /\ is_inner_space (spc,inprod) /\
      FINITE s ==> cfun_sums (spc,inprod) f (cfun_sum s f) s`,
  REPEAT STRIP_TAC THEN POP_ASSUM (fun thm -> MP_TAC thm THEN ASSUME_TAC thm)
  THEN REWRITE_TAC[num_FINITE; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `n:num` THEN ASM_REWRITE_TAC[cfun_sums; CFUN_LIM_SEQUENTIALLY]
  THEN IMP_REWRITE_TAC[CFUN_SUM_IN_SPC;FINITE_INTER_NUMSEG;
  INNER_SPACE_IS_SUBSPACE] THEN
  DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `n:num` THEN
  X_GEN_TAC `m:num` THEN DISCH_TAC THEN
  SUBGOAL_THEN `s INTER (0..m) = s`
   (fun th -> ASM_SIMP_TAC[th]) THEN
  REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG; LE_0] THEN
  ASM_MESON_TAC[LE_TRANS;CFUN_DIST_REFL]);;

let CFUN_SERIES_SLINEAR = prove
 (`!f h l s s1 s2 inprod. cfun_sums (s2,inprod) f l s /\
     is_unbounded_linear_cop s1 h  /\ is_bounded1 (s2,inprod) h /\
         (!x. x IN s1 ==> x IN s2 /\ h x IN s2) /\
         (!n. f n IN s1) /\ l IN s1
       ==> cfun_sums (s2,inprod) (\n. h(f n)) (h l) s `,
           REWRITE_TAC[cfun_sums] THEN REPEAT STRIP_TAC THEN
           Pa.SUBGOAL_THEN
           `!n. cfun_sum (s INTER(0..n)) (\x. h(f x)) = h(cfun_sum (s INTER(0..n)) f):`
                 ASSUME_TAC
                 THENL[IMP_REWRITE_TAC[FINITE_INTER; FINITE_NUMSEG;
           GSYM(REWRITE_RULE[o_DEF] SLINEAR_CFUN_SUM_IMP)] THEN
                   ASM_MESON_TAC[ULINCOP_SUBSPACE;ULINCOP_ADD;ULINCOP_SMUL;is_set_linear_cop];
                                   ASM_SIMP_TAC[cfun_sums]
                                   THEN MATCH_MP_TAC CFUN_LIM_ULINEAR
                                   THEN Pa.EXISTS_TAC "s1" THEN
                                   ASM_MESON_TAC[CFUN_SUM_IN_SPC;ULINCOP_SUBSPACE;FINITE_INTER; FINITE_NUMSEG]
                                   ]);;

let CFUN_INFSUM_0 = prove
 (`!spc inprod s. is_inner_space (spc,inprod) ==>
    (cfun_infsum (spc,inprod) s (\i. cfun_zero) equv cfun_zero) inprod`,
 REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_INFSUM_UNIQUE
 THEN ASM_SIMP_TAC[CFUN_SERIES_0]);;


let CFUN_INFSUM_SLINEAR = prove
 (`!f h l s s1 s2 inprod. cfun_summable (s2,inprod) s f /\
   is_unbounded_linear_cop s1 h  /\ is_bounded1 (s2,inprod) h /\
   (!x. x IN s1 ==> x IN s2 /\ h x IN s2) /\
     (!n. f n IN s1) /\  (cfun_infsum (s2,inprod) s f) IN s1
           ==> (cfun_infsum (s2,inprod) s (\n. h(f n)) equv
                       h (cfun_infsum (s2,inprod) s f)) inprod`,
        REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_INFSUM_UNIQUE THEN
                MATCH_MP_TAC CFUN_SERIES_SLINEAR THEN
                Pa.EXISTS_TAC "s1" THEN ASM_SIMP_TAC[CFUN_SUMS_INFSUM]);;

 let CFUN_INFSUM_SMUL = prove
 (`!a f s s1 inprod. cfun_summable (s1,inprod) s f
   ==>  (cfun_infsum (s1,inprod) s (\n.a% (f n)) equv a % (cfun_infsum (s1,inprod) s f)) inprod`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_INFSUM_UNIQUE THEN
  MATCH_MP_TAC CFUN_SERIES_SMUL THEN ASM_REWRITE_TAC[CFUN_SUMS_INFSUM]);;

let CFUN_SERIES_RESTRICT = prove
 (`!f k l innerspc.
        cfun_sums innerspc (\n. if n IN k then f(n) else cfun_zero)  l (:num)
                        <=> cfun_sums innerspc f  l k`,
  REPEAT GEN_TAC THEN REWRITE_TAC[cfun_sums] THEN
  AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  ONCE_REWRITE_TAC[FUN_EQ_THM] THEN
  REWRITE_TAC[INTER_UNIV] THEN GEN_TAC THEN
  MATCH_MP_TAC(MESON[] `
  cfun_sum s f = cfun_sum t f /\ cfun_sum t f = cfun_sum t g
                        ==> cfun_sum s f = cfun_sum t g`)
        THEN CONJ_TAC THENL
   [MATCH_MP_TAC CFUN_SUM_SUPERSET THEN SET_TAC[];
    MATCH_MP_TAC CFUN_SUM_EQ THEN SIMP_TAC[IN_INTER]]);;

let CFUN_SUMS_FINITE_DIFF = prove
 (`!f l s t spc inpord.
        t SUBSET s /\ FINITE t /\ (!x. f x IN spc) /\
                cfun_sums (spc,inpord) f l s
        ==> cfun_sums (spc,inpord) f (l - cfun_sum t f)  (s DIFF t)`,
  let lem = MESON[]`(P /\ Q /\ E ==> C)<=> (E ==> P ==> Q ==>C)` in
   REPEAT STRIP_TAC THEN FIRST_ASSUM (ASSUME_TAC o MATCH_MP CFUN_SUMS_INNER_SPACE)
   THEN ASSUME_TAC (REWRITE_RULE[lem] CFUN_SERIES_FINITE)
  THEN  REPEAT (FIRST_X_ASSUM (fun thm1 ->
     POP_ASSUM (fun thm2 -> ASSUME_TAC ( MATCH_MP thm2 thm1))))
  THEN POP_ASSUM MP_TAC THEN  POP_ASSUM MP_TAC THEN
  ONCE_REWRITE_TAC[GSYM CFUN_SERIES_RESTRICT] THEN
  REWRITE_TAC[IMP_IMP] THEN
  DISCH_THEN(MP_TAC o MATCH_MP CFUN_SERIES_SUB) THEN
  MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:num` THEN REWRITE_TAC[IN_DIFF] THEN
  FIRST_ASSUM(MP_TAC o SPEC `x:num` o GEN_REWRITE_RULE I [SUBSET]) THEN
  MAP_EVERY ASM_CASES_TAC [`(x:num) IN s`; `(x:num) IN t`] THEN
  ASM_REWRITE_TAC[CFUN_SUB_REFL;CFUN_SUB_RID]);;

let CFUN_SUMS_OFFSET = prove
 (`!f l m n s inprod.
      cfun_sums (s,inprod) f l (from m) /\ (!x. f x IN s) /\ m < n
        ==> cfun_sums (s,inprod) f (l - cfun_sum (m..(n-1)) f) (from n)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `from n = from m DIFF (m..(n-1))` SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_FROM; IN_DIFF; IN_NUMSEG] THEN ASM_ARITH_TAC;
    MATCH_MP_TAC CFUN_SUMS_FINITE_DIFF THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN
    SIMP_TAC[SUBSET; IN_FROM; IN_NUMSEG]]);;

let CFUN_SUMMABLE_OFFSET = prove
 (`!f s inprod n. cfun_summable (s,inprod) (from m)  f  /\ (!x. f x IN s)
                /\ m < n ==> cfun_summable (s,inprod) (from n)  f`,
   MESON_TAC[cfun_summable;CFUN_SUMS_OFFSET]);;

let CFUN_INFSUM_OFFSET = prove
(`!f s inprod n m. cfun_summable (s,inprod) (from m) f
   /\ (!x. f x IN s) /\ m < n ==>
 (cfun_infsum (s,inprod) (from n) f equv
   ( cfun_infsum (s,inprod) (from m) f - cfun_sum (m..n-1) f))inprod`,
 REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CFUN_SUMS_INFSUM] THEN
 DISCH_THEN(MP_TAC o MATCH_MP CFUN_SUMS_OFFSET) THEN
 MESON_TAC[CFUN_INFSUM_UNIQUE]);;

let CFUN_SUMS_REINDEX = prove
 (`!f innerspc n l k. cfun_sums innerspc (\x. f(x+k)) l (from n) <=>
     cfun_sums innerspc f l (from (n+k))`,
  REWRITE_TAC[FORALL_INNER_SPACE_THM] THEN
  REPEAT GEN_TAC THEN REWRITE_TAC[cfun_sums; FROM_INTER_NUMSEG] THEN
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CFUN_SUM_OFFSET] THEN
  REWRITE_TAC[CFUN_LIM_SEQUENTIALLY] THEN EQ_TAC THEN SIMP_TAC[]
  THEN REPEAT STRIP_TAC THENL[Pa.ASM_CASES_TAC ` k <= x:` THENL[
  FIRST_ASSUM(fun th -> ASM_MESON_TAC[SUB_ADD; Pa.SPEC `x-k:` th]);
  IMP_REWRITE_TAC[CFUN_SUM_TRIV_NUMSEG;INNER_SPACE_ZERO] THEN
  POP_ASSUM MP_TAC THEN ARITH_TAC];ALL_TAC;ALL_TAC]
  THEN
  ASM_MESON_TAC[ARITH_RULE `N + k:num <= n ==> n = (n - k) + k /\ N <= n - k`;
                ARITH_RULE `N + k:num <= n ==> N <= n + k`]);;

let CFUN_SUMMABLE_REINDEX = prove
(`!f innerspc n  k. cfun_summable innerspc (from n) (\x. f(x+k))  <=>
     cfun_summable innerspc (from (n+k)) f`,
         MESON_TAC[cfun_summable;CFUN_SUMS_REINDEX]);;

let CFUN_INFSUM_REINDEX = prove
   (`!f s inprod n k.  cfun_summable  (s,inprod) (from n) (\x. f (x + k)) ==>
       (cfun_infsum (s,inprod) (from (n+k)) f equv
                        cfun_infsum (s,inprod) (from n) (\x. f(x+k))) inprod `,
   REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_INFSUM_UNIQUE
   THEN ASM_SIMP_TAC[GSYM CFUN_SUMS_REINDEX;CFUN_SUMS_INFSUM]);;

(* ------------------------------------------------------------------------- *)
(* FINITE           summation of cop                                         *)
(* ------------------------------------------------------------------------- *)
let cop_sum = new_definition`cop_sum s f = \x. cfun_sum s (\n.(f n) x)`;;

let COP_BINOMIAL_THEOREM = prove
 (`!n op1 op2.
        op1 ** op2 = op2 ** op1 /\ is_linear_cop op1 /\ is_linear_cop op2
        ==> (op1 + op2) pow n =
            cop_sum (0..n)
            (\k. Cx (&(binom (n,k))) % (op1 pow k ** op2 pow (n - k)))`,
          INDUCT_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[cop_pow;cop_sum] THEN
          REWRITE_TAC[CFUN_SUM_SING_NUMSEG; binom; SUB_REFL; cop_pow; COP_MUL_LID;
          I_THM;GSYM I_DEF;COP_SMUL_LID] THEN
          SIMP_TAC[CFUN_SUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`;
          CFUN_SUM_OFFSET] THEN
          ASM_SIMP_TAC[cop_pow; binom; GSYM ADD1;COP_MUL_LID;COP_SMUL_LID;cop_sum]
          THEN ASM_SIMP_TAC[LINEAR_CFUN_SUM;ADD_LINCOP;COP_MUL;FINITE_NUMSEG;
          o_DEF;COP_ADD_MUL_RDISTRIB] THEN
          REWRITE_TAC[GSYM REAL_OF_NUM_ADD;CX_ADD;COP_ADD_RDISTRIB;
          CUN_SUM_ADD_NUMSEG;SUB_0;GSYM COP_ADD;  COP_ADD_THM] THEN
          MATCH_MP_TAC( MESON[COP_ADD_AC] `a = e /\ b = c + d ==> a + b = c + d + e`)
          THEN CONJ_TAC THEN REWRITE_TAC[GSYM COP_MUL;GSYM COP_MUL_THM; GSYM I_DEF
          ; COP_MUL_RID]
          THENL [ASM_SIMP_TAC[GSYM LINCOP_MUL_RMUL;SUB_SUC;COP_MUL];
          SIMP_TAC[GSYM cop_pow;GSYM COP_MUL_ASSOC]] THEN
          SIMP_TAC[ADD1; SYM(REWRITE_CONV[CFUN_SUM_OFFSET]
          `cfun_sum(m+1..n+1) (\i. f i)`)] THEN
          REWRITE_TAC[CFUN_SUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN
          SIMP_TAC[CFUN_SUM_CLAUSES_LEFT; LE_0; BINOM_LT; LT; COP_SMUL_LID;
          SUB_0; cop_pow;binom; COP_SMUL_LZERO;COP_ZERO;CFUN_ADD_RID;COP_MUL_LID]
          THEN ASM_SIMP_TAC[GSYM COP_ADD; COP_MUL_RID;COP_EQ_ADD_LCANCEL;
          LINCOP_MUL_RMUL;ARITH;ETA_AX;GSYM COP_MUL_ASSOC] THEN
          ABS_TAC THEN RULE_ASSUM_TAC GSYM THEN MATCH_MP_TAC CFUN_SUM_EQ_NUMSEG THEN
          SIMP_TAC[ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; cop_pow]
          THEN ASM_SIMP_TAC[COP_POW_COMMUTE_N] THEN
          SIMP_TAC[COP_POW_COMMUTE_N; COP_MUL_ASSOC]);;