1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
|
(* ========================================================================= *)
(* *)
(* Library of complex function vector spaces. *)
(* *)
(* (c) Copyright, Mohamed Yousri Mahmoud, Vincent Aravantinos, 2012-2013 *)
(* Hardware Verification Group, *)
(* Concordia University *)
(* *)
(* Contact: <mosolim@ece.concordia.ca>, <vincent@ece.concordia.ca> *)
(* Last update: April 2016 *)
(* ========================================================================= *)
needs "Functionspaces/utils.ml";;
(* ------------------------------------------------------------------------- *)
(* EMBEDDING OF REALS IN COMPLEX NUMBERS *)
(* ------------------------------------------------------------------------- *)
let real_of_complex = new_definition
`real_of_complex c = @r. c = Cx r`;;
let REAL_OF_COMPLEX = prove
(`!c. real c ==> Cx(real_of_complex c) = c`,
MESON_TAC[REAL;real_of_complex]);;
let REAL_OF_COMPLEX_RE = prove
(`!c. real c ==> real_of_complex c = Re c`,
MESON_TAC[RE_CX;REAL_OF_COMPLEX]);;
let REAL_OF_COMPLEX_CX = prove
(`!r. real_of_complex (Cx r) = r`,
SIMP_TAC[REAL_CX;REAL_OF_COMPLEX_RE;RE_CX]);;
let REAL_OF_COMPLEX_NORM = prove
(`!c. real c ==> norm c = abs (real_of_complex c)`,
IMP_REWRITE_TAC[REAL_NORM;REAL_OF_COMPLEX_RE]);;
let REAL_OF_COMPLEX_ADD = prove
(`!x y. real x /\ real y ==>
real_of_complex (x+y) = real_of_complex x + real_of_complex y`,
MESON_TAC[REAL_ADD;REAL_OF_COMPLEX_RE;RE_ADD]);;
let REAL_OF_COMPLEX_SUB = prove
(`!x y. real x /\ real y ==>
real_of_complex (x-y) = real_of_complex x - real_of_complex y`,
MESON_TAC[REAL_SUB;REAL_OF_COMPLEX_RE;RE_SUB]);;
let REAL_OF_COMPLEX_ZERO = prove
(`!x y. real x ==>
(real_of_complex x = &0 <=> x = Cx(&0))`,
MESON_TAC[ REAL_OF_COMPLEX_RE;real;
SIMPLE_COMPLEX_ARITH `Im x = &0 ==> (Re x = &0 <=> x = Cx(&0))`]);;
let REAL_MUL = prove
(`!x y. real x /\ real y ==> real (x*y)`,
REWRITE_TAC[real] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let REAL_OF_COMPLEX_MUL = prove
(`!x y. real x /\ real y ==>
real_of_complex (x*y) = real_of_complex x * real_of_complex y`,
MESON_TAC[REAL_MUL;REAL_OF_COMPLEX;CX_MUL;REAL_OF_COMPLEX_CX]);;
let NORM2_ADD_REAL = prove
(`!x y. real x /\ real y ==>
norm (x + ii * y) pow 2 = norm x pow 2 + norm y pow 2`,
SIMP_TAC[real;complex_norm;RE_ADD;IM_ADD;RE_MUL_II;IM_MUL_II;REAL_NEG_0;
REAL_ADD_LID;REAL_ADD_RID;REAL_POW_ZERO;ARITH_RULE `~(2=0)`;REAL_LE_POW_2;
SQRT_POW_2;REAL_LE_ADD]);;
let real_thms = ref [];;
let add_real_thm thm = real_thms := GIMP_IMP thm :: !real_thms;;
let add_real_thms = List.iter add_real_thm;;
let REAL_TAC ?(alternatives=[]) g =
let is_meta_variable v = try (fst (dest_var v)).[0] = '_' with _ -> false in
let contain_meta_variable = can (find_term is_meta_variable) in
let MATCH_MP_TAC x =
(fun g -> MATCH_MP_TAC x g) THEN (fun (_,concl as g) ->
if contain_meta_variable concl then NO_TAC g else ALL_TAC g) in
let TRY_REAL_THM = ASM (MAP_FIRST (fun x ->
MATCH_ACCEPT_TAC x ORELSE MATCH_MP_TAC x)) !real_thms in
let LOOP = TRY_REAL_THM ORELSE (ASM_SIMP_TAC[] THEN NO_TAC)
ORELSE (CHANGED_TAC (ASM_SIMP_TAC[real]) THEN CONV_TAC COMPLEX_FIELD)
ORELSE FIRST alternatives in
(REPEAT STRIP_TAC
THEN (fun (_,concl as g) ->
if not (repeat rator concl = `real :complex -> bool`)
then FAIL_TAC "bad goal" g
else CHANGED_TAC (REPEAT (LOOP THEN REPEAT CONJ_TAC)) g)) g;;
add_real_thm REAL_MUL;;
(* ------------------------------------------------------------------------- *)
(* MAP OVER FUNCTIONS *)
(* ------------------------------------------------------------------------- *)
let fun_map2 = new_definition
`fun_map2 (f:B->C->D) (g1:A->B) (g2:A->C) = \x. f (g1 x) (g2 x)`;;
let FUN_MAP2_THM = prove
(`!f g1 g2 x. fun_map2 f g1 g2 x = f (g1 x) (g2 x)`,
REWRITE_TAC[fun_map2]);;
let K_DEF = new_definition
`K (x:A) = \y:B. x`;;
let K_THM = prove
(`!x y. K x y = x`,
REWRITE_TAC[K_DEF]);;
let fun_map_defs = CONJS [K_DEF;o_DEF;fun_map2];;
let FUN_MAP_THMS = CONJS [K_THM;o_THM;FUN_MAP2_THM];;
(* --------------------------------------------------------------------------- *)
(* COMPLEX VALUED FUNCTIONS *)
(* --------------------------------------------------------------------------- *)
new_type_abbrev("cfun",`:A->complex`);;
new_type_abbrev("cfunB",`:B->complex`);;
new_type_abbrev("cfunC",`:C->complex`);;
let cfun_add = new_definition
`cfun_add:cfun->cfun->cfun = fun_map2 (+)`;;
let cfun_smul = new_definition
`cfun_smul (a:complex) :cfun->cfun = (o) (( * ) a)`;;
let cfun_neg = new_definition
`cfun_neg:cfun->cfun = (o) (--)`;;
let cfun_sub = new_definition
`cfun_sub:cfun->cfun->cfun = fun_map2 (-)`;;
let cfun_zero = new_definition
`cfun_zero:cfun = K (Cx(&0))`;;
let cfun_cnj = new_definition
`cfun_cnj:cfun->cfun = (o) cnj`;;
let cfun_defs = CONJS [cfun_add;cfun_sub;cfun_smul;cfun_neg;cfun_cnj;cfun_zero];;
make_overloadable "%" `:A->B->B`;;
parse_as_infix("%",(25,"left"));;
let prioritize_cfun () =
overload_interface("+",`cfun_add:cfun->cfun->cfun`);
overload_interface("%",`cfun_smul:complex->cfun->cfun`);
overload_interface("--",`cfun_neg : cfun->cfun`);
overload_interface("-",`cfun_sub:cfun->cfun->cfun`);;
prioritize_cfun ();;
(* Intended restriction of FUN_EQ_THM to the type :cfun *)
let CFUN_EQ = prove
(`!f g:cfun. f = g <=> !x. f x = g x`,
REWRITE_TAC[FUN_EQ_THM]);;
let CFUN_TO_COMPLEX = CONJS [FUN_MAP_THMS;cfun_defs;CFUN_EQ];;
(* General tactic *)
let CFUN_ARITH_TAC =
let lemma = MESON[] `(!x. P x <=> Q x) ==> (!x. P x) = (!x. Q x)` in
REWRITE_TAC[CFUN_TO_COMPLEX]
THEN (CONV_TAC COMPLEX_FIELD
ORELSE SIMPLE_COMPLEX_ARITH_TAC
ORELSE (REPEAT STRIP_TAC THEN CONV_TAC PRENEX_CONV
THEN MATCH_MP_TAC lemma THEN CONV_TAC COMPLEX_FIELD));;
let CFUN_ARITH t = prove(t,CFUN_ARITH_TAC);;
(* Properties *)
let CFUN_SUB = CFUN_ARITH `!f g. f - g = \x. f x - g x`;;
let CFUN_SUB_THM = CFUN_ARITH `!f g. (f - g) x = f x - g x`;;
let CFUN_ADD = CFUN_ARITH `!f g. f + g = \x. f x + g x`;;
let CFUN_ADD_THM = CFUN_ARITH `!f g. (f + g) x = f x + g x`;;
let CFUN_SMUL = CFUN_ARITH `!a f. a % f = \x. a * f x`;;
let CFUN_NEG_LAMBDA = CFUN_ARITH `!f. --f = \x. --(f x)`;;
let CFUN_SMUL_LNEG = CFUN_ARITH `!a f. (--a) % f = --(a % f)`;;
let CFUN_SMUL_RNEG = CFUN_ARITH `!a f. a % (--f) = --(a % f)`;;
let CFUN_ADD_SYM = CFUN_ARITH `!x y. x + y = y + x`;;
let CFUN_ADD_ASSOC = CFUN_ARITH `!x y z. (x + y) + z = x + y + z`;;
let CFUN_SUB_NEG = CFUN_ARITH `!x y. x - y = x + --y`;;
let CFUN_SMUL_LZERO = CFUN_ARITH `!x. Cx(&0) % x = cfun_zero`;;
let CFUN_ADD_LID = CFUN_ARITH `!x. cfun_zero + x = x`;;
let CFUN_ADD_RID = CFUN_ARITH `!x. x + cfun_zero = x`;;
let CFUN_SUB_RID = CFUN_ARITH `!x. x - cfun_zero = x`;;
let CFUN_SMUL_RZERO = CFUN_ARITH `!a. a % cfun_zero = cfun_zero`;;
let CFUN_SUB_REFL = CFUN_ARITH `!x. x - x = cfun_zero`;;
let CFUN_ZERO_CLAUSES =
CONJS [CFUN_SUB_REFL;CFUN_ADD_RID;CFUN_SMUL_LZERO;CFUN_SMUL_RZERO];;
let CFUN_SMUL_SYM = CFUN_ARITH `!a b x. a % (b % x) = b % (a % x)`;;
let CFUN_SMUL_DIS = CFUN_ARITH `!a x y. a % (x + y) = a % x + a % y`;;
let CFUN_SMUL_ASSOC = CFUN_ARITH `!a b x. a % (b % x) = (a * b) % x`;;
let CFUN_ADD_RDISTRIB = CFUN_ARITH `!a b x. (a + b) % x = a % x + b % x`;;
let CFUN_SUB_RDISTRIB = CFUN_ARITH `!a b x. (a - b) % x = a % x - b % x`;;
let CFUN_SUB_RADD = CFUN_ARITH `!x y z. x - (y + z) = x - y - z`;;
let CFUN_ADD_RSUB = CFUN_ARITH `!x y z. x + (y - z) = (x + y) - z`;;
let CFUN_SUB_ADD = CFUN_ARITH `!x y z. (x - y) + z= (x + z) - y`;;
let CFUN_SUB_SUB = CFUN_ARITH `!x y z. x - (y - z) = x - y + z`;;
let CFUN_EQ_LSUB = CFUN_ARITH `!x y z. x - y = z <=> x = z + y`;;
let CFUN_EQ_RSUB = CFUN_ARITH `!x y z. x = y - z <=> x + z = y`;;
let CFUN_ZERO_ADD = CFUN_ARITH `!x y. y + x = x <=> y = cfun_zero`;;
let CFUN_SUB_LDISTRIB = CFUN_ARITH `!a x y. a % (x - y) = a % x - a % y`;;
let CFUN_ADD_LDISTRIB = CFUN_ARITH `!a x y. a % (x + y) = a % x + a % y`;;
let CFUN_SMUL_DISTRIB = CFUN_ARITH `!a b f. a % (b % f) = (a * b) % f`;;
let CFUN_SMUL_LID = CFUN_ARITH `!v. Cx(&1) % v = v`;;
let CFUN_SMUL_LID_NEG = CFUN_ARITH `!v. (--Cx(&1)) % v = --v`;;
let CFUN_EQ_NEG2 = CFUN_ARITH `!x y. --x = --y <=> x = y`;;
let CFUN_EQ_ADD_LCANCEL = CFUN_ARITH `!x y z. x + y = x + z <=> y = z`;;
let CFUN_EQ_ADD_RCANCEL = CFUN_ARITH `!x y z. x + z = y + z <=> x = y`;;
let CFUN_EQ_SUB_LCANCEL = CFUN_ARITH `!x y z. x - y = x - z <=> y = z`;;
let CFUN_EQ_SUB_RADD = CFUN_ARITH `!x y z. x - y = z <=> x = z + y`;;
let CFUN_SUB_ADD2 = CFUN_ARITH `!x y. y + x - y = x`;;
let CFUN_SUB_0 = CFUN_ARITH `!x y. x - y = cfun_zero <=> x = y`;;
let CFUN_ENTIRE = CFUN_ARITH
`!a x. a % x = cfun_zero <=> a = Cx(&0) \/ x = cfun_zero`;;
let CFUN_EQ_SMUL_LCANCEL = CFUN_ARITH
`!x y a. a % x = a % y <=> a = Cx(&0) \/ x = y`;;
let CFUN_EQ_SMUL_LCANCEL2 = prove
(`!a x y. ~(a=Cx(&0)) ==> (a % x = y <=> x = inv a % y)`,
REWRITE_TAC[CFUN_TO_COMPLEX] THEN REPEAT STRIP_TAC
THEN MATCH_MP_TAC (MESON[] `(!x. P x <=> Q x) ==> (!x. P x) = (!x. Q x)`)
THEN GEN_TAC THEN POP_ASSUM MP_TAC THEN CONV_TAC COMPLEX_FIELD);;
(* Sub-space *)
let is_cfun_subspace = new_definition
`is_cfun_subspace (spc:cfun->bool) <=>
cfun_zero IN spc /\
!x. x IN spc ==> (!a. a % x IN spc) /\ !y. y IN spc ==> x+y IN spc`;;
let CFUN_SUBSPACE_ZERO = prove
(`!s. is_cfun_subspace s ==> cfun_zero IN s`,
SIMP_TAC[is_cfun_subspace]);;
let CFUN_SUBSPACE_SMUL = prove
(`!s a x. is_cfun_subspace s /\ x IN s ==> a%x IN s`,
SIMP_TAC[is_cfun_subspace]);;
let CFUN_SUBSPACE_ADD = prove
(`!s x y. is_cfun_subspace s /\ x IN s /\ y IN s ==> x+y IN s`,
SIMP_TAC[is_cfun_subspace]);;
let CFUN_SUBSPACE_NEG = prove
(`!s x. is_cfun_subspace s /\ x IN s ==> --x IN s`,
SIMP_TAC[GSYM CFUN_SMUL_LID_NEG;CFUN_SUBSPACE_SMUL]);;
let CFUN_SUBSPACE_SUB = prove
(`!s x y. is_cfun_subspace s /\ x IN s /\ y IN s ==> x-y IN s`,
SIMP_TAC[CFUN_SUB_NEG;CFUN_SUBSPACE_NEG;CFUN_SUBSPACE_ADD]);;
let CFUN_SUBSPACE_SING_CFUNZERO = prove
(`is_cfun_subspace {cfun_zero}`,
SIMP_TAC[is_cfun_subspace;IN_SING;CFUN_SMUL_RZERO;CFUN_ADD_RID]);;
(* ------------------------------------------------------------------------- *)
(* EMBEDDING COMPLEX NUMBERS IN CFUNS *)
(* ------------------------------------------------------------------------- *)
let SING_IND,SING_REC = define_type "singleton = SING_ELT";;
let SING_EQ = prove
(`!x. x = SING_ELT`,
MATCH_MP_TAC SING_IND THEN REFL_TAC);;
let cfun_of_complex = new_definition
`cfun_of_complex = K :complex->singleton->complex`;;
let CFUN_OF_COMPLEX_ADD = prove
(`!x y. cfun_of_complex (x+y) = cfun_of_complex x + cfun_of_complex y`,
REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;
let CFUN_OF_COMPLEX_SUB = prove
(`!x y. cfun_of_complex (x-y) = cfun_of_complex x - cfun_of_complex y`,
REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;
let CFUN_OF_COMPLEX_NEG = prove
(`!x. cfun_of_complex (--x) = -- cfun_of_complex x`,
REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;
let CFUN_OF_COMPLEX_SMUL = prove
(`!a x. cfun_of_complex (a*x) = a % cfun_of_complex x`,
REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;
let CFUN_OF_COMPLEX_CNJ = prove
(`!x. cfun_of_complex (cnj x) = cfun_cnj (cfun_of_complex x)`,
REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;
let CFUN_OF_COMPLEX_ZERO = prove
(`cfun_of_complex (Cx(&0)) = cfun_zero`,
REWRITE_TAC[cfun_of_complex] THEN CFUN_ARITH_TAC);;
let complex_of_cfun = new_definition
`complex_of_cfun f :complex = f SING_ELT`;;
let COMPLEX_OF_CFUN_ADD = prove
(`!x y. complex_of_cfun (x + y) = complex_of_cfun x + complex_of_cfun y`,
REWRITE_TAC[complex_of_cfun] THEN CFUN_ARITH_TAC);;
let COMPLEX_OF_CFUN_SUB = prove
(`!x y. complex_of_cfun (x - y) = complex_of_cfun x - complex_of_cfun y`,
REWRITE_TAC[complex_of_cfun] THEN CFUN_ARITH_TAC);;
let COMPLEX_OF_CFUN_NEG = prove
(`!x. complex_of_cfun (--x) = -- complex_of_cfun x`,
REWRITE_TAC[complex_of_cfun] THEN CFUN_ARITH_TAC);;
let COMPLEX_OF_CFUN_SMUL = prove
(`!a x. complex_of_cfun (a % x) = a * complex_of_cfun x`,
REWRITE_TAC[complex_of_cfun] THEN CFUN_ARITH_TAC);;
let COMPLEX_OF_CFUN_OF_COMPLEX = prove
(`complex_of_cfun o cfun_of_complex = I`,
REWRITE_TAC[complex_of_cfun;cfun_of_complex;o_DEF;K_THM;I_DEF]);;
let CFUN_OF_COMPLEX_OF_CFUN = prove
(`cfun_of_complex o complex_of_cfun = I`,
REWRITE_TAC[complex_of_cfun;cfun_of_complex;o_DEF;K_DEF;FUN_EQ_THM;I_THM]
THEN ONCE_REWRITE_TAC[SING_EQ] THEN REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* INNER PRODUCT *)
(* ------------------------------------------------------------------------- *)
new_type_abbrev("inprod",`:cfun->cfun->complex`);;
parse_as_infix("equv",(24,"left"));;
let are_equv = new_definition
` ((f:cfun) equv (g:cfun)) inprod <=> inprod (f-g) (f-g) = Cx(&0)`;;
new_type_abbrev("inner_space",`:(cfun->bool)#inprod`);;
let is_inner_space = new_definition
`is_inner_space ((s,inprod):inner_space) <=>
is_cfun_subspace s /\
!x. x IN s ==>
real (inprod x x) /\ &0 <= real_of_complex (inprod x x)
/\ !y. y IN s ==>
(inprod x x = Cx(&0) ==> inprod y x = Cx(&0))
/\ cnj (inprod y x) = inprod x y /\
(!a. inprod x (a%y) = a * (inprod x y))
/\ !z. z IN s ==> inprod (x+y) z = inprod x z + inprod y z`;;
(* EVERY THEOREM proved using "inner_space_prove" implicitly has the assumption
* "!s inprod. is_inner_space (s,inprod) ==>"
*)
let inner_space_parse s =
parse_term (`!s inprod. is_inner_space (s,inprod) ==> :` ^ s);;
let inner_space_prove (s,p) = prove(gimp_imp (inner_space_parse s),p);;
let inner_space_g s = g (gimp_imp (inner_space_parse s));;
let full_inner_space_parse s = parse_term (`!is. is_inner_space is ==> :` ^ s);;
let full_inner_space_prove (s,p) =
prove(gimp_imp (full_inner_space_parse s),p);;
let full_inner_space_g s = g (gimp_imp (full_inner_space_parse s));;
let FORALL_INNER_SPACE_THM = prove
(`!P. (!is:inner_space. P is) <=> !s inprod. P (s,inprod)`,
REWRITE_TAC[FORALL_PAIR_THM]);;
let INNER_SPACE_IS_SUBSPACE = inner_space_prove
(`is_cfun_subspace s:`,
SIMP_TAC[is_inner_space]);;
let INNER_SPACE_ZERO = inner_space_prove
(`cfun_zero IN s:`,
MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_ZERO]);;
let INNER_SPACE_SMUL = inner_space_prove
(`!x a. x IN s ==> a%x IN s:`,
MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_SMUL]);;
let INNER_SPACE_ADD = inner_space_prove
(`!x y. x IN s /\ y IN s ==> x+y IN s:`,
MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_ADD]);;
let INNER_SPACE_NEG = inner_space_prove
(`!x. x IN s ==> --x IN s:`,
MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_NEG]);;
let INNER_SPACE_SUB = inner_space_prove
(`!x y. x IN s /\ y IN s ==> x-y IN s:`,
MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_SUB]);;
let INPROD_CNJ = inner_space_prove
(`!x y. x IN s /\ y IN s ==> cnj(inprod y x) = inprod x y:`,
SIMP_TAC[is_inner_space]);;
let INPROD_SELF_REAL = inner_space_prove
(`!x. x IN s ==> real (inprod x x):`,
SIMP_TAC[is_inner_space]);;
let INPROD_SELF_POS = inner_space_prove
(`!x. x IN s ==> &0 <= real_of_complex (inprod x x):`,
SIMP_TAC[is_inner_space]);;
let INPROD_RSMUL = inner_space_prove
(`!x y a. x IN s /\ y IN s ==> inprod x (a%y) = a * inprod x y:`,
SIMP_TAC[is_inner_space]);;
let INPROD_ADD_RDIST = inner_space_prove
(`!x y z. x IN s /\ y IN s /\ z IN s
==> inprod (x+y) z = inprod x z + inprod y z:`,
SIMP_TAC[is_inner_space]);;
let INPROD_ZERO_EQ = inner_space_prove
(`!x y. x IN s /\ y IN s ==> (inprod x x = Cx(&0) ==> inprod y x = Cx(&0)):`,
SIMP_TAC[is_inner_space]);;
let INPROD_LZERO_EQ = inner_space_prove
(`!x y. x IN s /\ y IN s ==> (inprod x x = Cx(&0) ==> inprod x y = Cx(&0)):`,
MESON_TAC[INPROD_ZERO_EQ;INPROD_CNJ]);;
let INPROD_NORM = inner_space_prove
(`!x. x IN s ==> real (inprod x x) /\ &0 <= real_of_complex (inprod x x):`,
SIMP_TAC[is_inner_space]);;
add_real_thm (MESON[INPROD_SELF_REAL]
`!s inprod x. is_inner_space (s,inprod) /\ x IN s ==> real(inprod x x)`);;
(* More involved properties *)
let INPROD_LSMUL = inner_space_prove
(`!x y a. x IN s /\ y IN s ==> inprod (a%x) y = cnj a * inprod x y:`,
MESON_TAC[is_inner_space;is_cfun_subspace;CNJ_MUL]);;
let INPROD_LNEG = inner_space_prove
(`!x y. x IN s /\ y IN s ==> inprod (--x) y = --inprod x y:`,
MESON_TAC [GSYM CFUN_SMUL_LID_NEG;INPROD_LSMUL;CNJ_NEG;CNJ_CX;
COMPLEX_NEG_MINUS1]);;
let INPROD_SUB_RDIST = inner_space_prove
(`!x y z. x IN s /\ y IN s /\ z IN s ==>
inprod (x-y) z = inprod x z - inprod y z:`,
IMP_REWRITE_TAC[CFUN_SUB_NEG;complex_sub;INPROD_ADD_RDIST;INPROD_LNEG;
CFUN_SUBSPACE_NEG;INNER_SPACE_IS_SUBSPACE]);;
let INPROD_RNEG = inner_space_prove
(`!x y. x IN s /\ y IN s ==> inprod x (--y) = --inprod x y:`,
MESON_TAC[GSYM CFUN_SMUL_LID_NEG;INPROD_RSMUL;COMPLEX_NEG_MINUS1]);;
let INPROD_ADD_LDIST = inner_space_prove
(`!x y z. x IN s /\ y IN s /\ z IN s ==>
inprod z (x+y) = inprod z x + inprod z y:`,
MESON_TAC[INPROD_CNJ;INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_ADD;
INPROD_ADD_RDIST;CNJ_ADD]);;
let INPROD_SUB_LDIST = inner_space_prove
(`!x y z. x IN s /\ y IN s /\ z IN s ==>
inprod z (x-y) = inprod z x - inprod z y:`,
IMP_REWRITE_TAC[CFUN_SUB_NEG;complex_sub;INPROD_ADD_LDIST;INPROD_RNEG;
CFUN_SUBSPACE_NEG;INNER_SPACE_IS_SUBSPACE]);;
let INPROD_RZERO = inner_space_prove
(`!x. x IN s ==> inprod x cfun_zero = Cx(&0):`,
IMP_REWRITE_TAC[GSYM CFUN_SMUL_LZERO;INPROD_RSMUL;COMPLEX_MUL_LZERO]);;
let INPROD_LZERO = inner_space_prove
(`!x. x IN s ==> inprod cfun_zero x = Cx(&0):`,
IMP_REWRITE_TAC[GSYM CFUN_SMUL_LZERO;INPROD_LSMUL;CNJ_CX;COMPLEX_MUL_LZERO]);;
let INPROD_ZERO = inner_space_prove
(`inprod cfun_zero cfun_zero = Cx(&0):`,
MESON_TAC[INPROD_LZERO;INNER_SPACE_ZERO]);;
let INPROD_SELF_CNJ = inner_space_prove
(`!x. x IN s ==> cnj (inprod x x) = inprod x x:`,
SIMP_TAC[GSYM REAL_CNJ;is_inner_space]);;
let INPROD_ADD_CNJ = inner_space_prove
(`!x y. x IN s /\ y IN s ==> inprod x y + inprod y x =
Cx(&2 * Re (inprod x y)):`,
IMP_REWRITE_TAC[GSYM COMPLEX_ADD_CNJ;INPROD_CNJ]);;
let INPROD_SELF_NORM = inner_space_prove
(`!x. x IN s ==> norm (inprod x x) = real_of_complex (inprod x x):`,
MESON_TAC[is_inner_space;REAL_OF_COMPLEX;COMPLEX_NORM_CX;REAL_ABS_REFL]);;
let INPROD_SELF_RE = inner_space_prove
(`!x. x IN s ==> real_of_complex (inprod x x) = Re (inprod x x):`,
MESON_TAC[is_inner_space;REAL_OF_COMPLEX_RE]);;
let INPROD_NEG = inner_space_prove
(`!x y. x IN s /\ y IN s ==> inprod (--x) (--y) = inprod x y:`,
IMP_REWRITE_TAC[CFUN_SUBSPACE_NEG;INNER_SPACE_IS_SUBSPACE;INPROD_RNEG
;INPROD_LNEG;COMPLEX_NEG_NEG]);;
(* TODO RIESZ *)
let EQUV_ZERO = prove
(`!x inprod. inprod x x = Cx(&0) <=> (x equv cfun_zero) inprod`,
REWRITE_TAC[are_equv;CFUN_SUB_RID]);;
let INPROD_NOT_ZERO = inner_space_prove
(`!x. x IN s /\ ~(x equv cfun_zero) inprod ==> ~(x = cfun_zero):`,
MESON_TAC[are_equv;INPROD_ZERO;CFUN_SUB_RID]);;
let EQUV_SUB_ZERO = prove
(`!x inprod. (x equv y) inprod <=> ((x - y) equv cfun_zero) inprod`,
REWRITE_TAC[are_equv;CFUN_SUB_RID]);;
let INPROD_ZERO_EQUV = inner_space_prove
(`!x y. x IN s /\ y IN s ==> (x equv cfun_zero) inprod ==> inprod y x = Cx(&0):`,
MESON_TAC[EQUV_ZERO;INPROD_ZERO_EQ]);;
let INPROD_EQUV_SYM = inner_space_prove
(`!x y. x IN s /\ y IN s ==> ((x equv y) inprod <=> (y equv x) inprod):`,
REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[are_equv] THEN DISCH_TAC
THEN TARGET_REWRITE_TAC[CFUN_ARITH `! x y. x-y = --(y-x)`]INPROD_NEG
THEN ASM_MESON_TAC[INNER_SPACE_SUB]);;
let INPROD_EQUV_RREPLACE = prove
(`!s inprod x y z.
(x equv y) inprod ==>
is_inner_space (s,inprod) /\
x IN s /\
y IN s /\
z IN s
==> inprod z x = inprod z y`,
ONCE_REWRITE_TAC[GSYM COMPLEX_SUB_0;EQUV_SUB_ZERO] THEN
REPEAT GEN_TAC THEN
MESON_TAC[INNER_SPACE_SUB;Pa.SPECL ["s";"inprod";"x-y";"z"]
(GSYM INPROD_ZERO_EQUV);INPROD_SUB_LDIST]);;
let INPROD_EQUV_LREPLACE = prove
(`!s inprod x y z.
(x equv y) inprod ==>
is_inner_space (s,inprod) /\
x IN s /\
y IN s /\
z IN s
==> inprod x z = inprod y z`,
MESON_TAC[GSYM INPROD_CNJ;INPROD_EQUV_RREPLACE]);;
let INPROD_INJ_ALT = inner_space_prove
(`!x y. x IN s /\ y IN s
==> ((x equv y) inprod <=> (!z. z IN s ==> inprod x z = inprod y z)):`,
REPEAT STRIP_TAC THEN EQ_TAC THENL[ASM_MESON_TAC[INPROD_EQUV_LREPLACE];ALL_TAC] THEN
TARGET_REWRITE_TAC[GSYM COMPLEX_SUB_0] (GSYM INPROD_SUB_RDIST)
THEN ASM_MESON_TAC [are_equv;COMPLEX_SUB_0;CFUN_SUBSPACE_SUB;
INNER_SPACE_IS_SUBSPACE]);;
let INPROD_EQUV_TAC ths = ASSUM_LIST(fun thl-> let mthl = map (fun th->
try CONJ (MATCH_MP INPROD_EQUV_RREPLACE th) (MATCH_MP INPROD_EQUV_LREPLACE th) with
|Failure explanation -> th
) thl in IMP_REWRITE_TAC (mthl@ths));;
let INPROD_EQUV_TRANSTIVE = inner_space_prove
(`!x y z. x IN s /\ y IN s /\ z IN s ==> (x equv y) inprod /\
(y equv z) inprod ==> (x equv z) inprod:`,
REPEAT STRIP_TAC THEN
INPROD_EQUV_TAC[are_equv;INPROD_SUB_RDIST;INPROD_SUB_LDIST;INNER_SPACE_SUB;
COMPLEX_SUB_REFL]);;
(* ------------------------------------------------------------------------- *)
(* ORTHOGONALITY *)
(* ------------------------------------------------------------------------- *)
let are_orthogonal = new_definition
`are_orthogonal1 ((s,inprod):inner_space) u v <=>
is_inner_space (s,inprod) /\ u IN s /\ v IN s ==> inprod u v = Cx(&0)`;;
let ARE_ORTHOGONAL = inner_space_prove
(`!u v. u IN s /\ v IN s ==>
(are_orthogonal1 (s,inprod) u v <=> inprod u v = Cx(&0)):`,
MESON_TAC [are_orthogonal]);;
let ARE_ORTHOGONAL_SYM = inner_space_prove
(`!u v. u IN s /\ v IN s
==> (are_orthogonal1 (s,inprod) u v <=> are_orthogonal1 (s,inprod) v u):`,
SIMP_TAC[ARE_ORTHOGONAL] THEN REPEAT (STRIP_TAC ORELSE EQ_TAC)
THEN ONCE_REWRITE_TAC[GSYM CNJ_INJ] THEN ASM_MESON_TAC[CNJ_CX;INPROD_CNJ]);;
let ARE_ORTHOGONAL_LSCALAR = inner_space_prove
(`!u v. u IN s /\ v IN s /\ are_orthogonal1 (s,inprod) u v
==> !a. are_orthogonal1 (s,inprod) (a % u) v:`,
IMP_REWRITE_TAC[are_orthogonal;INPROD_LSMUL;COMPLEX_MUL_RZERO]);;
let ORTHOGONAL_SUM_NORM = inner_space_prove
(`!u v. u IN s /\ v IN s /\ are_orthogonal1 (s,inprod) u v ==>
inprod (u+v) (u+v) = inprod u u + inprod v v:`,
IMP_REWRITE_TAC[are_orthogonal;INPROD_ADD_LDIST;INPROD_ADD_RDIST;
CFUN_SUBSPACE_ADD;INNER_SPACE_IS_SUBSPACE]
THEN ONCE_REWRITE_TAC[GSYM COMPLEX_SUB_0]
THEN (CONV_TAC o DEPTH_CONV o CHANGED_CONV) COMPLEX_POLY_CONV
THEN MESON_TAC[INPROD_CNJ;CNJ_CX]);;
let ORTHOGONAL_DECOMPOS_WRT_CFUN = inner_space_prove
(`!u v. u IN s /\ v IN s ==>
let proj_v = inprod v u / inprod v v in
let orthogonal_component = u - proj_v % v in
u = proj_v % v + orthogonal_component
/\ are_orthogonal1 (s,inprod) v orthogonal_component:`,
REWRITE_TAC[LET_DEFS;CFUN_SUB_ADD2;are_orthogonal]
THEN IMP_REWRITE_TAC [INPROD_SUB_LDIST;INPROD_RSMUL;CFUN_SUBSPACE_SMUL;
INNER_SPACE_IS_SUBSPACE]
THEN REPEAT STRIP_TAC THEN Pa.ASM_CASES_TAC `(v equv cfun_zero) inprod:` THENL [
INPROD_EQUV_TAC [CFUN_SMUL_RZERO;INPROD_LZERO;CFUN_SUBSPACE_ZERO;
INNER_SPACE_IS_SUBSPACE];
IMP_REWRITE_TAC [COMPLEX_DIV_RMUL;INPROD_NOT_ZERO;EQUV_ZERO]
] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let ORTHOGONAL_DECOMPOS_WRT_CFUN_DECOMPOSITION = inner_space_prove
(`!u v. u IN s /\ v IN s ==>
let proj_v = inprod v u / inprod v v in
let orthogonal_component = u - proj_v % v in
u = proj_v % v + orthogonal_component:`,
REWRITE_TAC [LET_DEFS]
THEN MESON_TAC[REWRITE_RULE [LET_DEFS] ORTHOGONAL_DECOMPOS_WRT_CFUN]);;
let ORTHOGONAL_DECOMPOS_WRT_CFUN_ORTHOGONAL = inner_space_prove
(`!u v. u IN s /\ v IN s ==>
are_orthogonal1 (s,inprod) v (u - (inprod v u / inprod v v) % v):`,
REWRITE_TAC [LET_DEFS]
THEN MESON_TAC[REWRITE_RULE [LET_DEFS] ORTHOGONAL_DECOMPOS_WRT_CFUN]);;
let SCHWARZ_INEQUALITY = inner_space_prove
(`!x y. x IN s /\ y IN s
==> norm (inprod x y) pow 2
<= real_of_complex (inprod x x) * real_of_complex (inprod y y):`,
IMP_REWRITE_TAC [GSYM INPROD_SELF_NORM;INPROD_SELF_RE]
THEN REWRITE_TAC[MATCH_MP (TAUT `(A ==> B) ==> ((A ==> C) <=> (A /\ B ==>
C))`) (SPEC_ALL (REWRITE_RULE [LET_DEFS] ORTHOGONAL_DECOMPOS_WRT_CFUN))]
THEN REPEAT STRIP_TAC
THEN FIRST_X_ASSUM (wrap (CHANGED_TAC o GEN_REWRITE_TAC (PATH_CONV "rl" o
ONCE_DEPTH_CONV)))
THEN IMP_REWRITE_TAC [ORTHOGONAL_SUM_NORM;ARE_ORTHOGONAL_LSCALAR;
CFUN_SUBSPACE_SUB;INPROD_RSMUL;CFUN_SUBSPACE_SMUL;INNER_SPACE_IS_SUBSPACE;
INPROD_LSMUL]
THEN REWRITE_TAC[complex_div;CNJ_MUL;CNJ_INV]
THEN IMP_REWRITE_TAC [INPROD_SELF_NORM]
THEN REWRITE_TAC[GSYM RE_MUL_CX]
THEN IMP_REWRITE_TAC [REAL_OF_COMPLEX;INPROD_SELF_REAL]
THEN IMP_REWRITE_TAC [INPROD_SELF_CNJ]
THEN REWRITE_TAC[COMPLEX_ADD_RDISTRIB;
Pa.COMPLEX_FIELD `((x*y)*(z*t)*u)*v = (x*z)*(u*t)*(v*y):`;
ONCE_REWRITE_RULE[GSYM COMPLEX_NORM_CNJ] COMPLEX_MUL_CNJ]
THEN CASES_REWRITE_TAC COMPLEX_MUL_RINV
THENL [
IMP_REWRITE_TAC [INPROD_CNJ]
THEN REWRITE_TAC[RE_ADD;RE_CX;COMPLEX_MUL_RID;GSYM CX_POW;REAL_LE_ADDR]
THEN IMP_REWRITE_TAC [GSYM REAL_OF_COMPLEX_RE;REAL_OF_COMPLEX_MUL;
REAL_LE_MUL;INPROD_SELF_POS;INPROD_SELF_POS;CFUN_SUBSPACE_SUB;
CFUN_SUBSPACE_SMUL;INNER_SPACE_IS_SUBSPACE ]
THEN REAL_TAC THEN HINT_EXISTS_TAC
THEN IMP_REWRITE_TAC
[CFUN_SUBSPACE_SUB;CFUN_SUBSPACE_SMUL;INNER_SPACE_IS_SUBSPACE]
THEN ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[] THEN GCONV_TAC COMPLEX_POLY_CONV
THEN IMP_REWRITE_TAC [INPROD_ZERO_EQ]
THEN REWRITE_TAC[COMPLEX_NORM_0;RE_CX] THEN ARITH_TAC
]);;
let SCHWARZ_INEQUALITY2 = inner_space_prove
(`!x y. x IN s /\ y IN s
==> norm (inprod x y)
<= sqrt (real_of_complex (inprod x x)) *
sqrt(real_of_complex (inprod y y)):`,
TARGET_REWRITE_TAC[GSYM (GEN_ALL (Pa.SPEC `norm z:` POW_2_SQRT));GSYM SQRT_MUL]
SQRT_MONO_LE_EQ THEN
IMP_REWRITE_TAC[ SCHWARZ_INEQUALITY;
INPROD_SELF_POS;NORM_POS_LE;REAL_LE_MUL;REAL_LE_POW_2]);;
let SCHWARZ_INEQUALITY_ENHANCED = inner_space_prove
(`!x y. x IN s /\ y IN s ==>
real_of_complex ((inprod x y - inprod y x) / (Cx(&2) * ii)) pow 2
<= real_of_complex (inprod x x) * real_of_complex (inprod y y):`,
IMP_REWRITE_TAC [MATCH_MP (MESON[REAL_LE_TRANS]
`!f g. (P ==> f x y <= g x y) ==> P /\ z <= f x y ==> z <= g x y`)
(SPEC_ALL SCHWARZ_INEQUALITY);
MATCH_MP (REAL_ARITH `x=y+z ==> &0<=y /\ t=z ==> t<=x`) COMPLEX_SQNORM]
THEN REWRITE_TAC[REAL_LE_POW_2]
THEN IMP_REWRITE_TAC [MESON[] `(x:real) = y ==> x pow 2 = y pow 2`]
THEN ONCE_REWRITE_TAC[GSYM CX_INJ]
THEN REWRITE_TAC[CX_IM_CNJ;GSYM COMPLEX_INV_II;complex_div;COMPLEX_INV_MUL]
THEN IMP_REWRITE_TAC [INPROD_CNJ;REAL_OF_COMPLEX]
THEN REWRITE_TAC[SIMPLE_COMPLEX_ARITH `x*y*inv ii=inv ii*(x*y)`;
COMPLEX_INV_II;GSYM complex_div]
THEN MESON_TAC[INPROD_CNJ;CX_IM_CNJ;REAL_CX]);;
(* ------------------------------------------------------------------------- *)
(* OPERATORS *)
(* ------------------------------------------------------------------------- *)
(* "cop" stands for "Complex-valued function OPerator" *)
new_type_abbrev ("cop",`:cfunB->cfun`);;
new_type_abbrev ("copB",`:cfunC->cfunB`);;
new_type_abbrev ("cops",`:cfun->cfun`);;
let cop_add = new_definition
`cop_add:cop->cop->cop = fun_map2 (+)`;;
let cop_sub = new_definition
`cop_sub:cop->cop->cop = fun_map2 (-)`;;
let cop_neg = new_definition
`cop_neg:cop->cop = (o) (--)`;;
let cop_mul = new_definition
`cop_mul:cop->copB->(cfunC->cfun) = (o)`;;
let cop_smul = new_definition
`cop_smul:complex->cop->cop = (o) o (%)`;;
let cop_zero = new_definition
`cop_zero:cop = K cfun_zero`;;
let cop_pow = define
`cop_pow (op:cfun->cfun) 0 = I /\
cop_pow op (SUC n) = cop_mul op (cop_pow op n)`;;
let cop_cnj = new_definition
`cop_cnj:cop->cop = (o) cfun_cnj`;;
let cop_defs = CONJS
[cop_add;cop_sub;cop_neg;cop_mul;cop_smul;cop_zero;I_THM;cop_pow;cop_cnj];;
let prioritize_cop () =
overload_interface("+",`cop_add:cop->cop->cop`);
overload_interface("-",`cop_sub:cop->cop->cop`);
overload_interface("--",`cop_neg:cop->cop`);
overload_interface("**",`cop_mul:cop->copB->(cfunC->cfun)`);
overload_interface("pow",`cop_pow:(cfun->cfun)->num->(cfun->cfun)`);
overload_interface("%",`cop_smul:complex->cop->cop`);;
prioritize_cop ();;
(* Intended restriction of FUN_EQ_THM to the type :cop *)
let COP_EQ = prove
(`!f g:cop. f = g <=> (!x. f x = g x)`,
REWRITE_TAC[FUN_EQ_THM]);;
let COP_TO_CFUN = CONJS [FUN_MAP_THMS;o_THM;cop_defs;COP_EQ];;
let COP_POW_CONV =
let th = REWRITE_CONV[cop_pow;cop_mul;I_O_ID] `cop_pow t (SUC 0)` in
fun t ->
let (h,_) = strip_comb t in
if name_of h = "cop_pow"
then (CHANGED_CONV (RAND_CONV (REDEPTH_CONV num_CONV)
THENC REWRITE_CONV[cop_pow;th])) t
else failwith "COP_POW_CONV";;
let COP_ARITH_TAC =
let lemma = MESON[] `(!x. P x <=> Q x) ==> (!x. P x) = (!x. Q x)` in
CONV_TAC (TOP_DEPTH_CONV COP_POW_CONV)
THEN REWRITE_TAC[COP_TO_CFUN]
THEN (CFUN_ARITH_TAC
ORELSE (REPEAT STRIP_TAC THEN CONV_TAC PRENEX_CONV
THEN MATCH_MP_TAC lemma THEN CFUN_ARITH_TAC));;
let COP_ARITH t = prove(t,COP_ARITH_TAC);;
(* Properties *)
let COP_ZERO = COP_ARITH `!x. cop_zero x = cfun_zero`;;
let COP_SMUL = COP_ARITH `!a op. a % op = \x. a * op x`;;
let COP_SMUL_THM = COP_ARITH `!a op x. (a % op) x = a % op x`;;
let COP_SMUL_ALT = COP_ARITH `!a op. a % op = \x. a * op x`;;
let COP_MUL = COP_ARITH `!op1 op2. op1 ** op2 = \x. op1 (op2 x)`;;
let COP_ADD = COP_ARITH `!op1 op2. op1 + op2 = \x. op1 x + op2 x`;;
let COP_SUB_ABS = COP_ARITH `!op1 op2. op1 - op2 = \x. op1 x - op2 x`;;
let COP_ADD_THM = COP_ARITH `!op1 op2 x. (op1 + op2) x = op1 x + op2 x`;;
let COP_SUB_THM = COP_ARITH `!op1 op2 x. (op1 - op2) x = op1 x - op2 x`;;
let COP_ZERO_THM = COP_ARITH `cop_zero x = cfun_zero`;;
let COP_MUL_LID = COP_ARITH `!op. I ** op = op`;;
let COP_MUL_RID = COP_ARITH `!op. op ** I = op`;;
let COP_I_ID = CONJ COP_MUL_LID COP_MUL_RID;;
let COP_ENTIRE = COP_ARITH
`!a x. a % x = cop_zero <=> a = Cx(&0) \/ x = cop_zero`;;
let COP_ZERO_NEQ_ID = prove
(`~(I = cop_zero)`,
REWRITE_TAC[COP_TO_CFUN;CFUN_TO_COMPLEX;NOT_FORALL_THM]
THEN Pa.EXISTS_TAC `\x. Cx(&1):` THEN CONV_TAC COMPLEX_FIELD);;
let COP_SMUL_I_ZERO = prove
(`!a. a % I = cop_zero <=> a = Cx(&0)`,
REWRITE_TAC[COP_ENTIRE;COP_ZERO_NEQ_ID]);;
let COP_SMUL_I_ONE = prove
(`!a. a % I = I <=> a = Cx(&1)`,
REWRITE_TAC[COP_TO_CFUN;CFUN_TO_COMPLEX] THEN GEN_TAC THEN EQ_TAC
THENL [DISCH_THEN (MP_TAC o Pa.SPEC `\x.Cx(&1):`); ALL_TAC]
THEN CONV_TAC COMPLEX_FIELD);;
let COP_MUL_I_SYM = COP_ARITH `!op. op ** I = I ** op`;;
let COP_ADD_I_SYM = COP_ARITH `!op. op + I = I + op`;;
let COP_I_SCALAR = COP_ARITH `(\x. a % x) = a % I`;;
let COP_MUL_THM = COP_ARITH `!x op1 op2. (op1 ** op2) x = op1 (op2 x)`;;
let COP_SMUL_LNEG = COP_ARITH `!a op. --a % op = --(a % op)`;;
let COP_SMUL_RNEG = COP_ARITH `!a op. a % --op = --(a % op)`;;
let COP_SUB = COP_ARITH `!op1 op2. op1 - op2 = op1 + --op2`;;
let COP_SUB_NEG = COP_ARITH `!op1 op2. op1 - op2 = op1 + --op2`;;
let COP_NEG_NEG = COP_ARITH `!op. --(--op) = op`;;
let COP_NEG_ADD = COP_ARITH `!op1 op2. --(op1 + op2) = --op1 + --op2`;;
let COP_NEG_SUB = COP_ARITH `!op1 op2. --(op1 - op2) = --op1 + op2`;;
let COP_NEG_CLAUSES = CONJS [COP_NEG_NEG;COP_NEG_ADD;COP_NEG_SUB;
COP_SUB;COP_SUB_NEG];;
let COP_SMUL_ASSOC = COP_ARITH `!a b op. a % (b % op) = (a * b) % op`;;
let COP_SMUL_SYM = COP_ARITH `!a b op. a % (b % op) = b % (a % op)`;;
let COP_MUL_LSMUL = COP_ARITH `!op1 op2. a % op1 ** op2 = a % (op1 ** op2)`;;
let COP_ADD_LDISTRIB = COP_ARITH
`!a op1 op2. a % (op1 + op2) = a % op1 + a % op2`;;
let COP_ADD_RDISTRIB = COP_ARITH `!a b op. (a + b) % op = a % op + b % op`;;
let COP_SMUL_INV_ID = COP_ARITH
`!a op. ~(a = Cx (&0)) ==> a % (inv a % op) = op`;;
let COP_SUB_LDISTRIB = COP_ARITH `!a x y. a % (x - y) = a % x - a % y`;;
let COP_SUB_RADD = COP_ARITH `!x y z. x - (y + z) = x - y - z`;;
let COP_ADD_RSUB = COP_ARITH `!x y z. x + (y - z) = (x + y) - z`;;
let COP_SUB_SUB = COP_ARITH `!x y z. x - (y - z) = x - y + z`;;
let COP_ADD_SYM = COP_ARITH `!op1 op2. op1 + op2 = op2 + op1`;;
let COP_ADD_ASSOC = COP_ARITH `!x y z. (x + y) + z = x + y + z`;;
let COP_ADD_AC = COP_ARITH
`!m n p. m + n = n + m /\ (m + n) + p = m + n + p /\ m + n + p = n + m + p`;;
let COP_MUL_ASSOC = COP_ARITH `!x y z . (x ** y) ** z = x ** y ** z`;;
let COP_SUB_ADD = COP_ARITH `!x y z. (x-y)+z= (x+z)-y`;;
let COP_NEG_INJ = COP_ARITH `!x y. --x = --y <=> x = y`;;
let COP_EQ_ADD_LCANCEL = COP_ARITH `!x y z. x + y = x + z <=> y=z`;;
let COP_EQ_ADD_RCANCEL = COP_ARITH `!x y z. x + z = y + z <=> x=y`;;
let COP_EQ_SUB_LCANCEL = COP_ARITH `!x y z. x - y = x - z <=> y=z`;;
let COP_EQ_LSUB = COP_ARITH `!x y z. x - y = z <=> x = z + y`;;
let COP_EQ_RSUB = COP_ARITH `!x y z. x = y - z <=> x + z = y`;;
let COP_MUL_LZERO = COP_ARITH `!op. cop_zero ** op = cop_zero`;;
let COP_SUB_REFL = COP_ARITH `!op. op - op = cop_zero`;;
let COP_SMUL_LID_NEG = COP_ARITH `!x. (--Cx(&1)) % x = --x`;;
let COP_ADD_RID = COP_ARITH `!op. op + cop_zero = op`;;
let COP_ADD_LID = COP_ARITH `!op. cop_zero + op = op`;;
let COP_SMUL_LID = COP_ARITH `!op. Cx(&1) % op = op`;;
let COP_SMUL_RZERO = COP_ARITH `!op. a % cop_zero = cop_zero`;;
let COP_SUB_LZERO = COP_ARITH `!op. cop_zero - op = --op`;;
let COP_SUB_RZERO = COP_ARITH `!op. op - cop_zero = op`;;
let COP_SMUL_LZERO = COP_ARITH `!x. Cx(&0) % x = cop_zero`;;
let COP_ZERO_CLAUSES = CONJS
[COP_MUL_LZERO;COP_SUB_REFL;COP_ADD_RID;COP_ADD_LID;COP_SMUL_RZERO];;
let COP_ADD_MUL_RDISTRIB =
COP_ARITH `!op1 op2 op3. (op1 + op2) ** op3 = op1 ** op3 + op2 ** op3`;;
let COP_SUB_MUL_RDISTRIB =
COP_ARITH `!op1 op2 op3. (op1 - op2) ** op3 = op1 ** op3 - op2 ** op3`;;
let COP_EQ_LSUB_LSUB = COP_ARITH `!x y z. x - y = z <=> x - z = y`;;
let COP_EQ_LSMUL = COP_ARITH `!a x y. a % x = a % y <=> x = y \/ a = Cx(&0)`;;
let COP_EQ_MUL_LCANCEL2 = prove
(`!x y z t:cop. ~(x=Cx(&0)) ==> (x % y = z % t <=> y = (z / x) % t)`,
REWRITE_TAC[COP_TO_CFUN;CFUN_TO_COMPLEX] THEN REPEAT STRIP_TAC
THEN MATCH_MP_TAC (MESON[]
`(!x y. P x y <=> Q x y) ==> (!x y. P x y) = !x y. Q x y`)
THEN REPEAT GEN_TAC THEN POP_ASSUM MP_TAC THEN CONV_TAC COMPLEX_FIELD);;
let COP_POW_2 = COP_ARITH `!op. op pow 2 = op ** op`;;
let COP_POW_I = prove
(`!n. I pow n = I`, INDUCT_TAC THEN ASM_SIMP_TAC[cop_pow;COP_MUL_LID]);;
let COP_POW_ZERO = prove(
`!n. cop_zero pow (n+1) = cop_zero`, INDUCT_TAC THEN
ASM_MESON_TAC[cop_pow;ADD_CLAUSES;ADD1;COP_MUL_LZERO;COP_MUL_RID]);;
let COP_POW_COMMUTE_N = prove
(`!op1 op2. op1 ** op2 = op2 ** op1 ==>
!n. op1 ** op2 pow n = op2 pow n ** op1`,
REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[cop_pow; GSYM COP_MUL_ASSOC;COP_MUL_LID;COP_MUL_RID] THEN
ASM_REWRITE_TAC[GSYM cop_pow;COP_MUL_ASSOC]);;
let COP_ADD_2 = COP_ARITH `!op. Cx(&2) % op = op + op`;;
(* ------------------------------------------------------------------------- *)
(* Bounded OPERATORS *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* LINEAR OPERATORS *)
(* ------------------------------------------------------------------------- *)
let is_linear_cop = new_definition
`is_linear_cop (op:cop) <=>
!x y. op (x + y) = op x + op y /\ !a. op (a % x) = a % (op x)`;;
let LINCOP_ADD = prove
(`!x y op. is_linear_cop op ==> op (x + y) = op x + op y`,
SIMP_TAC[is_linear_cop]);;
let LINCOP_SMUL = prove
(`!a x op. is_linear_cop op ==> op (a % x) = a % op x`,
SIMP_TAC[is_linear_cop]);;
let LINCOP_SUB = prove
(`!x y op. is_linear_cop op ==> op (x - y) = op x - op y`,
SIMP_TAC[is_linear_cop;CFUN_SUB_NEG;GSYM CFUN_SMUL_LID_NEG]);;
let LINCOP_MUL_RSMUL = prove
(`!a op1 op2. is_linear_cop op2 ==> op2 ** (a % op1) = a % (op2 ** op1)`,
SIMP_TAC[is_linear_cop;COP_TO_CFUN]);;
let LINCOP_SMUL_CLAUSES = CONJS [LINCOP_MUL_RSMUL;COP_ADD_LDISTRIB;
COP_SUB_LDISTRIB;COP_MUL_LSMUL;COP_MUL_ASSOC;COP_MUL_LID];;
let LINCOP_MUL_RMUL = prove
(`!op1 op2. is_linear_cop op2 ==> op2 ** (a % op1) = a % (op2 ** op1)`,
SIMP_TAC[is_linear_cop;COP_TO_CFUN]);;
let LINCOP_ADD_MUL_LDISTRIB = prove
(`!op1 op2 op3. is_linear_cop op3 ==>
op3 ** (op1 + op2) = op3 ** op1 + op3 ** op2`,
SIMP_TAC[is_linear_cop;COP_TO_CFUN]);;
let LINCOP_SUB_MUL_LDISTRIB = prove
(`!op1 op2 op3. is_linear_cop op3 ==>
op3 ** (op1 - op2) = op3 ** op1 - op3 ** op2`,
SIMP_TAC[is_linear_cop;COP_TO_CFUN;LINCOP_SUB]);;
let LINCOP_MUL_DISTRIB_CLAUSES =
CONJS[COP_ADD_MUL_RDISTRIB;COP_SUB_MUL_RDISTRIB;LINCOP_ADD_MUL_LDISTRIB;
LINCOP_SUB_MUL_LDISTRIB];;
let LINCOP_CFUN_ZERO = prove
(`!op. is_linear_cop op ==> op cfun_zero = cfun_zero`,
MESON_TAC[is_linear_cop;CFUN_SMUL_LZERO]);;
let COP_POW_SMUL = prove
(`!op. is_linear_cop op ==> !n a. (a % op) pow n = (a pow n) % (op pow n)`,
REWRITE_TAC[is_linear_cop] THEN REPEAT (INDUCT_TAC ORELSE STRIP_TAC)
THEN ASM_REWRITE_TAC[COP_TO_CFUN;complex_pow] THEN CFUN_ARITH_TAC);;
let COP_POW_SMUL2 = prove
(`!op n a. is_linear_cop op ==> (a % op) pow n = (a pow n) % (op pow n)`,
MESON_TAC[COP_POW_SMUL]);;
(* Congruence properties *)
let ADD_LINCOP = prove
(`!op1 op2.
is_linear_cop op1 /\ is_linear_cop op2 ==> is_linear_cop (op1 + op2)`,
SIMP_TAC[is_linear_cop;COP_TO_CFUN] THEN REPEAT STRIP_TAC
THEN COP_ARITH_TAC);;
let SUB_LINCOP = prove
(`!op1 op2.
is_linear_cop op1 /\ is_linear_cop op2 ==> is_linear_cop (op1 - op2)`,
SIMP_TAC[is_linear_cop;COP_TO_CFUN] THEN REPEAT STRIP_TAC
THEN COP_ARITH_TAC);;
let SMUL_LINCOP = prove
(`!a op. is_linear_cop op ==> is_linear_cop (a % op)`,
SIMP_TAC[is_linear_cop;COP_TO_CFUN] THEN REPEAT STRIP_TAC
THEN COP_ARITH_TAC);;
let MUL_LINCOP = prove
(`!op1 op2.
is_linear_cop op1 /\ is_linear_cop op2 ==> is_linear_cop (op1 ** op2)`,
SIMP_TAC[is_linear_cop;COP_TO_CFUN] THEN REPEAT STRIP_TAC
THEN COP_ARITH_TAC);;
let ARITH_LINCOP_CLAUSES = CONJS
[ADD_LINCOP;SUB_LINCOP;SMUL_LINCOP;MUL_LINCOP];;
let linearity_thms = ref [];;
let add_linearity_thm thm =
let thm = GIMP_IMP thm in
linearity_thms := thm :: !linearity_thms;
let eta_thm = SIMP_RULE[ETA_AX] thm in
if (not (equals_thm thm eta_thm))
then linearity_thms := eta_thm :: !linearity_thms;;
let add_linearity_thms = List.iter add_linearity_thm;;
add_linearity_thms [ADD_LINCOP;SUB_LINCOP;SMUL_LINCOP;MUL_LINCOP;
REWRITE_RULE[cop_smul] SMUL_LINCOP];;
let I_LINCOP = prove
(`is_linear_cop I`,
REWRITE_TAC[is_linear_cop;I_DEF]);;
let COP_POW_SCALAR = prove
(`!a n. (\x. a % x) pow n = (\x. (a pow n) % x)`,
SIMP_TAC[COP_ARITH `(\x. a % x) = a % I`;COP_POW_SMUL;I_LINCOP;COP_POW_I]);;
add_linearity_thms [I_LINCOP;REWRITE_RULE[I_DEF] I_LINCOP];;
let ZERO_LINCOP = prove
(`is_linear_cop cop_zero`,
REWRITE_TAC[is_linear_cop;COP_ZERO_THM] THEN COP_ARITH_TAC);;
add_linearity_thms [ZERO_LINCOP];;
let SCALAR_LINCOP = prove
(`!a. is_linear_cop \x. a % x`,
REWRITE_TAC[is_linear_cop] THEN CFUN_ARITH_TAC);;
let POW_LINCOP = prove
(`!op. is_linear_cop op ==> !n. is_linear_cop (op pow n)`,
REPEAT (INDUCT_TAC ORELSE STRIP_TAC) THEN
ASM_SIMP_TAC[cop_pow;I_LINCOP;MUL_LINCOP]);;
add_linearity_thms [SCALAR_LINCOP;POW_LINCOP];;
let LINEARITY_TAC g =
let MATCH_MP_TAC x y = MATCH_MP_TAC x y in
let TRY_LINEARITY_THM = ASM (MAP_FIRST (fun x ->
MATCH_ACCEPT_TAC x ORELSE MATCH_MP_TAC x)) !linearity_thms in
let LOOP = TRY_LINEARITY_THM ORELSE (SIMP_TAC[ETA_AX] THEN TRY_LINEARITY_THM)
ORELSE (ASM_SIMP_TAC[] THEN NO_TAC) in
(REPEAT STRIP_TAC THEN CHANGED_TAC (REPEAT (LOOP THEN REPEAT CONJ_TAC))) g;;
let is_set_linear_cop = new_definition
`is_set_linear_cop s (op:cop) <=>
!x y. x IN s /\ y IN s ==> op (x + y) = op x + op y /\
!a. op (a % x) = a % (op x)`;;
let LINCOP_SLINCOP = prove
(`!s op. is_linear_cop op ==> is_set_linear_cop s op`,
SIMP_TAC[is_linear_cop;is_set_linear_cop]);;
let SLINCOP_SMUL = prove(`!a x op s. x IN s /\
is_set_linear_cop s op ==> op (a % x) = a % op x`,
MESON_TAC[is_set_linear_cop]);;
let SLINCOP_ADD = prove
(`!x y op s. is_set_linear_cop s op /\ x IN s /\ y IN s
==> op (x + y) = op x + op y`,
SIMP_TAC[is_set_linear_cop]);;
let SLINCOP_SUB = prove
(`!x y op s. is_cfun_subspace s /\ is_set_linear_cop s op /\
x IN s /\ y IN s
==> op (x - y) = op x - op y`,
MESON_TAC[SLINCOP_SMUL;CFUN_SUBSPACE_SMUL
;SLINCOP_ADD;CFUN_SUB_NEG;GSYM CFUN_SMUL_LID_NEG]);;
let SLINCOP_CFUN_ZERO = prove
(`!op s. is_set_linear_cop s op /\ is_cfun_subspace s ==>
op cfun_zero = cfun_zero`,
ONCE_REWRITE_TAC[GSYM (Pa.SPEC `cfun_zero:` CFUN_SMUL_LZERO)] THEN
MESON_TAC[SLINCOP_SMUL;CFUN_SMUL_LZERO;CFUN_SUBSPACE_ZERO]);;
(* ------------------------------------------------------------------------- *)
(* DUAL SPACE *)
(* ------------------------------------------------------------------------- *)
new_type_abbrev("cfun_dual",`:cfun->complex`);;
new_type_abbrev("cfun_dualB",`:cfunB->complex`);;
(* Note that all the above operations still apply on the dual space since
* `:cfun_dual` is an instance of `cfun` itself.
*)
let cfun_dual = new_definition
`cfun_dual (spc:cfun->bool) =
{ f:cfun->complex | is_linear_cop (cfun_of_complex o f) }`;;
(*
*let cfun_topological_dual = new_definition
* `cfun_topological_dual spc =
* { f | f IN cfun_dual spc /\ !x. f continuous (within (:cfun)) }`;;
*)
let cop_transpose = new_definition
`cop_transpose (f:cop) :cfun_dual->cfun_dualB = \phi. phi o f`;;
(* ------------------------------------------------------------------------- *)
(* FREQUENTLY USED OPERATORS *)
(* ------------------------------------------------------------------------- *)
let commutator = new_definition
`commutator (op1:cfun->cfun) op2 = op1 ** op2 - op2 ** op1`;;
make_overloadable "com" `:A->A->A`;;
parse_as_infix("com",(24,"left"));;
overload_interface("com",`commutator:cops->cops->cops`);;
let COMMUTATOR_NEG = prove
(`!op1 op2. commutator op1 op2 = -- commutator op2 op1`,
REWRITE_TAC[commutator] THEN COP_ARITH_TAC);;
let COMMUTATOR_COMPOSIT = prove
(`!op1 op2 a b c d. is_linear_cop op1 /\ is_linear_cop op2 ==>
commutator (a%op1+b%op2) (c%op1+d%op2) =
(a*d)% commutator op1 op2 - (b*c)% commutator op1 op2`,
SIMP_TAC[commutator;LINCOP_MUL_DISTRIB_CLAUSES;
LINCOP_SMUL_CLAUSES;COP_SMUL_ASSOC;COP_SUB_RADD] THEN COP_ARITH_TAC);;
let COMMUTATOR_SMUL = GEN_ALL(
REWRITE_RULE[COP_SMUL_LZERO;COMPLEX_MUL_LZERO;
COP_SUB_RZERO;COP_ADD_RID;COP_ADD_LID]
(SPEC_V (`b:`,`Cx(&0):`) (SPEC_V(`c:`,`Cx(&0):`) COMMUTATOR_COMPOSIT)));;
let COMMUTATOR_ZERO_SYM = prove
(`!op1 op2. commutator op1 op2 = cop_zero <=> commutator op2 op1 = cop_zero`,
REWRITE_TAC[commutator;COP_EQ_LSUB;COP_ADD_LID] THEN MESON_TAC[]);;
let COMMUTATOR_SCALAR = prove
(`!op a. is_linear_cop op ==>
commutator op (\x. a%x) = cop_zero`,
SIMP_TAC[commutator;COP_SUB_ABS;COP_MUL;LINCOP_SMUL] THEN COP_ARITH_TAC);;
let COMMUTATOR_SCALAR_OP = prove
(`!op a. is_linear_cop op ==>
commutator op (a%op) = cop_zero`,
SIMP_TAC[commutator;LINCOP_MUL_RSMUL] THEN COP_ARITH_TAC);;
let COMMUTATOR_ZERO = prove
(`!op. is_linear_cop op ==>
commutator op cop_zero = cop_zero`,
SIMP_TAC[cop_zero;K_DEF;GSYM CFUN_SMUL_LZERO;commutator;
COP_SUB_ABS;COP_MUL;LINCOP_SMUL] THEN COP_ARITH_TAC);;
let LINCOP_COMMUTATOR = prove
(`!op1 op2. is_linear_cop op1 /\ is_linear_cop op2
==> is_linear_cop (commutator op1 op2)`,
REWRITE_TAC[commutator] THEN REPEAT STRIP_TAC THEN LINEARITY_TAC);;
add_linearity_thm LINCOP_COMMUTATOR;;
let expectation = new_definition
`expectation (inprod:inprod) f op = inprod f (op f)`;;
let deviation = new_definition
`deviation (inprod:inprod) f op = op - (\x. expectation inprod f op % x)`;;
let DEVIATION_ALT = prove
(`!inprod f op. deviation inprod f op = op - expectation inprod f op % I`,
REWRITE_TAC[deviation] THEN COP_ARITH_TAC);;
let LINCOP_DEVIATION = prove
(`!inprod state op. is_linear_cop op
==> is_linear_cop (deviation inprod state op)`,
REWRITE_TAC[deviation;GSYM COP_SMUL] THEN LINEARITY_TAC);;
add_linearity_thm LINCOP_DEVIATION;;
let variance = new_definition
`variance (inprod:inprod) f op =
expectation inprod f (deviation inprod f op ** deviation inprod f op)`;;
let DEVIATION_COMMUTATOR = prove
(`!inprod op1 op2 state. is_linear_cop op1 /\ is_linear_cop op2
==> commutator (deviation inprod state op1) (deviation inprod state op2)
= commutator op1 op2`,
SIMP_TAC[DEVIATION_ALT;commutator] THEN
IMP_REWRITE_TAC [LINCOP_SUB_MUL_LDISTRIB]
THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
THEN ASM_SIMP_TAC[LINCOP_MUL_DISTRIB_CLAUSES;COP_MUL_LSMUL;COP_I_ID;
LINCOP_MUL_RMUL;MESON[COP_SMUL_SYM]
`f (a % (b % op)) (b % (a % op)) = f (a % (b % op)) (a % (b % op))`]
THEN COP_ARITH_TAC);;
let EXPEC_ZERO_STATE = prove
(`!s inprod op. is_linear_cop op /\ is_inner_space (s,inprod)
==> expectation inprod cfun_zero op = Cx(&0)`,
MESON_TAC[expectation;INPROD_ZERO;LINCOP_CFUN_ZERO]);;
(* ------------------------------------------------------------------------- *)
(* CLOSURE *)
(* ------------------------------------------------------------------------- *)
let is_closed_by = new_definition
`is_closed_by s f <=> !x. x IN s ==> f x IN s`;;
let IS_CLOSED_BY_THM = prove
(`!x s f. is_closed_by s f /\ x IN s ==> f x IN s`,SIMP_TAC[is_closed_by]);;
let IS_CLOSED_BY_COMPOSE = prove
(`!s f g. is_closed_by s f /\ is_closed_by s g ==> is_closed_by s (f o g)`,
REWRITE_TAC[is_closed_by;o_DEF] THEN MESON_TAC[]);;
let IS_CLOSED_BY_I = prove
(`!s. is_closed_by s I`,
REWRITE_TAC[is_closed_by;I_THM]);;
let IS_CLOSED_BY_COP_ADD = prove
(`!s op1 op2.
is_cfun_subspace s /\ is_closed_by s op1 /\ is_closed_by s op2
==> is_closed_by s (op1+op2)`,
REWRITE_TAC[is_closed_by;COP_TO_CFUN] THEN MESON_TAC[CFUN_SUBSPACE_ADD]);;
let IS_CLOSED_BY_COP_SUB = prove
(`!s op1 op2.
is_cfun_subspace s /\ is_closed_by s op1 /\ is_closed_by s op2
==> is_closed_by s (op1-op2)`,
REWRITE_TAC[is_closed_by;COP_TO_CFUN] THEN MESON_TAC[CFUN_SUBSPACE_SUB]);;
let IS_CLOSED_BY_COP_MUL = prove
(`!s op1 op2.
is_closed_by s op1 /\ is_closed_by s op2 ==> is_closed_by s (op1**op2)`,
REWRITE_TAC[is_closed_by;COP_TO_CFUN] THEN MESON_TAC[]);;
let IS_CLOSED_SCALAR = prove
(`!s a. is_cfun_subspace s ==> is_closed_by s (a % I)`,
SIMP_TAC[is_closed_by;is_cfun_subspace;COP_TO_CFUN]);;
let IS_CLOSED_INPROD_SCALAR = inner_space_prove
(`!a. is_closed_by s (a % I):`,
SIMP_TAC[is_closed_by;is_inner_space;IS_CLOSED_SCALAR]);;
let IS_CLOSED_BY_COP_SMUL = prove
(`!s a op.
is_cfun_subspace s /\ is_closed_by s op ==> is_closed_by s (a % op)`,
IMP_REWRITE_TAC[is_closed_by;COP_TO_CFUN;CFUN_SUBSPACE_SMUL]);;
let IS_CLOSED_BY_COMMUTATOR = prove
(`!s a op.
is_cfun_subspace s /\ is_closed_by s op1 /\ is_closed_by s op2
==> is_closed_by s (commutator op1 op2)`,
IMP_REWRITE_TAC[commutator;IS_CLOSED_BY_COP_MUL;IS_CLOSED_BY_COP_SUB]);;
(* ------------------------------------------------------------------------- *)
(* HERMITIAN *)
(* ------------------------------------------------------------------------- *)
let is_hermitian = new_definition
`is_hermitian ((s,inprod):inner_space) op1 op2 <=>
is_inner_space (s,inprod) ==>
is_closed_by s op1 /\ is_closed_by s op2
/\ is_linear_cop op1 /\ is_linear_cop op2
/\ !x y. x IN s /\ y IN s ==> inprod x (op1 y) = inprod (op2 x) y`;;
let HERM_LINCOP = full_inner_space_prove
(`!op1 op2. is_hermitian is op1 op2 ==> is_linear_cop op1
/\ is_linear_cop op2:`,
SIMP_TAC[FORALL_INNER_SPACE_THM;is_hermitian]);;
let HERM_LINCOP_L = full_inner_space_prove
(`!op1 op2. is_hermitian is op1 op2 ==> is_linear_cop op1:`,
SIMP_TAC[FORALL_INNER_SPACE_THM;is_hermitian]);;
let HERM_LINCOP_R = full_inner_space_prove
(`!op1 op2. is_hermitian is op1 op2 ==> is_linear_cop op2:`,
SIMP_TAC[FORALL_INNER_SPACE_THM;is_hermitian]);;
let HERM_IS_CLOSED_BY_L = inner_space_prove
(`!op1 op2. is_hermitian (s,inprod) op1 op2 ==> is_closed_by s op1:`,
SIMP_TAC[is_hermitian]);;
let HERM_IS_CLOSED_BY_R = inner_space_prove
(`!op1 op2. is_hermitian (s,inprod) op1 op2 ==> is_closed_by s op2:`,
SIMP_TAC[is_hermitian]);;
let HERM_ITSELF = inner_space_prove
(`!op1 op2 x y. is_hermitian (s,inprod) op1 op2 /\ x IN s /\ y IN s ==>
inprod x (op1 y) = inprod (op2 x) y:`,
SIMP_TAC[is_hermitian]);;
let ADD_HERM = full_inner_space_prove
(`!op1 op2 op3 op4.
is_hermitian is op1 op2 /\ is_hermitian is op3 op4
==> is_hermitian is (op1+op3) (op2+op4):`,
REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian;is_closed_by]
THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
THEN IMP_REWRITE_TAC [COP_TO_CFUN;CFUN_SUBSPACE_ADD;INNER_SPACE_IS_SUBSPACE;
INPROD_ADD_LDIST;INPROD_ADD_RDIST]);;
let SUB_HERM = full_inner_space_prove
(`!op1 op2 op3 op4.
is_hermitian is op1 op2 /\ is_hermitian is op3 op4
==> is_hermitian is (op1-op3) (op2-op4):`,
REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian;is_closed_by]
THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
THEN IMP_REWRITE_TAC [COP_TO_CFUN;CFUN_SUBSPACE_SUB;INNER_SPACE_IS_SUBSPACE;
INPROD_SUB_LDIST;INPROD_SUB_RDIST]);;
let MUL_HERM = full_inner_space_prove
(`!op1 op2 op3 op4.
is_hermitian is op1 op2 /\ is_hermitian is op3 op4
==> is_hermitian is (op1**op3) (op4**op2):`,
REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian;is_closed_by]
THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
THEN REWRITE_TAC[COP_TO_CFUN;cop_mul;o_DEF] THEN ASM_MESON_TAC[]);;
let SMUL_HERM = full_inner_space_prove
(`!a op1 op2 op3 op4.
is_hermitian is op1 op2 /\ is_hermitian is op3 op4
==> is_hermitian is (a % op1) (cnj a % op2):`,
REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian;is_closed_by]
THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
THEN IMP_REWRITE_TAC [COP_TO_CFUN;CFUN_SUBSPACE_SMUL;INNER_SPACE_IS_SUBSPACE;
INPROD_LSMUL;INPROD_RSMUL]
THEN ASM_MESON_TAC[CNJ_CNJ]);;
let HERMITAIN_INPROD = inner_space_prove
(`!op1 op2 op3. is_hermitian (s,inprod) op1 op2 /\ is_closed_by s op3
==> !x y. x IN s /\ y IN s
==> inprod x ((op1 ** op3) y) = inprod (op2 x) (op3 y):`,
MESON_TAC[HERM_ITSELF;COP_MUL;is_closed_by]);;
let ZERO_HERM = prove
(`!is. is_hermitian is cop_zero cop_zero`,
REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian] THEN
IMP_REWRITE_TAC[is_closed_by;ZERO_LINCOP;
COP_ZERO_THM;CFUN_SUBSPACE_ZERO;INNER_SPACE_IS_SUBSPACE;INPROD_RZERO;
INPROD_LZERO]);;
let ARITH_HERM_CLAUSES = CONJS [ADD_HERM;SUB_HERM;MUL_HERM;SMUL_HERM];;
let HERM_SYM = prove
(`!is op1 op2.
is_hermitian is op1 op2 <=> is_hermitian is op2 op1`,
REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian;is_closed_by]
THEN MESON_TAC[CX_INJ;INPROD_CNJ]);;
let HERM_UNIQUENESS = prove
(`!s inprod op1 op2 op3.
is_inner_space (s,inprod)
/\ is_hermitian (s,inprod) op1 op2 /\ is_hermitian (s,inprod) op1 op3
==> !x. x IN s ==> (op2 x equv op3 x) inprod`,
IMP_REWRITE_TAC [is_hermitian;COP_EQ;is_closed_by;INPROD_INJ_ALT]
THEN ASM_MESON_TAC[]);;
let HERM_UNIQUENESS_ALT = prove
(`!s inprod op1 op2 op3.
is_inner_space (s,inprod) /\
is_hermitian (s,inprod) op2 op1 /\ is_hermitian (s,inprod) op3 op1
==> !x. x IN s ==> (op2 x equv op3 x) inprod`,
MESON_TAC[HERM_SYM;HERM_UNIQUENESS]);;
let HERM_PROP_ADVANCED = inner_space_prove
(`!a b op1 op2 op3 op4 op5.
is_hermitian (s,inprod) op1 op2 /\ is_hermitian (s,inprod) op3 op4
/\ is_hermitian (s,inprod) op5 (a % op1 + b % op3)
==> !x. x IN s ==> (op5 x equv (cnj a % op2 + cnj b % op4) x) inprod:`,
IMP_REWRITE_TAC[COP_EQ;GIMP_IMP HERM_UNIQUENESS_ALT]
THEN MESON_TAC[ARITH_HERM_CLAUSES;CNJ_CNJ;HERM_SYM]);;
(* ------------------------------------------------------------------------- *)
(* SELF ADJOINT *)
(* ------------------------------------------------------------------------- *)
let is_self_adjoint = new_definition
`is_self_adjoint1 is op <=> is_hermitian is op op`;;
let IS_SELF_ADJOINT =
REWRITE_RULE[FORALL_INNER_SPACE_THM;is_hermitian] is_self_adjoint;;
let SELF_ADJ_IS_LINCOP = full_inner_space_prove
(`!op. is_self_adjoint1 is op ==> is_linear_cop op:`,
IMP_REWRITE_TAC[is_self_adjoint;HERM_LINCOP_L]);;
let SELF_ADJ_IS_CLOSED_BY = inner_space_prove
(`!op. is_self_adjoint1 (s,inprod) op ==> is_closed_by s op:`,
IMP_REWRITE_TAC[is_self_adjoint;HERM_IS_CLOSED_BY_L]);;
let SELF_ADJ_INPROD = inner_space_prove
(`!op1 op2. is_self_adjoint1 (s,inprod) op1 /\ is_closed_by s op2
==> !x y. x IN s /\ y IN s
==> inprod x ((op1 ** op2) y) = inprod (op1 x) (op2 y):`,
REWRITE_TAC[IS_SELF_ADJOINT;COP_MUL;is_closed_by] THEN MESON_TAC[]);;
let ADD_SELF_ADJ = full_inner_space_prove
(`!op1 op2. is_self_adjoint1 is op1 /\ is_self_adjoint1 is op2
==> is_self_adjoint1 is (op1 + op2):`,
IMP_REWRITE_TAC[is_self_adjoint;ADD_HERM]);;
let SUB_SELF_ADJ = full_inner_space_prove
(`!op1 op2. is_self_adjoint1 is op1 /\ is_self_adjoint1 is op2
==> is_self_adjoint1 is (op1 - op2):`,
IMP_REWRITE_TAC[is_self_adjoint;SUB_HERM]);;
let SMUL_SELF_ADJ = full_inner_space_prove
(`!a op. real a /\ is_self_adjoint1 is op ==> is_self_adjoint1 is (a % op):`,
MESON_TAC[is_self_adjoint;SMUL_HERM;REAL_CNJ]);;
let MUL_SELF_ADJ = full_inner_space_prove
(`!op1 op2.
is_self_adjoint1 is op1 /\ is_self_adjoint1 is op2 /\ op1 ** op2 = op2 ** op1
==> is_self_adjoint1 is (op1 ** op2):`,
MESON_TAC[is_self_adjoint;MUL_HERM]);;
let I_SELF_ADJ = prove
(`!is. is_self_adjoint1 is I`,
REWRITE_TAC[FORALL_INNER_SPACE_THM;IS_SELF_ADJOINT;I_LINCOP;I_THM;
IS_CLOSED_BY_I]);;
let ZERO_SELF_ADJ = prove
(`!is. is_self_adjoint1 is cop_zero`,
REWRITE_TAC[is_self_adjoint;ZERO_HERM]);;
let selfadjoint_thms = ref [];;
let add_selfadjoint_thm thm =
let thm = GIMP_IMP thm in
selfadjoint_thms := thm :: !selfadjoint_thms;
let eta_thm = SIMP_RULE[ETA_AX] thm in
if (not (equals_thm thm eta_thm))
then selfadjoint_thms := eta_thm :: !selfadjoint_thms;;
let add_selfadjoint_thms = List.iter add_selfadjoint_thm;;
let rec SELF_ADJOINT_TAC g =
let MATCH_MP_TAC x y = MATCH_MP_TAC x y in
let TRY_SELFADJOINT_THM =
ASM (MAP_FIRST (fun x ->
MATCH_ACCEPT_TAC x ORELSE MATCH_MP_TAC x)) !selfadjoint_thms in
let LOOP =
TRY_SELFADJOINT_THM ORELSE (SIMP_TAC[ETA_AX] THEN TRY_SELFADJOINT_THM)
ORELSE (ASM_SIMP_TAC[] THEN NO_TAC) ORELSE LINEARITY_TAC
ORELSE REAL_TAC ~alternatives:[SELF_ADJOINT_TAC;LINEARITY_TAC] in
(REPEAT STRIP_TAC
THEN (fun (_,c as g) ->
let head = fst (strip_comb c) in
if (name_of head = "is_self_adjoint1"
&& can (type_match `:inner_space->cop->bool` (type_of head)) [])
then CHANGED_TAC (REPEAT (LOOP THEN REPEAT CONJ_TAC)) g
else FAIL_TAC "bad goal" g)) g;;
let REAL_TAC ?(alternatives=[]) =
REAL_TAC ~alternatives:(SELF_ADJOINT_TAC::LINEARITY_TAC::alternatives);;
add_selfadjoint_thms [ADD_SELF_ADJ;SUB_SELF_ADJ;SMUL_SELF_ADJ;
REWRITE_RULE[COP_SMUL] SMUL_SELF_ADJ;MUL_SELF_ADJ;I_SELF_ADJ;ZERO_SELF_ADJ];;
let ANTI_COMMUTATOR_SELF_ADJ = full_inner_space_prove
(`!op1 op2. is_self_adjoint1 is op1 /\ is_self_adjoint1 is op2
==> is_self_adjoint1 is (op1 ** op2 + op2 ** op1):`,
REWRITE_TAC[FORALL_INNER_SPACE_THM;IS_SELF_ADJOINT]
THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THEN TRY LINEARITY_TAC
THEN ASM IMP_REWRITE_TAC[IS_CLOSED_BY_COP_ADD;IS_CLOSED_BY_COP_MUL;COP_MUL;
COP_ADD;IS_CLOSED_BY_COP_MUL;INNER_SPACE_IS_SUBSPACE;INPROD_ADD_LDIST;
INPROD_ADD_RDIST]
THEN ASM_MESON_TAC[COMPLEX_ADD_SYM;is_closed_by]);;
add_selfadjoint_thm ANTI_COMMUTATOR_SELF_ADJ;;
let NEG_SELF_ADJ = full_inner_space_prove
(`!op. is_linear_cop op /\ is_self_adjoint1 is op
==> is_self_adjoint1 is (--op):`,
ONCE_REWRITE_TAC[GSYM COP_SUB_LZERO] THEN SELF_ADJOINT_TAC);;
add_selfadjoint_thm NEG_SELF_ADJ;;
let SCALAR_II_HERM = inner_space_prove
(`!op. is_linear_cop op /\ (!x y. inprod (op x) y = -- (inprod x (op y)))
/\ is_closed_by s op
==> is_self_adjoint1 (s,inprod) (ii % op):`,
IMP_REWRITE_TAC[IS_SELF_ADJOINT;COP_SMUL_THM;IS_CLOSED_BY_COP_SMUL;
is_closed_by;INNER_SPACE_IS_SUBSPACE;INPROD_LSMUL;INPROD_RSMUL;
CNJ_II;COMPLEX_NEG_MUL2] THEN LINEARITY_TAC);;
add_selfadjoint_thm SCALAR_II_HERM;;
let COMMUTATOR_ANTI_HERM = inner_space_prove
(`!op1 op2. is_self_adjoint1 (s,inprod) op1 /\ is_self_adjoint1 (s,inprod) op2
==> !x y. x IN s /\ y IN s
==> inprod (commutator op1 op2 x) y = --(inprod x (commutator op1 op2 y)):`,
IMP_REWRITE_TAC[commutator;IS_SELF_ADJOINT;COP_MUL_THM;COP_SUB_THM;
is_closed_by;INPROD_SUB_LDIST;INPROD_SUB_RDIST;COMPLEX_NEG_SUB]);;
add_selfadjoint_thm COMMUTATOR_ANTI_HERM;;
let II_COMMUTATOR_HERM = full_inner_space_prove
(`!op1 op2. is_self_adjoint1 is op1 /\ is_self_adjoint1 is op2
==> is_self_adjoint1 is (ii % commutator op1 op2):`,
REWRITE_TAC[FORALL_INNER_SPACE_THM;IS_SELF_ADJOINT] THEN
IMP_REWRITE_TAC[COP_SMUL_THM;INPROD_RSMUL;
INPROD_LSMUL;IS_CLOSED_BY_COMMUTATOR;IS_CLOSED_BY_COP_SMUL;CNJ_II;II_NZ;
INNER_SPACE_IS_SUBSPACE;COMPLEX_MUL_LNEG;GSYM COMPLEX_MUL_RNEG;
COMPLEX_EQ_MUL_LCANCEL;]
THEN ONCE_REWRITE_TAC[COMPLEX_FIELD `x = --y <=> y = --x:complex`]
THEN IMP_REWRITE_TAC [GIMP_IMP COMMUTATOR_ANTI_HERM;is_self_adjoint;
is_hermitian;REWRITE_RULE[is_closed_by] IS_CLOSED_BY_COMMUTATOR;
INNER_SPACE_IS_SUBSPACE;is_closed_by] THEN LINEARITY_TAC);;
add_selfadjoint_thm II_COMMUTATOR_HERM;;
let EXPEC_HERM_REAL = inner_space_prove
(`!op state. is_self_adjoint1 (s,inprod) op /\ state IN s
==> real (expectation inprod state op):`,
IMP_REWRITE_TAC[IS_SELF_ADJOINT;expectation;is_closed_by
;REAL_CNJ;INPROD_CNJ]);;
add_real_thms [EXPEC_HERM_REAL; REWRITE_RULE[expectation] EXPEC_HERM_REAL];;
let DEVIATION_HERM = inner_space_prove
(`!op state. is_self_adjoint1 (s,inprod) op /\ state IN s
==> is_self_adjoint1 (s,inprod) (deviation inprod state op):`,
REWRITE_TAC[DEVIATION_ALT] THEN SELF_ADJOINT_TAC THEN ASM_MESON_TAC[]);;
add_selfadjoint_thms [DEVIATION_HERM; REWRITE_RULE[deviation] DEVIATION_HERM];;
let VARIANCE_REAL = inner_space_prove
(`!op state. state IN s /\ is_self_adjoint1 (s,inprod) op
==> real (variance inprod state op):`,
REWRITE_TAC[variance] THEN REAL_TAC THEN HINT_EXISTS_TAC
THEN SELF_ADJOINT_TAC);;
add_real_thm VARIANCE_REAL;;
(* ------------------------------------------------------------------------- *)
(* EIGEN VALUES AND VECTORS *)
(* ------------------------------------------------------------------------- *)
let is_eigen_pair = new_definition
`is_eigen_pair (op:cfun->cfun) (x,a) <=>
is_linear_cop op ==> op x = a % x /\ ~(x = cfun_zero)`;;
let EIGEN_PAIR_SMUL = prove
(`!op v x. is_eigen_pair op (x,v)
==> !a. ~(a = Cx(&0)) ==> is_eigen_pair op (a % x,v)`,
SIMP_TAC[is_eigen_pair;CFUN_ENTIRE;LINCOP_SMUL;CFUN_SMUL_SYM]);;
let EIGEN_PAIR_ADD = prove
(`!op v x y. is_eigen_pair op (x,v) /\ is_eigen_pair op (y,v)
/\ ~(x + y = cfun_zero)
==> is_eigen_pair op (x+y,v)`,
SIMP_TAC[is_eigen_pair;LINCOP_ADD;CFUN_ADD_LDISTRIB]);;
let EIGEN_SPACE_THM = prove
(`!op. is_linear_cop op ==>
!a. is_cfun_subspace ({ x | is_eigen_pair op (x,a) } UNION { cfun_zero })`,
SIMP_TAC[is_cfun_subspace;IN_ELIM_THM;IN_UNION;IN_SING;CFUN_ENTIRE]
THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CFUN_ADD_RID;CFUN_ADD_LID]
THEN ASM_MESON_TAC[EIGEN_PAIR_SMUL;EIGEN_PAIR_ADD]);;
let is_eigen_val = new_definition
`is_eigen_val (op:cfun->cfun) a <=> ?x. is_eigen_pair op (x,a)`;;
let is_eigen_fun = new_definition
`is_eigen_fun (op:cfun->cfun) x <=> ?a. is_eigen_pair op (x,a)`;;
(*****************************************************************************)
(* Unbounded Operators *)
(*****************************************************************************)
(*****************************************************************************)
(* Linear Operators *)
(*****************************************************************************)
let is_unbounded_linear_cop = new_definition
`is_unbounded_linear_cop s (op:cop) <=> is_cfun_subspace s /\
!x y. x IN s /\ y IN s ==> op (x + y) = op x + op y /\
!a. op (a % x) = a % (op x)`;;
let ULINCOP_SUBSPACE = prove(`!op s.
is_unbounded_linear_cop s op
==> is_cfun_subspace s`,
MESON_TAC[is_unbounded_linear_cop]);;
let ULINCOP_SMUL = prove(`!op s a x.
is_unbounded_linear_cop s op /\ x IN s
==> op (a % x) = a % op x`,
MESON_TAC[is_unbounded_linear_cop]);;
let ULINCOP_ADD = prove
(`!op s x y. is_unbounded_linear_cop s op /\ x IN s /\ y IN s
==> op (x + y) = op x + op y`,
SIMP_TAC[is_unbounded_linear_cop]);;
let ULINCOP_SUBSPACE = prove
(`!op s. is_unbounded_linear_cop s op
==> is_cfun_subspace s`,
SIMP_TAC[is_unbounded_linear_cop]);;
let ULINCOP_SUB = prove
(`!x y op s. is_unbounded_linear_cop s op /\
x IN s /\ y IN s
==> op (x - y) = op x - op y`,
IMP_REWRITE_TAC[CFUN_SUBSPACE_SMUL;ULINCOP_SUBSPACE
;ULINCOP_ADD;CFUN_SUB_NEG;GSYM CFUN_SMUL_LID_NEG]
THEN ASM_MESON_TAC[ ULINCOP_SMUL]);;
let ULINCOP_ZERO = prove
(`!op s. is_unbounded_linear_cop s op ==>
op cfun_zero = cfun_zero`,
ONCE_REWRITE_TAC[GSYM (Pa.SPEC `cfun_zero:` CFUN_SMUL_LZERO)] THEN
MESON_TAC[ULINCOP_SMUL;CFUN_SMUL_LZERO;CFUN_SUBSPACE_ZERO;ULINCOP_SUBSPACE]);;
let SUBSPACE_INTER = prove
(`!s1 s2. is_cfun_subspace s1 /\ is_cfun_subspace s2 ==>
is_cfun_subspace (s1 INTER s2)`,
SIMP_TAC[is_cfun_subspace;INTER;IN_ELIM_THM]);;
let CFUN_ADD_AC = CFUN_ARITH
`!m n p:cfun. m + n = n + m /\ (m + n) + p = m + n + p /\ m + n + p = n + m + p`;;
let ADD_ULINCOP = prove
(`!s1 s2 op1 op2. is_unbounded_linear_cop s1 op1
/\ is_unbounded_linear_cop s2 op2
==> is_unbounded_linear_cop (s1 INTER s2) (op1+op2)`,
SIMP_TAC[is_unbounded_linear_cop
;SUBSPACE_INTER;IN_INTER;CFUN_ADD_AC;COP_ADD_THM]
THEN MESON_TAC[CFUN_ADD_LDISTRIB]);;
let SMUL_ULINCOP = prove
(`!s op a. is_unbounded_linear_cop s op
==> is_unbounded_linear_cop s (a%op)`,
SIMP_TAC[is_unbounded_linear_cop;COP_TO_CFUN;COP_ADD_THM;CFUN_ADD_LDISTRIB]
THEN MESON_TAC[COMPLEX_MUL_SYM;CFUN_SMUL_DISTRIB]);;
let SUB_ULINCOP = prove
(`!s1 s2 op1 op2. is_unbounded_linear_cop s1 op1
/\ is_unbounded_linear_cop s2 op2
==> is_unbounded_linear_cop (s1 INTER s2) (op1-op2)`,
IMP_REWRITE_TAC[ADD_ULINCOP;REWRITE_RULE[CNJ_CX]
(SPEC_V ("a","Cx x")SMUL_ULINCOP);COP_SUB;
GSYM COP_SMUL_LID_NEG;GSYM CX_NEG]);;
let I_ULINCOP = prove
(`!s1. is_cfun_subspace s1 ==> is_unbounded_linear_cop s1 I`,
REWRITE_TAC[is_unbounded_linear_cop;I_THM]);;
let MUL_LEMMA = prove
(`!s1 s2 op2. is_cfun_subspace s1 /\
is_unbounded_linear_cop s2 op2 ==>
is_cfun_subspace {x| x IN s2 /\ op2 x IN s1}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[is_cfun_subspace;IN_ELIM_THM] THEN
IMP_REWRITE_TAC[ULINCOP_SMUL;ULINCOP_SUBSPACE;CFUN_SUBSPACE_SMUL;
CFUN_SUBSPACE_ADD;ULINCOP_ADD;CFUN_SUBSPACE_ZERO;ULINCOP_ZERO];
);;
let MUL_ULINCOP = prove
(`!s1 s2 op1 op2. is_unbounded_linear_cop s1 op1
/\ is_unbounded_linear_cop s2 op2
==> is_unbounded_linear_cop {x| x IN s2 /\ op2 x IN s1} (op1**op2)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[is_unbounded_linear_cop]
THEN IMP_REWRITE_TAC[MUL_LEMMA;ULINCOP_SUBSPACE] THEN POP_ASSUM MP_TAC
THEN POP_ASSUM MP_TAC THEN
SIMP_TAC[is_unbounded_linear_cop;COP_TO_CFUN;COP_ADD_THM;CFUN_ADD_LDISTRIB
;IN_ELIM_THM]
THEN ASM_MESON_TAC[COMPLEX_MUL_SYM;CFUN_SMUL_DISTRIB]);;
let ulinearity_thms = ref [];;
let add_ulinearity_thm thm =
let thm = GIMP_IMP thm in
ulinearity_thms := thm :: !ulinearity_thms;
let eta_thm = SIMP_RULE[ETA_AX] thm in
if (not (equals_thm thm eta_thm))
then ulinearity_thms := eta_thm :: !ulinearity_thms;;
let add_ulinearity_thms = List.iter add_ulinearity_thm;;
add_ulinearity_thms [ADD_ULINCOP;SUB_ULINCOP;SMUL_ULINCOP;MUL_ULINCOP;
REWRITE_RULE[cop_smul] SMUL_ULINCOP];;
let ULINEARITY_TAC g =
let MATCH_MP_TAC x y = MATCH_MP_TAC x y in
let TRY_LINEARITY_THM = ASM (MAP_FIRST (fun x ->
MATCH_ACCEPT_TAC x ORELSE MATCH_MP_TAC x)) !ulinearity_thms in
let LOOP = TRY_LINEARITY_THM ORELSE (SIMP_TAC[ETA_AX] THEN TRY_LINEARITY_THM)
ORELSE (ASM_SIMP_TAC[] THEN NO_TAC) in
(REPEAT STRIP_TAC THEN CHANGED_TAC (REPEAT (LOOP THEN REPEAT CONJ_TAC))) g;;
let COMMUTAOR_ULINCOP = prove
(`!op1 s1 op2 s2.
is_unbounded_linear_cop s1 op1 /\ is_unbounded_linear_cop s2 op2
==> is_unbounded_linear_cop ({x|x IN s2 /\ op2 x IN s1}
INTER {x|x IN s1 /\ op1 x IN s2}) (commutator op1 op2)`,
REWRITE_TAC[commutator] THEN ULINEARITY_TAC);;
(*****************************************************************************)
(* Adjoints of Unbounded Linear Operators *)
(*****************************************************************************)
let is_hermitian_unbounded = new_definition
`is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 op1 op2 <=>
is_inner_space (s,inprod) ==>
s1 SUBSET s /\ s2 SUBSET s /\
is_unbounded_linear_cop s1 op1 /\ is_unbounded_linear_cop s2 op2 /\
(!x. x IN s1 ==> op1 x IN s) /\ (!x. x IN s2 ==> op2 x IN s)
/\ (!x y. x IN s2 /\ y IN s1 ==> inprod x (op1 y) = inprod (op2 x) y)`;;
let ADD_HERM_UNBOUNDED = prove
(`!op1 op2 op3 op4 s1 s2 s3 s4 s inprod.
is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 op1 op2 /\
is_hermitian_unbounded ((s,inprod):inner_space) s3 s4 op3 op4
==> is_hermitian_unbounded (
(s,inprod):inner_space) (s1 INTER s3) (s2 INTER s4) (op1+op3) (op2+op4)`,
REWRITE_TAC[is_hermitian_unbounded;IN_INTER]
THEN REPEAT STRIP_TAC THENL[
ASSUM_LIST SET_TAC;ASSUM_LIST SET_TAC;ASM_SIMP_TAC[ADD_ULINCOP];
ASM_SIMP_TAC[ADD_ULINCOP];
REWRITE_TAC[COP_ADD_THM] THEN ASM_MESON_TAC[INNER_SPACE_ADD;SUBSET];
REWRITE_TAC[COP_ADD_THM] THEN ASM_MESON_TAC[INNER_SPACE_ADD;SUBSET];
IMP_REWRITE_TAC[COP_ADD_THM;INPROD_ADD_RDIST;INPROD_ADD_LDIST] THEN
ASM_MESON_TAC[INNER_SPACE_ADD;SUBSET]
]);;
let SMUL_HERM_UNBOUNDED = prove
(`!a op1 op2 op3 op4 s1 s2 s3 s4 s inprod.
is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 op1 op2
==> is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 (a % op1) (cnj a % op2)`,
SIMP_TAC[is_hermitian_unbounded;SMUL_ULINCOP]
THEN REPEAT STRIP_TAC THEN IMP_REWRITE_TAC[INPROD_LSMUL;INPROD_RSMUL;CNJ_CNJ;INNER_SPACE_SMUL;SUBSET;COP_TO_CFUN]
THEN ASM_MESON_TAC[INNER_SPACE_SMUL;SUBSET;COP_TO_CFUN]);;
let SUB_HERM_UNBOUNDED = prove
(`!op1 op2 op3 op4 s1 s2 s3 s4 s inprod.
is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 op1 op2 /\
is_hermitian_unbounded ((s,inprod):inner_space) s3 s4 op3 op4
==> is_hermitian_unbounded ((s,inprod):inner_space)
(s1 INTER s3) (s2 INTER s4) (op1-op3) (op2-op4)`,
IMP_REWRITE_TAC[ADD_HERM_UNBOUNDED;REWRITE_RULE[CNJ_CX]
(SPEC_V ("a","Cx x")SMUL_HERM_UNBOUNDED);COP_SUB;
GSYM COP_SMUL_LID_NEG;GSYM CX_NEG]);;
let MUL_HERM_UNBOUNDED = prove
(`!op1 op2 op3 op4 s1 s2 s3 s4 s inprod.
is_hermitian_unbounded ((s,inprod):inner_space) s1 s2 op1 op2 /\
is_hermitian_unbounded ((s,inprod):inner_space) s3 s4 op3 op4
==>
is_hermitian_unbounded ((s,inprod):inner_space)
{x| x IN s3 /\ op3 x IN s1}
{x| x IN s2 /\ op2 x IN s4} (op1**op3) (op4**op2)`,
SIMP_TAC[is_hermitian_unbounded;MUL_ULINCOP]
THEN SIMP_TAC[IN_ELIM_THM;COP_MUL;SUBSET]);;
let HERM_ITSELF_UNBOUNDED = inner_space_prove
(`!op1 op2 s1 s2 x y.
is_hermitian_unbounded (s,inprod) s1 s2 op1 op2
/\ x IN s2 /\ y IN s1 ==>
inprod x (op1 y) = inprod (op2 x) y:`,
SIMP_TAC[is_hermitian_unbounded]);;
let HERMITAIN_INPROD_UNBOUNDED = inner_space_prove
(`!op1 op2 op3 s1 s2. is_hermitian_unbounded (s,inprod) s1 s2 op1 op2
==> !x y. x IN s2 /\ op3 y IN s1
==> inprod x ((op1 ** op3) y) = inprod (op2 x) (op3 y):`,
MESON_TAC[HERM_ITSELF_UNBOUNDED;COP_MUL]);;
let HERM_SYM_UNBOUNDED = prove
(`!is op1 op2 s1 s2.
is_hermitian_unbounded is s1 s2 op1 op2 <=>
is_hermitian_unbounded is s2 s1 op2 op1`,
REWRITE_TAC[FORALL_INNER_SPACE_THM;is_hermitian_unbounded]
THEN MESON_TAC[SUBSET;INPROD_CNJ]);;
(* ------------------------------------------------------------------------- *)
(* SYMMETRIC Operators *)
(* ------------------------------------------------------------------------- *)
let is_symmetric = new_definition
`is_symmetric is s op <=> is_hermitian_unbounded is s s op op`;;
let IS_SYMMETRIC =
REWRITE_RULE[FORALL_INNER_SPACE_THM;is_hermitian_unbounded] is_symmetric;;
let SYMMETRIC_IS_LINCOP = prove
(`!op s1 s inprod. is_inner_space (s,inprod) /\
is_symmetric (s,inprod) s1 op ==> is_unbounded_linear_cop s1 op`,
MESON_TAC[is_symmetric;is_hermitian_unbounded]);;
let SYMMETRIC_SUBSET = prove
(`!op s1 s inprod. is_inner_space (s,inprod) /\
is_symmetric (s,inprod) s1 op ==> s1 SUBSET s`,
MESON_TAC[is_symmetric;is_hermitian_unbounded]);;
let SYMMETRIC_CLOSURE = prove
(`!op s1 s inprod. is_inner_space (s,inprod) /\
is_symmetric (s,inprod) s1 op ==> !x. x IN s1 ==> op x IN s`,
MESON_TAC[is_symmetric;is_hermitian_unbounded]);;
let SYMMETRIC_ITSELF = prove
(`!op s1 s inprod. is_inner_space (s,inprod) /\
is_symmetric (s,inprod) s1 op ==>
(!x y. x IN s1 /\ y IN s1 ==> inprod x (op y) = inprod (op x) y) `,
MESON_TAC[is_symmetric;is_hermitian_unbounded]);;
let IS_SYMMETRIC_INPROD = prove
(`!op1 op2 s1 s inprod. is_inner_space (s,inprod)
/\ is_symmetric (s,inprod) s1 op1
==> !x y. x IN s1 /\ op2 y IN s1
==> inprod x ((op1 ** op2) y) = inprod (op1 x) (op2 y)`,
MESON_TAC[is_symmetric;HERMITAIN_INPROD_UNBOUNDED]);;
let ADD_SYMMETRIC = prove
(`!op1 op2 s1 s2 s inprod. is_symmetric (s,inprod) s1 op1 /\
is_symmetric (s,inprod) s2 op2
==> is_symmetric (s,inprod) (s1 INTER s2) (op1 + op2)`,
MESON_TAC[is_symmetric;ADD_HERM_UNBOUNDED]);;
let SUB_SYMMETRIC = prove
(`!op1 op2 s1 s2 s inprod. is_symmetric (s,inprod) s1 op1 /\
is_symmetric (s,inprod) s2 op2
==> is_symmetric (s,inprod) (s1 INTER s2) (op1 - op2)`,
MESON_TAC[is_symmetric;SUB_HERM_UNBOUNDED]);;
let SMUL_SYMMETRIC = prove
(`!a ops s inprod. real a /\ is_symmetric (s,inprod) s1 op ==>
is_symmetric (s,inprod) s1 (a % op)`,
MESON_TAC[is_symmetric;SMUL_HERM_UNBOUNDED;REAL_CNJ]);;
let POW2_SYM_UNBOUNDED = prove
(`!op s1 s inprod.
is_symmetric (s,inprod) s1 op
==>
is_symmetric ((s,inprod):inner_space)
{x| x IN s1 /\ op x IN s1} (op**op)`,
SIMP_TAC[is_symmetric;MUL_HERM_UNBOUNDED]);;
let I_SYMMETRIC = prove
(`!s1 s inprod. s1 SUBSET s /\ is_cfun_subspace s1 ==> is_symmetric (s,inprod) s1 I`,
SIMP_TAC[IS_SYMMETRIC;I_ULINCOP;is_unbounded_linear_cop;I_THM;SUBSET]);;
let symmetric_thms = ref [];;
let add_symmetric_thm thm =
let thm = GIMP_IMP thm in
symmetric_thms := thm :: !symmetric_thms;
let eta_thm = SIMP_RULE[ETA_AX] thm in
if (not (equals_thm thm eta_thm))
then selfadjoint_thms := eta_thm :: !symmetric_thms;;
let add_symmetric_thms = List.iter add_symmetric_thm;;
add_symmetric_thms [ADD_SYMMETRIC;SUB_SYMMETRIC;SMUL_SYMMETRIC;
REWRITE_RULE[COP_SMUL] SMUL_SYMMETRIC;I_SYMMETRIC;POW2_SYM_UNBOUNDED];;
let rec SYMMETRIC_TAC g =
let MATCH_MP_TAC x y = MATCH_MP_TAC x y in
let TRY_SYMMETRIC_THM =
ASM (MAP_FIRST (fun x ->
MATCH_ACCEPT_TAC x ORELSE MATCH_MP_TAC x)) !symmetric_thms in
let LOOP =
TRY_SYMMETRIC_THM ORELSE (SIMP_TAC[ETA_AX] THEN TRY_SYMMETRIC_THM)
ORELSE (ASM_SIMP_TAC[] THEN NO_TAC) ORELSE ULINEARITY_TAC
ORELSE REAL_TAC ~alternatives:[SYMMETRIC_TAC;ULINEARITY_TAC] in
(REPEAT STRIP_TAC
THEN (fun (_,c as g) ->
let head = fst (strip_comb c) in
if (name_of head = "is_symmetric"
&& can (type_match `:inner_space->(cfun->boo)->cop->bool` (type_of head)) [])
then CHANGED_TAC (REPEAT (LOOP THEN REPEAT CONJ_TAC)) g
else FAIL_TAC "bad goal" g)) g;;
let REAL_TAC ?(alternatives=[]) =
REAL_TAC ~alternatives:(SYMMETRIC_TAC::ULINEARITY_TAC::SELF_ADJOINT_TAC::LINEARITY_TAC::alternatives);;
let ANTI_COMMUTATOR_SYMMETRIC = prove
(`!op1 op2 s1 s2 s inprod. is_symmetric (s,inprod) s1 op1 /\ is_symmetric (s,inprod) s2 op2
==> is_symmetric (s,inprod)
( {x| x IN s2 /\ op2 x IN s1} INTER {x| x IN s1 /\ op1 x IN s2})
(op1 ** op2 + op2 ** op1)`,
REWRITE_TAC[IS_SYMMETRIC]
THEN SIMP_HORN_TAC THEN REPEAT STRIP_TAC THENL[RULE_ASSUM_TAC (REWRITE_RULE [INTER;IN_ELIM_THM]) THEN
IMP_REWRITE_TAC[COP_MUL;INPROD_ADD_LDIST;INPROD_ADD_RDIST;SUBSET;INTER;COP_ADD_THM]
THEN ASM_SIMP_TAC[COMPLEX_ADD_SYM] THEN ASM_MESON_TAC[SUBSET];
IMP_REWRITE_TAC[SUBSET;INNER_SPACE_ADD;COP_ADD_THM;COP_MUL] THEN ASSUM_LIST SET_TAC;
ULINEARITY_TAC;
ASSUM_LIST SET_TAC]);;
add_symmetric_thm ANTI_COMMUTATOR_SYMMETRIC;;
let NEG_SYMMETRIC = prove
(`!op s1 s inprod. is_symmetric (s,inprod) s1 op
==> is_symmetric (s,inprod) s1 (--op)`,
REWRITE_TAC[COP_ARITH `--op = --Cx(&1) % op`] THEN SYMMETRIC_TAC THEN
REWRITE_TAC[REAL_CX;GSYM CX_NEG]);;
add_symmetric_thm NEG_SYMMETRIC;;
let SCALAR_II_HERM_UNBOUND = prove
(`!op s1 s inprod.
is_unbounded_linear_cop s1 op /\ s1 SUBSET s /\ (!x. x IN s1 ==> op x IN s)
/\ (!x y. x IN s1 /\ y IN s1 ==> inprod (op x) y = -- (inprod x (op y)))
==> is_symmetric (s,inprod) s1 (ii % op)`,
REPEAT STRIP_TAC
THEN IMP_REWRITE_TAC[IS_SYMMETRIC;COP_SMUL_THM;INPROD_LSMUL;INPROD_RSMUL;
CNJ_II;COMPLEX_NEG_MUL2;SUBSET
;INNER_SPACE_SMUL;SMUL_ULINCOP]
THEN ASSUM_LIST SET_TAC);;
add_symmetric_thm SCALAR_II_HERM_UNBOUND;;
let COMMUTATOR_ANTI_UNBOUNDED_HERM = prove
(`!op1 op2 s1 s2 s inprod.
is_inner_space (s,inprod) /\
is_symmetric (s,inprod) s1 op1 /\ is_symmetric (s,inprod) s2 op2
==> !x y. x IN s2 /\ op2 x IN s1 /\ x IN s1 /\ op1 x IN s2
/\ y IN s2 /\ op2 y IN s1 /\ y IN s1 /\ op1 y IN s2
==> inprod (commutator op1 op2 x) y = --(inprod x (commutator op1 op2 y))`,
IMP_REWRITE_TAC[commutator;IS_SYMMETRIC;COP_MUL_THM;COP_SUB_THM;INPROD_SUB_LDIST;
INPROD_SUB_RDIST;COMPLEX_NEG_SUB;INPROD_SUB_LDIST;INPROD_SUB_RDIST;COMPLEX_NEG_SUB]
THEN SET_TAC[]);;
add_symmetric_thm COMMUTATOR_ANTI_UNBOUNDED_HERM;;
let II_COMMUTATOR_UNBOUNDED_HERM = prove
(`!op1 op2 s1 s2 s inprod.
is_inner_space (s,inprod) /\
is_symmetric (s,inprod) s1 op1 /\ is_symmetric (s,inprod) s2 op2
==> is_symmetric (s,inprod) ({x| x IN s2 /\ op2 x IN s1} INTER {x| x IN s1 /\ op1 x IN s2})
(ii % commutator op1 op2)`,
SYMMETRIC_TAC THENL [REWRITE_TAC[commutator] THEN ULINEARITY_TAC THEN ASM_MESON_TAC[SYMMETRIC_IS_LINCOP]
;REWRITE_TAC[SUBSET;INTER;IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET;SYMMETRIC_SUBSET]
; REWRITE_TAC[commutator;INTER;IN_ELIM_THM;COP_SUB_THM;COP_MUL] THEN
ASM_MESON_TAC[SYMMETRIC_CLOSURE;SYMMETRIC_SUBSET;SUBSET;INNER_SPACE_SUB]
;REWRITE_TAC[commutator;INTER;IN_ELIM_THM;COP_SUB_THM;COP_MUL] THEN
IMP_REWRITE_TAC[INPROD_SUB_RDIST;INPROD_SUB_LDIST] THEN
IMP_REWRITE_TAC[SYMMETRIC_ITSELF;COMPLEX_FIELD `--(a:complex-b) = b-a`
;SYMMETRIC_SUBSET;SYMMETRIC_CLOSURE] THEN ASM_MESON_TAC[SYMMETRIC_SUBSET;SUBSET]]);;
add_symmetric_thm II_COMMUTATOR_UNBOUNDED_HERM;;
let EXPEC_UNBOUNDED_HERM_REAL = prove
(`!op s1 s inprod.
is_inner_space (s,inprod) /\ is_symmetric (s,inprod) s1 op
==> !state. state IN s1 ==> real (expectation inprod state op)`,
IMP_REWRITE_TAC[IS_SYMMETRIC;expectation;REAL_CNJ;INPROD_CNJ]
THEN SIMP_TAC[SUBSET]);;
add_real_thms [EXPEC_UNBOUNDED_HERM_REAL; REWRITE_RULE[expectation] EXPEC_UNBOUNDED_HERM_REAL];;
let DEVIATION_UNBOUNDED_HERM_ALT = prove
(`!op s1 s inprod state.
is_inner_space (s,inprod) /\ is_symmetric (s,inprod) s1 op /\
state IN s1 ==> is_symmetric (s,inprod) (s1 INTER s1) (deviation inprod state op)`,
REWRITE_TAC[DEVIATION_ALT] THEN SYMMETRIC_TAC THEN
ASM_MESON_TAC[SYMMETRIC_SUBSET;SUBSET;SYMMETRIC_IS_LINCOP;ULINCOP_SUBSPACE]);;
let DEVIATION_UNBOUNDED_HERM = REWRITE_RULE [SET_RULE`s INTER s = s`] DEVIATION_UNBOUNDED_HERM_ALT;;
add_symmetric_thms [DEVIATION_UNBOUNDED_HERM; REWRITE_RULE[deviation] DEVIATION_UNBOUNDED_HERM];;
let VARIANCE_UNBOUNDED_REAL = prove
(`!op s1 s inprod.
is_inner_space (s,inprod) /\ is_symmetric (s,inprod) s1 op
==> !state. state IN s1 /\ deviation inprod state op state IN s1
==> real (variance inprod state op)`,
REWRITE_TAC[variance] THEN REAL_TAC THEN
Pa.EXISTS_TAC `{x| x IN s1 /\ deviation inprod state op x IN s1}:` THEN
Pa.EXISTS_TAC "s" THEN ASM_SIMP_TAC[IN_ELIM_THM]
THEN SYMMETRIC_TAC);;
add_real_thm VARIANCE_REAL;;
let is_eigen_pair_unbounded = new_definition
`is_eigen_pair_unbounded s (op:cfun->cfun) (x,a) <=>
is_unbounded_linear_cop s op ==> x IN s /\ op x = a % x /\ ~(x = cfun_zero)`;;
let EIGEN_PAIR_SMUL_UNBOUNDED = prove
(`!op s v x. is_eigen_pair_unbounded s op (x,v)
==> !a. ~(a = Cx(&0)) ==> is_eigen_pair_unbounded s op (a % x,v)`,
SIMP_TAC[is_eigen_pair_unbounded;CFUN_ENTIRE] THEN
MESON_TAC[ULINCOP_SMUL;ULINCOP_SUBSPACE;
CFUN_SMUL_SYM;CFUN_SUBSPACE_SMUL]);;
let EIGEN_PAIR_ADD_UNBOUNDED = prove
(`!op s v x y. is_eigen_pair_unbounded s op (x,v) /\
is_eigen_pair_unbounded s op (y,v)
/\ ~(x + y = cfun_zero)
==> is_eigen_pair_unbounded s op (x+y,v)`,
SIMP_TAC[is_eigen_pair_unbounded]THEN
MESON_TAC[ULINCOP_ADD;CFUN_ADD_LDISTRIB
;ULINCOP_SUBSPACE;CFUN_SUBSPACE_ADD]);;
(* ------------------------------------------------------------------------- *)
(* cfun norm *)
(* ------------------------------------------------------------------------- *)
let cfun_norm = new_definition
`cfun_norm inprod (x:cfun) = sqrt(real_of_complex (inprod x x))`;;
let INPROD_SUB_SELF = inner_space_prove(
`!x y. x IN s /\ y IN s
==> real_of_complex (inprod (x-y) (x-y)) = real_of_complex(inprod x x) +
real_of_complex(inprod y y) - &2*Re(inprod y x):`,
IMP_REWRITE_TAC[INNER_SPACE_SUB;INPROD_SUB_LDIST;INPROD_SUB_RDIST;
COMPLEX_FIELD `x:complex - y - (z - h) = x + h - (z+y)`;INPROD_ADD_CNJ]
THEN IMP_REWRITE_TAC[REAL_OF_COMPLEX_ADD;REAL_OF_COMPLEX_CX;
REAL_OF_COMPLEX_SUB;INPROD_SELF_REAL;REAL_CX;REAL_SUB]);;
let INPROD_ADD_SELF = inner_space_prove(
`!x y. x IN s /\ y IN s
==> real_of_complex (inprod (x+y) (x+y)) = real_of_complex(inprod x x) +
real_of_complex(inprod y y) + &2*Re(inprod x y):`,
IMP_REWRITE_TAC[INNER_SPACE_ADD
;INPROD_ADD_LDIST;INPROD_ADD_RDIST;
COMPLEX_FIELD `((x:complex) + y) + z + h = x + h + (y+z)`;INPROD_ADD_CNJ]
THEN IMP_REWRITE_TAC[REAL_OF_COMPLEX_ADD;REAL_OF_COMPLEX_CX;
INPROD_SELF_REAL;REAL_CX;REAL_ADD]);;
let INPROD_TRIANGLE_INEQ = inner_space_prove(
`!x y. x IN s /\ y IN s
==> real_of_complex(inprod (x+y) (x+y)) <=
(sqrt(real_of_complex (inprod x x)) +
sqrt(real_of_complex (inprod y y))) pow 2:`,
REWRITE_TAC[REAL_POW_2] THEN
SIMP_TAC[REAL_ADD_LDISTRIB;REAL_ADD_RDISTRIB;REAL_MUL_SYM;GSYM REAL_ADD_ASSOC;
REAL_ARITH `x*x+x*y+x*y+y*y = x pow 2 + y pow 2 + &2*x*y`] THEN
IMP_REWRITE_TAC[SQRT_POW_2;INPROD_SELF_POS] THEN
IMP_REWRITE_TAC[INPROD_ADD_SELF;REAL_ADD_ASSOC;REAL_LE_LADD_IMP;
REAL_LE_LMUL_EQ] THEN
MESON_TAC[GEN_ALL (Pa.SPEC `Re z:` REAL_ABS_LE);COMPLEX_NORM_GE_RE_IM;
REAL_INT_LT_CONV `&0 < &2`;SCHWARZ_INEQUALITY2;REAL_LE_TRANS]);;
let INPROD_TRIANGLE_INEQ2 = inner_space_prove(
`!x y. x IN s /\ y IN s
==> sqrt (real_of_complex(inprod (x+y) (x+y))) <=
sqrt(real_of_complex (inprod x x)) +
sqrt(real_of_complex (inprod y y)):`,
let REAL_MANOP = GEN_ALL(Pa.SPECL[`sqrt x:`;`sqrt y + sqrt z:`]
(GEN_ALL(REAL_ARITH `&0 <= x /\ &0<= y ==> ( x <= y <=> abs x <= abs y)`))) in
IMP_REWRITE_TAC[REAL_MANOP;REAL_LE_SQUARE_ABS;SQRT_POW_2;INPROD_TRIANGLE_INEQ;
INPROD_SELF_POS;SQRT_POS_LE;INNER_SPACE_ADD;REAL_LE_ADD]);;
let CFUN_NORM_SUB = inner_space_prove(
`!x y. x IN s /\ y IN s
==> cfun_norm inprod (x-y) = cfun_norm inprod (y-x):`,
IMP_REWRITE_TAC[cfun_norm;INPROD_SUB_SELF] THEN
ONCE_REWRITE_TAC[GSYM (Pa.SPEC `&2 *Re r:` RE_CX)] THEN
IMP_REWRITE_TAC[GSYM INPROD_ADD_CNJ] THEN
ONCE_SIMP_TAC[COMPLEX_ADD_SYM] THEN
REWRITE_TAC[REAL_ARITH `(x:real)+y-z = y+x-z`]);;
let CFUN_NORM_SUB_INEQ = inner_space_prove(
`!x y. x IN s /\ y IN s
==> cfun_norm inprod x - cfun_norm inprod y <= cfun_norm inprod (x-y):`,
let arrange = MESON[CFUN_ARITH `x = (x:cfun) - y + y`]
`cfun_norm inprod x - cfun_norm inprod y =
cfun_norm inprod (x-y+y) - cfun_norm inprod y` in
ONCE_REWRITE_TAC[arrange] THEN
IMP_REWRITE_TAC[INPROD_TRIANGLE_INEQ2;REAL_LE_SUB_RADD;cfun_norm;
INNER_SPACE_SUB]);;
let cfun_dist = new_definition
`cfun_dist (inprod:inprod) (x:cfun) (y:cfun) =
sqrt (real_of_complex(inprod (x-y) (x-y)))`;;
let CFUN_DIST_TRIANGLE_ADD = inner_space_prove(
`!x y x' y'. x IN s /\ y IN s /\ x' IN s /\ y' IN s
==> cfun_dist inprod (x+y) (x'+y')
<= cfun_dist inprod x x' + cfun_dist inprod y y':`,
IMP_REWRITE_TAC[cfun_dist;CFUN_ARITH `((x:cfun)+y)-(x'+y') = x-x'+y-y'`;
INPROD_TRIANGLE_INEQ2;INNER_SPACE_SUB;INPROD_SELF_POS;SQRT_POS_LE;
SQRT_MONO_LE;REAL_ABS_REFL;SQRT_POW_2;POW_2_SQRT]);;
let CFUN_DIST_REFL = inner_space_prove(
`!x. cfun_dist inprod x x = &0:`,
REWRITE_TAC[cfun_dist;CFUN_SUB_REFL] THEN
MESON_TAC[INPROD_ZERO;SQRT_0;REAL_OF_COMPLEX_CX]);;
let CFUN_NORM_0 = inner_space_prove(
`cfun_norm inprod cfun_zero = &0:`,
MESON_TAC[cfun_norm;INPROD_ZERO;REAL_OF_COMPLEX_CX;SQRT_0]);;
let CFUN_NORM_EQ_0 = inner_space_prove(
`!x. x IN s ==> (cfun_norm inprod x = &0 <=> (x equv cfun_zero) inprod):`,
MESON_TAC[cfun_norm;SQRT_EQ_0;REAL_OF_COMPLEX_ZERO;INPROD_NORM;GSYM EQUV_ZERO]);;
let CFUN_NORM_POS_LE = inner_space_prove(
`!x. x IN s ==> &0 <= cfun_norm inprod x :`,
MESON_TAC[cfun_norm;SQRT_POS_LE;INPROD_SELF_POS]);;
let CFUN_NORM_POW2 = inner_space_prove(
`!x. x IN s ==> cfun_norm inprod x pow 2 = real_of_complex (inprod x x):`,
MESON_TAC[cfun_norm;SQRT_POW_2;INPROD_SELF_POS]);;
let CFUN_NORM_INPROD_0 = inner_space_prove(
`!x. x IN s ==> (cfun_norm inprod x = &0 <=>
real_of_complex(inprod x x) = &0):`,
MESON_TAC[cfun_norm;INPROD_SELF_POS;SQRT_EQ_0]);;
let CFUN_NORM_NZ = inner_space_prove(
`!x. x IN s ==> (~((x equv cfun_zero) inprod) <=> &0 < cfun_norm inprod x):`,
IMP_REWRITE_TAC[ GSYM CFUN_NORM_EQ_0] THEN
MESON_TAC[REAL_ARITH ` y <= x ==> (~(x=y) <=> y < x)`;CFUN_NORM_POS_LE]
);;
let CFUN_NORM_SMUL = inner_space_prove(
`!x a. x IN s ==> cfun_norm inprod (a%x) = norm a * cfun_norm inprod x:`,
IMP_REWRITE_TAC[cfun_norm;INPROD_RSMUL;INPROD_LSMUL;INNER_SPACE_SMUL]
THEN REWRITE_TAC[COMPLEX_MUL_ASSOC;COMPLEX_MUL_CNJ;COMPLEX_POW_2;
GSYM CX_MUL;GSYM REAL_POW_2] THEN
IMP_REWRITE_TAC[REAL_CX; INPROD_SELF_REAL;
REAL_OF_COMPLEX_MUL;REAL_OF_COMPLEX_CX;
SQRT_MUL;INPROD_SELF_POS;REAL_LE_POW_2;POW_2_SQRT;NORM_POS_LE]);;
let CFUN_DIST_NZ = inner_space_prove(
`!x y. x IN s /\ y IN s ==>
(~((x equv y) inprod) <=> &0 < cfun_dist inprod x y):`,
ONCE_REWRITE_TAC[GSYM CFUN_SUB_0] THEN
REWRITE_TAC[cfun_dist;GSYM cfun_norm] THEN
MESON_TAC[CFUN_NORM_NZ;EQUV_SUB_ZERO;INNER_SPACE_SUB]
);;
(* ------------------------------------------------------------------------- *)
(* FINITE/INFINITE summation of cfun *)
(* ------------------------------------------------------------------------- *)
let cfun_sum = new_definition`cfun_sum = iterate cfun_add`;;
let NEUTRAL_CFUN_ADD = prove
(`neutral cfun_add = cfun_zero`,REWRITE_TAC[neutral]
THEN MATCH_MP_TAC SELECT_UNIQUE
THEN MESON_TAC[CFUN_ADD_LID;CFUN_ADD_RID]);;
let MONOIDAL_CFUN_ADD = prove
(`monoidal cfun_add`,
REWRITE_TAC[monoidal; NEUTRAL_CFUN_ADD] THEN CFUN_ARITH_TAC);;
let CFUN_SUM_CLAUSES = prove
(`(!f. cfun_sum {} f = cfun_zero) /\
(!x f s. FINITE s ==>
cfun_sum (x INSERT s) f =
(if x IN s then cfun_sum s f else f x + cfun_sum s f))`,
REWRITE_TAC[cfun_sum; GSYM NEUTRAL_CFUN_ADD] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
MESON_TAC[ITERATE_CLAUSES;MONOIDAL_CFUN_ADD]);;
let CFUN_SUM_CLAUSES_NUMSEG =
REWRITE_RULE[GSYM NEUTRAL_CFUN_ADD; GSYM cfun_sum]
(MATCH_MP ITERATE_CLAUSES_NUMSEG MONOIDAL_CFUN_ADD);;
let CFUN_SUM_CLAUSES_LEFT = prove
(`!f m n. m <= n ==> cfun_sum (m..n) f = f(m) + cfun_sum(m+1..n) f`,
SIMP_TAC[GSYM NUMSEG_LREC; CFUN_SUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
ARITH_TAC);;
let CFUN_SUM_IMAGE = prove
(`!f g s. (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y))
==> (cfun_sum (IMAGE f s) g = cfun_sum s (g o f))`,
REWRITE_TAC[cfun_sum; GSYM NEUTRAL_CFUN_ADD] THEN
MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_CFUN_ADD]);;
let NUMSEG_EMPTY_IMP = prove(`!m n. n < m ==> (m..n = {}) `,
SIMP_TAC[NUMSEG_EMPTY] );;
let CFUN_SUM_TRIV_NUMSEG = prove
(`!m n f. n < m ==> cfun_sum (m..n) f = cfun_zero`,
SIMP_TAC[NUMSEG_EMPTY_IMP;CFUN_SUM_CLAUSES]);;
let CFUN_SUM_OFFSET = prove
(`!p f m n. cfun_sum(m+p..n+p) f = cfun_sum(m..n) (\i. f(i + p))`,
SIMP_TAC[NUMSEG_OFFSET_IMAGE; CFUN_SUM_IMAGE;
EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN
REWRITE_TAC[o_DEF]);;
let CFUN_SUM_OFFSET_0 = prove
(`!f m n. m <= n ==> (cfun_sum(m..n) f = cfun_sum(0..n-m) (\i. f(i + m)))`,
SIMP_TAC[GSYM CFUN_SUM_OFFSET; ADD_CLAUSES; SUB_ADD]);;
let CFUN_SUM_CONST = prove
(`!c s. FINITE s ==> (cfun_sum s (\n. c) = Cx(&(CARD s)) % c)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[CFUN_SUM_CLAUSES; CARD_CLAUSES; GSYM REAL_OF_NUM_SUC] THEN
REPEAT STRIP_TAC THEN CFUN_ARITH_TAC);;
let CFUN_SUM_EQ_0 = prove
(`!f s. (!x:A. x IN s ==> (f(x) = cfun_zero)) ==> (cfun_sum s f = cfun_zero)`,
REWRITE_TAC[cfun_sum; GSYM NEUTRAL_CFUN_ADD] THEN
SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_CFUN_ADD]);;
let CFUN_SUM_0 = prove
(`!s:A->bool. cfun_sum s (\n. cfun_zero) = cfun_zero`,
SIMP_TAC[CFUN_SUM_EQ_0]);;
let CFUN_SUM_EQ = prove
(`!f g s. (!x. x IN s ==> (f x = g x)) ==> (cfun_sum s f = cfun_sum s g)`,
REWRITE_TAC[cfun_sum] THEN
MATCH_MP_TAC ITERATE_EQ THEN REWRITE_TAC[MONOIDAL_CFUN_ADD]);;
let CFUN_SUM_SING = prove
(`!f x. cfun_sum {x} f = f(x)`,
SIMP_TAC[CFUN_SUM_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; CFUN_ADD_RID]);;
let CFUN_SUM_SING_NUMSEG = prove
(`!f n. cfun_sum(n..n) f = f(n)`,
SIMP_TAC[CFUN_SUM_SING; NUMSEG_SING]);;
let CFUN_SUM_EQ_NUMSEG = prove
(`!f g m n. (!i. m <= i /\ i <= n ==> (f(i) = g(i)))
==> (cfun_sum(m..n) f = cfun_sum(m..n) g)`,
MESON_TAC[CFUN_SUM_EQ; FINITE_NUMSEG; IN_NUMSEG]);;
let CFUN_SUM_IN_SPC = prove
(`!g spc. is_cfun_subspace spc /\ (!n. g n IN spc) ==> !s. FINITE s
==> cfun_sum s g IN spc`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[CFUN_SUM_CLAUSES]
THEN ASM_SIMP_TAC[CFUN_SUBSPACE_ZERO;CFUN_SUBSPACE_ADD]);;
let SLINEAR_CFUN_SUM = prove
(`! spc f g. is_cfun_subspace spc /\ (!n. g n IN spc)
/\ is_set_linear_cop spc f
==> !s. FINITE s ==> (f(cfun_sum s g) = cfun_sum s (f o g))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[CFUN_SUM_CLAUSES]
THEN REPEAT STRIP_TAC
THENL[ASM_MESON_TAC[SLINCOP_CFUN_ZERO];IMP_REWRITE_TAC[SLINCOP_ADD]]
THEN Pa.EXISTS_TAC `spc:` THEN ASM_SIMP_TAC[CFUN_SUM_IN_SPC;o_DEF]);;
let SLINEAR_CFUN_SUM_IMP = prove
(`! spc f g s. is_cfun_subspace spc /\ (!n. g n IN spc)
/\ is_set_linear_cop spc f
/\FINITE s ==> (f(cfun_sum s g) = cfun_sum s (f o g))`,
MESON_TAC [SLINEAR_CFUN_SUM]);;
let LINEAR_CFUN_SUM = prove
(`!f g s. is_linear_cop f /\ FINITE s ==>
(f(cfun_sum s g) = cfun_sum s (f o g))`,
GEN_TAC THEN GEN_TAC THEN SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[CFUN_SUM_CLAUSES] THEN FIRST_ASSUM(fun th ->
SIMP_TAC[MATCH_MP LINCOP_CFUN_ZERO th; MATCH_MP LINCOP_ADD th; o_THM]));;
let CFUN_SUM_ADD = prove
(`!f g s. FINITE s ==>
(cfun_sum s (\x. f(x) + g(x)) = cfun_sum s f + cfun_sum s g)`,
SIMP_TAC[cfun_sum; ITERATE_OP; MONOIDAL_CFUN_ADD]);;
let CFUN_SUM_SMUL = prove
(`!f a s. FINITE s ==> (cfun_sum s (\x. a % f(x) ) = a % cfun_sum s f)`,
ONCE_REWRITE_TAC[MESON[] `a % (y:cfun) = (\x. a%x) y`] THEN
SIMP_TAC[REWRITE_RULE [o_DEF] (GSYM LINEAR_CFUN_SUM); SCALAR_LINCOP]);;
let CFUN_SUM_SUB = prove
(`!f g s. FINITE s ==>
(cfun_sum s (\x. f(x) - g(x)) = cfun_sum s f - cfun_sum s g)`,
ONCE_REWRITE_TAC[CFUN_SUB_NEG] THEN
ONCE_REWRITE_TAC[GSYM CFUN_SMUL_LID_NEG] THEN
SIMP_TAC[CFUN_SUM_SMUL; CFUN_SUM_ADD]);;
let CUN_SUM_ADD_NUMSEG = prove
(`!f g m n. cfun_sum(m..n) (\i. f(i) + g(i)) =
cfun_sum(m..n) f + cfun_sum(m..n) g`,
SIMP_TAC[CFUN_SUM_ADD; FINITE_NUMSEG]);;
let cfun_lim = new_definition
`cfun_lim1 (s,inprod) f l net <=>
is_inner_space (s,inprod) /\ l IN s /\ (!x. (f x) IN s) /\
(!e. &0 < e ==> eventually (\x. cfun_dist inprod (f x) l < e) net)`;;
let CFUN_LIM_INNER_SPACE = prove
(`!innerspc f l net. cfun_lim1 innerspc f l net ==> is_inner_space innerspc`,
SIMP_TAC[FORALL_INNER_SPACE_THM;cfun_lim]);;
let is_bounded = new_definition
`is_bounded1 (s,inprod) h <=> is_inner_space (s,inprod)
==> ?B. &0 < B /\
(!x. x IN s /\ h x IN s ==> sqrt(real_of_complex(inprod (h x) (h x))) <=
B * sqrt(real_of_complex(inprod x x)))`;;
let is_bounded_linear = new_definition
`is_bounded_linear1 (s,inprod) h <=> is_inner_space (s,inprod)
==> is_linear_cop h /\ is_closed_by s h /\ ?B. &0 < B /\
(!x. x IN s ==> sqrt(real_of_complex(inprod (h x) (h x))) <=
B * sqrt(real_of_complex(inprod x x)))`;;
let SCALAR_BOUNDED = prove
(`!a is. is_bounded1 is (\x:cfun. a % x)`,
SIMP_TAC[FORALL_INNER_SPACE_THM;is_bounded]
THEN REPEAT STRIP_TAC
THEN Pa.ASM_CASES_TAC `a = Cx(&0):`
THENL[ Pa.EXISTS_TAC `&1:` THEN
ASM_REWRITE_TAC[REAL_LT_01;CFUN_SMUL_LZERO;REAL_MUL_LID] THEN
ASM_MESON_TAC[SQRT_POS_LE;REAL_OF_COMPLEX_CX;SQRT_0;INPROD_ZERO;
INPROD_SELF_POS];Pa.EXISTS_TAC `norm a:` THEN
IMP_REWRITE_TAC[COMPLEX_NORM_NZ;REAL_LE_REFL;GSYM cfun_norm;
CFUN_NORM_SMUL]]);;
let CFUN_LIM_ULINEAR = prove
(`!net:(A)net h s1 f l s inprod.
cfun_lim1 (s,inprod) f l net /\ is_unbounded_linear_cop s1 h
/\ (!x. x IN s1 ==> x IN s /\ h x IN s)
/\ (!x. f x IN s1) /\ l IN s1 /\
is_bounded1 (s,inprod) h
==> cfun_lim1 (s,inprod) (\x.h (f x)) (h l) net`,
REWRITE_TAC[FORALL_INNER_SPACE_THM] THEN
REPEAT GEN_TAC THEN SIMP_TAC[cfun_lim] THEN STRIP_TAC THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [is_bounded]) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `B:real` THEN
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o Pa.SPEC `e / B:`) THEN
ASM_SIMP_TAC[REAL_LT_DIV;cfun_dist;REAL_LT_RDIV_EQ] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
REWRITE_TAC[] THEN Pa.X_GEN_TAC `x:` THEN
IMP_REWRITE_TAC[GSYM (Pa.SPEC "s1" ULINCOP_SUB);ULINCOP_SUBSPACE] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LET_TRANS) THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN IMP_REWRITE_TAC[INNER_SPACE_SUB]
THEN ASM_MESON_TAC[ULINCOP_SUB;INNER_SPACE_SUB]);;
let cfun_sums = new_definition
`cfun_sums innerspc f l s <=>
cfun_lim1 innerspc (\n. cfun_sum (s INTER (0..n)) f) l sequentially`;;
let cfun_infsum = new_definition
`cfun_infsum innerspc s f = @l. cfun_sums innerspc f l s`;;
let cfun_summable = new_definition
`cfun_summable innerspc s f = ?l. cfun_sums innerspc f l s`;;
let CFUN_SUMS_INNER_SPACE = prove
(`!innerspc f l s. cfun_sums innerspc f l s ==> is_inner_space innerspc`,
SIMP_TAC[FORALL_INNER_SPACE_THM;cfun_sums;cfun_lim]);;
let CFUN_SUMS_SUMMABLE = prove
(`!f l s innerspc. cfun_sums innerspc f l s
==> cfun_summable innerspc s f`,
REWRITE_TAC[cfun_summable] THEN MESON_TAC[]);;
let CFUN_SUMS_INFSUM = prove
(`!f s innerspc. cfun_sums innerspc f (cfun_infsum innerspc s f) s <=>
cfun_summable innerspc s f`,
REWRITE_TAC[cfun_infsum;cfun_summable] THEN MESON_TAC[]);;
let CFUN_SUM_RESTRICT = prove
(`!f s. FINITE s
==> (cfun_sum s (\x. if x IN s then f(x) else cfun_zero) =
cfun_sum s f)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_SUM_EQ THEN ASM_SIMP_TAC[]);;
let CFUN_SUM_SUPERSET = prove
(`!f u v.
u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> (f(x) = cfun_zero))
==> (cfun_sum v f = cfun_sum u f)`,
SIMP_TAC[cfun_sum; GSYM NEUTRAL_CFUN_ADD; ITERATE_SUPERSET; MONOIDAL_CFUN_ADD]);;
let CFUN_LIM_SEQUENTIALLY = prove
(`!f l s inprod. cfun_lim1 (s,inprod) f l sequentially <=>
is_inner_space (s,inprod) /\ l IN s /\
(!x. f x IN s)
/\ (!e. &0 < e ==> ?N. !n. N <= n ==> cfun_dist inprod (f n) l < e)`,
REWRITE_TAC[cfun_lim; EVENTUALLY_SEQUENTIALLY] THEN MESON_TAC[]);;
let CFUN_LIM_NEG = prove
(`!net f l innerspc. cfun_lim1 innerspc f l net
==> cfun_lim1 innerspc (\x. --(f x)) (--l) net`,
REWRITE_TAC[FORALL_INNER_SPACE_THM] THEN REPEAT GEN_TAC THEN
REWRITE_TAC[cfun_lim;cfun_dist] THEN
IMP_REWRITE_TAC[CFUN_ARITH `--(x:cfun) - --y = --(x - y)`;
INPROD_NEG;CFUN_SUBSPACE_SUB;CFUN_SUBSPACE_NEG;
INNER_SPACE_IS_SUBSPACE] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[] THEN
IMP_REWRITE_TAC[CFUN_ARITH `--(x:cfun) - --y = --(x - y)`;
INPROD_NEG;CFUN_SUBSPACE_SUB;CFUN_SUBSPACE_NEG;
INNER_SPACE_IS_SUBSPACE]);;
let CFUN_LIM_ADD = prove
(`!net f g l m innerspc.
cfun_lim1 innerspc f l net /\ cfun_lim1 innerspc g m net
==> cfun_lim1 innerspc (\x. f(x) + g(x)) (l+m) net`,
REWRITE_TAC[FORALL_INNER_SPACE_THM] THEN REPEAT GEN_TAC
THEN REWRITE_TAC[cfun_lim;CONJ_ACI] THEN
IMP_REWRITE_TAC[INNER_SPACE_ADD] THEN STRIP_TAC THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`)) THEN
ASM_REWRITE_TAC[REAL_HALF; IMP_IMP; GSYM EVENTUALLY_AND] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
GEN_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH
`z <= x + y ==> x < e / &2 /\ y < e / &2 ==> z < e`) THEN
ASM_MESON_TAC[CFUN_DIST_TRIANGLE_ADD]);;
let CFUN_LIM_SUB = prove
(`!net f g l m innerspc.
cfun_lim1 innerspc f l net /\ cfun_lim1 innerspc g m net
==> cfun_lim1 innerspc (\x. f(x) - g(x)) (l-m) net`,
REWRITE_TAC[CFUN_SUB_NEG] THEN ASM_SIMP_TAC[CFUN_LIM_ADD;CFUN_LIM_NEG]);;
let CFUN_LIM_CONST = prove
(`!net s inprod y. y IN s /\ is_inner_space (s,inprod)
==> cfun_lim1 (s,inprod) (\x. y) y net`,
IMP_REWRITE_TAC[cfun_lim; CFUN_DIST_REFL; EVENTUALLY_TRUE]);;
let CFUN_LIM_SMUL = prove
(`!a net f l innerspc.
cfun_lim1 innerspc f l net
==> cfun_lim1 innerspc (\x. a% f(x)) (a%l) net`,
REWRITE_TAC[FORALL_INNER_SPACE_THM] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_LIM_ULINEAR THEN
Pa.EXISTS_TAC "s" THEN
ASM_SIMP_TAC[REWRITE_RULE [ETA_AX]SCALAR_BOUNDED;is_unbounded_linear_cop]
THEN RULE_ASSUM_TAC(REWRITE_RULE[cfun_lim]) THEN
ASM_MESON_TAC[INNER_SPACE_IS_SUBSPACE;CFUN_SUBSPACE_SMUL;CFUN_ADD_LDISTRIB;CFUN_SMUL_ASSOC;COMPLEX_MUL_SYM]
);;
let CFUN_LIM_NORM_UBOUND = prove
(`!net:(A)net f l b s inprod.
~(trivial_limit net) /\
cfun_lim1 (s,inprod) f l net /\
eventually (\x. cfun_norm inprod (f x) <= b) net
==> cfun_norm inprod l <= b`,
let STEP = MESON[CFUN_NORM_SUB_INEQ;CFUN_NORM_SUB;
REAL_ARITH `z <= b /\ x-z <= y ==> x <= y+b`]
`is_inner_space (s,inprod) /\ l IN s /\ f IN s
==> cfun_norm inprod l <= cfun_norm inprod (f-l) + b \/
~(cfun_norm inprod f <= b)` in
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[REAL_ARITH `~(l <= b) <=> &0 < l - b`] THEN DISCH_TAC THEN
REWRITE_TAC[cfun_lim] THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
FIRST_X_ASSUM(ANTE_RES_THEN MP_TAC) THEN
REWRITE_TAC[TAUT `p ==> q ==> F <=> ~(p /\ q)`; GSYM EVENTUALLY_AND] THEN
DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_HAPPENS) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `x:A` MP_TAC) THEN
REWRITE_TAC[REAL_NOT_LT; REAL_LE_SUB_RADD; DE_MORGAN_THM;
cfun_dist;GSYM cfun_norm] THEN MATCH_MP_TAC STEP THEN ASM_REWRITE_TAC[]
);;
let CFUN_LIM_UNIQUE = prove
(`!net:(A)net f l l' s inprod.
~(trivial_limit net) /\ cfun_lim1 (s,inprod) f l net
/\ cfun_lim1 (s,inprod) f l' net ==> (l equv l') inprod`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN (fun thm -> ASSUME_TAC (REWRITE_RULE[cfun_lim] thm) THEN
(ASSUME_TAC (REWRITE_RULE[CFUN_SUB_REFL] (MATCH_MP CFUN_LIM_SUB thm)))) THEN
Pa.SUBGOAL_THEN `!e. &0 < e ==> cfun_norm inprod (l-l') <= e:` MP_TAC
THENL
[GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CFUN_LIM_NORM_UBOUND THEN
MAP_EVERY Pa.EXISTS_TAC [`net:(A)net:`; `\x:A. cfun_zero:`;`s:`] THEN
ASM_REWRITE_TAC[] THEN IMP_REWRITE_TAC[CFUN_NORM_0; REAL_LT_IMP_LE] THEN
ASM_MESON_TAC[eventually];
DISCH_THEN(MP_TAC o Pa.SPEC `cfun_norm inprod (l-l') / &2:`) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
IMP_REWRITE_TAC[CFUN_DIST_NZ] THEN REWRITE_TAC[cfun_dist;GSYM cfun_norm] THEN
DISCH_THEN (fun thm ->
ASSUM_LIST(fun thms ->
MP_TAC (REWRITE_RULE thms (Pa.SPECL [`s:`] thm)))) THEN
ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
REAL_ARITH_TAC]);;
let CFUN_SERIES_ADD = prove
(`!f g l l' s innerspc. cfun_sums innerspc f l s /\ cfun_sums innerspc g l' s
==> cfun_sums innerspc (\n.f n + g n) (l+l') s`,
SIMP_TAC[cfun_sums; FINITE_INTER_NUMSEG; CFUN_SUM_ADD; CFUN_LIM_ADD]);;
let CFUN_SERIES_SUB = prove
(`!f g l l' s innerspc. cfun_sums innerspc f l s /\ cfun_sums innerspc g l' s
==> cfun_sums innerspc (\n.f n - g n) (l-l') s`,
SIMP_TAC[cfun_sums; FINITE_INTER_NUMSEG; CFUN_SUM_SUB; CFUN_LIM_SUB]);;
let CFUN_SERIES_SMUL = prove
(`!a f l s innerspc. cfun_sums innerspc f l s
==> cfun_sums innerspc (\n.a% (f n)) (a%l) s`,
SIMP_TAC[cfun_sums; FINITE_INTER_NUMSEG; CFUN_SUM_SMUL; CFUN_LIM_SMUL]);;
let CFUN_SERIES_UNIQUE = prove
(`!f l l' s s1 inprod. cfun_sums (s1,inprod) f l s /\ cfun_sums (s1,inprod) f l' s
==> (l equv l') inprod`,
REWRITE_TAC[cfun_sums] THEN MESON_TAC[TRIVIAL_LIMIT_SEQUENTIALLY;
CFUN_LIM_UNIQUE]);;
let CFUN_INFSUM_UNIQUE = prove
(`!f l s s1 inprod. cfun_sums (s1,inprod) f l s ==> (cfun_infsum (s1,inprod) s f equv l) inprod`,
MESON_TAC[CFUN_SERIES_UNIQUE; CFUN_SUMS_INFSUM; cfun_summable]);;
let INFSUM_IN_SPC = prove
(`!spc inprod f l s. cfun_summable (spc,inprod) s f ==>
(cfun_infsum (spc,inprod) s f) IN spc`,
REWRITE_TAC[cfun_summable;cfun_lim;cfun_infsum;cfun_sums]
THEN MESON_TAC[CFUN_LIM_UNIQUE]);;
let CFUN_SERIES_0 = prove
(`!s spc inprod. is_inner_space (spc,inprod) ==>
cfun_sums (spc,inprod) (\n. cfun_zero) (cfun_zero) s`,
IMP_REWRITE_TAC[cfun_sums; CFUN_SUM_0; CFUN_LIM_CONST;INNER_SPACE_ZERO]);;
let CFUN_SERIES_FINITE = prove
(`!f s spc inprod. (!x. f x IN spc) /\ is_inner_space (spc,inprod) /\
FINITE s ==> cfun_sums (spc,inprod) f (cfun_sum s f) s`,
REPEAT STRIP_TAC THEN POP_ASSUM (fun thm -> MP_TAC thm THEN ASSUME_TAC thm)
THEN REWRITE_TAC[num_FINITE; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `n:num` THEN ASM_REWRITE_TAC[cfun_sums; CFUN_LIM_SEQUENTIALLY]
THEN IMP_REWRITE_TAC[CFUN_SUM_IN_SPC;FINITE_INTER_NUMSEG;
INNER_SPACE_IS_SUBSPACE] THEN
DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `n:num` THEN
X_GEN_TAC `m:num` THEN DISCH_TAC THEN
SUBGOAL_THEN `s INTER (0..m) = s`
(fun th -> ASM_SIMP_TAC[th]) THEN
REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG; LE_0] THEN
ASM_MESON_TAC[LE_TRANS;CFUN_DIST_REFL]);;
let CFUN_SERIES_SLINEAR = prove
(`!f h l s s1 s2 inprod. cfun_sums (s2,inprod) f l s /\
is_unbounded_linear_cop s1 h /\ is_bounded1 (s2,inprod) h /\
(!x. x IN s1 ==> x IN s2 /\ h x IN s2) /\
(!n. f n IN s1) /\ l IN s1
==> cfun_sums (s2,inprod) (\n. h(f n)) (h l) s `,
REWRITE_TAC[cfun_sums] THEN REPEAT STRIP_TAC THEN
Pa.SUBGOAL_THEN
`!n. cfun_sum (s INTER(0..n)) (\x. h(f x)) = h(cfun_sum (s INTER(0..n)) f):`
ASSUME_TAC
THENL[IMP_REWRITE_TAC[FINITE_INTER; FINITE_NUMSEG;
GSYM(REWRITE_RULE[o_DEF] SLINEAR_CFUN_SUM_IMP)] THEN
ASM_MESON_TAC[ULINCOP_SUBSPACE;ULINCOP_ADD;ULINCOP_SMUL;is_set_linear_cop];
ASM_SIMP_TAC[cfun_sums]
THEN MATCH_MP_TAC CFUN_LIM_ULINEAR
THEN Pa.EXISTS_TAC "s1" THEN
ASM_MESON_TAC[CFUN_SUM_IN_SPC;ULINCOP_SUBSPACE;FINITE_INTER; FINITE_NUMSEG]
]);;
let CFUN_INFSUM_0 = prove
(`!spc inprod s. is_inner_space (spc,inprod) ==>
(cfun_infsum (spc,inprod) s (\i. cfun_zero) equv cfun_zero) inprod`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_INFSUM_UNIQUE
THEN ASM_SIMP_TAC[CFUN_SERIES_0]);;
let CFUN_INFSUM_SLINEAR = prove
(`!f h l s s1 s2 inprod. cfun_summable (s2,inprod) s f /\
is_unbounded_linear_cop s1 h /\ is_bounded1 (s2,inprod) h /\
(!x. x IN s1 ==> x IN s2 /\ h x IN s2) /\
(!n. f n IN s1) /\ (cfun_infsum (s2,inprod) s f) IN s1
==> (cfun_infsum (s2,inprod) s (\n. h(f n)) equv
h (cfun_infsum (s2,inprod) s f)) inprod`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_INFSUM_UNIQUE THEN
MATCH_MP_TAC CFUN_SERIES_SLINEAR THEN
Pa.EXISTS_TAC "s1" THEN ASM_SIMP_TAC[CFUN_SUMS_INFSUM]);;
let CFUN_INFSUM_SMUL = prove
(`!a f s s1 inprod. cfun_summable (s1,inprod) s f
==> (cfun_infsum (s1,inprod) s (\n.a% (f n)) equv a % (cfun_infsum (s1,inprod) s f)) inprod`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_INFSUM_UNIQUE THEN
MATCH_MP_TAC CFUN_SERIES_SMUL THEN ASM_REWRITE_TAC[CFUN_SUMS_INFSUM]);;
let CFUN_SERIES_RESTRICT = prove
(`!f k l innerspc.
cfun_sums innerspc (\n. if n IN k then f(n) else cfun_zero) l (:num)
<=> cfun_sums innerspc f l k`,
REPEAT GEN_TAC THEN REWRITE_TAC[cfun_sums] THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
ONCE_REWRITE_TAC[FUN_EQ_THM] THEN
REWRITE_TAC[INTER_UNIV] THEN GEN_TAC THEN
MATCH_MP_TAC(MESON[] `
cfun_sum s f = cfun_sum t f /\ cfun_sum t f = cfun_sum t g
==> cfun_sum s f = cfun_sum t g`)
THEN CONJ_TAC THENL
[MATCH_MP_TAC CFUN_SUM_SUPERSET THEN SET_TAC[];
MATCH_MP_TAC CFUN_SUM_EQ THEN SIMP_TAC[IN_INTER]]);;
let CFUN_SUMS_FINITE_DIFF = prove
(`!f l s t spc inpord.
t SUBSET s /\ FINITE t /\ (!x. f x IN spc) /\
cfun_sums (spc,inpord) f l s
==> cfun_sums (spc,inpord) f (l - cfun_sum t f) (s DIFF t)`,
let lem = MESON[]`(P /\ Q /\ E ==> C)<=> (E ==> P ==> Q ==>C)` in
REPEAT STRIP_TAC THEN FIRST_ASSUM (ASSUME_TAC o MATCH_MP CFUN_SUMS_INNER_SPACE)
THEN ASSUME_TAC (REWRITE_RULE[lem] CFUN_SERIES_FINITE)
THEN REPEAT (FIRST_X_ASSUM (fun thm1 ->
POP_ASSUM (fun thm2 -> ASSUME_TAC ( MATCH_MP thm2 thm1))))
THEN POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN
ONCE_REWRITE_TAC[GSYM CFUN_SERIES_RESTRICT] THEN
REWRITE_TAC[IMP_IMP] THEN
DISCH_THEN(MP_TAC o MATCH_MP CFUN_SERIES_SUB) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:num` THEN REWRITE_TAC[IN_DIFF] THEN
FIRST_ASSUM(MP_TAC o SPEC `x:num` o GEN_REWRITE_RULE I [SUBSET]) THEN
MAP_EVERY ASM_CASES_TAC [`(x:num) IN s`; `(x:num) IN t`] THEN
ASM_REWRITE_TAC[CFUN_SUB_REFL;CFUN_SUB_RID]);;
let CFUN_SUMS_OFFSET = prove
(`!f l m n s inprod.
cfun_sums (s,inprod) f l (from m) /\ (!x. f x IN s) /\ m < n
==> cfun_sums (s,inprod) f (l - cfun_sum (m..(n-1)) f) (from n)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `from n = from m DIFF (m..(n-1))` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_FROM; IN_DIFF; IN_NUMSEG] THEN ASM_ARITH_TAC;
MATCH_MP_TAC CFUN_SUMS_FINITE_DIFF THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN
SIMP_TAC[SUBSET; IN_FROM; IN_NUMSEG]]);;
let CFUN_SUMMABLE_OFFSET = prove
(`!f s inprod n. cfun_summable (s,inprod) (from m) f /\ (!x. f x IN s)
/\ m < n ==> cfun_summable (s,inprod) (from n) f`,
MESON_TAC[cfun_summable;CFUN_SUMS_OFFSET]);;
let CFUN_INFSUM_OFFSET = prove
(`!f s inprod n m. cfun_summable (s,inprod) (from m) f
/\ (!x. f x IN s) /\ m < n ==>
(cfun_infsum (s,inprod) (from n) f equv
( cfun_infsum (s,inprod) (from m) f - cfun_sum (m..n-1) f))inprod`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CFUN_SUMS_INFSUM] THEN
DISCH_THEN(MP_TAC o MATCH_MP CFUN_SUMS_OFFSET) THEN
MESON_TAC[CFUN_INFSUM_UNIQUE]);;
let CFUN_SUMS_REINDEX = prove
(`!f innerspc n l k. cfun_sums innerspc (\x. f(x+k)) l (from n) <=>
cfun_sums innerspc f l (from (n+k))`,
REWRITE_TAC[FORALL_INNER_SPACE_THM] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[cfun_sums; FROM_INTER_NUMSEG] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CFUN_SUM_OFFSET] THEN
REWRITE_TAC[CFUN_LIM_SEQUENTIALLY] THEN EQ_TAC THEN SIMP_TAC[]
THEN REPEAT STRIP_TAC THENL[Pa.ASM_CASES_TAC ` k <= x:` THENL[
FIRST_ASSUM(fun th -> ASM_MESON_TAC[SUB_ADD; Pa.SPEC `x-k:` th]);
IMP_REWRITE_TAC[CFUN_SUM_TRIV_NUMSEG;INNER_SPACE_ZERO] THEN
POP_ASSUM MP_TAC THEN ARITH_TAC];ALL_TAC;ALL_TAC]
THEN
ASM_MESON_TAC[ARITH_RULE `N + k:num <= n ==> n = (n - k) + k /\ N <= n - k`;
ARITH_RULE `N + k:num <= n ==> N <= n + k`]);;
let CFUN_SUMMABLE_REINDEX = prove
(`!f innerspc n k. cfun_summable innerspc (from n) (\x. f(x+k)) <=>
cfun_summable innerspc (from (n+k)) f`,
MESON_TAC[cfun_summable;CFUN_SUMS_REINDEX]);;
let CFUN_INFSUM_REINDEX = prove
(`!f s inprod n k. cfun_summable (s,inprod) (from n) (\x. f (x + k)) ==>
(cfun_infsum (s,inprod) (from (n+k)) f equv
cfun_infsum (s,inprod) (from n) (\x. f(x+k))) inprod `,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CFUN_INFSUM_UNIQUE
THEN ASM_SIMP_TAC[GSYM CFUN_SUMS_REINDEX;CFUN_SUMS_INFSUM]);;
(* ------------------------------------------------------------------------- *)
(* FINITE summation of cop *)
(* ------------------------------------------------------------------------- *)
let cop_sum = new_definition`cop_sum s f = \x. cfun_sum s (\n.(f n) x)`;;
let COP_BINOMIAL_THEOREM = prove
(`!n op1 op2.
op1 ** op2 = op2 ** op1 /\ is_linear_cop op1 /\ is_linear_cop op2
==> (op1 + op2) pow n =
cop_sum (0..n)
(\k. Cx (&(binom (n,k))) % (op1 pow k ** op2 pow (n - k)))`,
INDUCT_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[cop_pow;cop_sum] THEN
REWRITE_TAC[CFUN_SUM_SING_NUMSEG; binom; SUB_REFL; cop_pow; COP_MUL_LID;
I_THM;GSYM I_DEF;COP_SMUL_LID] THEN
SIMP_TAC[CFUN_SUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`;
CFUN_SUM_OFFSET] THEN
ASM_SIMP_TAC[cop_pow; binom; GSYM ADD1;COP_MUL_LID;COP_SMUL_LID;cop_sum]
THEN ASM_SIMP_TAC[LINEAR_CFUN_SUM;ADD_LINCOP;COP_MUL;FINITE_NUMSEG;
o_DEF;COP_ADD_MUL_RDISTRIB] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD;CX_ADD;COP_ADD_RDISTRIB;
CUN_SUM_ADD_NUMSEG;SUB_0;GSYM COP_ADD; COP_ADD_THM] THEN
MATCH_MP_TAC( MESON[COP_ADD_AC] `a = e /\ b = c + d ==> a + b = c + d + e`)
THEN CONJ_TAC THEN REWRITE_TAC[GSYM COP_MUL;GSYM COP_MUL_THM; GSYM I_DEF
; COP_MUL_RID]
THENL [ASM_SIMP_TAC[GSYM LINCOP_MUL_RMUL;SUB_SUC;COP_MUL];
SIMP_TAC[GSYM cop_pow;GSYM COP_MUL_ASSOC]] THEN
SIMP_TAC[ADD1; SYM(REWRITE_CONV[CFUN_SUM_OFFSET]
`cfun_sum(m+1..n+1) (\i. f i)`)] THEN
REWRITE_TAC[CFUN_SUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN
SIMP_TAC[CFUN_SUM_CLAUSES_LEFT; LE_0; BINOM_LT; LT; COP_SMUL_LID;
SUB_0; cop_pow;binom; COP_SMUL_LZERO;COP_ZERO;CFUN_ADD_RID;COP_MUL_LID]
THEN ASM_SIMP_TAC[GSYM COP_ADD; COP_MUL_RID;COP_EQ_ADD_LCANCEL;
LINCOP_MUL_RMUL;ARITH;ETA_AX;GSYM COP_MUL_ASSOC] THEN
ABS_TAC THEN RULE_ASSUM_TAC GSYM THEN MATCH_MP_TAC CFUN_SUM_EQ_NUMSEG THEN
SIMP_TAC[ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; cop_pow]
THEN ASM_SIMP_TAC[COP_POW_COMMUTE_N] THEN
SIMP_TAC[COP_POW_COMMUTE_N; COP_MUL_ASSOC]);;
|