File: NUM_ODD_CONV.doc

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (42 lines) | stat: -rw-r--r-- 924 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
\DOC NUM_ODD_CONV

\TYPE {NUM_ODD_CONV : conv}

\SYNOPSIS
Proves whether a natural number numeral is odd.

\KEYWORDS
conversion, number, arithmetic.

\DESCRIBE
If {n} is a numeral (e.g. {0}, {1}, {2}, {3},...), then {NUM_ODD_CONV `n`}
returns one of the theorems:
{
  |- ODD(n) <=> T
}
\noindent or
{
  |- ODD(n) <=> F 
}
\noindent according to whether the number denoted by {n} is odd.

\FAILURE
Fails if applied to a term that is not of the form {`ODD n`} with {n} a 
numeral.

\EXAMPLE
{
  # NUM_ODD_CONV `ODD 123`;;
  val it : thm = |- ODD 123 <=> T
  
  # NUM_ODD_CONV `ODD 1234`;;
  val it : thm = |- ODD 1234 <=> F
}

\SEEALSO
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MAX_CONV, NUM_MIN_CONV, NUM_MOD_CONV, NUM_MULT_CONV, NUM_PRE_CONV,
NUM_REDUCE_CONV, NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

\ENDDOC