1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
|
\DOC increasing
\TYPE {increasing : ('a -> 'b) -> 'a -> 'a -> bool}
\SYNOPSIS
Returns a total ordering based on a measure function
\DESCRIBE
When applied to a ``measure'' function {f}, the call {increasing f} returns a
binary function ordering elements in a call {increasing f x y} by
{f(x) <? f(y)}, where the ordering {<?} is the OCaml polymorphic ordering.
\FAILURE
Never fails unless the measure function does.
\EXAMPLE
{
# let nums = -5 -- 5;;
val nums : int list = [-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5]
# sort (increasing abs) nums;;
val it : int list = [0; 1; -1; 2; -2; 3; -3; 4; -4; 5; -5]
}
\SEEALSO
<?, decreasing, sort.
\ENDDOC
|