1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
|
\DOC reverse_interface_mapping
\TYPE {reverse_interface_mapping : bool ref}
\SYNOPSIS
Determines whether interface map is printed on output (default {true}).
\DESCRIBE
The reference variable {reverse_interface_mapping} is one of several settable
parameters controlling printing of terms by {pp_print_term}, and hence the
automatic printing of terms and theorems at the toplevel. When
{reverse_interface_mapping} is {true} (as it is by default), the front-end
interface map for a constant or variable is printed. When it is {false}, the
core constant or variable is printed.
\FAILURE
Not applicable.
\EXAMPLE
Here is a simple library theorem about real numbers as it usually appears:
{
# reverse_interface_mapping := true;;
val it : unit = ()
# REAL_EQ_SUB_LADD;;
val it : thm = |- !x y z. x = y - z <=> x + z = y
}
\noindent but with another setting of {reverse_interface_mapping} we see that
the usual symbol `{+}' is an interface for {real_add}, while the `iff' sign is
just an interface for Boolean equality:
{
# reverse_interface_mapping := false;;
val it : unit = ()
# REAL_EQ_SUB_LADD;;
val it : thm = |- !x y z. (x = real_sub y z) = real_add x z = y
}
\SEEALSO
pp_print_term, prebroken_binops, print_all_thm,
print_unambiguous_comprehensions, the_interface, typify_universal_set,
unspaced_binops.
\ENDDOC
|