1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
|
(* ========================================================================== *)
(* COMMON DEFINITIONS AND THEOREMS *)
(* ========================================================================== *)
(* -------------------------------------------------------------------------- *)
(* LABEL_CONJUNCTS_TAC *)
(* -------------------------------------------------------------------------- *)
let rec LABEL_CONJUNCTS_TAC labels thm =
if is_conj(concl(thm))
then
CONJUNCTS_THEN2
(fun c1 -> LABEL_TAC (hd labels) c1)
(fun c2 -> LABEL_CONJUNCTS_TAC (tl labels) c2)
thm
else
LABEL_TAC (hd labels) thm;;
(* -------------------------------------------------------------------------- *)
(* ipow: pow with integer exponent *)
(* -------------------------------------------------------------------------- *)
unparse_as_infix("ipow");;
let ipow = define
`ipow (x:real) (e:int) =
(if (&0 <= e)
then (x pow (num_of_int e))
else (inv (x pow (num_of_int (--e)))))`;;
parse_as_infix("ipow",(24,"left"));;
let IPOW_LT_0 =
prove(`!(r:real) (i:int). &0 < r ==> &0 < r ipow i`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[ipow] THEN
COND_CASES_TAC THENL [
(* 0 <= i *)
CHOOSE_THEN (fun thm -> REWRITE_TAC[thm])
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] (ASSUME `&0 <= (i:int)`)) THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN
MATCH_MP_TAC REAL_POW_LT THEN ASM_REWRITE_TAC[];
(* i < 0 *)
SUBGOAL_THEN `&0 <= --(i:int)` (fun thm -> CHOOSE_THEN (fun thm2 ->
REWRITE_TAC[thm2]) (REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] thm)) THENL
[ASM_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN
REWRITE_TAC[REAL_LT_INV_EQ] THEN MATCH_MP_TAC REAL_POW_LT THEN
ASM_REWRITE_TAC[]]);;
let IPOW_INV_NEG =
prove(`!(x:real) (i:int). ~(x = &0) ==> x ipow i = inv(x ipow -- i)`,
REPEAT GEN_TAC THEN DISCH_THEN(fun thm -> LABEL_TAC "xn0" thm) THEN
REWRITE_TAC[ipow] THEN
ASM_CASES_TAC `&0 <= (i:int)` THENL [
ASM_CASES_TAC `&0 <= --(i:int)` THENL [
(* i = 0 *)
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[MATCH_MP
(ARITH_RULE `&0 <= (i:int) /\ &0 <= --i ==> i = &0`)
(CONJ (ASSUME `&0 <= (i:int)`) (ASSUME `&0 <= --(i:int)`))] THEN
REWRITE_TAC[ARITH_RULE `-- (&0:int) = (&0:int)`] THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN ARITH_TAC;
(* -i < 0, so i > 0 *)
ASM_REWRITE_TAC[] THEN REWRITE_TAC[ARITH_RULE `-- -- (x:int) = x`]
THEN CHOOSE_THEN (fun thm -> REWRITE_TAC[thm])
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] (ASSUME `&0 <= (i:int)`)) THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN REWRITE_TAC[REAL_INV_INV]];
(* i < 0 *)
ASM_REWRITE_TAC[MATCH_MP
(ARITH_RULE `~(&0 <= (i:int)) ==> (&0 <= --i <=> T)`)
(ASSUME `~(&0 <= (i:int))`)]]);;
(* I'm sure this proof could be shortened ... yikes! *)
let IPOW_ADD_EXP =
prove(`!(x:real) (u:int) (v:int). ~(x = &0) ==>
(x ipow u) * (x ipow v) = (x ipow (u + v))`,
(* lemma 1: prove when u, v non-negative *)
SUBGOAL_THEN `!(x:real) (u:int) (v:int).
~(x = &0) /\ &0 <= u /\ &0 <= v ==>
(x ipow u) * (x ipow v) = (x ipow (u + v))` (LABEL_TAC "lem1")
THENL [
REPEAT GEN_TAC THEN DISCH_THEN(fun thm ->
CONJUNCTS_THEN2
(fun xn0 -> LABEL_TAC "xn0" xn0)
(fun uvge0 -> CONJUNCTS_THEN2 (fun uge0 -> LABEL_TAC "uge0" uge0)
(fun vge0 -> LABEL_TAC "vge0" vge0) uvge0)
thm) THEN
REWRITE_TAC[ipow] THEN
ASM_REWRITE_TAC[] THEN
USE_THEN "uge0" (fun uge0 -> USE_THEN "vge0" (fun vge0 ->
REWRITE_TAC[MATCH_MP
(ARITH_RULE `&0 <= (u:int) /\ &0 <= (v:int) ==> &0 <= u + v`)
(CONJ uge0 vge0)])) THEN
USE_THEN "uge0" (fun uge0 -> X_CHOOSE_THEN `n:num`
(fun thm -> REWRITE_TAC[thm])
(REWRITE_RULE [GSYM INT_OF_NUM_EXISTS] uge0)) THEN
USE_THEN "vge0" (fun vge0 -> X_CHOOSE_THEN `m:num`
(fun thm -> REWRITE_TAC[thm])
(REWRITE_RULE [GSYM INT_OF_NUM_EXISTS] vge0)) THEN
REWRITE_TAC[INT_OF_NUM_ADD] THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN
REWRITE_TAC[GSYM REAL_POW_ADD]; ALL_TAC] THEN
(* lemma 2: proof when u negative, v non-negative *)
SUBGOAL_THEN `!(x:real) (u:int) (v:int).
~(x = &0) /\ u < &0 /\ &0 <= v ==>
(x ipow u) * (x ipow v) = (x ipow (u + v))`
(LABEL_TAC "lem2") THENL [
REPEAT GEN_TAC THEN DISCH_THEN(fun thm ->
CONJUNCTS_THEN2
(fun xn0 -> LABEL_TAC "xn0" xn0)
(fun uv -> CONJUNCTS_THEN2 (fun ul0 -> LABEL_TAC "ul0" ul0)
(fun vge0 -> LABEL_TAC "vge0" vge0) uv)
thm) THEN
REWRITE_TAC[ipow] THEN
ASM_REWRITE_TAC[] THEN
USE_THEN "ul0" (fun ul0 -> REWRITE_TAC[MATCH_MP
(ARITH_RULE `(u:int) < &0 ==> ~(&0 <= u)`) ul0]) THEN
USE_THEN "ul0" (fun ul0 -> X_CHOOSE_THEN `n:num` (LABEL_TAC "ueqn")
(REWRITE_RULE [GSYM INT_OF_NUM_EXISTS]
(MATCH_MP (ARITH_RULE `(x:int) < &0 ==> &0 <= --x`) ul0))) THEN
USE_THEN "vge0" (fun vge0 -> X_CHOOSE_THEN `m:num` (LABEL_TAC "veqm")
(REWRITE_RULE [GSYM INT_OF_NUM_EXISTS] vge0)) THEN
ASM_CASES_TAC `&0 <= (u:int) + (v:int)` THENL [
LABEL_TAC "upvge0" (ASSUME `&0 <= (u:int) + (v:int)`) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[ARITH_RULE `(u:int) + (&m:int) = &m - (--u)`] THEN
ASM_REWRITE_TAC[] THEN
USE_THEN "ueqn" (fun ueqn -> USE_THEN "veqm" (fun veqm -> USE_THEN
"upvge0" (fun upvge0 ->
LABEL_TAC "nlem" (REWRITE_RULE [INT_OF_NUM_LE]
(REWRITE_RULE [ueqn; veqm] (MATCH_MP
(ARITH_RULE `&0 <= (u:int) + (v:int) ==> --u <= v`) upvge0))))))
THEN
USE_THEN "nlem" (fun nlem ->
REWRITE_TAC [MATCH_MP INT_OF_NUM_SUB nlem]) THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN
ONCE_REWRITE_TAC[ARITH_RULE `(a:real) * b = b * a`] THEN
REWRITE_TAC[GSYM real_div] THEN
USE_THEN "xn0" (fun xn0 ->
REWRITE_TAC [MATCH_MP REAL_DIV_POW2 xn0]) THEN
ASM_REWRITE_TAC[];
(* u + v negative *)
LABEL_TAC "upvnge0" (ASSUME `~(&0 <= (u:int) + (v:int))`) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[ARITH_RULE `--((u:int) + (&m:int)) = -- u - &m`] THEN
ASM_REWRITE_TAC[] THEN
USE_THEN "ueqn" (fun ueqn -> USE_THEN "veqm" (fun veqm ->
USE_THEN "upvnge0" (fun upvnge0 ->
LABEL_TAC "mln" (REWRITE_RULE [INT_OF_NUM_LT]
(REWRITE_RULE [ueqn; veqm] (MATCH_MP
(ARITH_RULE `~(&0 <= (u:int) + (v:int)) ==> v < --u`) upvnge0))))))
THEN
USE_THEN "mln" (fun mln ->
REWRITE_TAC [MATCH_MP INT_OF_NUM_SUB (MATCH_MP
(ARITH_RULE `m < n ==> m <= n`) mln)]) THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN
ONCE_REWRITE_TAC[ARITH_RULE `(a:real) * b = b * a`] THEN
REWRITE_TAC[GSYM real_div] THEN
USE_THEN "xn0" (fun xn0 ->
REWRITE_TAC[MATCH_MP REAL_DIV_POW2 xn0]) THEN
ASM_ARITH_TAC]; ALL_TAC] THEN
(* MAIN RESULT *)
REPEAT GEN_TAC THEN DISCH_THEN (LABEL_TAC "xn0") THEN
(* A: xn0 *)
ASM_CASES_TAC `&0 <= (u:int)` THENL [
(* u non-negative *)
ASM_CASES_TAC `&0 <= (v:int)` THENL [
(* v non-negative; use lemma 1 *)
USE_THEN "lem1" (fun lem1 ->
MATCH_MP_TAC lem1 THEN ASM_REWRITE_TAC[]);
(* v negative; use lemma 2 *)
ONCE_REWRITE_TAC[ARITH_RULE `(a:real) * b = b * a`] THEN
ONCE_REWRITE_TAC[ARITH_RULE `(a:int) + (b:int) = b + a`] THEN
USE_THEN "lem2" (fun lem2 ->
MATCH_MP_TAC lem2 THEN ASM_ARITH_TAC)];
(* u negative *)
ASM_CASES_TAC `&0 <= (v:int)` THENL [
(* v non-negative; use lemma 2 *)
USE_THEN "lem2" (fun lem2 -> MATCH_MP_TAC lem2) THEN ASM_ARITH_TAC;
(* v negative; use lemma 1 *)
USE_THEN "xn0" (fun xn0 ->
ONCE_REWRITE_TAC[MATCH_MP IPOW_INV_NEG xn0]) THEN
REWRITE_TAC[GSYM REAL_INV_MUL] THEN
REWRITE_TAC[REAL_EQ_INV2] THEN
REWRITE_TAC[ARITH_RULE `--((u:int) + (v:int)) = --u + --v`] THEN
USE_THEN "lem1" (fun lem1 ->
MATCH_MP_TAC lem1) THEN ASM_ARITH_TAC]]);;
let IPOW_EQ_EXP =
prove(`!(r:num) (i:int). &0 <= i ==> ?(m:num). m = num_of_int(i) /\
&r ipow i = &(r EXP m)`,
REPEAT GEN_TAC THEN REWRITE_TAC[ipow] THEN DISCH_THEN(fun thm ->
LABEL_TAC "ige0" thm) THEN
EXISTS_TAC `num_of_int(i)` THEN
ASM_REWRITE_TAC[] THEN
USE_THEN "ige0" (fun ige0 -> CHOOSE_THEN (fun thm -> REWRITE_TAC[thm])
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] ige0)) THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN REWRITE_TAC[REAL_OF_NUM_POW]);;
let IPOW_EQ_EXP_P =
prove(`!(r:num) (p:num). 0 < p ==> &r ipow (&p - &1) = &(r EXP (p - 1))`,
REPEAT GEN_TAC THEN DISCH_THEN (fun thm -> LABEL_TAC "pg0" thm) THEN
USE_THEN "pg0" (fun pg0 -> (LABEL_TAC "pm1ge0" (MATCH_MP
(ARITH_RULE `0 < p ==> 0 <= p - 1`) pg0))) THEN
USE_THEN "pm1ge0" (fun pm1ge0 -> LABEL_TAC "intge0"
(REWRITE_RULE[GSYM INT_OF_NUM_LE] pm1ge0)) THEN
USE_THEN "intge0" (fun intge0 -> CHOOSE_THEN (fun thm ->
LABEL_TAC "m" thm) (MATCH_MP (SPEC `r:num` IPOW_EQ_EXP) intge0)) THEN
USE_THEN "m" (fun m -> MAP_EVERY (fun pair -> (LABEL_TAC
(fst pair) (snd pair))) (zip ["m1"; "m2"] (CONJUNCTS m))) THEN
USE_THEN "pg0" (fun pg0 -> REWRITE_TAC[MATCH_MP
INT_OF_NUM_SUB (REWRITE_RULE[ARITH_RULE `0 < x <=> 1 <= x`]
pg0)]) THEN
USE_THEN "m1" (fun m1 -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o
ONCE_DEPTH_CONV) [GSYM (REWRITE_RULE[
NUM_OF_INT_OF_NUM] m1)]) THEN
ASM_REWRITE_TAC[]);;
let IPOW_BETWEEN =
prove(`!(x:real) (y:num) (z:num) (e:int).
&0 < x /\ &y * x ipow e <= &z * x ipow e /\
&z * x ipow e <= (&y + &1) * x ipow e ==>
z = y \/ z = y + 1`,
REPEAT GEN_TAC THEN
DISCH_THEN (LABEL_CONJUNCTS_TAC ["xgt0"; "ineq1"; "ineq2"]) THEN
(* lemma: y <= z *)
SUBGOAL_THEN `(y:num) <= z` (LABEL_TAC "ylez") THENL [
REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN
MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN
EXISTS_TAC `(x ipow e)` THEN
ONCE_REWRITE_TAC[ARITH_RULE `(a:real) * b = b * a`] THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC IPOW_LT_0 THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
(* lemma: z <= y + 1 *)
SUBGOAL_THEN `(z:num) <= y + 1` (LABEL_TAC "zleyp1") THENL [
REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN
EXISTS_TAC `(x ipow e)` THEN
ONCE_REWRITE_TAC[ARITH_RULE `(a:real) * b = b * a`] THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC IPOW_LT_0 THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_ARITH_TAC);;
let IPOW_TO_1 =
prove(`!(x:real). x ipow &1 = x`,
GEN_TAC THEN REWRITE_TAC[ipow] THEN
REWRITE_TAC[ARITH_RULE `&0 <= (&1:int) <=> T`] THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN ARITH_TAC);;
let IPOW_TO_0 =
prove(`!(x:real). x ipow &0 = &1`,
GEN_TAC THEN REWRITE_TAC[ipow] THEN
REWRITE_TAC[ARITH_RULE `&0 <= (&0:int) <=> T`] THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN ARITH_TAC);;
let IPOW_LE_1 =
prove(`!(x:real) (e:int). &1 <= x /\ &0 <= e ==> &1 <= x ipow e`,
REPEAT GEN_TAC THEN REWRITE_TAC[ipow] THEN DISCH_THEN
(LABEL_CONJUNCTS_TAC ["xgeq1"; "egeq0"]) THEN
ASM_REWRITE_TAC[] THEN
USE_THEN "egeq0" (fun egeq0 -> CHOOSE_THEN (fun thm -> REWRITE_TAC[thm])
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] egeq0)) THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN MATCH_MP_TAC REAL_POW_LE_1 THEN
ASM_REWRITE_TAC[]);;
let IPOW_LT_1 =
prove(`!(x:real) (e:int). &1 < x /\ &0 < e ==> &1 < x ipow e`,
REPEAT GEN_TAC THEN REWRITE_TAC[ipow] THEN DISCH_THEN
(LABEL_CONJUNCTS_TAC ["xgt1"; "egt0"]) THEN
REWRITE_TAC[MATCH_MP (ARITH_RULE `&0 < (e:int) ==> ((&0 <= e) <=> T)`)
(ASSUME `&0 < (e:int)`)] THEN
USE_THEN "egt0" (fun egt0 -> CHOOSE_THEN (LABEL_TAC "eeqn")
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] (MATCH_MP
(ARITH_RULE `&0 < (e:int) ==> &0 <= e`) egt0))) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN
MATCH_MP_TAC (SPEC `n:num` REAL_POW_LT_1) THEN
CONJ_TAC THENL [
REWRITE_TAC[GSYM INT_OF_NUM_EQ] THEN
USE_THEN "eeqn" (fun eeqn -> REWRITE_TAC[GSYM eeqn]) THEN
ASM_ARITH_TAC; ASM_ARITH_TAC]);;
let IPOW_LE_NUM =
let lem1 =
prove(`!(r:num) (n:num). 2 <= r ==> ?(e:int). &0 <= e /\ &n <= &r ipow e`,
GEN_TAC THEN INDUCT_TAC THENL [
(* base case *)
DISCH_TAC THEN
EXISTS_TAC `(&0):int` THEN
REWRITE_TAC[ARITH_RULE `&0 <= (&0:int) <=> T`] THEN
MATCH_MP_TAC (ARITH_RULE `&0 < (x:real) ==> &0 <= x`) THEN
MATCH_MP_TAC IPOW_LT_0 THEN REWRITE_TAC[REAL_OF_NUM_LT] THEN
ASM_ARITH_TAC;
(* inductive step *)
DISCH_THEN (LABEL_TAC "rgeq2") THEN
USE_THEN "rgeq2" (fun rgeq2 -> CHOOSE_THEN (LABEL_TAC "nleqpow")
(MATCH_MP
(ASSUME
`2 <= r ==> (?e. &0 <= e /\ &n <= &r ipow e)`) rgeq2)) THEN
EXISTS_TAC `e + (&1:int)` THEN REWRITE_TAC[ADD1] THEN
CONJ_TAC THENL [
ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `&r ipow (e + &1) = &r ipow e * &r ipow &1`
(fun thm -> REWRITE_TAC[thm]) THENL [
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
MATCH_MP_TAC IPOW_ADD_EXP THEN
REWRITE_TAC[REAL_OF_NUM_EQ] THEN ASM_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[IPOW_TO_1] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `&2 * &r ipow e` THEN
CONJ_TAC THENL [
ONCE_REWRITE_TAC[ARITH_RULE `&2 * x = x + (x:real)`] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
MATCH_MP_TAC (ARITH_RULE
`x <= (y:real) /\ z <= w ==> x + z <= y + w`) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC IPOW_LE_1 THEN
REWRITE_TAC[REAL_OF_NUM_LE] THEN ASM_ARITH_TAC;
GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV o ONCE_DEPTH_CONV)
[ARITH_RULE `(a:real) * b = b * a`] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN
REWRITE_TAC[REAL_OF_NUM_LE] THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC (ARITH_RULE `&0 < (x:real) ==> &0 <= x`) THEN
MATCH_MP_TAC IPOW_LT_0 THEN REWRITE_TAC[REAL_OF_NUM_LT] THEN
ASM_ARITH_TAC]]) in
prove(`!(r:num) (n:num). 2 <= r ==> ?(e:int). &n <= &r ipow e`,
REPEAT GEN_TAC THEN DISCH_THEN (fun thm -> CHOOSE_TAC
(SPEC `n:num` (MATCH_MP lem1 thm))) THEN EXISTS_TAC `e:int` THEN
ASM_REWRITE_TAC[]);;
let IPOW_LE_REAL =
prove(`!(r:num) (z:real). 2 <= r ==> ?(e:int). z <= &r ipow e`,
REPEAT GEN_TAC THEN
DISCH_THEN (LABEL_TAC "rgeq2") THEN
CHOOSE_THEN (LABEL_TAC "nbound") (SPEC `z:real` REAL_ARCH_SIMPLE) THEN
USE_THEN "rgeq2" (fun rgeq2 ->
CHOOSE_TAC (SPEC `n:num` (MATCH_MP IPOW_LE_NUM rgeq2))) THEN
EXISTS_TAC `e:int` THEN ASM_ARITH_TAC);;
let IPOW_LE_REAL_2 =
prove(`!(r:num) (z:real). &0 < z /\ 2 <= r ==> ?(e:int). &r ipow e <= z`,
REPEAT GEN_TAC THEN
DISCH_THEN (LABEL_CONJUNCTS_TAC ["zgt0"; "rgeq2"]) THEN
USE_THEN "rgeq2" (fun rgeq2 -> CHOOSE_THEN (LABEL_TAC "recip")
(SPEC `&1 / (z:real)` (MATCH_MP IPOW_LE_REAL rgeq2))) THEN
EXISTS_TAC `-- (e:int)` THEN
USE_THEN "rgeq2" (fun rgeq2 -> ONCE_REWRITE_TAC[MATCH_MP IPOW_INV_NEG
(MATCH_MP (ARITH_RULE `&2 <= &r ==> ~(&r = &0)`)
(REWRITE_RULE[GSYM REAL_OF_NUM_LE] rgeq2))]) THEN
REWRITE_TAC[ARITH_RULE `-- -- (e:int) = e`] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM REAL_INV_INV] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN
CONJ_TAC THENL [
MATCH_MP_TAC REAL_LT_INV THEN ASM_REWRITE_TAC[];
GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV o ONCE_DEPTH_CONV)
[ARITH_RULE `(x:real) = &1 * x`] THEN
REWRITE_TAC[GSYM real_div] THEN ASM_REWRITE_TAC[]]);;
let IPOW_MONOTONE =
prove(`!(x:num) (e1:int) (e2:int). 2 <= x /\ &x ipow e1 <= &x ipow e2 ==>
e1 <= e2`,
REPEAT GEN_TAC THEN
REWRITE_TAC[ipow] THEN
ASM_CASES_TAC `&0 <= (e1:int)` THENL [
(* 0 <= e1 *)
ASM_CASES_TAC `&0 <= (e2:int)` THENL [
(* 0 <= e2 *)
ASM_REWRITE_TAC[] THEN
CHOOSE_THEN (fun thm -> REWRITE_TAC[thm])
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS]
(ASSUME `&0 <= (e1:int)`)) THEN
CHOOSE_THEN (fun thm -> REWRITE_TAC[thm])
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS]
(ASSUME `&0 <= (e2:int)`)) THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN
REWRITE_TAC[REAL_OF_NUM_POW] THEN
REWRITE_TAC[REAL_OF_NUM_LE] THEN
REWRITE_TAC[INT_OF_NUM_LE] THEN
REWRITE_TAC[LE_EXP] THEN REWRITE_TAC[GSYM IMP_IMP] THEN
DISCH_THEN (LABEL_TAC "xgeq2") THEN
USE_THEN "xgeq2" (fun xgeq2 -> REWRITE_TAC[MATCH_MP
(ARITH_RULE `2 <= x ==> ((x = 0) <=> F)`) xgeq2]) THEN
DISCH_THEN DISJ_CASES_TAC THENL [
ASM_ARITH_TAC; ASM_REWRITE_TAC[]];
(* e2 < 0 *)
REWRITE_TAC[GSYM ipow] THEN REWRITE_TAC[GSYM IMP_IMP] THEN
DISCH_THEN (LABEL_TAC "xgeq2") THEN
SUBGOAL_THEN `&x ipow e2 = inv (&x ipow -- e2)` (fun thm ->
REWRITE_TAC[thm]) THENL [
MATCH_MP_TAC IPOW_INV_NEG THEN
REWRITE_TAC[REAL_OF_NUM_EQ] THEN ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `?e2':int. &0 < e2' /\ --e2 = e2'`
(CHOOSE_THEN (LABEL_CONJUNCTS_TAC ["e2pgeq0"; "e2eq"])) THENL [
EXISTS_TAC `-- e2:int` THEN ASM_ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `inv (&x ipow e2') < &x ipow e1`
(LABEL_TAC "e2plte1") THENL [
MATCH_MP_TAC
(ARITH_RULE `!y. (x:real) < y /\ y <= z ==> x < z`) THEN
EXISTS_TAC `&1:real` THEN CONJ_TAC THENL [
ONCE_REWRITE_TAC[
ARITH_RULE `(&1:real) = (inv (&1:real))`] THEN
MATCH_MP_TAC REAL_LT_INV2 THEN CONJ_TAC THENL [
ARITH_TAC; MATCH_MP_TAC IPOW_LT_1 THEN
REWRITE_TAC[REAL_OF_NUM_LT] THEN ASM_ARITH_TAC];
MATCH_MP_TAC IPOW_LE_1 THEN
REWRITE_TAC[REAL_OF_NUM_LE] THEN ASM_ARITH_TAC];
ALL_TAC] THEN
DISCH_TAC THEN ASM_ARITH_TAC];
(* e1 < 0 *)
ASM_CASES_TAC `&0 <= (e2:int)` THENL [
(* 0 <= e2 *)
DISCH_TAC THEN MATCH_MP_TAC INT_LE_TRANS THEN
EXISTS_TAC `(&0):int` THEN ASM_ARITH_TAC;
(* e2 < 0 *)
REWRITE_TAC[GSYM ipow] THEN REWRITE_TAC[GSYM IMP_IMP] THEN
DISCH_THEN (LABEL_TAC "xgeq2") THEN
SUBGOAL_THEN `&x ipow e1 = inv (&x ipow -- e1)`
(LABEL_TAC "e1eqinv") THENL [
MATCH_MP_TAC IPOW_INV_NEG THEN
REWRITE_TAC[REAL_OF_NUM_EQ] THEN ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `&x ipow e2 = inv (&x ipow -- e2)`
(LABEL_TAC "e2eqinv") THENL [
MATCH_MP_TAC IPOW_INV_NEG THEN
REWRITE_TAC[REAL_OF_NUM_EQ] THEN ASM_ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN
SUBGOAL_THEN `&x ipow -- e2 <= &x ipow -- e1`
MP_TAC THENL [
ONCE_REWRITE_TAC[GSYM REAL_INV_INV] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[] THEN
USE_THEN "e1eqinv"
(fun e1eqinv -> REWRITE_TAC[GSYM e1eqinv]) THEN
MATCH_MP_TAC IPOW_LT_0 THEN REWRITE_TAC[REAL_OF_NUM_LT] THEN
ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `?e1':int. &0 <= e1' /\ --e1 = e1'`
(CHOOSE_THEN (LABEL_CONJUNCTS_TAC ["e1pgeq0"; "e1eq"])) THENL [
EXISTS_TAC `-- e1:int` THEN ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `?e2':int. &0 <= e2' /\ --e2 = e2'`
(CHOOSE_THEN (LABEL_CONJUNCTS_TAC ["e2pgeq0"; "e2eq"])) THENL [
EXISTS_TAC `-- e2:int` THEN ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `e1 <= (e2:int) <=> e2' <= (e1':int)`
(fun thm -> REWRITE_TAC[thm]) THENL [
ASM_ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[ipow] THEN
ASM_REWRITE_TAC[] THEN
USE_THEN "e1pgeq0" (fun e1pgeq0 ->
CHOOSE_THEN (fun thm -> REWRITE_TAC[thm])
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] e1pgeq0)) THEN
USE_THEN "e2pgeq0" (fun e2pgeq0 ->
CHOOSE_THEN (fun thm -> REWRITE_TAC[thm])
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] e2pgeq0)) THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN
REWRITE_TAC[REAL_OF_NUM_POW] THEN
REWRITE_TAC[REAL_OF_NUM_LE] THEN
REWRITE_TAC[INT_OF_NUM_LE] THEN
REWRITE_TAC[LE_EXP] THEN REWRITE_TAC[GSYM IMP_IMP] THEN
USE_THEN "xgeq2" (fun xgeq2 -> REWRITE_TAC[MATCH_MP
(ARITH_RULE `2 <= x ==> ((x = 0) <=> F)`) xgeq2]) THEN
DISCH_THEN DISJ_CASES_TAC THENL [
ASM_ARITH_TAC; ASM_REWRITE_TAC[]]]]);;
let IPOW_MONOTONE_2 =
prove(`!(x:real) (e1:int) (e2:int). &1 <= x /\ e1 <= e2 ==>
x ipow e1 <= x ipow e2`,
REPEAT GEN_TAC THEN DISCH_THEN (LABEL_CONJUNCTS_TAC
["xgeq1"; "e1leqe2"]) THEN REWRITE_TAC[ipow] THEN
ASM_CASES_TAC `&0 <= (e1:int)` THENL [
(* 0 <= e1 *)
SUBGOAL_THEN `&0 <= (e2:int)` ASSUME_TAC THENL [
ASM_ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
CHOOSE_THEN ASSUME_TAC
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] (ASSUME `&0 <= (e1:int)`)) THEN
CHOOSE_THEN ASSUME_TAC
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] (ASSUME `&0 <= (e2:int)`)) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN
MATCH_MP_TAC REAL_POW_MONO THEN ASM_ARITH_TAC;
(* e1 < 0 *)
REWRITE_TAC[GSYM ipow] THEN
ASM_CASES_TAC `&0 <= (e2:int)` THENL [
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `&1:real` THEN CONJ_TAC THENL [
ONCE_REWRITE_TAC[MATCH_MP IPOW_INV_NEG
(MATCH_MP (ARITH_RULE `&1 <= (x:real) ==> ~(x = &0)`)
(ASSUME `&1 <= (x:real)`))] THEN
SUBGOAL_THEN `?(e1':int). &0 <= e1' /\ -- e1 = e1'`
(CHOOSE_THEN (LABEL_CONJUNCTS_TAC ["e1geq0"; "e1eq"])) THENL [
EXISTS_TAC `-- e1:int` THEN ASM_ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_INV_LE_1 THEN
MATCH_MP_TAC IPOW_LE_1 THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC IPOW_LE_1 THEN ASM_REWRITE_TAC[]];
(* e2 < 0 *)
ONCE_REWRITE_TAC[MATCH_MP IPOW_INV_NEG
(MATCH_MP (ARITH_RULE `&1 <= (x:real) ==> ~(x = &0)`)
(ASSUME `&1 <= (x:real)`))] THEN
SUBGOAL_THEN `?(e1':int). &0 <= e1' /\ -- e1 = e1'`
(CHOOSE_THEN (LABEL_CONJUNCTS_TAC ["e1geq0"; "e1eq"])) THENL [
EXISTS_TAC `-- e1:int` THEN ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `?(e2':int). &0 <= e2' /\ -- e2 = e2'`
(CHOOSE_THEN (LABEL_CONJUNCTS_TAC ["e2geq0"; "e2eq"])) THENL [
EXISTS_TAC `-- e2:int` THEN ASM_ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
USE_THEN "xgeq1" (fun xgeq1 ->
REWRITE_TAC[MATCH_MP (SPEC `x:real` IPOW_LT_0) (MATCH_MP
(ARITH_RULE `&1 <= (x:real) ==> &0 < x`) xgeq1)]) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[ipow] THEN
USE_THEN "e1geq0" (fun e1geq0 -> CHOOSE_THEN ASSUME_TAC
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] e1geq0)) THEN
USE_THEN "e2geq0" (fun e2geq0 -> CHOOSE_THEN ASSUME_TAC
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] e2geq0)) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN
MATCH_MP_TAC REAL_POW_MONO THEN ASM_ARITH_TAC]]);;
let IPOW_MUL_INV_EQ_1 =
prove(`!(x:real) (i:int). &0 < x ==> x ipow i * x ipow (-- i) = &1`,
REPEAT GEN_TAC THEN DISCH_THEN (LABEL_TAC "xgt0") THEN
SUBGOAL_THEN `~(x = &0)` (LABEL_TAC "xneq0") THENL [
ASM_ARITH_TAC; ALL_TAC] THEN
USE_THEN "xneq0" (fun xneq0 ->
GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV o
RATOR_CONV o ONCE_DEPTH_CONV)
[MATCH_MP IPOW_INV_NEG xneq0]) THEN
ONCE_REWRITE_TAC[ARITH_RULE `x * y = y * (x:real)`] THEN
MATCH_MP_TAC REAL_MUL_RINV THEN
MATCH_MP_TAC (ARITH_RULE `&0 < z ==> ~(z = &0)`) THEN
MATCH_MP_TAC IPOW_LT_0 THEN ASM_REWRITE_TAC[]);;
(* -------------------------------------------------------------------------- *)
(* rerror *)
(* -------------------------------------------------------------------------- *)
let rerror = define
`rerror (a:real) (b:real) = abs((b - a) / a)`;;
(* -------------------------------------------------------------------------- *)
(* closer *)
(* -------------------------------------------------------------------------- *)
let closer = define
`closer (x:real) (y:real) (z:real) = (abs(x - z) < abs(y - z))`;;
(* -------------------------------------------------------------------------- *)
(* Misc helpful theorems *)
(* -------------------------------------------------------------------------- *)
let DOUBLE_NOT_ODD =
prove(`!(n:num). ODD(2 * n) <=> F`,
REWRITE_TAC[GSYM NOT_EVEN] THEN REWRITE_TAC[EVEN_DOUBLE]);;
let DOUBLE_NEG_1_ODD =
prove(`!(f:num). 0 < f ==> ODD(2 * f - 1)`,
GEN_TAC THEN DISCH_THEN(fun thm -> CHOOSE_TAC
(REWRITE_RULE[ADD] (REWRITE_RULE[LT_EXISTS] thm))) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[ARITH_RULE
`2 * SUC(d) - 1 = SUC(2 *d)`] THEN REWRITE_TAC[ODD_DOUBLE]);;
let REAL_MULT_NOT_0 =
REAL_RING `z = x * y /\ ~(z = &0) ==> ~(x = &0) /\ ~(y = &0)`;;
let EXP_LE_1 =
prove(`!(x:num) (n:num). ~(x = 0) ==> 1 <= x EXP n`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV)
[ARITH_RULE `1 = x EXP 0`] THEN
REWRITE_TAC[LE_EXP] THEN
COND_CASES_TAC THENL [
ASM_ARITH_TAC;
ARITH_TAC]);;
let NUM_LE_MUL_1 =
prove(`!(a:num) (b:num). 1 <= a * b ==> 1 <= a`,
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (ARITH_RULE `a = 0 \/ 1 <= a`) THENL [
DISJ_CASES_TAC (ARITH_RULE `b = 0 \/ 1 <= b`) THENL [
ASM_REWRITE_TAC[] THEN ARITH_TAC;
ASM_REWRITE_TAC[] THEN ARITH_TAC];
DISJ_CASES_TAC (ARITH_RULE `b = 0 \/ 1 <= b`) THENL [
ASM_REWRITE_TAC[] THEN ARITH_TAC;
ASM_ARITH_TAC]]);;
(* -------------------------------------------------------------------------- *)
(* Supremum for naturals and integers *)
(* -------------------------------------------------------------------------- *)
let is_sup_num = define
`is_sup_num (s:num->bool) (n:num) = (n IN s /\ !n'. n' IN s ==> n' <= n)`;;
let is_sup_int = define
`is_sup_int (s:int->bool) (e:int) = (e IN s /\ !e'. e' IN s ==> e' <= e)`;;
let sup_num = define
`sup_num (s:num->bool) = (@(n:num). is_sup_num s n)`;;
let sup_int = define
`sup_int (s:int->bool) = (@(e:int). is_sup_int s e)`;;
(* by induction *)
let SUP_NUM_BOUNDED =
prove(`!(s:num->bool) (b:num). ~(s = {}) /\ (!n. n IN s ==> n <= b) ==>
?(n':num). sup_num s = n' /\ is_sup_num s n'`,
GEN_TAC THEN INDUCT_TAC THENL [
(* base case *)
DISCH_THEN (LABEL_CONJUNCTS_TAC ["snote"; "bound"]) THEN
EXISTS_TAC `0:num` THEN
SUBGOAL_THEN `is_sup_num s 0` (LABEL_TAC "supeq0") THENL [
REWRITE_TAC[is_sup_num] THEN ASM_REWRITE_TAC[] THEN
USE_THEN "snote" (fun snote -> CHOOSE_THEN
(LABEL_CONJUNCTS_TAC ["smallestins"; "notins"])
(MATCH_MP (REWRITE_RULE[WF] WF_num)
(REWRITE_RULE[GSYM MEMBER_NOT_EMPTY] snote))) THEN
SUBGOAL_THEN `x = 0` ASSUME_TAC THENL [
MATCH_MP_TAC (ARITH_RULE `x <= 0 ==> x = 0`) THEN
USE_THEN "smallestins" (fun smallestins -> USE_THEN "bound"
(fun bound -> REWRITE_TAC[MATCH_MP bound smallestins]));
ALL_TAC] THEN
REWRITE_TAC[GSYM (ASSUME `x = 0`)] THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `!x. is_sup_num s x ==> x = 0`
(LABEL_TAC "all0") THENL [
GEN_TAC THEN REWRITE_TAC[is_sup_num] THEN DISCH_THEN (
LABEL_CONJUNCTS_TAC
["xins"; "bound2"]) THEN
MATCH_MP_TAC (ARITH_RULE `x <= 0 ==> x = 0`) THEN
USE_THEN "bound"
(fun bound ->
REWRITE_TAC[MATCH_MP bound (ASSUME `(x:num) IN s`)]);
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[sup_num] THEN
SELECT_ELIM_TAC THEN GEN_TAC THEN
USE_THEN "supeq0" (fun supeq0 -> USE_THEN "all0" (fun all0 ->
DISCH_THEN (fun thm ->
REWRITE_TAC[MATCH_MP all0 (MATCH_MP thm supeq0)])));
(* inductive step *)
DISCH_THEN (LABEL_CONJUNCTS_TAC ["snote"; "bound"]) THEN
ASM_CASES_TAC `SUC(b) IN s` THENL [
EXISTS_TAC `SUC(b)` THEN
SUBGOAL_THEN `is_sup_num s (SUC b)` (LABEL_TAC "supeq") THENL [
REWRITE_TAC[is_sup_num] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!x. is_sup_num s x ==> x = SUC b`
(LABEL_TAC "alleq") THENL [
GEN_TAC THEN REWRITE_TAC[is_sup_num] THEN DISCH_THEN (
LABEL_CONJUNCTS_TAC ["xins"; "bound2"]) THEN
SUBGOAL_THEN `x <= SUC b` ASSUME_TAC THENL [
USE_THEN "xins" (fun xins -> USE_THEN "bound" (fun bound ->
REWRITE_TAC[MATCH_MP bound xins])); ALL_TAC] THEN
SUBGOAL_THEN `SUC b <= x` ASSUME_TAC THENL [
USE_THEN "bound2" (fun bound ->
REWRITE_TAC[MATCH_MP bound (ASSUME `SUC b IN s`)]);
ALL_TAC] THEN
ASM_ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[sup_num] THEN
SELECT_ELIM_TAC THEN GEN_TAC THEN
USE_THEN "supeq" (fun supeq -> USE_THEN "alleq" (fun alleq ->
DISCH_THEN (fun thm ->
REWRITE_TAC[MATCH_MP alleq (MATCH_MP thm supeq)])));
(* suc b not in s *)
SUBGOAL_THEN `!n. n IN s ==> n <= (b:num)`
(LABEL_TAC "bound2") THENL [
GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC
(ARITH_RULE `~(n = SUC b) /\ n <= (SUC b) ==> n <= b`) THEN
USE_THEN "bound" (fun bound -> REWRITE_TAC[MATCH_MP bound
(ASSUME `(n:num) IN s`)]) THEN
SUBGOAL_THEN `!x. x = SUC b ==> ~(x IN s)` (fun thm ->
MATCH_MP_TAC (ONCE_REWRITE_RULE[GSYM CONTRAPOS_THM] thm)) THENL [
GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
USE_THEN "snote" (fun snote -> USE_THEN "bound2" (fun bound2 ->
REWRITE_TAC[MATCH_MP (ASSUME `~(s = {}) /\ (!n. n IN s ==> n <= b)
==> (?n'. sup_num s = n' /\ is_sup_num s n')`)
(CONJ snote bound2)]))]]);;
let SUP_INT_BOUNDED =
let lem1 =
prove(`!(s:int->bool) (b:int). ~(s = {}) /\ (!e. e IN s ==> e <= b) ==>
?(e':int). is_sup_int s e'`,
REPEAT GEN_TAC THEN DISCH_THEN (LABEL_CONJUNCTS_TAC ["snote";
"bound"]) THEN
SUBGOAL_THEN `?e. (e:int) IN s`
(CHOOSE_THEN (LABEL_TAC "eins")) THENL [
USE_THEN "snote" (fun snote -> ASSUME_TAC(
MATCH_MP CHOICE_DEF snote)) THEN
EXISTS_TAC `CHOICE (s:int->bool)` THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `~({n | ?(e'':int). n = num_of_int(e'' - e) /\
e'' IN s /\ e <= e''} = {})`
(LABEL_TAC "nnote") THENL [
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN
EXISTS_TAC `0:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN
EXISTS_TAC `e:int` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[INT_LE_REFL] THEN
REWRITE_TAC[ARITH_RULE `e - (e:int) = &0`] THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM]; ALL_TAC] THEN
SUBGOAL_THEN `?(bn:num). !n. n IN
{n | ?(e'':int). n = num_of_int(e'' - e) /\
e'' IN s /\ e <= e''} ==> n <= bn`
(CHOOSE_THEN (LABEL_TAC "bound2")) THENL [
EXISTS_TAC `num_of_int(b - e)` THEN GEN_TAC THEN
REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN (fun thm ->
CHOOSE_THEN
(LABEL_CONJUNCTS_TAC ["eqn"; "eins2"; "eleq"]) thm) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM INT_OF_NUM_LE] THEN
SUBGOAL_THEN `&0 <= e'' - (e:int)` (fun thm ->
REWRITE_TAC[REWRITE_RULE[NUM_OF_INT] thm]) THENL [
ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `&0 <= b - (e:int)` (fun thm ->
REWRITE_TAC[REWRITE_RULE[NUM_OF_INT] thm]) THENL [
USE_THEN "bound" (fun bound -> USE_THEN "eins" (fun eins ->
ASSUME_TAC (MATCH_MP bound eins))) THEN
ASM_ARITH_TAC; ALL_TAC] THEN
USE_THEN "bound" (fun bound -> USE_THEN "eins2" (fun eins2 ->
ASSUME_TAC (MATCH_MP bound eins2))) THEN
ASM_ARITH_TAC; ALL_TAC] THEN
EXISTS_TAC `(int_of_num (
sup_num {n | ?(e'':int). n = num_of_int(e'' - e) /\ e'' IN s /\ e <= e''}))
+ e` THEN
USE_THEN "nnote" (fun nnote -> USE_THEN "bound2" (fun bound2 ->
CHOOSE_THEN (LABEL_CONJUNCTS_TAC ["supnumeq"; "issupnum"])
(MATCH_MP SUP_NUM_BOUNDED (CONJ nnote bound2)))) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[is_sup_int] THEN
USE_THEN "issupnum" (fun issupnum -> LABEL_CONJUNCTS_TAC
["nins"; "nbounds"] (REWRITE_RULE[is_sup_num] issupnum)) THEN
SUBGOAL_THEN `?(e'':int). e'' IN s /\ e <= e'' /\
(int_of_num n') = e'' - e`
(CHOOSE_THEN
(LABEL_CONJUNCTS_TAC ["eins2"; "eleq"; "emine"])) THENL [
USE_THEN "nins" (fun nins -> CHOOSE_THEN (LABEL_CONJUNCTS_TAC
["eins2"; "emine"; "eleq"])
(REWRITE_RULE[IN_ELIM_THM] nins)) THEN
EXISTS_TAC `e'':int` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `&0 <= e'' - (e:int)` (fun thm ->
REWRITE_TAC[REWRITE_RULE[NUM_OF_INT] thm]) THENL [
ASM_ARITH_TAC]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[ARITH_RULE `(e:int) - e' + e' = e`] THEN
ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_THEN (LABEL_TAC "epins") THEN
ASM_CASES_TAC `e' < (e:int)` THENL [
ASM_ARITH_TAC;
ONCE_REWRITE_TAC[ARITH_RULE
`(z:int) <= y <=> z - e <= y - e`] THEN
USE_THEN "emine" (fun emine -> REWRITE_TAC[GSYM emine]) THEN
SUBGOAL_THEN `&0 <= (e':int) - e` (fun thm ->
CHOOSE_THEN (LABEL_TAC "eqepmine")
(REWRITE_RULE[GSYM INT_OF_NUM_EXISTS] thm)) THENL [
ASM_ARITH_TAC; ALL_TAC] THEN
USE_THEN "eqepmine" (fun eqepmine -> REWRITE_TAC[eqepmine]) THEN
REWRITE_TAC[INT_OF_NUM_LE] THEN
USE_THEN "nbounds" (fun nbounds -> MATCH_MP_TAC nbounds) THEN
REWRITE_TAC[IN_ELIM_THM] THEN
EXISTS_TAC `e':int` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[NUM_OF_INT_OF_NUM] THEN
ASM_ARITH_TAC]) in
prove(`!(s:int->bool) (b:int). ~(s = {}) /\ (!e. e IN s ==> e <= b) ==>
?(e':int). sup_int s = e' /\ is_sup_int s e'`,
REPEAT GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `sup_int s` THEN
REWRITE_TAC[] THEN REWRITE_TAC[sup_int] THEN SELECT_ELIM_TAC THEN
MATCH_MP_TAC lem1 THEN EXISTS_TAC `b:int` THEN ASM_REWRITE_TAC[]);;
|