File: pocklington.ml

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (1732 lines) | stat: -rw-r--r-- 76,225 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
(* ========================================================================= *)
(* HOL primality proving via Pocklington-optimized  Pratt certificates.      *)
(* ========================================================================= *)

needs "Library/iter.ml";;
needs "Library/prime.ml";;

prioritize_num();;

let num_0 = Int 0;;
let num_1 = Int 1;;
let num_2 = Int 2;;

(* ------------------------------------------------------------------------- *)
(* Mostly for compatibility. Should eliminate this eventually.               *)
(* ------------------------------------------------------------------------- *)

let nat_mod_lemma = prove
 (`!x y n:num. (x == y) (mod n) /\ y <= x ==> ?q. x = y + n * q`,
  REPEAT GEN_TAC THEN REWRITE_TAC[num_congruent] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  ONCE_REWRITE_TAC
   [INTEGER_RULE `(x == y) (mod &n) <=> &n divides (x - y)`] THEN
  ASM_SIMP_TAC[INT_OF_NUM_SUB;
               ARITH_RULE `x <= y ==> (y:num = x + d <=> y - x = d)`] THEN
  REWRITE_TAC[GSYM num_divides; divides]);;

let nat_mod = prove
 (`!x y n:num. (mod n) x y <=> ?q1 q2. x + n * q1 = y + n * q2`,
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM cong] THEN
  EQ_TAC THENL [ALL_TAC; NUMBER_TAC] THEN
  MP_TAC(SPECL [`x:num`; `y:num`] LE_CASES) THEN
  REWRITE_TAC[TAUT `a \/ b ==> c ==> d <=> (c /\ b) \/ (c /\ a) ==> d`] THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
   [ALL_TAC;
    ONCE_REWRITE_TAC[NUMBER_RULE
      `(x:num == y) (mod n) <=> (y == x) (mod n)`]] THEN
  MESON_TAC[nat_mod_lemma; ARITH_RULE `x + y * 0 = x`]);;

(* ------------------------------------------------------------------------- *)
(* Lemmas about previously defined terms.                                    *)
(* ------------------------------------------------------------------------- *)

let PRIME = prove
 (`!p. prime p <=> ~(p = 0) /\ ~(p = 1) /\ !m. 0 < m /\ m < p ==> coprime(p,m)`,
  GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
  ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1] THEN
  EQ_TAC THENL
   [DISCH_THEN(MP_TAC o MATCH_MP PRIME_COPRIME) THEN
    DISCH_TAC THEN X_GEN_TAC `m:num` THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[COPRIME_1] THEN
    ASM_MESON_TAC[NOT_LT; LT_REFL; DIVIDES_LE]; ALL_TAC] THEN
  FIRST_ASSUM(X_CHOOSE_THEN `q:num` MP_TAC o MATCH_MP PRIME_FACTOR) THEN
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN
  SUBGOAL_THEN `~(coprime(p,q))` (fun th -> REWRITE_TAC[th]) THENL
   [REWRITE_TAC[coprime; NOT_FORALL_THM] THEN
    EXISTS_TAC `q:num` THEN ASM_REWRITE_TAC[DIVIDES_REFL] THEN
    ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN
  ASM_REWRITE_TAC[LT_LE; LE_0] THEN
  ASM_CASES_TAC `p:num = q` THEN ASM_REWRITE_TAC[] THEN
  SIMP_TAC[] THEN DISCH_TAC THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
  ASM_MESON_TAC[DIVIDES_ZERO]);;

let FINITE_NUMBER_SEGMENT = prove
 (`!n. { m | 0 < m /\ m < n } HAS_SIZE (n - 1)`,
  INDUCT_TAC THENL
   [SUBGOAL_THEN `{m | 0 < m /\ m < 0} = EMPTY` SUBST1_TAC THENL
     [REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LT]; ALL_TAC] THEN
    REWRITE_TAC[HAS_SIZE; FINITE_RULES; CARD_CLAUSES] THEN
    CONV_TAC NUM_REDUCE_CONV;
    ASM_CASES_TAC `n = 0` THENL
     [SUBGOAL_THEN `{m | 0 < m /\ m < SUC n} = EMPTY` SUBST1_TAC THENL
       [ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN
        ARITH_TAC; ALL_TAC] THEN
      ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV THEN
      REWRITE_TAC[HAS_SIZE_0];
      SUBGOAL_THEN `{m | 0 < m /\ m < SUC n} = n INSERT {m | 0 < m /\ m < n}`
      SUBST1_TAC THENL
       [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN
        UNDISCH_TAC `~(n = 0)` THEN ARITH_TAC; ALL_TAC] THEN
      UNDISCH_TAC `~(n = 0)` THEN
      POP_ASSUM MP_TAC THEN
      SIMP_TAC[FINITE_RULES; HAS_SIZE; CARD_CLAUSES] THEN
      DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; LT_REFL] THEN
      ARITH_TAC]]);;

let COPRIME_MOD = prove
 (`!a n. coprime(a MOD n,n) <=> coprime(a,n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[MOD_ZERO] THEN
  FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV)
   [MATCH_MP DIVISION th]) THEN REWRITE_TAC[coprime] THEN
  AP_TERM_TAC THEN ABS_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  MESON_TAC[DIVIDES_ADD; DIVIDES_ADD_REVR; DIVIDES_ADD_REVL;
            DIVIDES_LMUL; DIVIDES_RMUL]);;

(* ------------------------------------------------------------------------- *)
(* Congruences.                                                              *)
(* ------------------------------------------------------------------------- *)

let CONG_MOD_0 = prove
 (`!x y. (x == y) (mod 0) <=> (x = y)`,
  NUMBER_TAC);;

let CONG_MOD_1 = prove
 (`!x y. (x == y) (mod 1)`,
  NUMBER_TAC);;

let CONG_0 = prove
 (`!x n. ((x == 0) (mod n) <=> n divides x)`,
  NUMBER_TAC);;

let CONG_SUB_CASES = prove
 (`!x y n. (x == y) (mod n) <=>
           if x <= y then (y - x == 0) (mod n)
           else (x - y == 0) (mod n)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[cong; nat_mod] THEN
  COND_CASES_TAC THENL
   [GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM]; ALL_TAC] THEN
  REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN
  POP_ASSUM MP_TAC THEN ARITH_TAC);;

let CONG_CASES = prove
 (`!x y n. (x == y) (mod n) <=> (?q. x = q * n + y) \/ (?q. y = q * n + x)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[] THEN NUMBER_TAC] THEN
  REWRITE_TAC[cong; nat_mod; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`q1:num`; `q2:num`] THEN
  DISCH_THEN(MP_TAC o MATCH_MP(ARITH_RULE
   `x + a = y + b ==> x = (b - a) + y \/ y = (a - b) + x`)) THEN
  REWRITE_TAC[GSYM LEFT_SUB_DISTRIB] THEN MESON_TAC[MULT_SYM]);;

let CONG_MULT_LCANCEL = prove
 (`!a n x y. coprime(a,n) /\ (a * x == a * y) (mod n) ==> (x == y) (mod n)`,
  NUMBER_TAC);;

let CONG_MULT_RCANCEL = prove
 (`!a n x y. coprime(a,n) /\ (x * a == y * a) (mod n) ==> (x == y) (mod n)`,
  NUMBER_TAC);;

let CONG_REFL = prove
 (`!x n. (x == x) (mod n)`,
  NUMBER_TAC);;

let EQ_IMP_CONG = prove
 (`!a b n. a = b ==> (a == b) (mod n)`,
  SIMP_TAC[CONG_REFL]);;

let CONG_SYM = prove
 (`!x y n. (x == y) (mod n) <=> (y == x) (mod n)`,
  NUMBER_TAC);;

let CONG_TRANS = prove
 (`!x y z n. (x == y) (mod n) /\ (y == z) (mod n) ==> (x == z) (mod n)`,
  NUMBER_TAC);;

let CONG_ADD = prove
 (`!x x' y y'.
     (x == x') (mod n) /\ (y == y') (mod n) ==> (x + y == x' + y') (mod n)`,
  NUMBER_TAC);;

let CONG_MULT = prove
 (`!x x' y y'.
     (x == x') (mod n) /\ (y == y') (mod n) ==> (x * y == x' * y') (mod n)`,
  NUMBER_TAC);;

let CONG_EXP = prove
 (`!n k x y. (x == y) (mod n) ==> (x EXP k == y EXP k) (mod n)`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[CONG_MULT; EXP; CONG_REFL]);;

let CONG_SUB = prove
 (`!x x' y y'.
     (x == x') (mod n) /\ (y == y') (mod n) /\ y <= x /\ y' <= x'
     ==> (x - y == x' - y') (mod n)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[cong; nat_mod] THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN
  DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
   `(x + a = x' + a') /\ (y + b = y' + b') /\ y <= x /\ y' <= x'
    ==> ((x - y) + (a + b') = (x' - y') + (a' + b))`)) THEN
  REWRITE_TAC[GSYM LEFT_ADD_DISTRIB] THEN MESON_TAC[]);;

let CONG_MULT_LCANCEL_EQ = prove
 (`!a n x y. coprime(a,n) ==> ((a * x == a * y) (mod n) <=> (x == y) (mod n))`,
  NUMBER_TAC);;

let CONG_MULT_RCANCEL_EQ = prove
 (`!a n x y. coprime(a,n) ==> ((x * a == y * a) (mod n) <=> (x == y) (mod n))`,
  NUMBER_TAC);;

let CONG_ADD_LCANCEL_EQ = prove
 (`!a n x y. (a + x == a + y) (mod n) <=> (x == y) (mod n)`,
  NUMBER_TAC);;

let CONG_ADD_RCANCEL_EQ = prove
 (`!a n x y. (x + a == y + a) (mod n) <=> (x == y) (mod n)`,
  NUMBER_TAC);;

let CONG_ADD_RCANCEL = prove
 (`!a n x y. (x + a == y + a) (mod n) ==> (x == y) (mod n)`,
  NUMBER_TAC);;

let CONG_ADD_LCANCEL = prove
 (`!a n x y. (a + x == a + y) (mod n) ==> (x == y) (mod n)`,
  NUMBER_TAC);;

let CONG_ADD_LCANCEL_EQ_0 = prove
 (`!a n x y. (a + x == a) (mod n) <=> (x == 0) (mod n)`,
  NUMBER_TAC);;

let CONG_ADD_RCANCEL_EQ_0 = prove
 (`!a n x y. (x + a == a) (mod n) <=> (x == 0) (mod n)`,
  NUMBER_TAC);;

let CONG_IMP_EQ = prove
 (`!x y n. x < n /\ y < n /\ (x == y) (mod n) ==> x = y`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[LT] THEN
  ASM_MESON_TAC[CONG; MOD_LT]);;

let CONG_DIVIDES_MODULUS = prove
 (`!x y m n. (x == y) (mod m) /\ n divides m ==> (x == y) (mod n)`,
  NUMBER_TAC);;

let CONG_0_DIVIDES = prove
 (`!n x. (x == 0) (mod n) <=> n divides x`,
  NUMBER_TAC);;

let CONG_1_DIVIDES = prove
 (`!n x. (x == 1) (mod n) ==> n divides (x - 1)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[divides; cong; nat_mod] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN
  DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
   `(x + q1 = 1 + q2) ==> ~(x = 0) ==> (x - 1 = q2 - q1)`)) THEN
  ASM_CASES_TAC `x = 0` THEN
  ASM_REWRITE_TAC[ARITH; GSYM LEFT_SUB_DISTRIB] THEN
  ASM_MESON_TAC[MULT_CLAUSES]);;

let CONG_DIVIDES = prove
 (`!x y n. (x == y) (mod n) ==> (n divides x <=> n divides y)`,
  NUMBER_TAC);;

let CONG_COPRIME = prove
 (`!x y n. (x == y) (mod n) ==> (coprime(n,x) <=> coprime(n,y))`,
  NUMBER_TAC);;

let CONG_GCD_RIGHT = prove
 (`!x y n. (x == y) (mod n) ==> gcd(n,x) = gcd(n,y)`,
  NUMBER_TAC);;

let CONG_GCD_LEFT = prove
 (`!x y n. (x == y) (mod n) ==> gcd(x,n) = gcd(y,n)`,
  NUMBER_TAC);;

let CONG_MOD = prove
 (`!a n. (a MOD n == a) (mod n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[CONG_REFL; MOD_ZERO] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP DIVISION) THEN
  DISCH_THEN(MP_TAC o SPEC `a:num`) THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  DISCH_THEN(fun th -> GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV) [th]) THEN
  REWRITE_TAC[cong; nat_mod] THEN
  MAP_EVERY EXISTS_TAC [`a DIV n`; `0`] THEN
  REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; ADD_AC; MULT_AC]);;

let MOD_MULT_CONG = prove
 (`!a b x y. ((x MOD (a * b) == y) (mod a) <=> (x == y) (mod a))`,
  REPEAT STRIP_TAC THEN SUBGOAL_THEN `(x MOD (a * b) == x) (mod a)`
   (fun th -> MESON_TAC[th; CONG_TRANS; CONG_SYM]) THEN
  MATCH_MP_TAC CONG_DIVIDES_MODULUS THEN EXISTS_TAC `a * b` THEN
  ASM_SIMP_TAC[CONG_MOD; MULT_EQ_0; DIVIDES_RMUL; DIVIDES_REFL]);;

let CONG_MOD_MULT = prove
 (`!x y m n. (x == y) (mod n) /\ m divides n ==> (x == y) (mod m)`,
  NUMBER_TAC);;

let CONG_MOD_LT = prove
 (`!y. y < n ==> (x MOD n = y <=> (x == y) (mod n))`,
  MESON_TAC[MOD_LT; CONG; LT]);;

let MOD_UNIQUE = prove
 (`!m n p. m MOD n = p <=> ((n = 0 /\ m = p) \/ p < n) /\ (m == p) (mod n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[CONG_MOD_0; LT] THENL
   [ASM_MESON_TAC[DIVISION_0]; ALL_TAC] THEN
  ASM_SIMP_TAC[CONG] THEN ASM_MESON_TAC[DIVISION; MOD_LT]);;

let CONG_DIV = prove
 (`!m n a b.
        ~(m = 0) /\ (a == m * b) (mod (m * n)) ==> (a DIV m == b) (mod n)`,
  MESON_TAC[CONG_DIV2; DIV_MULT]);;

(* ------------------------------------------------------------------------- *)
(* Some things when we know more about the order.                            *)
(* ------------------------------------------------------------------------- *)

let CONG_LT = prove
 (`!x y n. y < n ==> ((x == y) (mod n) <=> ?d. x = d * n + y)`,
  REWRITE_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_LT;
              GSYM INT_OF_NUM_ADD; GSYM INT_OF_NUM_MUL] THEN
  REWRITE_TAC[num_congruent; int_congruent] THEN
  REWRITE_TAC[INT_ARITH `x = m * n + y <=> x - y:int = n * m`] THEN
  REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
  DISCH_THEN(X_CHOOSE_TAC `d:int`) THEN
  DISJ_CASES_TAC(SPEC `d:int` INT_IMAGE) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  FIRST_X_ASSUM(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
  FIRST_X_ASSUM(SUBST_ALL_TAC o MATCH_MP (INT_ARITH
   `x - y:int = n * --m ==> y = x + n * m`)) THEN
  POP_ASSUM MP_TAC THEN DISJ_CASES_TAC(ARITH_RULE `m = 0 \/ 1 <= m`) THEN
  ASM_REWRITE_TAC[INT_MUL_RZERO; INT_ARITH `x - (x + a):int = --a`] THENL
   [STRIP_TAC THEN EXISTS_TAC `0` THEN INT_ARITH_TAC;
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
    DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC) THEN
    REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_MUL; INT_OF_NUM_LT] THEN
    ARITH_TAC]);;

let CONG_LE = prove
 (`!x y n. y <= x ==> ((x == y) (mod n) <=> ?q. x = q * n + y)`,
  ONCE_REWRITE_TAC[CONG_SYM] THEN ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN
  SIMP_TAC[ARITH_RULE `y <= x ==> (x = a + y <=> x - y = a)`] THEN
  REWRITE_TAC[CONG_0; divides] THEN MESON_TAC[MULT_SYM]);;

let CONG_TO_1 = prove
 (`!a n. (a == 1) (mod n) <=> a = 0 /\ n = 1 \/ ?m. a = 1 + m * n`,
  REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[CONG_MOD_1] THENL
   [MESON_TAC[ARITH_RULE `n = 0 \/ n = 1 + (n - 1) * 1`]; ALL_TAC] THEN
  DISJ_CASES_TAC(ARITH_RULE `a = 0 \/ ~(a = 0) /\ 1 <= a`) THEN
  ASM_SIMP_TAC[CONG_LE] THENL [ALL_TAC; MESON_TAC[ADD_SYM; MULT_SYM]] THEN
  ASM_MESON_TAC[CONG_SYM; CONG_0; DIVIDES_ONE; ARITH_RULE `~(0 = 1 + a)`]);;

(* ------------------------------------------------------------------------- *)
(* In particular two common cases.                                           *)
(* ------------------------------------------------------------------------- *)

let EVEN_MOD_2 = prove
 (`EVEN n <=> (n == 0) (mod 2)`,
  SIMP_TAC[EVEN_EXISTS; CONG_LT; ARITH; ADD_CLAUSES; MULT_AC]);;

let ODD_MOD_2 = prove
 (`ODD n <=> (n == 1) (mod 2)`,
  SIMP_TAC[ODD_EXISTS; CONG_LT; ARITH; ADD_CLAUSES; ADD1; MULT_AC]);;

(* ------------------------------------------------------------------------- *)
(* Conversion to evaluate congruences.                                       *)
(* ------------------------------------------------------------------------- *)

let CONG_CONV =
  let pth = prove
   (`(x == y) (mod n) <=>
     if x <= y then n divides (y - x) else n divides (x - y)`,
    ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN REWRITE_TAC[CONG_0_DIVIDES]) in
  GEN_REWRITE_CONV I [pth] THENC
  RATOR_CONV(LAND_CONV NUM_LE_CONV) THENC
  GEN_REWRITE_CONV I [COND_CLAUSES] THENC
  RAND_CONV NUM_SUB_CONV THENC
  DIVIDES_CONV;;

(* ------------------------------------------------------------------------- *)
(* Some basic theorems about solving congruences.                            *)
(* ------------------------------------------------------------------------- *)

let CONG_SOLVE_EQ = prove
 (`!n a b. (?x. (a * x == b) (mod n)) <=> gcd(a,n) divides b`,
  REPEAT GEN_TAC THEN EQ_TAC THENL [NUMBER_TAC; ALL_TAC] THEN
  ASM_CASES_TAC `a = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; GCD_0]
  THENL [NUMBER_TAC; REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM]] THEN
  X_GEN_TAC `c:num` THEN DISCH_THEN SUBST1_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP BEZOUT_GCD_STRONG) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`x:num`; `y:num`] THEN STRIP_TAC THEN
  EXISTS_TAC `c * x:num` THEN POP_ASSUM MP_TAC THEN CONV_TAC NUMBER_RULE);;

let CONG_SOLVE_LT_EQ = prove
 (`!n a b. (?x. x < n /\ (a * x == b) (mod n)) <=>
           ~(n = 0) /\ gcd(a,n) divides b`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[CONJUNCT1 LT] THEN REWRITE_TAC[GSYM CONG_SOLVE_EQ] THEN
  MATCH_MP_TAC(MESON[DIVISION]
   `~(n = 0) /\ (!y. P y ==> P(y MOD n))
    ==> ((?y. y < n /\ P y) <=> (?y. P y))`) THEN
  ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:num` THEN MATCH_MP_TAC(NUMBER_RULE
   `(x == y) (mod n) ==> (a * x == b) (mod n) ==> (a * y == b) (mod n)`) THEN
  ASM_SIMP_TAC[CONG_RMOD; CONG_REFL]);;

let CONG_SOLVE = prove
 (`!a b n. coprime(a,n) ==> ?x. (a * x == b) (mod n)`,
  REWRITE_TAC[CONG_SOLVE_EQ] THEN CONV_TAC NUMBER_RULE);;

let CONG_SOLVE_UNIQUE = prove
 (`!a b n. coprime(a,n) /\ ~(n = 0) ==> ?!x. x < n /\ (a * x == b) (mod n)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_UNIQUE] THEN
  MP_TAC(SPECL [`a:num`; `b:num`; `n:num`] CONG_SOLVE) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `x:num`) THEN
  EXISTS_TAC `x MOD n` THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [ASM_SIMP_TAC[DIVISION] THEN MATCH_MP_TAC CONG_TRANS THEN
    EXISTS_TAC `a * x:num` THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC CONG_MULT THEN REWRITE_TAC[CONG_REFL] THEN
    ASM_SIMP_TAC[CONG; MOD_MOD_REFL];
    ALL_TAC] THEN
  STRIP_TAC THEN X_GEN_TAC `y:num` THEN STRIP_TAC THEN
  MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `y MOD n` THEN CONJ_TAC THENL
   [ASM_SIMP_TAC[MOD_LT]; ALL_TAC] THEN
  ASM_SIMP_TAC[GSYM CONG] THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN
  EXISTS_TAC `a:num` THEN ASM_MESON_TAC[CONG_TRANS; CONG_SYM]);;

let CONG_SOLVE_UNIQUE_NONTRIVIAL = prove
 (`!a p x. prime p /\ coprime(p,a) /\ 0 < x /\ x < p
           ==> ?!y. 0 < y /\ y < p /\ (x * y == a) (mod p)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
  REPEAT STRIP_TAC THEN SUBGOAL_THEN `1 < p` ASSUME_TAC THENL
   [REWRITE_TAC[ARITH_RULE `1 < p <=> ~(p = 0) /\ ~(p = 1)`] THEN
    ASM_MESON_TAC[PRIME_1];
    ALL_TAC] THEN
  MP_TAC(SPECL [`x:num`; `a:num`; `p:num`] CONG_SOLVE_UNIQUE) THEN
  ANTS_TAC THENL
   [CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PRIME_0]] THEN
    ONCE_REWRITE_TAC[COPRIME_SYM] THEN
    MP_TAC(SPECL [`x:num`; `p:num`] PRIME_COPRIME) THEN
    ASM_CASES_TAC `x = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN
    ASM_MESON_TAC[COPRIME_SYM; NOT_LT; DIVIDES_LE; LT_REFL];
    ALL_TAC] THEN
  MATCH_MP_TAC EQ_IMP THEN
  AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
  X_GEN_TAC `r:num` THEN REWRITE_TAC[] THEN
  REWRITE_TAC[ARITH_RULE `0 < r <=> ~(r = 0)`] THEN
  ASM_CASES_TAC `r = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
  ASM_SIMP_TAC[ARITH_RULE `~(p = 0) ==> 0 < p`] THEN
  ONCE_REWRITE_TAC[CONG_SYM] THEN REWRITE_TAC[CONG_0] THEN
  ASM_MESON_TAC[DIVIDES_REFL; PRIME_1; coprime]);;

let CONG_UNIQUE_INVERSE_PRIME = prove
 (`!p x. prime p /\ 0 < x /\ x < p
         ==> ?!y. 0 < y /\ y < p /\ (x * y == 1) (mod p)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_SOLVE_UNIQUE_NONTRIVIAL THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[COPRIME_1; COPRIME_SYM]);;

(* ------------------------------------------------------------------------- *)
(* Forms of the Chinese remainder theorem.                                   *)
(* ------------------------------------------------------------------------- *)

let CONG_CHINESE = prove
 (`coprime(a,b) /\ (x == y) (mod a) /\ (x == y) (mod b)
   ==> (x == y) (mod (a * b))`,
  ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN MESON_TAC[CONG_0; DIVIDES_MUL]);;

let CHINESE_REMAINDER_UNIQUE = prove
 (`!a b m n.
        coprime(a,b) /\ ~(a = 0) /\ ~(b = 0)
        ==> ?!x. x < a * b /\ (x == m) (mod a) /\ (x == n) (mod b)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN CONJ_TAC THENL
   [MP_TAC(SPECL [`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER) THEN
    ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`x:num`; `q1:num`; `q2:num`] THEN
    DISCH_TAC THEN EXISTS_TAC `x MOD (a * b)` THEN
    CONJ_TAC THENL [ASM_MESON_TAC[DIVISION; MULT_EQ_0]; ALL_TAC] THEN
    GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
    CONJ_TAC THENL
     [FIRST_X_ASSUM(SUBST1_TAC o CONJUNCT1);
      FIRST_X_ASSUM(SUBST1_TAC o CONJUNCT2)] THEN
    ASM_SIMP_TAC[MOD_MULT_CONG] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
    REWRITE_TAC[cong; nat_mod; GSYM ADD_ASSOC; GSYM LEFT_ADD_DISTRIB] THEN
    MESON_TAC[];
    REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_IMP_EQ THEN
    EXISTS_TAC `a * b` THEN ASM_REWRITE_TAC[] THEN
    ASM_MESON_TAC[CONG_CHINESE; CONG_SYM; CONG_TRANS]]);;

let CHINESE_REMAINDER_COPRIME_UNIQUE = prove
 (`!a b m n.
        coprime(a,b) /\ ~(a = 0) /\ ~(b = 0) /\ coprime(m,a) /\ coprime(n,b)
        ==> ?!x. coprime(x,a * b) /\ x < a * b /\
                 (x == m) (mod a) /\ (x == n) (mod b)`,
  REPEAT STRIP_TAC THEN MP_TAC
   (SPECL [`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER_UNIQUE) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[]
   `(!x. P(x) ==> Q(x)) ==> (?!x. P x) ==> ?!x. Q(x) /\ P(x)`) THEN
  ASM_SIMP_TAC[CHINESE_REMAINDER_UNIQUE] THEN
  ASM_MESON_TAC[CONG_COPRIME; COPRIME_SYM; COPRIME_MUL]);;

let CONG_CHINESE_EQ = prove
 (`!a b x y.
     coprime(a,b)
     ==> ((x == y) (mod (a * b)) <=> (x == y) (mod a) /\ (x == y) (mod b))`,
  NUMBER_TAC);;

(* ------------------------------------------------------------------------- *)
(* Euler totient function.                                                   *)
(* ------------------------------------------------------------------------- *)

let phi = new_definition
  `phi(n) = CARD { m | 0 < m /\ m <= n /\ coprime(m,n) }`;;

let PHI_ALT = prove
 (`phi(n) = CARD { m | coprime(m,n) /\ m < n}`,
  REWRITE_TAC[phi] THEN
  ASM_CASES_TAC `n = 0` THENL
   [AP_TERM_TAC THEN
    ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
    MESON_TAC[LT; NOT_LT];
    ALL_TAC] THEN
  ASM_CASES_TAC `n = 1` THENL
   [SUBGOAL_THEN
     `({m | 0 < m /\ m <= n /\ coprime (m,n)} = {1}) /\
      ({m | coprime (m,n) /\ m < n} = {0})`
     (CONJUNCTS_THEN SUBST1_TAC)
    THENL [ALL_TAC; SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY]] THEN
    ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN
    REWRITE_TAC[COPRIME_1] THEN REPEAT STRIP_TAC THEN ARITH_TAC;
    ALL_TAC] THEN
  AP_TERM_TAC THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
  X_GEN_TAC `m:num` THEN ASM_CASES_TAC `m = 0` THEN
  ASM_REWRITE_TAC[LT] THENL
   [ASM_MESON_TAC[COPRIME_0; COPRIME_SYM];
    ASM_MESON_TAC[LE_LT; COPRIME_REFL; LT_NZ]]);;

let PHI_FINITE_LEMMA = prove
 (`!P n. FINITE {m | coprime(m,n) /\ m < n}`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
  REWRITE_TAC[FINITE_NUMSEG; SUBSET; IN_NUMSEG; IN_ELIM_THM] THEN ARITH_TAC);;

let PHI_ANOTHER = prove
 (`!n. ~(n = 1) ==> (phi(n) = CARD {m | 0 < m /\ m < n /\ coprime(m,n)})`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[phi] THEN
  AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
  ASM_MESON_TAC[LE_LT; COPRIME_REFL; COPRIME_1; LT_NZ]);;

let PHI_LIMIT = prove
 (`!n. phi(n) <= n`,
  GEN_TAC THEN REWRITE_TAC[PHI_ALT] THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_LT] THEN
  MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[FINITE_NUMSEG_LT] THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM]);;

let PHI_LIMIT_STRONG = prove
 (`!n. ~(n = 1) ==> phi(n) <= n - 1`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `n:num` FINITE_NUMBER_SEGMENT) THEN
  ASM_SIMP_TAC[PHI_ANOTHER; HAS_SIZE] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN
  MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[] THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM]);;

let PHI_0 = prove
 (`phi 0 = 0`,
  MP_TAC(SPEC `0` PHI_LIMIT) THEN REWRITE_TAC[ARITH] THEN ARITH_TAC);;

let PHI_1 = prove
 (`phi 1 = 1`,
  REWRITE_TAC[PHI_ALT; COPRIME_1; CARD_NUMSEG_LT]);;

let PHI_LOWERBOUND_1_STRONG = prove
 (`!n. 1 <= n ==> 1 <= phi(n)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `1 = CARD {1}` SUBST1_TAC THENL
   [SIMP_TAC[CARD_CLAUSES; NOT_IN_EMPTY; FINITE_RULES; ARITH]; ALL_TAC] THEN
  REWRITE_TAC[phi] THEN MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL
   [SIMP_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN
    REWRITE_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_1] THEN
    GEN_TAC THEN POP_ASSUM MP_TAC THEN ARITH_TAC;
    MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{b | b <= n}` THEN
    REWRITE_TAC[CARD_NUMSEG_LE; FINITE_NUMSEG_LE] THEN
    SIMP_TAC[SUBSET; IN_ELIM_THM]]);;

let PHI_LOWERBOUND_1 = prove
 (`!n. 2 <= n ==> 1 <= phi(n)`,
  MESON_TAC[PHI_LOWERBOUND_1_STRONG; LE_TRANS; ARITH_RULE `1 <= 2`]);;

let PHI_LOWERBOUND_2 = prove
 (`!n. 3 <= n ==> 2 <= phi(n)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `2 = CARD {1,(n-1)}` SUBST1_TAC THENL
   [SIMP_TAC[CARD_CLAUSES; IN_INSERT; NOT_IN_EMPTY; FINITE_RULES; ARITH] THEN
    ASM_SIMP_TAC[ARITH_RULE `3 <= n ==> ~(1 = n - 1)`]; ALL_TAC] THEN
  REWRITE_TAC[phi] THEN MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL
   [SIMP_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN
    GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_1] THEN
    ASM_SIMP_TAC[ARITH;
               ARITH_RULE `3 <= n ==> 0 < n - 1 /\ n - 1 <= n /\ 1 <= n`] THEN
    REWRITE_TAC[coprime] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN
    MP_TAC(SPEC `n:num` COPRIME_1) THEN REWRITE_TAC[coprime] THEN
    DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `1 = n - (n - 1)` SUBST1_TAC THENL
     [UNDISCH_TAC `3 <= n` THEN ARITH_TAC;
      ASM_SIMP_TAC[DIVIDES_SUB]];
    MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{b | b <= n}` THEN
    REWRITE_TAC[CARD_NUMSEG_LE; FINITE_NUMSEG_LE] THEN
    SIMP_TAC[SUBSET; IN_ELIM_THM]]);;

let PHI_EQ_0 = prove
 (`!n. phi n = 0 <=> n = 0`,
  GEN_TAC THEN EQ_TAC THEN SIMP_TAC[PHI_0] THEN
  MP_TAC(SPEC `n:num` PHI_LOWERBOUND_1_STRONG) THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Value on primes and prime powers.                                         *)
(* ------------------------------------------------------------------------- *)

let PHI_PRIME_EQ = prove
 (`!n. (phi n = n - 1) /\ ~(n = 0) /\ ~(n = 1) <=> prime n`,
  GEN_TAC THEN REWRITE_TAC[PRIME] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PHI_1; ARITH] THEN
  MP_TAC(SPEC `n:num` FINITE_NUMBER_SEGMENT) THEN
  ASM_SIMP_TAC[PHI_ANOTHER; HAS_SIZE] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN
  MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
   `{m | 0 < m /\ m < n /\ coprime (m,n)} = {m | 0 < m /\ m < n}` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
    AP_TERM_TAC THEN ABS_TAC THEN
    REWRITE_TAC[COPRIME_SYM] THEN CONV_TAC TAUT] THEN
  EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN
  MATCH_MP_TAC CARD_SUBSET_EQ THEN ASM_REWRITE_TAC[] THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM]);;

let PHI_PRIME = prove
 (`!p. prime p ==> phi p = p - 1`,
  MESON_TAC[PHI_PRIME_EQ]);;

let PHI_PRIMEPOW_SUC = prove
 (`!p k. prime(p) ==> phi(p EXP (k + 1)) = p EXP (k + 1) - p EXP k`,
  REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[PHI_ALT;  COPRIME_PRIMEPOW; ADD_EQ_0; ARITH] THEN
  REWRITE_TAC[SET_RULE
   `{n | ~(P n) /\ Q n} = {n | Q n} DIFF {n | P n /\ Q n}`] THEN
  SIMP_TAC[FINITE_NUMSEG_LT; SUBSET; IN_ELIM_THM; CARD_DIFF] THEN
  REWRITE_TAC[CARD_NUMSEG_LT] THEN AP_TERM_TAC THEN
  SUBGOAL_THEN `{m | p divides m /\ m < p EXP (k + 1)} =
                IMAGE (\x. p * x) {m | m < p EXP k}`
   (fun th -> ASM_SIMP_TAC[th; CARD_IMAGE_INJ; EQ_MULT_LCANCEL; PRIME_IMP_NZ;
                           FINITE_NUMSEG_LT; CARD_NUMSEG_LT]) THEN
  REWRITE_TAC[EXTENSION; TAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`;
              FORALL_AND_THM; FORALL_IN_IMAGE] THEN
  ASM_SIMP_TAC[IN_ELIM_THM; GSYM ADD1; EXP; LT_MULT_LCANCEL; PRIME_IMP_NZ] THEN
  CONJ_TAC THENL [ALL_TAC; NUMBER_TAC] THEN
  X_GEN_TAC `x:num` THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST_ALL_TAC) THEN
  REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN EXISTS_TAC `n:num` THEN
  UNDISCH_TAC `p * n < p * p EXP k` THEN
  ASM_SIMP_TAC[LT_MULT_LCANCEL; PRIME_IMP_NZ]);;

let PHI_PRIMEPOW = prove
 (`!p k. prime p
         ==> phi(p EXP k) = if k = 0 then 1 else p EXP k - p EXP (k - 1)`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
  INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; CONJUNCT1 EXP; PHI_1] THEN
  ASM_SIMP_TAC[ADD1; PHI_PRIMEPOW_SUC; ADD_SUB]);;

let PHI_2 = prove
 (`phi 2 = 1`,
  SIMP_TAC[PHI_PRIME; PRIME_2] THEN CONV_TAC NUM_REDUCE_CONV);;

(* ------------------------------------------------------------------------- *)
(* Multiplicativity property.                                                *)
(* ------------------------------------------------------------------------- *)

let PHI_MULTIPLICATIVE = prove
 (`!a b. coprime(a,b) ==> phi(a * b) = phi(a) * phi(b)`,
  REPEAT STRIP_TAC THEN
  MAP_EVERY ASM_CASES_TAC [`a = 0`; `b = 0`] THEN
  ASM_REWRITE_TAC[PHI_0; MULT_CLAUSES] THEN
  SIMP_TAC[PHI_ALT; GSYM CARD_PRODUCT; PHI_FINITE_LEMMA] THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_IMAGE_INJ_EQ THEN
  EXISTS_TAC `\p. p MOD a,p MOD b` THEN
  REWRITE_TAC[PHI_FINITE_LEMMA; IN_ELIM_PAIR_THM] THEN
  ASM_SIMP_TAC[IN_ELIM_THM; COPRIME_MOD; DIVISION] THEN CONJ_TAC THENL
   [MESON_TAC[COPRIME_LMUL2; COPRIME_RMUL2]; ALL_TAC] THEN
  X_GEN_TAC `pp:num#num` THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[PAIR_EQ; GSYM CONJ_ASSOC] THEN MP_TAC(SPECL
   [`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER_COPRIME_UNIQUE) THEN
  ASM_SIMP_TAC[CONG; MOD_LT]);;

(* ------------------------------------------------------------------------- *)
(* Even-ness of phi for most arguments.                                      *)
(* ------------------------------------------------------------------------- *)

let EVEN_PHI = prove
 (`!n. 3 <= n ==> EVEN(phi n)`,
  REWRITE_TAC[ARITH_RULE `3 <= n <=> 1 < n /\ ~(n = 2)`; IMP_CONJ] THEN
  MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN
  SIMP_TAC[PHI_PRIMEPOW; PHI_MULTIPLICATIVE; EVEN_MULT; EVEN_SUB] THEN
  CONJ_TAC THENL [MESON_TAC[COPRIME_REFL; ARITH_RULE `~(2 = 1)`]; ALL_TAC] THEN
  REWRITE_TAC[EVEN_EXP] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
  FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP PRIME_ODD) THEN ASM_REWRITE_TAC[] THENL
   [ASM_CASES_TAC `k = 1` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
    ASM_REWRITE_TAC[GSYM NOT_ODD]]);;

let EVEN_PHI_EQ = prove
 (`!n. EVEN(phi n) <=> n = 0 \/ 3 <= n`,
  GEN_TAC THEN EQ_TAC THENL
   [ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    REWRITE_TAC[ARITH_RULE `~(n = 0 \/ 3 <= n) <=> n = 1 \/ n = 2`] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[PHI_1; PHI_2] THEN CONV_TAC NUM_REDUCE_CONV;
    STRIP_TAC THEN ASM_SIMP_TAC[PHI_0; EVEN_PHI; EVEN]]);;

let ODD_PHI_EQ = prove
 (`!n. ODD(phi n) <=> n = 1 \/ n = 2`,
  REWRITE_TAC[GSYM NOT_EVEN; EVEN_PHI_EQ] THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Some iteration theorems.                                                  *)
(* ------------------------------------------------------------------------- *)

let NPRODUCT_MOD = prove
 (`!s a:A->num n.
        FINITE s /\ ~(n = 0)
        ==> (iterate (*) s (\m. a(m) MOD n) == iterate (*) s a) (mod n)`,
  REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x y. (x == y) (mod n)`
   (MATCH_MP ITERATE_RELATED MONOIDAL_MUL)) THEN
  SIMP_TAC[NEUTRAL_MUL; CONG_MULT; CONG_REFL] THEN DISCH_THEN MATCH_MP_TAC THEN
  ASM_SIMP_TAC[CONG_MOD]);;

let NPRODUCT_CMUL = prove
 (`!s a c n.
        FINITE s
        ==> iterate (*) s (\m. c * a(m)) = c EXP (CARD s) * iterate (*) s a`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_MUL; NEUTRAL_MUL; CARD_CLAUSES;
               EXP; MULT_CLAUSES] THEN
  REWRITE_TAC[MULT_AC]);;

let COPRIME_NPRODUCT = prove
 (`!s n. FINITE s /\ (!x. x IN s ==> coprime(n,a(x)))
         ==> coprime(n,iterate (*) s a)`,
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_MUL; NEUTRAL_MUL;
           IN_INSERT; COPRIME_MUL; COPRIME_1]);;

let ITERATE_OVER_COPRIME = prove
 (`!op f n k.
        monoidal(op) /\ coprime(k,n) /\
        (!x y. (x == y) (mod n) ==> f x = f y)
        ==> iterate op {d | coprime(d,n) /\ d < n} (\m. f(k * m)) =
            iterate op {d | coprime(d,n) /\ d < n} f`,
  let lemma = prove
   (`~(n = 0) ==> ((a * x MOD n == b) (mod n) <=> (a * x == b) (mod n))`,
    MESON_TAC[CONG_REFL; CONG_SYM; CONG_TRANS; CONG_MULT; CONG_MOD]) in
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [ASM_SIMP_TAC[LT; SET_RULE `{x | F} = {}`; ITERATE_CLAUSES]; ALL_TAC] THEN
  STRIP_TAC THEN SUBGOAL_THEN `?m. (k * m == 1) (mod n)` CHOOSE_TAC THENL
   [ASM_MESON_TAC[CONG_SOLVE; MULT_SYM; CONG_SYM]; ALL_TAC] THEN
  FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_EQ_GENERAL_INVERSES) THEN
  MAP_EVERY EXISTS_TAC [`\x. (k * x) MOD n`; `\x. (m * x) MOD n`] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN
  ASM_SIMP_TAC[COPRIME_MOD; CONG_MOD_LT; CONG_LMOD; DIVISION; lemma;
               COPRIME_LMUL] THEN
  REPEAT STRIP_TAC THEN
  TRY(FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[CONG_LMOD]) THEN
  UNDISCH_TAC `(k * m == 1) (mod n)` THEN CONV_TAC NUMBER_RULE);;

let ITERATE_ITERATE_DIVISORS = prove
 (`!op:A->A->A f x.
        monoidal op
        ==> iterate op (1..x) (\n. iterate op {d | d divides n} (f n)) =
            iterate op (1..x)
                       (\n. iterate op (1..(x DIV n)) (\k. f (k * n) n))`,
  REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[ITERATE_ITERATE_PRODUCT; FINITE_NUMSEG; FINITE_DIVISORS;
               IN_NUMSEG; LE_1] THEN
  MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]
      ITERATE_EQ_GENERAL_INVERSES) THEN
  MAP_EVERY EXISTS_TAC [`\(n,d). d,n DIV d`; `\(n:num,k). n * k,n`] THEN
  ASM_SIMP_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; PAIR_EQ] THEN CONJ_TAC THEN
  REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `n:num` THENL
   [X_GEN_TAC `k:num` THEN SIMP_TAC[DIV_MULT; LE_1; GSYM LE_RDIV_EQ] THEN
    SIMP_TAC[MULT_EQ_0; ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
    DISCH_THEN(K ALL_TAC) THEN NUMBER_TAC;
    X_GEN_TAC `d:num` THEN ASM_CASES_TAC `d = 0` THEN
    ASM_REWRITE_TAC[DIVIDES_ZERO] THENL [ARITH_TAC; ALL_TAC] THEN
    STRIP_TAC THEN ASM_SIMP_TAC[DIV_MONO] THEN CONJ_TAC THENL
     [ALL_TAC; ASM_MESON_TAC[DIVIDES_DIV_MULT; MULT_SYM]] THEN
    FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN
    ASM_SIMP_TAC[DIV_EQ_0; ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
    ASM_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Fermat's Little theorem / Fermat-Euler theorem.                           *)
(* ------------------------------------------------------------------------- *)

let FERMAT_LITTLE = prove
 (`!a n. coprime(a,n) ==> (a EXP (phi n) == 1) (mod n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_SIMP_TAC[COPRIME_0; PHI_0; CONG_MOD_0] THEN CONV_TAC NUM_REDUCE_CONV THEN
  DISCH_TAC THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN
  EXISTS_TAC `iterate (*) {m | coprime (m,n) /\ m < n} (\m. m)` THEN
  ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[PHI_ALT; MULT_CLAUSES] THEN
  SIMP_TAC[IN_ELIM_THM; ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_NPRODUCT;
           PHI_FINITE_LEMMA; GSYM NPRODUCT_CMUL] THEN
  ONCE_REWRITE_TAC[CONG_SYM] THEN MATCH_MP_TAC CONG_TRANS THEN
  EXISTS_TAC `iterate (*) {m | coprime(m,n) /\ m < n} (\m. (a * m) MOD n)` THEN
  ASM_SIMP_TAC[NPRODUCT_MOD; PHI_FINITE_LEMMA] THEN
  MP_TAC(ISPECL [`( * ):num->num->num`; `\x. x MOD n`; `n:num`; `a:num`]
                ITERATE_OVER_COPRIME) THEN
  ASM_SIMP_TAC[MONOIDAL_MUL; GSYM CONG] THEN
  DISCH_TAC THEN ONCE_REWRITE_TAC[CONG_SYM] THEN
  MATCH_MP_TAC NPRODUCT_MOD THEN ASM_SIMP_TAC[PHI_FINITE_LEMMA]);;

let FERMAT_LITTLE_PRIME = prove
 (`!a p. prime p /\ coprime(a,p) ==> (a EXP (p - 1) == 1) (mod p)`,
  MESON_TAC[FERMAT_LITTLE; PHI_PRIME_EQ]);;

(* ------------------------------------------------------------------------- *)
(* Lucas's theorem.                                                          *)
(* ------------------------------------------------------------------------- *)

let LUCAS_COPRIME_LEMMA = prove
 (`!m n a. ~(m = 0) /\ (a EXP m == 1) (mod n) ==> coprime(a,n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[CONG_MOD_0; EXP_EQ_1] THEN
    ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN
    ONCE_REWRITE_TAC[COPRIME_SYM] THEN SIMP_TAC[COPRIME_1];
    ALL_TAC] THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[coprime] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN
  UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN
  ASM_SIMP_TAC[CONG] THEN
  SUBGOAL_THEN `1 MOD n = 1` SUBST1_TAC THENL
   [MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `0` THEN
    REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN
    MAP_EVERY UNDISCH_TAC [`~(n = 0)`; `~(n = 1)`] THEN ARITH_TAC;
    ALL_TAC] THEN
  DISCH_TAC THEN
  SUBGOAL_THEN `d divides (a EXP m) MOD n` MP_TAC THENL
   [ALL_TAC; ASM_SIMP_TAC[DIVIDES_ONE]] THEN
  MATCH_MP_TAC DIVIDES_ADD_REVR THEN
  EXISTS_TAC `a EXP m DIV n * n` THEN
  ASM_SIMP_TAC[GSYM DIVISION; DIVIDES_LMUL] THEN
  SUBGOAL_THEN `m = SUC(m - 1)` SUBST1_TAC THENL
   [UNDISCH_TAC `~(m = 0)` THEN ARITH_TAC;
    ASM_SIMP_TAC[EXP; DIVIDES_RMUL]]);;

let LUCAS_WEAK = prove
 (`!a n. 2 <= n /\
         (a EXP (n - 1) == 1) (mod n) /\
         (!m. 0 < m /\ m < n - 1 ==> ~(a EXP m == 1) (mod n))
         ==> prime(n)`,
  REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[GSYM PHI_PRIME_EQ; PHI_LIMIT_STRONG; GSYM LE_ANTISYM;
               ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `phi n`) THEN
  SUBGOAL_THEN `coprime(a,n)` (fun th -> SIMP_TAC[FERMAT_LITTLE; th]) THENL
   [MATCH_MP_TAC LUCAS_COPRIME_LEMMA THEN EXISTS_TAC `n - 1` THEN
    ASM_SIMP_TAC [ARITH_RULE `2 <= n ==> ~(n - 1 = 0)`]; ALL_TAC] THEN
  REWRITE_TAC[GSYM NOT_LT] THEN
  MATCH_MP_TAC(TAUT `a ==> ~(a /\ b) ==> ~b`) THEN
  ASM_SIMP_TAC[PHI_LOWERBOUND_1; ARITH_RULE `1 <= n ==> 0 < n`]);;

let LUCAS = prove
 (`!a n. 2 <= n /\
         (a EXP (n - 1) == 1) (mod n) /\
         (!p. prime(p) /\ p divides (n - 1)
              ==> ~(a EXP ((n - 1) DIV p) == 1) (mod n))
         ==> prime(n)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `2 <= n ==> ~(n = 0)`)) THEN
  MATCH_MP_TAC LUCAS_WEAK THEN EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[TAUT `a ==> ~b <=> ~(a /\ b)`; GSYM NOT_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[num_WOP] THEN
  DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `0 < n ==> ~(n = 0)`)) THEN
  SUBGOAL_THEN `m divides (n - 1)` MP_TAC THENL
   [REWRITE_TAC[divides] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
    ASM_SIMP_TAC[GSYM MOD_EQ_0] THEN
    MATCH_MP_TAC(ARITH_RULE `~(0 < n) ==> (n = 0)`) THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `(n - 1) MOD m`) THEN
    ASM_SIMP_TAC[DIVISION] THEN CONJ_TAC THENL
     [MATCH_MP_TAC LT_TRANS THEN EXISTS_TAC `m:num` THEN
      ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN
    MATCH_MP_TAC CONG_MULT_LCANCEL THEN
    EXISTS_TAC `a EXP ((n - 1) DIV m * m)` THEN CONJ_TAC THENL
     [ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN
      ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC LUCAS_COPRIME_LEMMA THEN
      EXISTS_TAC `m:num` THEN ASM_SIMP_TAC[]; ALL_TAC] THEN
    REWRITE_TAC[GSYM EXP_ADD] THEN
    ASM_SIMP_TAC[GSYM DIVISION] THEN REWRITE_TAC[MULT_CLAUSES] THEN
    ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM EXP_EXP] THEN
    UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
    UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN
    ASM_SIMP_TAC[CONG] THEN REPEAT DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `((a EXP m) MOD n) EXP ((n - 1) DIV m) MOD n` THEN
    CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[MOD_EXP_MOD]] THEN
    ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[MOD_EXP_MOD] THEN
    REWRITE_TAC[EXP_ONE]; ALL_TAC] THEN
  REWRITE_TAC[divides] THEN
  DISCH_THEN(X_CHOOSE_THEN `r:num` SUBST_ALL_TAC) THEN
  SUBGOAL_THEN `~(r = 1)` MP_TAC THENL
   [UNDISCH_TAC `m < m * r` THEN CONV_TAC CONTRAPOS_CONV THEN
    SIMP_TAC[MULT_CLAUSES; LT_REFL]; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
  DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN STRIP_TAC THEN
  UNDISCH_TAC `!p. prime p /\ p divides m * r
                   ==> ~(a EXP ((m * r) DIV p) == 1) (mod n)` THEN
  DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_SIMP_TAC[DIVIDES_LMUL] THEN
  SUBGOAL_THEN `(m * r) DIV p = m * (r DIV p)` SUBST1_TAC THENL
   [MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
    UNDISCH_TAC `prime p` THEN
    ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
    ASM_SIMP_TAC[ARITH_RULE `~(p = 0) ==> 0 < p`] THEN
    DISCH_TAC THEN REWRITE_TAC[ADD_CLAUSES; GSYM MULT_ASSOC] THEN
    AP_TERM_TAC THEN UNDISCH_TAC `p divides r` THEN
    REWRITE_TAC[divides] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    ASM_SIMP_TAC[DIV_MULT] THEN REWRITE_TAC[MULT_AC]; ALL_TAC] THEN
  UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN
  ASM_SIMP_TAC[CONG] THEN
  DISCH_THEN(MP_TAC o C AP_THM `r DIV p` o AP_TERM `(EXP)`) THEN
  DISCH_THEN(MP_TAC o C AP_THM `n:num` o AP_TERM `(MOD)`) THEN
  ASM_SIMP_TAC[MOD_EXP_MOD] THEN
  REWRITE_TAC[EXP_EXP; EXP_ONE]);;

(* ------------------------------------------------------------------------- *)
(* Definition of the order of a number mod n (always 0 in non-coprime case). *)
(* ------------------------------------------------------------------------- *)

let order = new_definition
 `order n a = @d. !k. (a EXP k == 1) (mod n) <=> d divides k`;;

let EXP_ITER = prove
 (`!x n. x EXP n = ITER n (\y. x * y) (1)`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ITER; EXP]);;

let ORDER_DIVIDES = prove
 (`!n a d. (a EXP d == 1) (mod n) <=> order(n) a divides d`,
  GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[order] THEN CONV_TAC SELECT_CONV THEN
  MP_TAC(ISPECL [`\x y:num. (x == y) (mod n)`; `\x:num. a * x`; `1`]
        ORDER_EXISTENCE_ITER) THEN
  REWRITE_TAC[GSYM EXP_ITER] THEN DISCH_THEN MATCH_MP_TAC THEN
  NUMBER_TAC);;

let ORDER = prove
 (`!n a. (a EXP (order(n) a) == 1) (mod n)`,
  REWRITE_TAC[ORDER_DIVIDES; DIVIDES_REFL]);;

let ORDER_MINIMAL = prove
 (`!n a m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
  REWRITE_TAC[ORDER_DIVIDES] THEN REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_ARITH_TAC);;

let ORDER_WORKS = prove
 (`!n a. (a EXP (order(n) a) == 1) (mod n) /\
         !m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
  MESON_TAC[ORDER; ORDER_MINIMAL]);;

let ORDER_1 = prove
 (`!n. order n 1 = 1`,
  REWRITE_TAC[GSYM DIVIDES_ONE; GSYM ORDER_DIVIDES; EXP_1; CONG_REFL]);;

let ORDER_EQ_0 = prove
 (`!n a. order(n) a = 0 <=> ~coprime(n,a)`,
  REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
   [ONCE_REWRITE_TAC[COPRIME_SYM] THEN DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP FERMAT_LITTLE) THEN
    ASM_REWRITE_TAC[ORDER_DIVIDES; DIVIDES_ZERO; PHI_EQ_0] THEN
    ASM_MESON_TAC[COPRIME_0; ORDER_1; ARITH_RULE `~(1 = 0)`];
    MP_TAC(SPECL [`n:num`; `a:num`] ORDER) THEN
    SPEC_TAC(`order n a`,`m:num`) THEN INDUCT_TAC THEN REWRITE_TAC[] THEN
    FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (TAUT
     `~p ==> (q ==> p) ==> q ==> r`)) THEN
    REWRITE_TAC[EXP] THEN CONV_TAC NUMBER_RULE]);;

let ORDER_CONG = prove
 (`!n a b. (a == b) (mod n) ==> order n a = order n b`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[order] THEN
  AP_TERM_TAC THEN ABS_TAC THEN
  ASM_MESON_TAC[CONG_EXP; CONG_REFL; CONG_SYM; CONG_TRANS]);;

let COPRIME_ORDER = prove
 (`!n a. coprime(n,a)
         ==> order(n) a > 0 /\
            (a EXP (order(n) a) == 1) (mod n) /\
            !m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
  SIMP_TAC[ARITH_RULE `n > 0 <=> ~(n = 0)`; ORDER_EQ_0] THEN
  MESON_TAC[ORDER; ORDER_MINIMAL]);;

let ORDER_DIVIDES_PHI = prove
 (`!a n. coprime(n,a) ==> (order n a) divides (phi n)`,
  MESON_TAC[ORDER_DIVIDES; FERMAT_LITTLE; COPRIME_SYM]);;

let ORDER_DIVIDES_EXPDIFF = prove
 (`!a n d e. coprime(n,a)
             ==> ((a EXP d == a EXP e) (mod n) <=> (d == e) (mod (order n a)))`,
  SUBGOAL_THEN
   `!a n d e. coprime(n,a) /\ e <= d
              ==> ((a EXP d == a EXP e) (mod n) <=> (d == e) (mod (order n a)))`
   (fun th -> MESON_TAC[th; LE_CASES; CONG_SYM]) THEN
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
  DISCH_THEN(X_CHOOSE_THEN `c:num` SUBST1_TAC) THEN
  SUBST1_TAC(ARITH_RULE `e = e + 0`) THEN
  REWRITE_TAC[ARITH_RULE `(e + 0) + c = e + c`] THEN
  REWRITE_TAC[EXP_ADD] THEN
  ASM_SIMP_TAC[CONG_ADD_LCANCEL_EQ; COPRIME_EXP;
    ONCE_REWRITE_RULE[COPRIME_SYM] CONG_MULT_LCANCEL_EQ] THEN
  REWRITE_TAC[EXP; CONG_0_DIVIDES; ORDER_DIVIDES]);;

let ORDER_UNIQUE = prove
 (`!n a k. 0 < k /\
           (a EXP k == 1) (mod n) /\
           (!m. 0 < m /\ m < k ==> ~(a EXP m == 1) (mod n))
           ==> order n a = k`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `order n a`) THEN
  MP_TAC(ISPECL [`n:num`; `a:num`] ORDER_WORKS) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k:num`)) THEN
  ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `order n a = 0` THEN
  ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_ARITH_TAC] THEN
  FIRST_X_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [ORDER_EQ_0]) THEN
  MP_TAC(ISPECL [`n:num`; `a:num`; `k:num`] COPRIME_REXP) THEN
  ASM_SIMP_TAC[LE_1; LT] THEN
  UNDISCH_TAC `(a EXP k == 1) (mod n)` THEN CONV_TAC NUMBER_RULE);;

(* ------------------------------------------------------------------------- *)
(* Another trivial primality characterization.                               *)
(* ------------------------------------------------------------------------- *)

let PRIME_PRIME_FACTOR = prove
 (`!n. prime n <=> ~(n = 1) /\ !p. prime p /\ p divides n ==> (p = n)`,
  GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [prime] THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL
   [MESON_TAC[PRIME_1]; ALL_TAC] THEN
  STRIP_TAC THEN X_GEN_TAC `d:num` THEN
  ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o
    MATCH_MP PRIME_FACTOR) THEN
  ASM_MESON_TAC[DIVIDES_TRANS; DIVIDES_ANTISYM]);;

let PRIME_DIVISOR_SQRT = prove
 (`!n. prime(n) <=> ~(n = 1) /\ !d. d divides n /\ d EXP 2 <= n ==> (d = 1)`,
  GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [prime] THEN
  ASM_CASES_TAC `n = 1` THEN ASM_SIMP_TAC[DIVIDES_ONE] THEN
  ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[DIVIDES_0; LE; EXP_EQ_0; ARITH_EQ] THEN
    MATCH_MP_TAC(TAUT `~a /\ ~b ==> (a <=> b)`) THEN CONJ_TAC THENL
     [DISCH_THEN(MP_TAC o SPEC `2`) THEN REWRITE_TAC[ARITH];
      DISCH_THEN(MP_TAC o SPEC `0`) THEN REWRITE_TAC[ARITH]];
    ALL_TAC] THEN
  EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `d:num` THEN STRIP_TAC THENL
   [ASM_CASES_TAC `d = n:num` THENL
     [ALL_TAC; ASM_MESON_TAC[]] THEN
    UNDISCH_TAC `d EXP 2 <= n` THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[EXP_2; ARITH_RULE `~(n * n <= n) <=> n * 1 < n * n`] THEN
    ASM_REWRITE_TAC[LT_MULT_LCANCEL] THEN
    MAP_EVERY UNDISCH_TAC [`~(n = 0)`; `~(n = 1)`] THEN ARITH_TAC;
    ALL_TAC] THEN
  UNDISCH_TAC `d divides n` THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(X_CHOOSE_THEN `e:num` SUBST_ALL_TAC) THEN
  SUBGOAL_THEN `d EXP 2 <= d * e \/ e EXP 2 <= d * e` MP_TAC THENL
   [REWRITE_TAC[EXP_2; LE_MULT_LCANCEL; LE_MULT_RCANCEL] THEN ARITH_TAC;
    ALL_TAC] THEN
  DISCH_THEN DISJ_CASES_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o SPEC `d:num`);
    FIRST_X_ASSUM(MP_TAC o SPEC `e:num`)] THEN
  ASM_SIMP_TAC[DIVIDES_RMUL; DIVIDES_LMUL; DIVIDES_REFL; MULT_CLAUSES]);;

let PRIME_PRIME_FACTOR_SQRT = prove
 (`!n. prime n <=>
       ~(n = 0) /\ ~(n = 1) /\ ~(?p. prime p /\ p divides n /\ p EXP 2 <= n)`,
  GEN_TAC THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PRIME_1] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
  GEN_REWRITE_TAC LAND_CONV [PRIME_DIVISOR_SQRT] THEN
  EQ_TAC THENL [MESON_TAC[PRIME_1]; ALL_TAC] THEN
  REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN
  ASM_REWRITE_TAC[] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN
  ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
  DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_TRANS]; ALL_TAC] THEN
  MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `d EXP 2` THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[num_CONV `2`; EXP_MONO_LE_SUC] THEN
  ASM_MESON_TAC[DIVIDES_LE; DIVIDES_ZERO]);;

(* ------------------------------------------------------------------------- *)
(* Pocklington theorem.                                                      *)
(* ------------------------------------------------------------------------- *)

let POCKLINGTON_LEMMA = prove
 (`!a n q r.
        2 <= n /\ (n - 1 = q * r) /\
        (a EXP (n - 1) == 1) (mod n) /\
        (!p. prime(p) /\ p divides q
             ==> coprime(a EXP ((n - 1) DIV p) - 1,n))
        ==> !p. prime p /\ p divides n ==> (p == 1) (mod q)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `order p (a EXP r) = q` ASSUME_TAC THENL
   [ALL_TAC;
    SUBGOAL_THEN `coprime(a EXP r,p)` (MP_TAC o MATCH_MP FERMAT_LITTLE) THENL
     [ALL_TAC;
      ASM_REWRITE_TAC[ORDER_DIVIDES] THEN
      SUBGOAL_THEN `phi p = p - 1` SUBST1_TAC THENL
       [ASM_MESON_TAC[PHI_PRIME_EQ]; ALL_TAC] THEN
      REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN
      DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
       `(p - 1 = q * d) ==> ~(p = 0) ==> (p + q * 0 = 1 + q * d)`)) THEN
      REWRITE_TAC[nat_mod; cong] THEN ASM_MESON_TAC[PRIME_0]] THEN
    ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN
    UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    REWRITE_TAC[coprime; NOT_FORALL_THM; NOT_IMP] THEN
    DISCH_THEN(X_CHOOSE_THEN `d:num` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN `d = p:num` SUBST_ALL_TAC THENL
     [ASM_MESON_TAC[prime]; ALL_TAC] THEN
    SUBGOAL_THEN `p divides (a EXP (n - 1))` ASSUME_TAC THENL
     [FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
       `2 <= n ==> (n - 1 = SUC(n - 2))`)) THEN
      REWRITE_TAC[EXP] THEN ASM_SIMP_TAC[DIVIDES_RMUL];
      ALL_TAC] THEN
    REWRITE_TAC[cong; nat_mod] THEN
    SUBGOAL_THEN `~(p divides 1)` MP_TAC THENL
     [ASM_MESON_TAC[DIVIDES_ONE; PRIME_1]; ALL_TAC] THEN
    ASM_MESON_TAC[DIVIDES_RMUL; DIVIDES_ADD; DIVIDES_ADD_REVL]] THEN
  SUBGOAL_THEN `(order p (a EXP r)) divides q` MP_TAC THENL
   [REWRITE_TAC[GSYM ORDER_DIVIDES; EXP_EXP] THEN
    ONCE_REWRITE_TAC[MULT_SYM] THEN
    UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
    ASM_REWRITE_TAC[] THEN
    UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN
    DISCH_THEN(X_CHOOSE_THEN `b:num` SUBST_ALL_TAC) THEN
    REWRITE_TAC[cong; nat_mod] THEN MESON_TAC[MULT_AC];
    ALL_TAC] THEN
  REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN
  ASM_CASES_TAC `d = 1` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN
  DISCH_THEN(ASSUME_TAC o SYM) THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
  DISCH_THEN(X_CHOOSE_THEN `P:num` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `P divides q` ASSUME_TAC THENL
   [ASM_MESON_TAC[DIVIDES_LMUL]; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `P:num`) THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN
  UNDISCH_TAC `P divides q` THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(X_CHOOSE_THEN `s:num` SUBST_ALL_TAC) THEN
  REWRITE_TAC[GSYM MULT_ASSOC] THEN
  SUBGOAL_THEN `~(P = 0)` ASSUME_TAC THENL
   [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
  ASM_SIMP_TAC[DIV_MULT] THEN
  UNDISCH_TAC `P divides d` THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(X_CHOOSE_THEN `t:num` SUBST_ALL_TAC) THEN
  UNDISCH_TAC `order p (a EXP r) * P * t = P * s` THEN
  ONCE_REWRITE_TAC[ARITH_RULE
   `(a * p * b = p * c) <=> (p * a * b = p * c)`] THEN
  REWRITE_TAC[EQ_MULT_LCANCEL] THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(SUBST_ALL_TAC o SYM) THEN REWRITE_TAC[coprime] THEN
  DISCH_THEN(MP_TAC o SPEC `p:num`) THEN REWRITE_TAC[NOT_IMP] THEN
  CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PRIME_1]] THEN
  ASM_REWRITE_TAC[] THEN
  ONCE_REWRITE_TAC[AC MULT_AC `(d * t) * r = r * d * t`] THEN
  REWRITE_TAC[EXP_MULT] THEN
  MATCH_MP_TAC CONG_1_DIVIDES THEN
  MATCH_MP_TAC CONG_TRANS THEN EXISTS_TAC `1 EXP t` THEN
  SIMP_TAC[CONG_EXP; ORDER] THEN REWRITE_TAC[EXP_ONE; CONG_REFL]);;

let POCKLINGTON = prove
 (`!a n q r.
        2 <= n /\ (n - 1 = q * r) /\ n <= q EXP 2 /\
        (a EXP (n - 1) == 1) (mod n) /\
        (!p. prime(p) /\ p divides q
             ==> coprime(a EXP ((n - 1) DIV p) - 1,n))
        ==> prime(n)`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[PRIME_PRIME_FACTOR_SQRT] THEN
  ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
  DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPECL [`a:num`; `n:num`; `q:num`; `r:num`] POCKLINGTON_LEMMA) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN
  ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `p EXP 2 <= q EXP 2` MP_TAC THENL
   [ASM_MESON_TAC[LE_TRANS]; ALL_TAC] THEN
  REWRITE_TAC[num_CONV `2`; EXP_MONO_LE_SUC] THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN
  DISCH_THEN(MP_TAC o MATCH_MP CONG_1_DIVIDES) THEN
  DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Variant for application, to separate the exponentiation.                  *)
(* ------------------------------------------------------------------------- *)

let POCKLINGTON_ALT = prove
 (`!a n q r.
        2 <= n /\ (n - 1 = q * r) /\ n <= q EXP 2 /\
        (a EXP (n - 1) == 1) (mod n) /\
        (!p. prime(p) /\ p divides q
             ==> ?b. (a EXP ((n - 1) DIV p) == b) (mod n) /\
                     coprime(b - 1,n))
        ==> prime(n)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC POCKLINGTON THEN
  MAP_EVERY EXISTS_TAC [`a:num`; `q:num`; `r:num`] THEN
  ASM_REWRITE_TAC[] THEN
  X_GEN_TAC `p:num` THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `b:num` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `(a EXP ((q * r) DIV p) - 1 == b - 1) (mod n)`
   (fun th -> ASM_MESON_TAC[CONG_COPRIME; COPRIME_SYM; th]) THEN
  MATCH_MP_TAC CONG_SUB THEN ASM_REWRITE_TAC[CONG_REFL] THEN
  REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; EXP_EQ_0] THEN
  SUBGOAL_THEN `~(a = 0)` ASSUME_TAC THENL
   [DISCH_TAC THEN UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
    SIMP_TAC[ARITH_RULE `2 <= n ==> (n - 1 = SUC(n - 2))`;
             ASSUME `a = 0`; ASSUME `2 <= n`] THEN
    REWRITE_TAC[MULT_CLAUSES; EXP] THEN
    ONCE_REWRITE_TAC[CONG_SYM] THEN
    REWRITE_TAC[CONG_0_DIVIDES; DIVIDES_ONE] THEN
    UNDISCH_TAC `2 <= n` THEN ARITH_TAC;
    ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC `(a EXP ((q * r) DIV p) == b) (mod n)` THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN
  DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[CONG_0_DIVIDES] THEN
  SUBGOAL_THEN `~(n divides (a EXP (n - 1)))` MP_TAC THENL
   [ASM_MESON_TAC[CONG_DIVIDES; DIVIDES_ONE; ARITH_RULE `~(2 <= 1)`];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[CONTRAPOS_THM] THEN UNDISCH_TAC `p divides q` THEN
  GEN_REWRITE_TAC LAND_CONV [divides] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
  REWRITE_TAC[GSYM MULT_ASSOC] THEN
  SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
   [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
  ASM_SIMP_TAC[DIV_MULT] THEN
  GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
  GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [EXP_MULT] THEN
  SUBGOAL_THEN `p = SUC(p - 1)` SUBST1_TAC THENL
   [UNDISCH_TAC `~(p = 0)` THEN ARITH_TAC; ALL_TAC] THEN
  REWRITE_TAC[EXP; DIVIDES_RMUL]);;

(* ------------------------------------------------------------------------- *)
(* Prime factorizations.                                                     *)
(* ------------------------------------------------------------------------- *)

let primefact = new_definition
  `primefact ps n <=> (ITLIST (*) ps 1 = n) /\ !p. MEM p ps ==> prime(p)`;;

let PRIMEFACT = prove
 (`!n. ~(n = 0) ==> ?ps. primefact ps n`,
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THENL
   [REPEAT DISCH_TAC THEN EXISTS_TAC `[]:num list` THEN
    REWRITE_TAC[primefact; ITLIST; MEM]; ALL_TAC] THEN
  DISCH_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o
    MATCH_MP PRIME_FACTOR) THEN
  UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
  UNDISCH_TAC `~(p * m = 0)` THEN
  ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN DISCH_TAC THEN
  GEN_REWRITE_TAC (funpow 3 LAND_CONV) [ARITH_RULE `n = 1 * n`] THEN
  ASM_REWRITE_TAC[LT_MULT_RCANCEL] THEN
  SUBGOAL_THEN `1 < p` (fun th -> REWRITE_TAC[th]) THENL
   [MATCH_MP_TAC(ARITH_RULE `~(p = 0) /\ ~(p = 1) ==> 1 < p`) THEN
    REPEAT STRIP_TAC THEN UNDISCH_TAC `prime p` THEN
    ASM_REWRITE_TAC[PRIME_0; PRIME_1]; ALL_TAC] THEN
  REWRITE_TAC[primefact] THEN
  DISCH_THEN(X_CHOOSE_THEN `ps:num list` ASSUME_TAC) THEN
  EXISTS_TAC `CONS (p:num) ps` THEN
  ASM_REWRITE_TAC[MEM; ITLIST] THEN ASM_MESON_TAC[]);;

let PRIMAFACT_CONTAINS = prove
 (`!ps n. primefact ps n ==> !p. prime p /\ p divides n ==> MEM p ps`,
  REPEAT GEN_TAC THEN REWRITE_TAC[primefact] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  POP_ASSUM(SUBST1_TAC o SYM) THEN
  SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
  REWRITE_TAC[ITLIST; MEM] THENL
   [ASM_MESON_TAC[DIVIDES_ONE; PRIME_1]; ALL_TAC] THEN
  STRIP_TAC THEN GEN_TAC THEN
  DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN
  DISCH_THEN(DISJ_CASES_TAC o MATCH_MP PRIME_DIVPROD) THEN
  ASM_MESON_TAC[prime; PRIME_1]);;

let PRIMEFACT_VARIANT = prove
 (`!ps n. primefact ps n <=> (ITLIST (*) ps 1 = n) /\ ALL prime ps`,
  REPEAT GEN_TAC THEN REWRITE_TAC[primefact] THEN AP_TERM_TAC THEN
  SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
  ASM_REWRITE_TAC[MEM; ALL] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Variant of Lucas theorem.                                                 *)
(* ------------------------------------------------------------------------- *)

let LUCAS_PRIMEFACT = prove
 (`2 <= n /\
   (a EXP (n - 1) == 1) (mod n) /\
   (ITLIST (*) ps 1 = n - 1) /\
   ALL (\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ps
   ==> prime n`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC LUCAS THEN
  EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `primefact ps (n - 1)` MP_TAC THENL
   [ASM_REWRITE_TAC[PRIMEFACT_VARIANT] THEN MATCH_MP_TAC ALL_IMP THEN
    EXISTS_TAC `\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)` THEN
    ASM_SIMP_TAC[]; ALL_TAC] THEN
  DISCH_THEN(ASSUME_TAC o MATCH_MP PRIMAFACT_CONTAINS) THEN
  X_GEN_TAC `p:num` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN UNDISCH_TAC
   `ALL (\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ps` THEN
  SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
  SIMP_TAC[ALL; MEM] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Variant of Pocklington theorem.                                           *)
(* ------------------------------------------------------------------------- *)

let POCKLINGTON_PRIMEFACT = prove
 (`2 <= n /\ (q * r = n - 1) /\ n <= q * q
   ==> ((a EXP r) MOD n = b)
       ==> (ITLIST (*) ps 1 = q)
           ==> ((b EXP q) MOD n = 1)
               ==> ALL (\p. prime p /\
                            coprime((b EXP (q DIV p)) MOD n - 1,n)) ps
                   ==> prime n`,
  DISCH_THEN(fun th -> DISCH_THEN(SUBST1_TAC o SYM) THEN MP_TAC th) THEN
  SIMP_TAC[MOD_EXP_MOD; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
  SIMP_TAC[ONCE_REWRITE_RULE[MULT_SYM] EXP_EXP] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC POCKLINGTON THEN
  MAP_EVERY EXISTS_TAC [`a:num`; `q:num`; `r:num`] THEN
  ASM_REWRITE_TAC[EXP_2] THEN CONJ_TAC THENL
   [MP_TAC(SPECL [`a EXP (n - 1)`; `n:num`] DIVISION) THEN
    ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
    STRIP_TAC THEN ABBREV_TAC `Q = a EXP (n - 1) DIV n` THEN
    ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[cong; nat_mod] THEN
    MAP_EVERY EXISTS_TAC [`0`; `Q:num`] THEN ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `primefact ps q` MP_TAC THENL
   [ASM_REWRITE_TAC[PRIMEFACT_VARIANT] THEN MATCH_MP_TAC ALL_IMP THEN
    EXISTS_TAC `\p. prime p /\ coprime(a EXP (q DIV p * r) MOD n - 1,n)` THEN
    ASM_SIMP_TAC[]; ALL_TAC] THEN
  DISCH_THEN(ASSUME_TAC o MATCH_MP PRIMAFACT_CONTAINS) THEN
  X_GEN_TAC `p:num` THEN
  DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
  DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[GSYM ALL_MEM]) THEN
  DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
  MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> a /\ b ==> c`) THEN
  DISCH_TAC THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN
  SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
   [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
  SUBGOAL_THEN `q DIV p * r = (n - 1) DIV p` SUBST1_TAC THENL
   [UNDISCH_TAC `p divides q` THEN REWRITE_TAC[divides] THEN
    DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN
    UNDISCH_THEN `(p * d) * r = n - 1` (SUBST1_TAC o SYM) THEN
    ASM_SIMP_TAC[DIV_MULT; GSYM MULT_ASSOC];
    ALL_TAC] THEN
  MATCH_MP_TAC CONG_COPRIME THEN MATCH_MP_TAC CONG_SUB THEN
  ASM_SIMP_TAC[CONG_MOD; ARITH_RULE `2 <= n ==> ~(n = 0)`; CONG_REFL] THEN
  MATCH_MP_TAC(ARITH_RULE `a <= b /\ ~(a = 0) ==> 1 <= a /\ 1 <= b`) THEN
  ASM_SIMP_TAC[MOD_LE; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
  ASM_SIMP_TAC[MOD_EQ_0; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
  DISCH_THEN(X_CHOOSE_THEN `s:num` MP_TAC) THEN
  DISCH_THEN(MP_TAC o C AP_THM `p:num` o AP_TERM `(EXP)`) THEN
  REWRITE_TAC[EXP_EXP] THEN
  SUBGOAL_THEN `(n - 1) DIV p * p = n - 1` SUBST1_TAC THENL
   [SUBST1_TAC(SYM(ASSUME `q * r = n - 1`)) THEN
    UNDISCH_TAC `p divides q` THEN REWRITE_TAC[divides] THEN
    DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
    REWRITE_TAC[GSYM MULT_ASSOC] THEN
    ASM_MESON_TAC[DIV_MULT; MULT_AC; PRIME_0];
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o C AP_THM `n:num` o AP_TERM `(MOD)`) THEN
  ASM_REWRITE_TAC[] THEN
  FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
   `~(p = 0) ==> (p = SUC(p - 1))`)) THEN
  ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[EXP; GSYM MULT_ASSOC] THEN
  ASM_SIMP_TAC[MOD_MULT; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
  REWRITE_TAC[ARITH_EQ]);;

(* ------------------------------------------------------------------------- *)
(* Utility functions.                                                        *)
(* ------------------------------------------------------------------------- *)

let even_num n =
  mod_num n num_2 =/ num_0;;

let odd_num = not o even_num;;

(* ------------------------------------------------------------------------- *)
(* Least p >= 0 with x <= 2^p.                                               *)
(* ------------------------------------------------------------------------- *)

let log2 =
  let rec log2 x y =
    if x </ num_1 then y
    else log2 (quo_num x num_2) (y +/ num_1) in
  fun x -> log2 (x -/ num_1) num_0;;

(* ------------------------------------------------------------------------- *)
(* Raise number to power (x^m) modulo n.                                     *)
(* ------------------------------------------------------------------------- *)

let rec powermod x m n =
  if m =/ num_0 then num_1 else
  let y = powermod x (quo_num m num_2) n in
  let z = mod_num (y */ y) n in
  if even_num m then z else
  mod_num (x */ z) n;;

(* ------------------------------------------------------------------------- *)
(* Make a call to PARI/GP to factor a number into (probable) primes.         *)
(* ------------------------------------------------------------------------- *)

let factor =
  let suck_file s = let data = string_of_file s in Sys.remove s; data in
  let extract_output s =
    let l0 = explode s in
    let l0' = rev l0 in
    let l1 = snd(chop_list(index "]" l0') l0') in
    let l2 = "["::rev(fst(chop_list(index "[" l1) l1)) in
    let tm = parse_term (implode l2) in
    map ((dest_numeral F_F dest_numeral) o dest_pair) (dest_list tm) in
  fun n ->
    if n =/ num_1 then [] else
    let filename = Filename.temp_file "pocklington" ".out" in
    let s = "echo 'print(factorint(" ^
            (string_of_num n) ^
            "))  \n quit' | gp >" ^ filename ^ " 2>/dev/null" in
    if Sys.command s = 0 then
      let output = suck_file filename in
      extract_output output
    else
       failwith "factor: Call to GP/PARI failed";;

(* ------------------------------------------------------------------------- *)
(* Alternative giving multiset instead of set plus indices.                  *)
(* Also just use a stupid algorithm for small enough numbers or if PARI/GP   *)
(* is not installed. I should really write a better factoring algorithm.     *)
(* ------------------------------------------------------------------------- *)

let PARI_THRESHOLD = pow2 25;;

let multifactor =
  let rec findfactor m n =
    if mod_num n m =/ num_0 then m
    else if m */ m >/ n then n
    else findfactor (m +/ num_1) n in
  let rec stupidfactor n =
    let p = findfactor num_2 n in
    if p =/ n then [n] else p::(stupidfactor(quo_num n p)) in
  let rec multilist l =
    if l = [] then [] else
    let (x,n) = hd l in
    replicate x (Num.int_of_num n) @ multilist (tl l) in
  fun n -> try if n </ PARI_THRESHOLD then failwith ""
               else multilist (factor n)
           with Failure _ -> sort (</) (stupidfactor n);;

(* ------------------------------------------------------------------------- *)
(* Recursive creation of Pratt primality certificates.                       *)
(* ------------------------------------------------------------------------- *)

type certificate =
    Prime_2
  | Primroot_and_factors of
      ((num * num list) * num * (num * certificate) list);;

let find_primitive_root =
  let rec find_primitive_root a m ms n =
    if gcd_num a n =/ num_1 &&
       powermod a m n =/ num_1 &&
       forall (fun k -> powermod a k n <>/ num_1) ms
    then a
    else find_primitive_root (a +/ num_1) m ms n in
  let find_primitive_root_from_2 = find_primitive_root num_2 in
  fun m ms n ->
    if n </ num_2 then failwith "find_primitive_root: input too small"
    else find_primitive_root_from_2 m ms n;;

let uniq_num =
  let rec uniq x l =
    match l with
      [] -> raise Unchanged
    | (h::t) -> if x =/ h then
                  try uniq x t
                  with Unchanged -> l
                else x::(uniq h t) in
  fun l -> if l = [] then [] else uniq (hd l) (tl l);;

let setify_num s =
  let s' = sort (<=/) s in
  try uniq_num s' with Unchanged -> s';;

let certify_prime =
  let rec cert_prime n =
    if n <=/ num_2 then
       if n =/ num_2 then Prime_2
       else failwith "certify_prime: not a prime!"
    else
      let m = n -/ num_1 in
      let pfact = multifactor m in
      let primes = setify_num pfact in
      let ms = map (fun d -> div_num m d) primes in
      let a = find_primitive_root m ms n in
      Primroot_and_factors((n,pfact),a,map (fun n -> n,cert_prime n) primes) in
  fun n -> if length(multifactor n) = 1 then cert_prime n
           else failwith "certify_prime: input is not a prime";;

(* ------------------------------------------------------------------------- *)
(* Relatively efficient evaluation of "(a EXP k) MOD n".                     *)
(* ------------------------------------------------------------------------- *)

let EXP_MOD_CONV =
  let pth = prove
   (`~(n = 0)
     ==> ((a EXP 0) MOD n = 1 MOD n) /\
         ((a EXP (NUMERAL (BIT0 m))) MOD n =
                let b = (a EXP (NUMERAL m)) MOD n in
                (b * b) MOD n) /\
         ((a EXP (NUMERAL (BIT1 m))) MOD n =
                let b = (a EXP (NUMERAL m)) MOD n in
                (a * ((b * b) MOD n)) MOD n)`,
    DISCH_TAC THEN REWRITE_TAC[EXP] THEN
    REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN
    REWRITE_TAC[EXP; EXP_ADD] THEN
    CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
    ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD] THEN
    REWRITE_TAC[MULT_ASSOC] THEN
    ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD] THEN
    ONCE_REWRITE_TAC[MULT_SYM] THEN
    REWRITE_TAC[MULT_ASSOC] THEN
    ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD])
  and pth_cong = prove
   (`~(n = 0) ==> ((x == y) (mod n) <=> x MOD n = y MOD n)`,
    REWRITE_TAC[CONG])
  and n_tm = `n:num` in
  fun tm ->
    let ntm = rand tm in
    let th1 = INST [ntm,n_tm] pth in
    let th2 = EQF_ELIM(NUM_EQ_CONV(rand(lhand(concl th1)))) in
    let th_base,th_steps = CONJ_PAIR(MP th1 th2) in
    let conv_base = GEN_REWRITE_CONV I [th_base]
    and conv_step = GEN_REWRITE_CONV I [th_steps] in
    let rec conv tm =
      try conv_base tm with Failure _ ->
      (conv_step THENC
       RAND_CONV conv THENC
       let_CONV THENC
       NUM_REDUCE_CONV) tm in
    conv tm;;

(* ------------------------------------------------------------------------- *)
(* HOL checking of primality certificate, using Pocklington shortcut.        *)
(* ------------------------------------------------------------------------- *)

let prime_theorem_cache = ref [];;

let rec lookup_under_num n l =
  if l = [] then failwith "lookup_under_num" else
  let h = hd l in
  if fst h =/ n then snd h
  else lookup_under_num n (tl l);;

let rec split_factors q qs ps n =
  if q */ q >=/ n then rev qs,ps
  else split_factors (q */ hd ps) (hd ps :: qs) (tl ps) n;;

let check_certificate =
  let n_tm = `n:num`
  and a_tm = `a:num`
  and q_tm = `q:num`
  and r_tm = `r:num`
  and b_tm = `b:num`
  and ps_tm = `ps:num list`
  and conv_itlist =
   GEN_REWRITE_CONV TOP_DEPTH_CONV [ITLIST] THENC NUM_REDUCE_CONV
  and conv_all =
   GEN_REWRITE_CONV TOP_DEPTH_CONV
    [ALL; BETA_THM; TAUT `a /\ T <=> a`] THENC
   GEN_REWRITE_CONV DEPTH_CONV
    [TAUT `(a /\ a /\ b <=> a /\ b) /\ (a /\ a <=> a)`]
  and subarith_conv =
    let gconv_net = itlist (uncurry net_of_conv)
      [`a - b`,NUM_SUB_CONV;
       `a DIV b`,NUM_DIV_CONV;
       `(a EXP b) MOD c`,EXP_MOD_CONV;
       `coprime(a,b)`,COPRIME_CONV;
       `p /\ T`,REWR_CONV(TAUT `p /\ T <=> p`);
       `T /\ p`,REWR_CONV(TAUT `T /\ p <=> p`)]
      empty_net  in
    DEPTH_CONV(REWRITES_CONV gconv_net) in
  let rec check_certificate cert =
    match cert with
      Prime_2 ->
          PRIME_2
    | Primroot_and_factors((n,ps),a,ncerts) ->
          try lookup_under_num n (!prime_theorem_cache) with Failure _ ->
          let qs,rs = split_factors num_1 [] (rev ps) n in
          let q = itlist ( */ ) qs num_1
          and r = itlist ( */ ) rs num_1 in
          let th1 = INST [mk_numeral n,n_tm;
                          mk_flist (map mk_numeral qs),ps_tm;
                          mk_numeral q,q_tm;
                          mk_numeral r,r_tm;
                          mk_numeral a,a_tm]
                         POCKLINGTON_PRIMEFACT in
          let th2 = MP th1 (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th1)))) in
          let tha = EXP_MOD_CONV(lhand(lhand(concl th2))) in
          let thb = MP (INST [rand(concl tha),b_tm] th2) tha in
          let th3 = MP thb (EQT_ELIM(conv_itlist (lhand(concl thb)))) in
          let th4 = MP th3 (EXP_MOD_CONV (lhand(lhand(concl th3)))) in
          let th5 = conv_all(lhand(concl th4)) in
          let th6 = TRANS th5 (subarith_conv(rand(concl th5))) in
          let th7 = IMP_TRANS (snd(EQ_IMP_RULE th6)) th4 in
          let ants = conjuncts(lhand(concl th7)) in
          let certs =
            map (fun t -> lookup_under_num (dest_numeral(rand t)) ncerts)
                ants in
          let ths = map check_certificate certs in
          let fth = MP th7 (end_itlist CONJ ths) in
          prime_theorem_cache := (n,fth)::(!prime_theorem_cache); fth in
  check_certificate;;

(* ------------------------------------------------------------------------- *)
(* Hence a primality-proving rule.                                           *)
(* ------------------------------------------------------------------------- *)

let PROVE_PRIME = check_certificate o certify_prime;;

(* ------------------------------------------------------------------------- *)
(* Rule to generate prime factorization theorems.                            *)
(* ------------------------------------------------------------------------- *)

let PROVE_PRIMEFACT =
  let pth = SPEC_ALL PRIMEFACT_VARIANT
  and start_CONV = PURE_REWRITE_CONV[ITLIST; ALL] THENC NUM_REDUCE_CONV
  and ps_tm = `ps:num list`
  and n_tm = `n:num` in
  fun n ->
     let pfact = multifactor n in
     let th1 = INST [mk_flist(map mk_numeral pfact),ps_tm;
                     mk_numeral n,n_tm] pth in
     let th2 = TRANS th1 (start_CONV(rand(concl th1))) in
     let ths = map PROVE_PRIME pfact in
     EQ_MP (SYM th2) (end_itlist CONJ ths);;

(* ------------------------------------------------------------------------- *)
(* Conversion for truth or falsity of primality assertion.                   *)
(* ------------------------------------------------------------------------- *)

let PRIME_TEST =
  let NOT_PRIME_THM = prove
   (`((m = 1) <=> F) ==> ((m = p) <=> F) ==> (m * n = p) ==> (prime(p) <=> F)`,
    MESON_TAC[prime; divides])
  and m_tm = `m:num` and n_tm = `n:num` and p_tm = `p:num` in
  fun tm ->
    let p = dest_numeral tm in
    if p =/ num_0 then EQF_INTRO PRIME_0
    else if p =/ num_1 then EQF_INTRO PRIME_1 else
    let pfact = multifactor p in
    if length pfact = 1 then
     (remark ("proving that " ^ string_of_num p ^ " is prime");
      EQT_INTRO(PROVE_PRIME p))
    else
     (remark ("proving that " ^ string_of_num p ^ " is composite");
      let m = hd pfact and n = end_itlist ( */ ) (tl pfact) in
      let th0 = INST [mk_numeral m,m_tm; mk_numeral n,n_tm; mk_numeral p,p_tm]
                     NOT_PRIME_THM in
      let th1 = MP th0 (NUM_EQ_CONV (lhand(lhand(concl th0)))) in
      let th2 = MP th1 (NUM_EQ_CONV (lhand(lhand(concl th1)))) in
      MP th2 (NUM_MULT_CONV(lhand(lhand(concl th2)))));;

let PRIME_CONV =
  let prime_tm = `prime` in
  fun tm0 ->
    let ptm,tm = dest_comb tm0 in
    if ptm <> prime_tm then failwith "expected term of form prime(n)"
    else PRIME_TEST tm;;

(* ------------------------------------------------------------------------- *)
(* Another lemma.                                                            *)
(* ------------------------------------------------------------------------- *)

let PRIME_POWER_EXISTS = prove
 (`!q. prime q
       ==> ((?i. n = q EXP i) <=>
            (!p. prime p /\ p divides n ==> p = q))`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THEN
  ASM_SIMP_TAC[IMP_CONJ; PRIME_DIVEXP_EQ; DIVIDES_PRIME_PRIME] THEN
  ASM_CASES_TAC `n = 0` THENL
   [FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `2` th) THEN MP_TAC(SPEC `3` th)) THEN
    ASM_REWRITE_TAC[PRIME_2; PRIME_CONV `prime 3`; DIVIDES_0] THEN ARITH_TAC;
    ALL_TAC] THEN
  ASM_CASES_TAC `n = 1` THENL
   [EXISTS_TAC `0` THEN ASM_REWRITE_TAC[EXP]; ALL_TAC] THEN
  MP_TAC(ISPEC `n:num` PRIMEPOW_FACTOR) THEN
  ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN
  ASM_CASES_TAC `p:num = q` THENL
   [FIRST_X_ASSUM(SUBST_ALL_TAC o SYM);
    ASM_MESON_TAC[DIVIDES_REXP; LE_1; DIVIDES_RMUL; DIVIDES_REFL]] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:num` THEN
  DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM SUBST_ALL_TAC THEN
  MATCH_MP_TAC(NUM_RING `m = 1 ==> x * m = x`) THEN
  MATCH_MP_TAC(ARITH_RULE `~(m = 0) /\ ~(2 <= m) ==> m = 1`) THEN
  CONJ_TAC THENL [ASM_MESON_TAC[COPRIME_0; PRIME_1]; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o MATCH_MP PRIMEPOW_FACTOR) THEN
  DISCH_THEN(X_CHOOSE_THEN `r:num` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `r:num`) THEN
  REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL
   [ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL; DIVIDES_REXP; LE_1; DIVIDES_REFL];
    DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_RMUL]) THEN
    ASM_SIMP_TAC[COPRIME_REXP; LE_1; COPRIME_REFL] THEN
    ASM_MESON_TAC[PRIME_1]]);;

(* ------------------------------------------------------------------------- *)
(* Example.                                                                  *)
(* ------------------------------------------------------------------------- *)

map (time PRIME_TEST o mk_small_numeral) (0--50);;

time PRIME_TEST `65535`;;

time PRIME_TEST `65536`;;

time PRIME_TEST `65537`;;

time PROVE_PRIMEFACT (Int 222);;

time PROVE_PRIMEFACT (Int 151);;

(* ------------------------------------------------------------------------- *)
(* The "Landau trick" in Erdos's proof of Chebyshev-Bertrand theorem.        *)
(* ------------------------------------------------------------------------- *)

map (time PRIME_TEST o mk_small_numeral)
  [3; 5; 7; 13; 23; 43; 83; 163; 317; 631; 1259; 2503; 4001];;