1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
|
(* ========================================================================= *)
(* HOL primality proving via Pocklington-optimized Pratt certificates. *)
(* ========================================================================= *)
needs "Library/iter.ml";;
needs "Library/prime.ml";;
prioritize_num();;
let num_0 = Int 0;;
let num_1 = Int 1;;
let num_2 = Int 2;;
(* ------------------------------------------------------------------------- *)
(* Mostly for compatibility. Should eliminate this eventually. *)
(* ------------------------------------------------------------------------- *)
let nat_mod_lemma = prove
(`!x y n:num. (x == y) (mod n) /\ y <= x ==> ?q. x = y + n * q`,
REPEAT GEN_TAC THEN REWRITE_TAC[num_congruent] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
ONCE_REWRITE_TAC
[INTEGER_RULE `(x == y) (mod &n) <=> &n divides (x - y)`] THEN
ASM_SIMP_TAC[INT_OF_NUM_SUB;
ARITH_RULE `x <= y ==> (y:num = x + d <=> y - x = d)`] THEN
REWRITE_TAC[GSYM num_divides; divides]);;
let nat_mod = prove
(`!x y n:num. (mod n) x y <=> ?q1 q2. x + n * q1 = y + n * q2`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM cong] THEN
EQ_TAC THENL [ALL_TAC; NUMBER_TAC] THEN
MP_TAC(SPECL [`x:num`; `y:num`] LE_CASES) THEN
REWRITE_TAC[TAUT `a \/ b ==> c ==> d <=> (c /\ b) \/ (c /\ a) ==> d`] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ALL_TAC;
ONCE_REWRITE_TAC[NUMBER_RULE
`(x:num == y) (mod n) <=> (y == x) (mod n)`]] THEN
MESON_TAC[nat_mod_lemma; ARITH_RULE `x + y * 0 = x`]);;
(* ------------------------------------------------------------------------- *)
(* Lemmas about previously defined terms. *)
(* ------------------------------------------------------------------------- *)
let PRIME = prove
(`!p. prime p <=> ~(p = 0) /\ ~(p = 1) /\ !m. 0 < m /\ m < p ==> coprime(p,m)`,
GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1] THEN
EQ_TAC THENL
[DISCH_THEN(MP_TAC o MATCH_MP PRIME_COPRIME) THEN
DISCH_TAC THEN X_GEN_TAC `m:num` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
STRIP_TAC THEN ASM_REWRITE_TAC[COPRIME_1] THEN
ASM_MESON_TAC[NOT_LT; LT_REFL; DIVIDES_LE]; ALL_TAC] THEN
FIRST_ASSUM(X_CHOOSE_THEN `q:num` MP_TAC o MATCH_MP PRIME_FACTOR) THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN
SUBGOAL_THEN `~(coprime(p,q))` (fun th -> REWRITE_TAC[th]) THENL
[REWRITE_TAC[coprime; NOT_FORALL_THM] THEN
EXISTS_TAC `q:num` THEN ASM_REWRITE_TAC[DIVIDES_REFL] THEN
ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_REWRITE_TAC[LT_LE; LE_0] THEN
ASM_CASES_TAC `p:num = q` THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[] THEN DISCH_TAC THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
ASM_MESON_TAC[DIVIDES_ZERO]);;
let FINITE_NUMBER_SEGMENT = prove
(`!n. { m | 0 < m /\ m < n } HAS_SIZE (n - 1)`,
INDUCT_TAC THENL
[SUBGOAL_THEN `{m | 0 < m /\ m < 0} = EMPTY` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LT]; ALL_TAC] THEN
REWRITE_TAC[HAS_SIZE; FINITE_RULES; CARD_CLAUSES] THEN
CONV_TAC NUM_REDUCE_CONV;
ASM_CASES_TAC `n = 0` THENL
[SUBGOAL_THEN `{m | 0 < m /\ m < SUC n} = EMPTY` SUBST1_TAC THENL
[ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN
ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV THEN
REWRITE_TAC[HAS_SIZE_0];
SUBGOAL_THEN `{m | 0 < m /\ m < SUC n} = n INSERT {m | 0 < m /\ m < n}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN
UNDISCH_TAC `~(n = 0)` THEN ARITH_TAC; ALL_TAC] THEN
UNDISCH_TAC `~(n = 0)` THEN
POP_ASSUM MP_TAC THEN
SIMP_TAC[FINITE_RULES; HAS_SIZE; CARD_CLAUSES] THEN
DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; LT_REFL] THEN
ARITH_TAC]]);;
let COPRIME_MOD = prove
(`!a n. coprime(a MOD n,n) <=> coprime(a,n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[MOD_ZERO] THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV)
[MATCH_MP DIVISION th]) THEN REWRITE_TAC[coprime] THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
MESON_TAC[DIVIDES_ADD; DIVIDES_ADD_REVR; DIVIDES_ADD_REVL;
DIVIDES_LMUL; DIVIDES_RMUL]);;
(* ------------------------------------------------------------------------- *)
(* Congruences. *)
(* ------------------------------------------------------------------------- *)
let CONG_MOD_0 = prove
(`!x y. (x == y) (mod 0) <=> (x = y)`,
NUMBER_TAC);;
let CONG_MOD_1 = prove
(`!x y. (x == y) (mod 1)`,
NUMBER_TAC);;
let CONG_0 = prove
(`!x n. ((x == 0) (mod n) <=> n divides x)`,
NUMBER_TAC);;
let CONG_SUB_CASES = prove
(`!x y n. (x == y) (mod n) <=>
if x <= y then (y - x == 0) (mod n)
else (x - y == 0) (mod n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[cong; nat_mod] THEN
COND_CASES_TAC THENL
[GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM]; ALL_TAC] THEN
REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN
POP_ASSUM MP_TAC THEN ARITH_TAC);;
let CONG_CASES = prove
(`!x y n. (x == y) (mod n) <=> (?q. x = q * n + y) \/ (?q. y = q * n + x)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[] THEN NUMBER_TAC] THEN
REWRITE_TAC[cong; nat_mod; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`q1:num`; `q2:num`] THEN
DISCH_THEN(MP_TAC o MATCH_MP(ARITH_RULE
`x + a = y + b ==> x = (b - a) + y \/ y = (a - b) + x`)) THEN
REWRITE_TAC[GSYM LEFT_SUB_DISTRIB] THEN MESON_TAC[MULT_SYM]);;
let CONG_MULT_LCANCEL = prove
(`!a n x y. coprime(a,n) /\ (a * x == a * y) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_MULT_RCANCEL = prove
(`!a n x y. coprime(a,n) /\ (x * a == y * a) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_REFL = prove
(`!x n. (x == x) (mod n)`,
NUMBER_TAC);;
let EQ_IMP_CONG = prove
(`!a b n. a = b ==> (a == b) (mod n)`,
SIMP_TAC[CONG_REFL]);;
let CONG_SYM = prove
(`!x y n. (x == y) (mod n) <=> (y == x) (mod n)`,
NUMBER_TAC);;
let CONG_TRANS = prove
(`!x y z n. (x == y) (mod n) /\ (y == z) (mod n) ==> (x == z) (mod n)`,
NUMBER_TAC);;
let CONG_ADD = prove
(`!x x' y y'.
(x == x') (mod n) /\ (y == y') (mod n) ==> (x + y == x' + y') (mod n)`,
NUMBER_TAC);;
let CONG_MULT = prove
(`!x x' y y'.
(x == x') (mod n) /\ (y == y') (mod n) ==> (x * y == x' * y') (mod n)`,
NUMBER_TAC);;
let CONG_EXP = prove
(`!n k x y. (x == y) (mod n) ==> (x EXP k == y EXP k) (mod n)`,
GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[CONG_MULT; EXP; CONG_REFL]);;
let CONG_SUB = prove
(`!x x' y y'.
(x == x') (mod n) /\ (y == y') (mod n) /\ y <= x /\ y' <= x'
==> (x - y == x' - y') (mod n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[cong; nat_mod] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
`(x + a = x' + a') /\ (y + b = y' + b') /\ y <= x /\ y' <= x'
==> ((x - y) + (a + b') = (x' - y') + (a' + b))`)) THEN
REWRITE_TAC[GSYM LEFT_ADD_DISTRIB] THEN MESON_TAC[]);;
let CONG_MULT_LCANCEL_EQ = prove
(`!a n x y. coprime(a,n) ==> ((a * x == a * y) (mod n) <=> (x == y) (mod n))`,
NUMBER_TAC);;
let CONG_MULT_RCANCEL_EQ = prove
(`!a n x y. coprime(a,n) ==> ((x * a == y * a) (mod n) <=> (x == y) (mod n))`,
NUMBER_TAC);;
let CONG_ADD_LCANCEL_EQ = prove
(`!a n x y. (a + x == a + y) (mod n) <=> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_RCANCEL_EQ = prove
(`!a n x y. (x + a == y + a) (mod n) <=> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_RCANCEL = prove
(`!a n x y. (x + a == y + a) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_LCANCEL = prove
(`!a n x y. (a + x == a + y) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_LCANCEL_EQ_0 = prove
(`!a n x y. (a + x == a) (mod n) <=> (x == 0) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_RCANCEL_EQ_0 = prove
(`!a n x y. (x + a == a) (mod n) <=> (x == 0) (mod n)`,
NUMBER_TAC);;
let CONG_IMP_EQ = prove
(`!x y n. x < n /\ y < n /\ (x == y) (mod n) ==> x = y`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[LT] THEN
ASM_MESON_TAC[CONG; MOD_LT]);;
let CONG_DIVIDES_MODULUS = prove
(`!x y m n. (x == y) (mod m) /\ n divides m ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_0_DIVIDES = prove
(`!n x. (x == 0) (mod n) <=> n divides x`,
NUMBER_TAC);;
let CONG_1_DIVIDES = prove
(`!n x. (x == 1) (mod n) ==> n divides (x - 1)`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides; cong; nat_mod] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
`(x + q1 = 1 + q2) ==> ~(x = 0) ==> (x - 1 = q2 - q1)`)) THEN
ASM_CASES_TAC `x = 0` THEN
ASM_REWRITE_TAC[ARITH; GSYM LEFT_SUB_DISTRIB] THEN
ASM_MESON_TAC[MULT_CLAUSES]);;
let CONG_DIVIDES = prove
(`!x y n. (x == y) (mod n) ==> (n divides x <=> n divides y)`,
NUMBER_TAC);;
let CONG_COPRIME = prove
(`!x y n. (x == y) (mod n) ==> (coprime(n,x) <=> coprime(n,y))`,
NUMBER_TAC);;
let CONG_GCD_RIGHT = prove
(`!x y n. (x == y) (mod n) ==> gcd(n,x) = gcd(n,y)`,
NUMBER_TAC);;
let CONG_GCD_LEFT = prove
(`!x y n. (x == y) (mod n) ==> gcd(x,n) = gcd(y,n)`,
NUMBER_TAC);;
let CONG_MOD = prove
(`!a n. (a MOD n == a) (mod n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[CONG_REFL; MOD_ZERO] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP DIVISION) THEN
DISCH_THEN(MP_TAC o SPEC `a:num`) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(fun th -> GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV) [th]) THEN
REWRITE_TAC[cong; nat_mod] THEN
MAP_EVERY EXISTS_TAC [`a DIV n`; `0`] THEN
REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; ADD_AC; MULT_AC]);;
let MOD_MULT_CONG = prove
(`!a b x y. ((x MOD (a * b) == y) (mod a) <=> (x == y) (mod a))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `(x MOD (a * b) == x) (mod a)`
(fun th -> MESON_TAC[th; CONG_TRANS; CONG_SYM]) THEN
MATCH_MP_TAC CONG_DIVIDES_MODULUS THEN EXISTS_TAC `a * b` THEN
ASM_SIMP_TAC[CONG_MOD; MULT_EQ_0; DIVIDES_RMUL; DIVIDES_REFL]);;
let CONG_MOD_MULT = prove
(`!x y m n. (x == y) (mod n) /\ m divides n ==> (x == y) (mod m)`,
NUMBER_TAC);;
let CONG_MOD_LT = prove
(`!y. y < n ==> (x MOD n = y <=> (x == y) (mod n))`,
MESON_TAC[MOD_LT; CONG; LT]);;
let MOD_UNIQUE = prove
(`!m n p. m MOD n = p <=> ((n = 0 /\ m = p) \/ p < n) /\ (m == p) (mod n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[CONG_MOD_0; LT] THENL
[ASM_MESON_TAC[DIVISION_0]; ALL_TAC] THEN
ASM_SIMP_TAC[CONG] THEN ASM_MESON_TAC[DIVISION; MOD_LT]);;
let CONG_DIV = prove
(`!m n a b.
~(m = 0) /\ (a == m * b) (mod (m * n)) ==> (a DIV m == b) (mod n)`,
MESON_TAC[CONG_DIV2; DIV_MULT]);;
(* ------------------------------------------------------------------------- *)
(* Some things when we know more about the order. *)
(* ------------------------------------------------------------------------- *)
let CONG_LT = prove
(`!x y n. y < n ==> ((x == y) (mod n) <=> ?d. x = d * n + y)`,
REWRITE_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_LT;
GSYM INT_OF_NUM_ADD; GSYM INT_OF_NUM_MUL] THEN
REWRITE_TAC[num_congruent; int_congruent] THEN
REWRITE_TAC[INT_ARITH `x = m * n + y <=> x - y:int = n * m`] THEN
REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
DISCH_THEN(X_CHOOSE_TAC `d:int`) THEN
DISJ_CASES_TAC(SPEC `d:int` INT_IMAGE) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o MATCH_MP (INT_ARITH
`x - y:int = n * --m ==> y = x + n * m`)) THEN
POP_ASSUM MP_TAC THEN DISJ_CASES_TAC(ARITH_RULE `m = 0 \/ 1 <= m`) THEN
ASM_REWRITE_TAC[INT_MUL_RZERO; INT_ARITH `x - (x + a):int = --a`] THENL
[STRIP_TAC THEN EXISTS_TAC `0` THEN INT_ARITH_TAC;
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC) THEN
REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_MUL; INT_OF_NUM_LT] THEN
ARITH_TAC]);;
let CONG_LE = prove
(`!x y n. y <= x ==> ((x == y) (mod n) <=> ?q. x = q * n + y)`,
ONCE_REWRITE_TAC[CONG_SYM] THEN ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN
SIMP_TAC[ARITH_RULE `y <= x ==> (x = a + y <=> x - y = a)`] THEN
REWRITE_TAC[CONG_0; divides] THEN MESON_TAC[MULT_SYM]);;
let CONG_TO_1 = prove
(`!a n. (a == 1) (mod n) <=> a = 0 /\ n = 1 \/ ?m. a = 1 + m * n`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[CONG_MOD_1] THENL
[MESON_TAC[ARITH_RULE `n = 0 \/ n = 1 + (n - 1) * 1`]; ALL_TAC] THEN
DISJ_CASES_TAC(ARITH_RULE `a = 0 \/ ~(a = 0) /\ 1 <= a`) THEN
ASM_SIMP_TAC[CONG_LE] THENL [ALL_TAC; MESON_TAC[ADD_SYM; MULT_SYM]] THEN
ASM_MESON_TAC[CONG_SYM; CONG_0; DIVIDES_ONE; ARITH_RULE `~(0 = 1 + a)`]);;
(* ------------------------------------------------------------------------- *)
(* In particular two common cases. *)
(* ------------------------------------------------------------------------- *)
let EVEN_MOD_2 = prove
(`EVEN n <=> (n == 0) (mod 2)`,
SIMP_TAC[EVEN_EXISTS; CONG_LT; ARITH; ADD_CLAUSES; MULT_AC]);;
let ODD_MOD_2 = prove
(`ODD n <=> (n == 1) (mod 2)`,
SIMP_TAC[ODD_EXISTS; CONG_LT; ARITH; ADD_CLAUSES; ADD1; MULT_AC]);;
(* ------------------------------------------------------------------------- *)
(* Conversion to evaluate congruences. *)
(* ------------------------------------------------------------------------- *)
let CONG_CONV =
let pth = prove
(`(x == y) (mod n) <=>
if x <= y then n divides (y - x) else n divides (x - y)`,
ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN REWRITE_TAC[CONG_0_DIVIDES]) in
GEN_REWRITE_CONV I [pth] THENC
RATOR_CONV(LAND_CONV NUM_LE_CONV) THENC
GEN_REWRITE_CONV I [COND_CLAUSES] THENC
RAND_CONV NUM_SUB_CONV THENC
DIVIDES_CONV;;
(* ------------------------------------------------------------------------- *)
(* Some basic theorems about solving congruences. *)
(* ------------------------------------------------------------------------- *)
let CONG_SOLVE_EQ = prove
(`!n a b. (?x. (a * x == b) (mod n)) <=> gcd(a,n) divides b`,
REPEAT GEN_TAC THEN EQ_TAC THENL [NUMBER_TAC; ALL_TAC] THEN
ASM_CASES_TAC `a = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; GCD_0]
THENL [NUMBER_TAC; REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM]] THEN
X_GEN_TAC `c:num` THEN DISCH_THEN SUBST1_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP BEZOUT_GCD_STRONG) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `y:num`] THEN STRIP_TAC THEN
EXISTS_TAC `c * x:num` THEN POP_ASSUM MP_TAC THEN CONV_TAC NUMBER_RULE);;
let CONG_SOLVE_LT_EQ = prove
(`!n a b. (?x. x < n /\ (a * x == b) (mod n)) <=>
~(n = 0) /\ gcd(a,n) divides b`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[CONJUNCT1 LT] THEN REWRITE_TAC[GSYM CONG_SOLVE_EQ] THEN
MATCH_MP_TAC(MESON[DIVISION]
`~(n = 0) /\ (!y. P y ==> P(y MOD n))
==> ((?y. y < n /\ P y) <=> (?y. P y))`) THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:num` THEN MATCH_MP_TAC(NUMBER_RULE
`(x == y) (mod n) ==> (a * x == b) (mod n) ==> (a * y == b) (mod n)`) THEN
ASM_SIMP_TAC[CONG_RMOD; CONG_REFL]);;
let CONG_SOLVE = prove
(`!a b n. coprime(a,n) ==> ?x. (a * x == b) (mod n)`,
REWRITE_TAC[CONG_SOLVE_EQ] THEN CONV_TAC NUMBER_RULE);;
let CONG_SOLVE_UNIQUE = prove
(`!a b n. coprime(a,n) /\ ~(n = 0) ==> ?!x. x < n /\ (a * x == b) (mod n)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_UNIQUE] THEN
MP_TAC(SPECL [`a:num`; `b:num`; `n:num`] CONG_SOLVE) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `x:num`) THEN
EXISTS_TAC `x MOD n` THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
[ASM_SIMP_TAC[DIVISION] THEN MATCH_MP_TAC CONG_TRANS THEN
EXISTS_TAC `a * x:num` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC CONG_MULT THEN REWRITE_TAC[CONG_REFL] THEN
ASM_SIMP_TAC[CONG; MOD_MOD_REFL];
ALL_TAC] THEN
STRIP_TAC THEN X_GEN_TAC `y:num` THEN STRIP_TAC THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `y MOD n` THEN CONJ_TAC THENL
[ASM_SIMP_TAC[MOD_LT]; ALL_TAC] THEN
ASM_SIMP_TAC[GSYM CONG] THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN
EXISTS_TAC `a:num` THEN ASM_MESON_TAC[CONG_TRANS; CONG_SYM]);;
let CONG_SOLVE_UNIQUE_NONTRIVIAL = prove
(`!a p x. prime p /\ coprime(p,a) /\ 0 < x /\ x < p
==> ?!y. 0 < y /\ y < p /\ (x * y == a) (mod p)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
REPEAT STRIP_TAC THEN SUBGOAL_THEN `1 < p` ASSUME_TAC THENL
[REWRITE_TAC[ARITH_RULE `1 < p <=> ~(p = 0) /\ ~(p = 1)`] THEN
ASM_MESON_TAC[PRIME_1];
ALL_TAC] THEN
MP_TAC(SPECL [`x:num`; `a:num`; `p:num`] CONG_SOLVE_UNIQUE) THEN
ANTS_TAC THENL
[CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PRIME_0]] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN
MP_TAC(SPECL [`x:num`; `p:num`] PRIME_COPRIME) THEN
ASM_CASES_TAC `x = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN
ASM_MESON_TAC[COPRIME_SYM; NOT_LT; DIVIDES_LE; LT_REFL];
ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `r:num` THEN REWRITE_TAC[] THEN
REWRITE_TAC[ARITH_RULE `0 < r <=> ~(r = 0)`] THEN
ASM_CASES_TAC `r = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
ASM_SIMP_TAC[ARITH_RULE `~(p = 0) ==> 0 < p`] THEN
ONCE_REWRITE_TAC[CONG_SYM] THEN REWRITE_TAC[CONG_0] THEN
ASM_MESON_TAC[DIVIDES_REFL; PRIME_1; coprime]);;
let CONG_UNIQUE_INVERSE_PRIME = prove
(`!p x. prime p /\ 0 < x /\ x < p
==> ?!y. 0 < y /\ y < p /\ (x * y == 1) (mod p)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_SOLVE_UNIQUE_NONTRIVIAL THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[COPRIME_1; COPRIME_SYM]);;
(* ------------------------------------------------------------------------- *)
(* Forms of the Chinese remainder theorem. *)
(* ------------------------------------------------------------------------- *)
let CONG_CHINESE = prove
(`coprime(a,b) /\ (x == y) (mod a) /\ (x == y) (mod b)
==> (x == y) (mod (a * b))`,
ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN MESON_TAC[CONG_0; DIVIDES_MUL]);;
let CHINESE_REMAINDER_UNIQUE = prove
(`!a b m n.
coprime(a,b) /\ ~(a = 0) /\ ~(b = 0)
==> ?!x. x < a * b /\ (x == m) (mod a) /\ (x == n) (mod b)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN CONJ_TAC THENL
[MP_TAC(SPECL [`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `q1:num`; `q2:num`] THEN
DISCH_TAC THEN EXISTS_TAC `x MOD (a * b)` THEN
CONJ_TAC THENL [ASM_MESON_TAC[DIVISION; MULT_EQ_0]; ALL_TAC] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
CONJ_TAC THENL
[FIRST_X_ASSUM(SUBST1_TAC o CONJUNCT1);
FIRST_X_ASSUM(SUBST1_TAC o CONJUNCT2)] THEN
ASM_SIMP_TAC[MOD_MULT_CONG] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
REWRITE_TAC[cong; nat_mod; GSYM ADD_ASSOC; GSYM LEFT_ADD_DISTRIB] THEN
MESON_TAC[];
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_IMP_EQ THEN
EXISTS_TAC `a * b` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[CONG_CHINESE; CONG_SYM; CONG_TRANS]]);;
let CHINESE_REMAINDER_COPRIME_UNIQUE = prove
(`!a b m n.
coprime(a,b) /\ ~(a = 0) /\ ~(b = 0) /\ coprime(m,a) /\ coprime(n,b)
==> ?!x. coprime(x,a * b) /\ x < a * b /\
(x == m) (mod a) /\ (x == n) (mod b)`,
REPEAT STRIP_TAC THEN MP_TAC
(SPECL [`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER_UNIQUE) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[]
`(!x. P(x) ==> Q(x)) ==> (?!x. P x) ==> ?!x. Q(x) /\ P(x)`) THEN
ASM_SIMP_TAC[CHINESE_REMAINDER_UNIQUE] THEN
ASM_MESON_TAC[CONG_COPRIME; COPRIME_SYM; COPRIME_MUL]);;
let CONG_CHINESE_EQ = prove
(`!a b x y.
coprime(a,b)
==> ((x == y) (mod (a * b)) <=> (x == y) (mod a) /\ (x == y) (mod b))`,
NUMBER_TAC);;
(* ------------------------------------------------------------------------- *)
(* Euler totient function. *)
(* ------------------------------------------------------------------------- *)
let phi = new_definition
`phi(n) = CARD { m | 0 < m /\ m <= n /\ coprime(m,n) }`;;
let PHI_ALT = prove
(`phi(n) = CARD { m | coprime(m,n) /\ m < n}`,
REWRITE_TAC[phi] THEN
ASM_CASES_TAC `n = 0` THENL
[AP_TERM_TAC THEN
ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
MESON_TAC[LT; NOT_LT];
ALL_TAC] THEN
ASM_CASES_TAC `n = 1` THENL
[SUBGOAL_THEN
`({m | 0 < m /\ m <= n /\ coprime (m,n)} = {1}) /\
({m | coprime (m,n) /\ m < n} = {0})`
(CONJUNCTS_THEN SUBST1_TAC)
THENL [ALL_TAC; SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY]] THEN
ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN
REWRITE_TAC[COPRIME_1] THEN REPEAT STRIP_TAC THEN ARITH_TAC;
ALL_TAC] THEN
AP_TERM_TAC THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
X_GEN_TAC `m:num` THEN ASM_CASES_TAC `m = 0` THEN
ASM_REWRITE_TAC[LT] THENL
[ASM_MESON_TAC[COPRIME_0; COPRIME_SYM];
ASM_MESON_TAC[LE_LT; COPRIME_REFL; LT_NZ]]);;
let PHI_FINITE_LEMMA = prove
(`!P n. FINITE {m | coprime(m,n) /\ m < n}`,
REPEAT GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
REWRITE_TAC[FINITE_NUMSEG; SUBSET; IN_NUMSEG; IN_ELIM_THM] THEN ARITH_TAC);;
let PHI_ANOTHER = prove
(`!n. ~(n = 1) ==> (phi(n) = CARD {m | 0 < m /\ m < n /\ coprime(m,n)})`,
REPEAT STRIP_TAC THEN REWRITE_TAC[phi] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
ASM_MESON_TAC[LE_LT; COPRIME_REFL; COPRIME_1; LT_NZ]);;
let PHI_LIMIT = prove
(`!n. phi(n) <= n`,
GEN_TAC THEN REWRITE_TAC[PHI_ALT] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_LT] THEN
MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[FINITE_NUMSEG_LT] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]);;
let PHI_LIMIT_STRONG = prove
(`!n. ~(n = 1) ==> phi(n) <= n - 1`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `n:num` FINITE_NUMBER_SEGMENT) THEN
ASM_SIMP_TAC[PHI_ANOTHER; HAS_SIZE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN
MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]);;
let PHI_0 = prove
(`phi 0 = 0`,
MP_TAC(SPEC `0` PHI_LIMIT) THEN REWRITE_TAC[ARITH] THEN ARITH_TAC);;
let PHI_1 = prove
(`phi 1 = 1`,
REWRITE_TAC[PHI_ALT; COPRIME_1; CARD_NUMSEG_LT]);;
let PHI_LOWERBOUND_1_STRONG = prove
(`!n. 1 <= n ==> 1 <= phi(n)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `1 = CARD {1}` SUBST1_TAC THENL
[SIMP_TAC[CARD_CLAUSES; NOT_IN_EMPTY; FINITE_RULES; ARITH]; ALL_TAC] THEN
REWRITE_TAC[phi] THEN MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL
[SIMP_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN
REWRITE_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_1] THEN
GEN_TAC THEN POP_ASSUM MP_TAC THEN ARITH_TAC;
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{b | b <= n}` THEN
REWRITE_TAC[CARD_NUMSEG_LE; FINITE_NUMSEG_LE] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]]);;
let PHI_LOWERBOUND_1 = prove
(`!n. 2 <= n ==> 1 <= phi(n)`,
MESON_TAC[PHI_LOWERBOUND_1_STRONG; LE_TRANS; ARITH_RULE `1 <= 2`]);;
let PHI_LOWERBOUND_2 = prove
(`!n. 3 <= n ==> 2 <= phi(n)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `2 = CARD {1,(n-1)}` SUBST1_TAC THENL
[SIMP_TAC[CARD_CLAUSES; IN_INSERT; NOT_IN_EMPTY; FINITE_RULES; ARITH] THEN
ASM_SIMP_TAC[ARITH_RULE `3 <= n ==> ~(1 = n - 1)`]; ALL_TAC] THEN
REWRITE_TAC[phi] THEN MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL
[SIMP_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_1] THEN
ASM_SIMP_TAC[ARITH;
ARITH_RULE `3 <= n ==> 0 < n - 1 /\ n - 1 <= n /\ 1 <= n`] THEN
REWRITE_TAC[coprime] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN
MP_TAC(SPEC `n:num` COPRIME_1) THEN REWRITE_TAC[coprime] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `1 = n - (n - 1)` SUBST1_TAC THENL
[UNDISCH_TAC `3 <= n` THEN ARITH_TAC;
ASM_SIMP_TAC[DIVIDES_SUB]];
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{b | b <= n}` THEN
REWRITE_TAC[CARD_NUMSEG_LE; FINITE_NUMSEG_LE] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]]);;
let PHI_EQ_0 = prove
(`!n. phi n = 0 <=> n = 0`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[PHI_0] THEN
MP_TAC(SPEC `n:num` PHI_LOWERBOUND_1_STRONG) THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Value on primes and prime powers. *)
(* ------------------------------------------------------------------------- *)
let PHI_PRIME_EQ = prove
(`!n. (phi n = n - 1) /\ ~(n = 0) /\ ~(n = 1) <=> prime n`,
GEN_TAC THEN REWRITE_TAC[PRIME] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PHI_1; ARITH] THEN
MP_TAC(SPEC `n:num` FINITE_NUMBER_SEGMENT) THEN
ASM_SIMP_TAC[PHI_ANOTHER; HAS_SIZE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`{m | 0 < m /\ m < n /\ coprime (m,n)} = {m | 0 < m /\ m < n}` THEN
CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
AP_TERM_TAC THEN ABS_TAC THEN
REWRITE_TAC[COPRIME_SYM] THEN CONV_TAC TAUT] THEN
EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN
MATCH_MP_TAC CARD_SUBSET_EQ THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]);;
let PHI_PRIME = prove
(`!p. prime p ==> phi p = p - 1`,
MESON_TAC[PHI_PRIME_EQ]);;
let PHI_PRIMEPOW_SUC = prove
(`!p k. prime(p) ==> phi(p EXP (k + 1)) = p EXP (k + 1) - p EXP k`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[PHI_ALT; COPRIME_PRIMEPOW; ADD_EQ_0; ARITH] THEN
REWRITE_TAC[SET_RULE
`{n | ~(P n) /\ Q n} = {n | Q n} DIFF {n | P n /\ Q n}`] THEN
SIMP_TAC[FINITE_NUMSEG_LT; SUBSET; IN_ELIM_THM; CARD_DIFF] THEN
REWRITE_TAC[CARD_NUMSEG_LT] THEN AP_TERM_TAC THEN
SUBGOAL_THEN `{m | p divides m /\ m < p EXP (k + 1)} =
IMAGE (\x. p * x) {m | m < p EXP k}`
(fun th -> ASM_SIMP_TAC[th; CARD_IMAGE_INJ; EQ_MULT_LCANCEL; PRIME_IMP_NZ;
FINITE_NUMSEG_LT; CARD_NUMSEG_LT]) THEN
REWRITE_TAC[EXTENSION; TAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`;
FORALL_AND_THM; FORALL_IN_IMAGE] THEN
ASM_SIMP_TAC[IN_ELIM_THM; GSYM ADD1; EXP; LT_MULT_LCANCEL; PRIME_IMP_NZ] THEN
CONJ_TAC THENL [ALL_TAC; NUMBER_TAC] THEN
X_GEN_TAC `x:num` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST_ALL_TAC) THEN
REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN EXISTS_TAC `n:num` THEN
UNDISCH_TAC `p * n < p * p EXP k` THEN
ASM_SIMP_TAC[LT_MULT_LCANCEL; PRIME_IMP_NZ]);;
let PHI_PRIMEPOW = prove
(`!p k. prime p
==> phi(p EXP k) = if k = 0 then 1 else p EXP k - p EXP (k - 1)`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; CONJUNCT1 EXP; PHI_1] THEN
ASM_SIMP_TAC[ADD1; PHI_PRIMEPOW_SUC; ADD_SUB]);;
let PHI_2 = prove
(`phi 2 = 1`,
SIMP_TAC[PHI_PRIME; PRIME_2] THEN CONV_TAC NUM_REDUCE_CONV);;
(* ------------------------------------------------------------------------- *)
(* Multiplicativity property. *)
(* ------------------------------------------------------------------------- *)
let PHI_MULTIPLICATIVE = prove
(`!a b. coprime(a,b) ==> phi(a * b) = phi(a) * phi(b)`,
REPEAT STRIP_TAC THEN
MAP_EVERY ASM_CASES_TAC [`a = 0`; `b = 0`] THEN
ASM_REWRITE_TAC[PHI_0; MULT_CLAUSES] THEN
SIMP_TAC[PHI_ALT; GSYM CARD_PRODUCT; PHI_FINITE_LEMMA] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_IMAGE_INJ_EQ THEN
EXISTS_TAC `\p. p MOD a,p MOD b` THEN
REWRITE_TAC[PHI_FINITE_LEMMA; IN_ELIM_PAIR_THM] THEN
ASM_SIMP_TAC[IN_ELIM_THM; COPRIME_MOD; DIVISION] THEN CONJ_TAC THENL
[MESON_TAC[COPRIME_LMUL2; COPRIME_RMUL2]; ALL_TAC] THEN
X_GEN_TAC `pp:num#num` THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[PAIR_EQ; GSYM CONJ_ASSOC] THEN MP_TAC(SPECL
[`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER_COPRIME_UNIQUE) THEN
ASM_SIMP_TAC[CONG; MOD_LT]);;
(* ------------------------------------------------------------------------- *)
(* Even-ness of phi for most arguments. *)
(* ------------------------------------------------------------------------- *)
let EVEN_PHI = prove
(`!n. 3 <= n ==> EVEN(phi n)`,
REWRITE_TAC[ARITH_RULE `3 <= n <=> 1 < n /\ ~(n = 2)`; IMP_CONJ] THEN
MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN
SIMP_TAC[PHI_PRIMEPOW; PHI_MULTIPLICATIVE; EVEN_MULT; EVEN_SUB] THEN
CONJ_TAC THENL [MESON_TAC[COPRIME_REFL; ARITH_RULE `~(2 = 1)`]; ALL_TAC] THEN
REWRITE_TAC[EVEN_EXP] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP PRIME_ODD) THEN ASM_REWRITE_TAC[] THENL
[ASM_CASES_TAC `k = 1` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
ASM_REWRITE_TAC[GSYM NOT_ODD]]);;
let EVEN_PHI_EQ = prove
(`!n. EVEN(phi n) <=> n = 0 \/ 3 <= n`,
GEN_TAC THEN EQ_TAC THENL
[ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[ARITH_RULE `~(n = 0 \/ 3 <= n) <=> n = 1 \/ n = 2`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[PHI_1; PHI_2] THEN CONV_TAC NUM_REDUCE_CONV;
STRIP_TAC THEN ASM_SIMP_TAC[PHI_0; EVEN_PHI; EVEN]]);;
let ODD_PHI_EQ = prove
(`!n. ODD(phi n) <=> n = 1 \/ n = 2`,
REWRITE_TAC[GSYM NOT_EVEN; EVEN_PHI_EQ] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Some iteration theorems. *)
(* ------------------------------------------------------------------------- *)
let NPRODUCT_MOD = prove
(`!s a:A->num n.
FINITE s /\ ~(n = 0)
==> (iterate (*) s (\m. a(m) MOD n) == iterate (*) s a) (mod n)`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x y. (x == y) (mod n)`
(MATCH_MP ITERATE_RELATED MONOIDAL_MUL)) THEN
SIMP_TAC[NEUTRAL_MUL; CONG_MULT; CONG_REFL] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_SIMP_TAC[CONG_MOD]);;
let NPRODUCT_CMUL = prove
(`!s a c n.
FINITE s
==> iterate (*) s (\m. c * a(m)) = c EXP (CARD s) * iterate (*) s a`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
ASM_SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_MUL; NEUTRAL_MUL; CARD_CLAUSES;
EXP; MULT_CLAUSES] THEN
REWRITE_TAC[MULT_AC]);;
let COPRIME_NPRODUCT = prove
(`!s n. FINITE s /\ (!x. x IN s ==> coprime(n,a(x)))
==> coprime(n,iterate (*) s a)`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_MUL; NEUTRAL_MUL;
IN_INSERT; COPRIME_MUL; COPRIME_1]);;
let ITERATE_OVER_COPRIME = prove
(`!op f n k.
monoidal(op) /\ coprime(k,n) /\
(!x y. (x == y) (mod n) ==> f x = f y)
==> iterate op {d | coprime(d,n) /\ d < n} (\m. f(k * m)) =
iterate op {d | coprime(d,n) /\ d < n} f`,
let lemma = prove
(`~(n = 0) ==> ((a * x MOD n == b) (mod n) <=> (a * x == b) (mod n))`,
MESON_TAC[CONG_REFL; CONG_SYM; CONG_TRANS; CONG_MULT; CONG_MOD]) in
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ASM_SIMP_TAC[LT; SET_RULE `{x | F} = {}`; ITERATE_CLAUSES]; ALL_TAC] THEN
STRIP_TAC THEN SUBGOAL_THEN `?m. (k * m == 1) (mod n)` CHOOSE_TAC THENL
[ASM_MESON_TAC[CONG_SOLVE; MULT_SYM; CONG_SYM]; ALL_TAC] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_EQ_GENERAL_INVERSES) THEN
MAP_EVERY EXISTS_TAC [`\x. (k * x) MOD n`; `\x. (m * x) MOD n`] THEN
REWRITE_TAC[IN_ELIM_THM] THEN
ASM_SIMP_TAC[COPRIME_MOD; CONG_MOD_LT; CONG_LMOD; DIVISION; lemma;
COPRIME_LMUL] THEN
REPEAT STRIP_TAC THEN
TRY(FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[CONG_LMOD]) THEN
UNDISCH_TAC `(k * m == 1) (mod n)` THEN CONV_TAC NUMBER_RULE);;
let ITERATE_ITERATE_DIVISORS = prove
(`!op:A->A->A f x.
monoidal op
==> iterate op (1..x) (\n. iterate op {d | d divides n} (f n)) =
iterate op (1..x)
(\n. iterate op (1..(x DIV n)) (\k. f (k * n) n))`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[ITERATE_ITERATE_PRODUCT; FINITE_NUMSEG; FINITE_DIVISORS;
IN_NUMSEG; LE_1] THEN
MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]
ITERATE_EQ_GENERAL_INVERSES) THEN
MAP_EVERY EXISTS_TAC [`\(n,d). d,n DIV d`; `\(n:num,k). n * k,n`] THEN
ASM_SIMP_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; PAIR_EQ] THEN CONJ_TAC THEN
REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `n:num` THENL
[X_GEN_TAC `k:num` THEN SIMP_TAC[DIV_MULT; LE_1; GSYM LE_RDIV_EQ] THEN
SIMP_TAC[MULT_EQ_0; ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
DISCH_THEN(K ALL_TAC) THEN NUMBER_TAC;
X_GEN_TAC `d:num` THEN ASM_CASES_TAC `d = 0` THEN
ASM_REWRITE_TAC[DIVIDES_ZERO] THENL [ARITH_TAC; ALL_TAC] THEN
STRIP_TAC THEN ASM_SIMP_TAC[DIV_MONO] THEN CONJ_TAC THENL
[ALL_TAC; ASM_MESON_TAC[DIVIDES_DIV_MULT; MULT_SYM]] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_SIMP_TAC[DIV_EQ_0; ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
ASM_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Fermat's Little theorem / Fermat-Euler theorem. *)
(* ------------------------------------------------------------------------- *)
let FERMAT_LITTLE = prove
(`!a n. coprime(a,n) ==> (a EXP (phi n) == 1) (mod n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_SIMP_TAC[COPRIME_0; PHI_0; CONG_MOD_0] THEN CONV_TAC NUM_REDUCE_CONV THEN
DISCH_TAC THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN
EXISTS_TAC `iterate (*) {m | coprime (m,n) /\ m < n} (\m. m)` THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[PHI_ALT; MULT_CLAUSES] THEN
SIMP_TAC[IN_ELIM_THM; ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_NPRODUCT;
PHI_FINITE_LEMMA; GSYM NPRODUCT_CMUL] THEN
ONCE_REWRITE_TAC[CONG_SYM] THEN MATCH_MP_TAC CONG_TRANS THEN
EXISTS_TAC `iterate (*) {m | coprime(m,n) /\ m < n} (\m. (a * m) MOD n)` THEN
ASM_SIMP_TAC[NPRODUCT_MOD; PHI_FINITE_LEMMA] THEN
MP_TAC(ISPECL [`( * ):num->num->num`; `\x. x MOD n`; `n:num`; `a:num`]
ITERATE_OVER_COPRIME) THEN
ASM_SIMP_TAC[MONOIDAL_MUL; GSYM CONG] THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[CONG_SYM] THEN
MATCH_MP_TAC NPRODUCT_MOD THEN ASM_SIMP_TAC[PHI_FINITE_LEMMA]);;
let FERMAT_LITTLE_PRIME = prove
(`!a p. prime p /\ coprime(a,p) ==> (a EXP (p - 1) == 1) (mod p)`,
MESON_TAC[FERMAT_LITTLE; PHI_PRIME_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Lucas's theorem. *)
(* ------------------------------------------------------------------------- *)
let LUCAS_COPRIME_LEMMA = prove
(`!m n a. ~(m = 0) /\ (a EXP m == 1) (mod n) ==> coprime(a,n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[CONG_MOD_0; EXP_EQ_1] THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN SIMP_TAC[COPRIME_1];
ALL_TAC] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN
REPEAT STRIP_TAC THEN
REWRITE_TAC[coprime] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN
UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN
ASM_SIMP_TAC[CONG] THEN
SUBGOAL_THEN `1 MOD n = 1` SUBST1_TAC THENL
[MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `0` THEN
REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN
MAP_EVERY UNDISCH_TAC [`~(n = 0)`; `~(n = 1)`] THEN ARITH_TAC;
ALL_TAC] THEN
DISCH_TAC THEN
SUBGOAL_THEN `d divides (a EXP m) MOD n` MP_TAC THENL
[ALL_TAC; ASM_SIMP_TAC[DIVIDES_ONE]] THEN
MATCH_MP_TAC DIVIDES_ADD_REVR THEN
EXISTS_TAC `a EXP m DIV n * n` THEN
ASM_SIMP_TAC[GSYM DIVISION; DIVIDES_LMUL] THEN
SUBGOAL_THEN `m = SUC(m - 1)` SUBST1_TAC THENL
[UNDISCH_TAC `~(m = 0)` THEN ARITH_TAC;
ASM_SIMP_TAC[EXP; DIVIDES_RMUL]]);;
let LUCAS_WEAK = prove
(`!a n. 2 <= n /\
(a EXP (n - 1) == 1) (mod n) /\
(!m. 0 < m /\ m < n - 1 ==> ~(a EXP m == 1) (mod n))
==> prime(n)`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[GSYM PHI_PRIME_EQ; PHI_LIMIT_STRONG; GSYM LE_ANTISYM;
ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `phi n`) THEN
SUBGOAL_THEN `coprime(a,n)` (fun th -> SIMP_TAC[FERMAT_LITTLE; th]) THENL
[MATCH_MP_TAC LUCAS_COPRIME_LEMMA THEN EXISTS_TAC `n - 1` THEN
ASM_SIMP_TAC [ARITH_RULE `2 <= n ==> ~(n - 1 = 0)`]; ALL_TAC] THEN
REWRITE_TAC[GSYM NOT_LT] THEN
MATCH_MP_TAC(TAUT `a ==> ~(a /\ b) ==> ~b`) THEN
ASM_SIMP_TAC[PHI_LOWERBOUND_1; ARITH_RULE `1 <= n ==> 0 < n`]);;
let LUCAS = prove
(`!a n. 2 <= n /\
(a EXP (n - 1) == 1) (mod n) /\
(!p. prime(p) /\ p divides (n - 1)
==> ~(a EXP ((n - 1) DIV p) == 1) (mod n))
==> prime(n)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `2 <= n ==> ~(n = 0)`)) THEN
MATCH_MP_TAC LUCAS_WEAK THEN EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[TAUT `a ==> ~b <=> ~(a /\ b)`; GSYM NOT_EXISTS_THM] THEN
ONCE_REWRITE_TAC[num_WOP] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `0 < n ==> ~(n = 0)`)) THEN
SUBGOAL_THEN `m divides (n - 1)` MP_TAC THENL
[REWRITE_TAC[divides] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
ASM_SIMP_TAC[GSYM MOD_EQ_0] THEN
MATCH_MP_TAC(ARITH_RULE `~(0 < n) ==> (n = 0)`) THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `(n - 1) MOD m`) THEN
ASM_SIMP_TAC[DIVISION] THEN CONJ_TAC THENL
[MATCH_MP_TAC LT_TRANS THEN EXISTS_TAC `m:num` THEN
ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN
MATCH_MP_TAC CONG_MULT_LCANCEL THEN
EXISTS_TAC `a EXP ((n - 1) DIV m * m)` THEN CONJ_TAC THENL
[ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC LUCAS_COPRIME_LEMMA THEN
EXISTS_TAC `m:num` THEN ASM_SIMP_TAC[]; ALL_TAC] THEN
REWRITE_TAC[GSYM EXP_ADD] THEN
ASM_SIMP_TAC[GSYM DIVISION] THEN REWRITE_TAC[MULT_CLAUSES] THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM EXP_EXP] THEN
UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN
ASM_SIMP_TAC[CONG] THEN REPEAT DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `((a EXP m) MOD n) EXP ((n - 1) DIV m) MOD n` THEN
CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[MOD_EXP_MOD]] THEN
ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[MOD_EXP_MOD] THEN
REWRITE_TAC[EXP_ONE]; ALL_TAC] THEN
REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `r:num` SUBST_ALL_TAC) THEN
SUBGOAL_THEN `~(r = 1)` MP_TAC THENL
[UNDISCH_TAC `m < m * r` THEN CONV_TAC CONTRAPOS_CONV THEN
SIMP_TAC[MULT_CLAUSES; LT_REFL]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN STRIP_TAC THEN
UNDISCH_TAC `!p. prime p /\ p divides m * r
==> ~(a EXP ((m * r) DIV p) == 1) (mod n)` THEN
DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_SIMP_TAC[DIVIDES_LMUL] THEN
SUBGOAL_THEN `(m * r) DIV p = m * (r DIV p)` SUBST1_TAC THENL
[MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
UNDISCH_TAC `prime p` THEN
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
ASM_SIMP_TAC[ARITH_RULE `~(p = 0) ==> 0 < p`] THEN
DISCH_TAC THEN REWRITE_TAC[ADD_CLAUSES; GSYM MULT_ASSOC] THEN
AP_TERM_TAC THEN UNDISCH_TAC `p divides r` THEN
REWRITE_TAC[divides] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[DIV_MULT] THEN REWRITE_TAC[MULT_AC]; ALL_TAC] THEN
UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN
ASM_SIMP_TAC[CONG] THEN
DISCH_THEN(MP_TAC o C AP_THM `r DIV p` o AP_TERM `(EXP)`) THEN
DISCH_THEN(MP_TAC o C AP_THM `n:num` o AP_TERM `(MOD)`) THEN
ASM_SIMP_TAC[MOD_EXP_MOD] THEN
REWRITE_TAC[EXP_EXP; EXP_ONE]);;
(* ------------------------------------------------------------------------- *)
(* Definition of the order of a number mod n (always 0 in non-coprime case). *)
(* ------------------------------------------------------------------------- *)
let order = new_definition
`order n a = @d. !k. (a EXP k == 1) (mod n) <=> d divides k`;;
let EXP_ITER = prove
(`!x n. x EXP n = ITER n (\y. x * y) (1)`,
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ITER; EXP]);;
let ORDER_DIVIDES = prove
(`!n a d. (a EXP d == 1) (mod n) <=> order(n) a divides d`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[order] THEN CONV_TAC SELECT_CONV THEN
MP_TAC(ISPECL [`\x y:num. (x == y) (mod n)`; `\x:num. a * x`; `1`]
ORDER_EXISTENCE_ITER) THEN
REWRITE_TAC[GSYM EXP_ITER] THEN DISCH_THEN MATCH_MP_TAC THEN
NUMBER_TAC);;
let ORDER = prove
(`!n a. (a EXP (order(n) a) == 1) (mod n)`,
REWRITE_TAC[ORDER_DIVIDES; DIVIDES_REFL]);;
let ORDER_MINIMAL = prove
(`!n a m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
REWRITE_TAC[ORDER_DIVIDES] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_ARITH_TAC);;
let ORDER_WORKS = prove
(`!n a. (a EXP (order(n) a) == 1) (mod n) /\
!m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
MESON_TAC[ORDER; ORDER_MINIMAL]);;
let ORDER_1 = prove
(`!n. order n 1 = 1`,
REWRITE_TAC[GSYM DIVIDES_ONE; GSYM ORDER_DIVIDES; EXP_1; CONG_REFL]);;
let ORDER_EQ_0 = prove
(`!n a. order(n) a = 0 <=> ~coprime(n,a)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[ONCE_REWRITE_TAC[COPRIME_SYM] THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP FERMAT_LITTLE) THEN
ASM_REWRITE_TAC[ORDER_DIVIDES; DIVIDES_ZERO; PHI_EQ_0] THEN
ASM_MESON_TAC[COPRIME_0; ORDER_1; ARITH_RULE `~(1 = 0)`];
MP_TAC(SPECL [`n:num`; `a:num`] ORDER) THEN
SPEC_TAC(`order n a`,`m:num`) THEN INDUCT_TAC THEN REWRITE_TAC[] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (TAUT
`~p ==> (q ==> p) ==> q ==> r`)) THEN
REWRITE_TAC[EXP] THEN CONV_TAC NUMBER_RULE]);;
let ORDER_CONG = prove
(`!n a b. (a == b) (mod n) ==> order n a = order n b`,
REPEAT STRIP_TAC THEN REWRITE_TAC[order] THEN
AP_TERM_TAC THEN ABS_TAC THEN
ASM_MESON_TAC[CONG_EXP; CONG_REFL; CONG_SYM; CONG_TRANS]);;
let COPRIME_ORDER = prove
(`!n a. coprime(n,a)
==> order(n) a > 0 /\
(a EXP (order(n) a) == 1) (mod n) /\
!m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
SIMP_TAC[ARITH_RULE `n > 0 <=> ~(n = 0)`; ORDER_EQ_0] THEN
MESON_TAC[ORDER; ORDER_MINIMAL]);;
let ORDER_DIVIDES_PHI = prove
(`!a n. coprime(n,a) ==> (order n a) divides (phi n)`,
MESON_TAC[ORDER_DIVIDES; FERMAT_LITTLE; COPRIME_SYM]);;
let ORDER_DIVIDES_EXPDIFF = prove
(`!a n d e. coprime(n,a)
==> ((a EXP d == a EXP e) (mod n) <=> (d == e) (mod (order n a)))`,
SUBGOAL_THEN
`!a n d e. coprime(n,a) /\ e <= d
==> ((a EXP d == a EXP e) (mod n) <=> (d == e) (mod (order n a)))`
(fun th -> MESON_TAC[th; LE_CASES; CONG_SYM]) THEN
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
DISCH_THEN(X_CHOOSE_THEN `c:num` SUBST1_TAC) THEN
SUBST1_TAC(ARITH_RULE `e = e + 0`) THEN
REWRITE_TAC[ARITH_RULE `(e + 0) + c = e + c`] THEN
REWRITE_TAC[EXP_ADD] THEN
ASM_SIMP_TAC[CONG_ADD_LCANCEL_EQ; COPRIME_EXP;
ONCE_REWRITE_RULE[COPRIME_SYM] CONG_MULT_LCANCEL_EQ] THEN
REWRITE_TAC[EXP; CONG_0_DIVIDES; ORDER_DIVIDES]);;
let ORDER_UNIQUE = prove
(`!n a k. 0 < k /\
(a EXP k == 1) (mod n) /\
(!m. 0 < m /\ m < k ==> ~(a EXP m == 1) (mod n))
==> order n a = k`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `order n a`) THEN
MP_TAC(ISPECL [`n:num`; `a:num`] ORDER_WORKS) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k:num`)) THEN
ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `order n a = 0` THEN
ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_ARITH_TAC] THEN
FIRST_X_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [ORDER_EQ_0]) THEN
MP_TAC(ISPECL [`n:num`; `a:num`; `k:num`] COPRIME_REXP) THEN
ASM_SIMP_TAC[LE_1; LT] THEN
UNDISCH_TAC `(a EXP k == 1) (mod n)` THEN CONV_TAC NUMBER_RULE);;
(* ------------------------------------------------------------------------- *)
(* Another trivial primality characterization. *)
(* ------------------------------------------------------------------------- *)
let PRIME_PRIME_FACTOR = prove
(`!n. prime n <=> ~(n = 1) /\ !p. prime p /\ p divides n ==> (p = n)`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [prime] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL
[MESON_TAC[PRIME_1]; ALL_TAC] THEN
STRIP_TAC THEN X_GEN_TAC `d:num` THEN
ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o
MATCH_MP PRIME_FACTOR) THEN
ASM_MESON_TAC[DIVIDES_TRANS; DIVIDES_ANTISYM]);;
let PRIME_DIVISOR_SQRT = prove
(`!n. prime(n) <=> ~(n = 1) /\ !d. d divides n /\ d EXP 2 <= n ==> (d = 1)`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [prime] THEN
ASM_CASES_TAC `n = 1` THEN ASM_SIMP_TAC[DIVIDES_ONE] THEN
ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[DIVIDES_0; LE; EXP_EQ_0; ARITH_EQ] THEN
MATCH_MP_TAC(TAUT `~a /\ ~b ==> (a <=> b)`) THEN CONJ_TAC THENL
[DISCH_THEN(MP_TAC o SPEC `2`) THEN REWRITE_TAC[ARITH];
DISCH_THEN(MP_TAC o SPEC `0`) THEN REWRITE_TAC[ARITH]];
ALL_TAC] THEN
EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `d:num` THEN STRIP_TAC THENL
[ASM_CASES_TAC `d = n:num` THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
UNDISCH_TAC `d EXP 2 <= n` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[EXP_2; ARITH_RULE `~(n * n <= n) <=> n * 1 < n * n`] THEN
ASM_REWRITE_TAC[LT_MULT_LCANCEL] THEN
MAP_EVERY UNDISCH_TAC [`~(n = 0)`; `~(n = 1)`] THEN ARITH_TAC;
ALL_TAC] THEN
UNDISCH_TAC `d divides n` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `e:num` SUBST_ALL_TAC) THEN
SUBGOAL_THEN `d EXP 2 <= d * e \/ e EXP 2 <= d * e` MP_TAC THENL
[REWRITE_TAC[EXP_2; LE_MULT_LCANCEL; LE_MULT_RCANCEL] THEN ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN DISJ_CASES_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `d:num`);
FIRST_X_ASSUM(MP_TAC o SPEC `e:num`)] THEN
ASM_SIMP_TAC[DIVIDES_RMUL; DIVIDES_LMUL; DIVIDES_REFL; MULT_CLAUSES]);;
let PRIME_PRIME_FACTOR_SQRT = prove
(`!n. prime n <=>
~(n = 0) /\ ~(n = 1) /\ ~(?p. prime p /\ p divides n /\ p EXP 2 <= n)`,
GEN_TAC THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PRIME_1] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
GEN_REWRITE_TAC LAND_CONV [PRIME_DIVISOR_SQRT] THEN
EQ_TAC THENL [MESON_TAC[PRIME_1]; ALL_TAC] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN
ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_TRANS]; ALL_TAC] THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `d EXP 2` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[num_CONV `2`; EXP_MONO_LE_SUC] THEN
ASM_MESON_TAC[DIVIDES_LE; DIVIDES_ZERO]);;
(* ------------------------------------------------------------------------- *)
(* Pocklington theorem. *)
(* ------------------------------------------------------------------------- *)
let POCKLINGTON_LEMMA = prove
(`!a n q r.
2 <= n /\ (n - 1 = q * r) /\
(a EXP (n - 1) == 1) (mod n) /\
(!p. prime(p) /\ p divides q
==> coprime(a EXP ((n - 1) DIV p) - 1,n))
==> !p. prime p /\ p divides n ==> (p == 1) (mod q)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `order p (a EXP r) = q` ASSUME_TAC THENL
[ALL_TAC;
SUBGOAL_THEN `coprime(a EXP r,p)` (MP_TAC o MATCH_MP FERMAT_LITTLE) THENL
[ALL_TAC;
ASM_REWRITE_TAC[ORDER_DIVIDES] THEN
SUBGOAL_THEN `phi p = p - 1` SUBST1_TAC THENL
[ASM_MESON_TAC[PHI_PRIME_EQ]; ALL_TAC] THEN
REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
`(p - 1 = q * d) ==> ~(p = 0) ==> (p + q * 0 = 1 + q * d)`)) THEN
REWRITE_TAC[nat_mod; cong] THEN ASM_MESON_TAC[PRIME_0]] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN
UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[coprime; NOT_FORALL_THM; NOT_IMP] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `d = p:num` SUBST_ALL_TAC THENL
[ASM_MESON_TAC[prime]; ALL_TAC] THEN
SUBGOAL_THEN `p divides (a EXP (n - 1))` ASSUME_TAC THENL
[FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
`2 <= n ==> (n - 1 = SUC(n - 2))`)) THEN
REWRITE_TAC[EXP] THEN ASM_SIMP_TAC[DIVIDES_RMUL];
ALL_TAC] THEN
REWRITE_TAC[cong; nat_mod] THEN
SUBGOAL_THEN `~(p divides 1)` MP_TAC THENL
[ASM_MESON_TAC[DIVIDES_ONE; PRIME_1]; ALL_TAC] THEN
ASM_MESON_TAC[DIVIDES_RMUL; DIVIDES_ADD; DIVIDES_ADD_REVL]] THEN
SUBGOAL_THEN `(order p (a EXP r)) divides q` MP_TAC THENL
[REWRITE_TAC[GSYM ORDER_DIVIDES; EXP_EXP] THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN
UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `b:num` SUBST_ALL_TAC) THEN
REWRITE_TAC[cong; nat_mod] THEN MESON_TAC[MULT_AC];
ALL_TAC] THEN
REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN
ASM_CASES_TAC `d = 1` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN
DISCH_THEN(ASSUME_TAC o SYM) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
DISCH_THEN(X_CHOOSE_THEN `P:num` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `P divides q` ASSUME_TAC THENL
[ASM_MESON_TAC[DIVIDES_LMUL]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `P:num`) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN
UNDISCH_TAC `P divides q` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `s:num` SUBST_ALL_TAC) THEN
REWRITE_TAC[GSYM MULT_ASSOC] THEN
SUBGOAL_THEN `~(P = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
ASM_SIMP_TAC[DIV_MULT] THEN
UNDISCH_TAC `P divides d` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `t:num` SUBST_ALL_TAC) THEN
UNDISCH_TAC `order p (a EXP r) * P * t = P * s` THEN
ONCE_REWRITE_TAC[ARITH_RULE
`(a * p * b = p * c) <=> (p * a * b = p * c)`] THEN
REWRITE_TAC[EQ_MULT_LCANCEL] THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN REWRITE_TAC[coprime] THEN
DISCH_THEN(MP_TAC o SPEC `p:num`) THEN REWRITE_TAC[NOT_IMP] THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PRIME_1]] THEN
ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[AC MULT_AC `(d * t) * r = r * d * t`] THEN
REWRITE_TAC[EXP_MULT] THEN
MATCH_MP_TAC CONG_1_DIVIDES THEN
MATCH_MP_TAC CONG_TRANS THEN EXISTS_TAC `1 EXP t` THEN
SIMP_TAC[CONG_EXP; ORDER] THEN REWRITE_TAC[EXP_ONE; CONG_REFL]);;
let POCKLINGTON = prove
(`!a n q r.
2 <= n /\ (n - 1 = q * r) /\ n <= q EXP 2 /\
(a EXP (n - 1) == 1) (mod n) /\
(!p. prime(p) /\ p divides q
==> coprime(a EXP ((n - 1) DIV p) - 1,n))
==> prime(n)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[PRIME_PRIME_FACTOR_SQRT] THEN
ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`a:num`; `n:num`; `q:num`; `r:num`] POCKLINGTON_LEMMA) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `p EXP 2 <= q EXP 2` MP_TAC THENL
[ASM_MESON_TAC[LE_TRANS]; ALL_TAC] THEN
REWRITE_TAC[num_CONV `2`; EXP_MONO_LE_SUC] THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o MATCH_MP CONG_1_DIVIDES) THEN
DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Variant for application, to separate the exponentiation. *)
(* ------------------------------------------------------------------------- *)
let POCKLINGTON_ALT = prove
(`!a n q r.
2 <= n /\ (n - 1 = q * r) /\ n <= q EXP 2 /\
(a EXP (n - 1) == 1) (mod n) /\
(!p. prime(p) /\ p divides q
==> ?b. (a EXP ((n - 1) DIV p) == b) (mod n) /\
coprime(b - 1,n))
==> prime(n)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC POCKLINGTON THEN
MAP_EVERY EXISTS_TAC [`a:num`; `q:num`; `r:num`] THEN
ASM_REWRITE_TAC[] THEN
X_GEN_TAC `p:num` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `b:num` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `(a EXP ((q * r) DIV p) - 1 == b - 1) (mod n)`
(fun th -> ASM_MESON_TAC[CONG_COPRIME; COPRIME_SYM; th]) THEN
MATCH_MP_TAC CONG_SUB THEN ASM_REWRITE_TAC[CONG_REFL] THEN
REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; EXP_EQ_0] THEN
SUBGOAL_THEN `~(a = 0)` ASSUME_TAC THENL
[DISCH_TAC THEN UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
SIMP_TAC[ARITH_RULE `2 <= n ==> (n - 1 = SUC(n - 2))`;
ASSUME `a = 0`; ASSUME `2 <= n`] THEN
REWRITE_TAC[MULT_CLAUSES; EXP] THEN
ONCE_REWRITE_TAC[CONG_SYM] THEN
REWRITE_TAC[CONG_0_DIVIDES; DIVIDES_ONE] THEN
UNDISCH_TAC `2 <= n` THEN ARITH_TAC;
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `(a EXP ((q * r) DIV p) == b) (mod n)` THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[CONG_0_DIVIDES] THEN
SUBGOAL_THEN `~(n divides (a EXP (n - 1)))` MP_TAC THENL
[ASM_MESON_TAC[CONG_DIVIDES; DIVIDES_ONE; ARITH_RULE `~(2 <= 1)`];
ALL_TAC] THEN
ASM_REWRITE_TAC[CONTRAPOS_THM] THEN UNDISCH_TAC `p divides q` THEN
GEN_REWRITE_TAC LAND_CONV [divides] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
REWRITE_TAC[GSYM MULT_ASSOC] THEN
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
ASM_SIMP_TAC[DIV_MULT] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [EXP_MULT] THEN
SUBGOAL_THEN `p = SUC(p - 1)` SUBST1_TAC THENL
[UNDISCH_TAC `~(p = 0)` THEN ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[EXP; DIVIDES_RMUL]);;
(* ------------------------------------------------------------------------- *)
(* Prime factorizations. *)
(* ------------------------------------------------------------------------- *)
let primefact = new_definition
`primefact ps n <=> (ITLIST (*) ps 1 = n) /\ !p. MEM p ps ==> prime(p)`;;
let PRIMEFACT = prove
(`!n. ~(n = 0) ==> ?ps. primefact ps n`,
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THENL
[REPEAT DISCH_TAC THEN EXISTS_TAC `[]:num list` THEN
REWRITE_TAC[primefact; ITLIST; MEM]; ALL_TAC] THEN
DISCH_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o
MATCH_MP PRIME_FACTOR) THEN
UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
UNDISCH_TAC `~(p * m = 0)` THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN DISCH_TAC THEN
GEN_REWRITE_TAC (funpow 3 LAND_CONV) [ARITH_RULE `n = 1 * n`] THEN
ASM_REWRITE_TAC[LT_MULT_RCANCEL] THEN
SUBGOAL_THEN `1 < p` (fun th -> REWRITE_TAC[th]) THENL
[MATCH_MP_TAC(ARITH_RULE `~(p = 0) /\ ~(p = 1) ==> 1 < p`) THEN
REPEAT STRIP_TAC THEN UNDISCH_TAC `prime p` THEN
ASM_REWRITE_TAC[PRIME_0; PRIME_1]; ALL_TAC] THEN
REWRITE_TAC[primefact] THEN
DISCH_THEN(X_CHOOSE_THEN `ps:num list` ASSUME_TAC) THEN
EXISTS_TAC `CONS (p:num) ps` THEN
ASM_REWRITE_TAC[MEM; ITLIST] THEN ASM_MESON_TAC[]);;
let PRIMAFACT_CONTAINS = prove
(`!ps n. primefact ps n ==> !p. prime p /\ p divides n ==> MEM p ps`,
REPEAT GEN_TAC THEN REWRITE_TAC[primefact] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
POP_ASSUM(SUBST1_TAC o SYM) THEN
SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ITLIST; MEM] THENL
[ASM_MESON_TAC[DIVIDES_ONE; PRIME_1]; ALL_TAC] THEN
STRIP_TAC THEN GEN_TAC THEN
DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN
DISCH_THEN(DISJ_CASES_TAC o MATCH_MP PRIME_DIVPROD) THEN
ASM_MESON_TAC[prime; PRIME_1]);;
let PRIMEFACT_VARIANT = prove
(`!ps n. primefact ps n <=> (ITLIST (*) ps 1 = n) /\ ALL prime ps`,
REPEAT GEN_TAC THEN REWRITE_TAC[primefact] THEN AP_TERM_TAC THEN
SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MEM; ALL] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Variant of Lucas theorem. *)
(* ------------------------------------------------------------------------- *)
let LUCAS_PRIMEFACT = prove
(`2 <= n /\
(a EXP (n - 1) == 1) (mod n) /\
(ITLIST (*) ps 1 = n - 1) /\
ALL (\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ps
==> prime n`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC LUCAS THEN
EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `primefact ps (n - 1)` MP_TAC THENL
[ASM_REWRITE_TAC[PRIMEFACT_VARIANT] THEN MATCH_MP_TAC ALL_IMP THEN
EXISTS_TAC `\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)` THEN
ASM_SIMP_TAC[]; ALL_TAC] THEN
DISCH_THEN(ASSUME_TAC o MATCH_MP PRIMAFACT_CONTAINS) THEN
X_GEN_TAC `p:num` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN UNDISCH_TAC
`ALL (\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ps` THEN
SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
SIMP_TAC[ALL; MEM] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Variant of Pocklington theorem. *)
(* ------------------------------------------------------------------------- *)
let POCKLINGTON_PRIMEFACT = prove
(`2 <= n /\ (q * r = n - 1) /\ n <= q * q
==> ((a EXP r) MOD n = b)
==> (ITLIST (*) ps 1 = q)
==> ((b EXP q) MOD n = 1)
==> ALL (\p. prime p /\
coprime((b EXP (q DIV p)) MOD n - 1,n)) ps
==> prime n`,
DISCH_THEN(fun th -> DISCH_THEN(SUBST1_TAC o SYM) THEN MP_TAC th) THEN
SIMP_TAC[MOD_EXP_MOD; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
SIMP_TAC[ONCE_REWRITE_RULE[MULT_SYM] EXP_EXP] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC POCKLINGTON THEN
MAP_EVERY EXISTS_TAC [`a:num`; `q:num`; `r:num`] THEN
ASM_REWRITE_TAC[EXP_2] THEN CONJ_TAC THENL
[MP_TAC(SPECL [`a EXP (n - 1)`; `n:num`] DIVISION) THEN
ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
STRIP_TAC THEN ABBREV_TAC `Q = a EXP (n - 1) DIV n` THEN
ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[cong; nat_mod] THEN
MAP_EVERY EXISTS_TAC [`0`; `Q:num`] THEN ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `primefact ps q` MP_TAC THENL
[ASM_REWRITE_TAC[PRIMEFACT_VARIANT] THEN MATCH_MP_TAC ALL_IMP THEN
EXISTS_TAC `\p. prime p /\ coprime(a EXP (q DIV p * r) MOD n - 1,n)` THEN
ASM_SIMP_TAC[]; ALL_TAC] THEN
DISCH_THEN(ASSUME_TAC o MATCH_MP PRIMAFACT_CONTAINS) THEN
X_GEN_TAC `p:num` THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM ALL_MEM]) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> a /\ b ==> c`) THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
SUBGOAL_THEN `q DIV p * r = (n - 1) DIV p` SUBST1_TAC THENL
[UNDISCH_TAC `p divides q` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN
UNDISCH_THEN `(p * d) * r = n - 1` (SUBST1_TAC o SYM) THEN
ASM_SIMP_TAC[DIV_MULT; GSYM MULT_ASSOC];
ALL_TAC] THEN
MATCH_MP_TAC CONG_COPRIME THEN MATCH_MP_TAC CONG_SUB THEN
ASM_SIMP_TAC[CONG_MOD; ARITH_RULE `2 <= n ==> ~(n = 0)`; CONG_REFL] THEN
MATCH_MP_TAC(ARITH_RULE `a <= b /\ ~(a = 0) ==> 1 <= a /\ 1 <= b`) THEN
ASM_SIMP_TAC[MOD_LE; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
ASM_SIMP_TAC[MOD_EQ_0; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
DISCH_THEN(X_CHOOSE_THEN `s:num` MP_TAC) THEN
DISCH_THEN(MP_TAC o C AP_THM `p:num` o AP_TERM `(EXP)`) THEN
REWRITE_TAC[EXP_EXP] THEN
SUBGOAL_THEN `(n - 1) DIV p * p = n - 1` SUBST1_TAC THENL
[SUBST1_TAC(SYM(ASSUME `q * r = n - 1`)) THEN
UNDISCH_TAC `p divides q` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
REWRITE_TAC[GSYM MULT_ASSOC] THEN
ASM_MESON_TAC[DIV_MULT; MULT_AC; PRIME_0];
ALL_TAC] THEN
DISCH_THEN(MP_TAC o C AP_THM `n:num` o AP_TERM `(MOD)`) THEN
ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
`~(p = 0) ==> (p = SUC(p - 1))`)) THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[EXP; GSYM MULT_ASSOC] THEN
ASM_SIMP_TAC[MOD_MULT; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
REWRITE_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Utility functions. *)
(* ------------------------------------------------------------------------- *)
let even_num n =
mod_num n num_2 =/ num_0;;
let odd_num = not o even_num;;
(* ------------------------------------------------------------------------- *)
(* Least p >= 0 with x <= 2^p. *)
(* ------------------------------------------------------------------------- *)
let log2 =
let rec log2 x y =
if x </ num_1 then y
else log2 (quo_num x num_2) (y +/ num_1) in
fun x -> log2 (x -/ num_1) num_0;;
(* ------------------------------------------------------------------------- *)
(* Raise number to power (x^m) modulo n. *)
(* ------------------------------------------------------------------------- *)
let rec powermod x m n =
if m =/ num_0 then num_1 else
let y = powermod x (quo_num m num_2) n in
let z = mod_num (y */ y) n in
if even_num m then z else
mod_num (x */ z) n;;
(* ------------------------------------------------------------------------- *)
(* Make a call to PARI/GP to factor a number into (probable) primes. *)
(* ------------------------------------------------------------------------- *)
let factor =
let suck_file s = let data = string_of_file s in Sys.remove s; data in
let extract_output s =
let l0 = explode s in
let l0' = rev l0 in
let l1 = snd(chop_list(index "]" l0') l0') in
let l2 = "["::rev(fst(chop_list(index "[" l1) l1)) in
let tm = parse_term (implode l2) in
map ((dest_numeral F_F dest_numeral) o dest_pair) (dest_list tm) in
fun n ->
if n =/ num_1 then [] else
let filename = Filename.temp_file "pocklington" ".out" in
let s = "echo 'print(factorint(" ^
(string_of_num n) ^
")) \n quit' | gp >" ^ filename ^ " 2>/dev/null" in
if Sys.command s = 0 then
let output = suck_file filename in
extract_output output
else
failwith "factor: Call to GP/PARI failed";;
(* ------------------------------------------------------------------------- *)
(* Alternative giving multiset instead of set plus indices. *)
(* Also just use a stupid algorithm for small enough numbers or if PARI/GP *)
(* is not installed. I should really write a better factoring algorithm. *)
(* ------------------------------------------------------------------------- *)
let PARI_THRESHOLD = pow2 25;;
let multifactor =
let rec findfactor m n =
if mod_num n m =/ num_0 then m
else if m */ m >/ n then n
else findfactor (m +/ num_1) n in
let rec stupidfactor n =
let p = findfactor num_2 n in
if p =/ n then [n] else p::(stupidfactor(quo_num n p)) in
let rec multilist l =
if l = [] then [] else
let (x,n) = hd l in
replicate x (Num.int_of_num n) @ multilist (tl l) in
fun n -> try if n </ PARI_THRESHOLD then failwith ""
else multilist (factor n)
with Failure _ -> sort (</) (stupidfactor n);;
(* ------------------------------------------------------------------------- *)
(* Recursive creation of Pratt primality certificates. *)
(* ------------------------------------------------------------------------- *)
type certificate =
Prime_2
| Primroot_and_factors of
((num * num list) * num * (num * certificate) list);;
let find_primitive_root =
let rec find_primitive_root a m ms n =
if gcd_num a n =/ num_1 &&
powermod a m n =/ num_1 &&
forall (fun k -> powermod a k n <>/ num_1) ms
then a
else find_primitive_root (a +/ num_1) m ms n in
let find_primitive_root_from_2 = find_primitive_root num_2 in
fun m ms n ->
if n </ num_2 then failwith "find_primitive_root: input too small"
else find_primitive_root_from_2 m ms n;;
let uniq_num =
let rec uniq x l =
match l with
[] -> raise Unchanged
| (h::t) -> if x =/ h then
try uniq x t
with Unchanged -> l
else x::(uniq h t) in
fun l -> if l = [] then [] else uniq (hd l) (tl l);;
let setify_num s =
let s' = sort (<=/) s in
try uniq_num s' with Unchanged -> s';;
let certify_prime =
let rec cert_prime n =
if n <=/ num_2 then
if n =/ num_2 then Prime_2
else failwith "certify_prime: not a prime!"
else
let m = n -/ num_1 in
let pfact = multifactor m in
let primes = setify_num pfact in
let ms = map (fun d -> div_num m d) primes in
let a = find_primitive_root m ms n in
Primroot_and_factors((n,pfact),a,map (fun n -> n,cert_prime n) primes) in
fun n -> if length(multifactor n) = 1 then cert_prime n
else failwith "certify_prime: input is not a prime";;
(* ------------------------------------------------------------------------- *)
(* Relatively efficient evaluation of "(a EXP k) MOD n". *)
(* ------------------------------------------------------------------------- *)
let EXP_MOD_CONV =
let pth = prove
(`~(n = 0)
==> ((a EXP 0) MOD n = 1 MOD n) /\
((a EXP (NUMERAL (BIT0 m))) MOD n =
let b = (a EXP (NUMERAL m)) MOD n in
(b * b) MOD n) /\
((a EXP (NUMERAL (BIT1 m))) MOD n =
let b = (a EXP (NUMERAL m)) MOD n in
(a * ((b * b) MOD n)) MOD n)`,
DISCH_TAC THEN REWRITE_TAC[EXP] THEN
REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN
REWRITE_TAC[EXP; EXP_ADD] THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD] THEN
REWRITE_TAC[MULT_ASSOC] THEN
ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD] THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN
REWRITE_TAC[MULT_ASSOC] THEN
ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD])
and pth_cong = prove
(`~(n = 0) ==> ((x == y) (mod n) <=> x MOD n = y MOD n)`,
REWRITE_TAC[CONG])
and n_tm = `n:num` in
fun tm ->
let ntm = rand tm in
let th1 = INST [ntm,n_tm] pth in
let th2 = EQF_ELIM(NUM_EQ_CONV(rand(lhand(concl th1)))) in
let th_base,th_steps = CONJ_PAIR(MP th1 th2) in
let conv_base = GEN_REWRITE_CONV I [th_base]
and conv_step = GEN_REWRITE_CONV I [th_steps] in
let rec conv tm =
try conv_base tm with Failure _ ->
(conv_step THENC
RAND_CONV conv THENC
let_CONV THENC
NUM_REDUCE_CONV) tm in
conv tm;;
(* ------------------------------------------------------------------------- *)
(* HOL checking of primality certificate, using Pocklington shortcut. *)
(* ------------------------------------------------------------------------- *)
let prime_theorem_cache = ref [];;
let rec lookup_under_num n l =
if l = [] then failwith "lookup_under_num" else
let h = hd l in
if fst h =/ n then snd h
else lookup_under_num n (tl l);;
let rec split_factors q qs ps n =
if q */ q >=/ n then rev qs,ps
else split_factors (q */ hd ps) (hd ps :: qs) (tl ps) n;;
let check_certificate =
let n_tm = `n:num`
and a_tm = `a:num`
and q_tm = `q:num`
and r_tm = `r:num`
and b_tm = `b:num`
and ps_tm = `ps:num list`
and conv_itlist =
GEN_REWRITE_CONV TOP_DEPTH_CONV [ITLIST] THENC NUM_REDUCE_CONV
and conv_all =
GEN_REWRITE_CONV TOP_DEPTH_CONV
[ALL; BETA_THM; TAUT `a /\ T <=> a`] THENC
GEN_REWRITE_CONV DEPTH_CONV
[TAUT `(a /\ a /\ b <=> a /\ b) /\ (a /\ a <=> a)`]
and subarith_conv =
let gconv_net = itlist (uncurry net_of_conv)
[`a - b`,NUM_SUB_CONV;
`a DIV b`,NUM_DIV_CONV;
`(a EXP b) MOD c`,EXP_MOD_CONV;
`coprime(a,b)`,COPRIME_CONV;
`p /\ T`,REWR_CONV(TAUT `p /\ T <=> p`);
`T /\ p`,REWR_CONV(TAUT `T /\ p <=> p`)]
empty_net in
DEPTH_CONV(REWRITES_CONV gconv_net) in
let rec check_certificate cert =
match cert with
Prime_2 ->
PRIME_2
| Primroot_and_factors((n,ps),a,ncerts) ->
try lookup_under_num n (!prime_theorem_cache) with Failure _ ->
let qs,rs = split_factors num_1 [] (rev ps) n in
let q = itlist ( */ ) qs num_1
and r = itlist ( */ ) rs num_1 in
let th1 = INST [mk_numeral n,n_tm;
mk_flist (map mk_numeral qs),ps_tm;
mk_numeral q,q_tm;
mk_numeral r,r_tm;
mk_numeral a,a_tm]
POCKLINGTON_PRIMEFACT in
let th2 = MP th1 (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th1)))) in
let tha = EXP_MOD_CONV(lhand(lhand(concl th2))) in
let thb = MP (INST [rand(concl tha),b_tm] th2) tha in
let th3 = MP thb (EQT_ELIM(conv_itlist (lhand(concl thb)))) in
let th4 = MP th3 (EXP_MOD_CONV (lhand(lhand(concl th3)))) in
let th5 = conv_all(lhand(concl th4)) in
let th6 = TRANS th5 (subarith_conv(rand(concl th5))) in
let th7 = IMP_TRANS (snd(EQ_IMP_RULE th6)) th4 in
let ants = conjuncts(lhand(concl th7)) in
let certs =
map (fun t -> lookup_under_num (dest_numeral(rand t)) ncerts)
ants in
let ths = map check_certificate certs in
let fth = MP th7 (end_itlist CONJ ths) in
prime_theorem_cache := (n,fth)::(!prime_theorem_cache); fth in
check_certificate;;
(* ------------------------------------------------------------------------- *)
(* Hence a primality-proving rule. *)
(* ------------------------------------------------------------------------- *)
let PROVE_PRIME = check_certificate o certify_prime;;
(* ------------------------------------------------------------------------- *)
(* Rule to generate prime factorization theorems. *)
(* ------------------------------------------------------------------------- *)
let PROVE_PRIMEFACT =
let pth = SPEC_ALL PRIMEFACT_VARIANT
and start_CONV = PURE_REWRITE_CONV[ITLIST; ALL] THENC NUM_REDUCE_CONV
and ps_tm = `ps:num list`
and n_tm = `n:num` in
fun n ->
let pfact = multifactor n in
let th1 = INST [mk_flist(map mk_numeral pfact),ps_tm;
mk_numeral n,n_tm] pth in
let th2 = TRANS th1 (start_CONV(rand(concl th1))) in
let ths = map PROVE_PRIME pfact in
EQ_MP (SYM th2) (end_itlist CONJ ths);;
(* ------------------------------------------------------------------------- *)
(* Conversion for truth or falsity of primality assertion. *)
(* ------------------------------------------------------------------------- *)
let PRIME_TEST =
let NOT_PRIME_THM = prove
(`((m = 1) <=> F) ==> ((m = p) <=> F) ==> (m * n = p) ==> (prime(p) <=> F)`,
MESON_TAC[prime; divides])
and m_tm = `m:num` and n_tm = `n:num` and p_tm = `p:num` in
fun tm ->
let p = dest_numeral tm in
if p =/ num_0 then EQF_INTRO PRIME_0
else if p =/ num_1 then EQF_INTRO PRIME_1 else
let pfact = multifactor p in
if length pfact = 1 then
(remark ("proving that " ^ string_of_num p ^ " is prime");
EQT_INTRO(PROVE_PRIME p))
else
(remark ("proving that " ^ string_of_num p ^ " is composite");
let m = hd pfact and n = end_itlist ( */ ) (tl pfact) in
let th0 = INST [mk_numeral m,m_tm; mk_numeral n,n_tm; mk_numeral p,p_tm]
NOT_PRIME_THM in
let th1 = MP th0 (NUM_EQ_CONV (lhand(lhand(concl th0)))) in
let th2 = MP th1 (NUM_EQ_CONV (lhand(lhand(concl th1)))) in
MP th2 (NUM_MULT_CONV(lhand(lhand(concl th2)))));;
let PRIME_CONV =
let prime_tm = `prime` in
fun tm0 ->
let ptm,tm = dest_comb tm0 in
if ptm <> prime_tm then failwith "expected term of form prime(n)"
else PRIME_TEST tm;;
(* ------------------------------------------------------------------------- *)
(* Another lemma. *)
(* ------------------------------------------------------------------------- *)
let PRIME_POWER_EXISTS = prove
(`!q. prime q
==> ((?i. n = q EXP i) <=>
(!p. prime p /\ p divides n ==> p = q))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THEN
ASM_SIMP_TAC[IMP_CONJ; PRIME_DIVEXP_EQ; DIVIDES_PRIME_PRIME] THEN
ASM_CASES_TAC `n = 0` THENL
[FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `2` th) THEN MP_TAC(SPEC `3` th)) THEN
ASM_REWRITE_TAC[PRIME_2; PRIME_CONV `prime 3`; DIVIDES_0] THEN ARITH_TAC;
ALL_TAC] THEN
ASM_CASES_TAC `n = 1` THENL
[EXISTS_TAC `0` THEN ASM_REWRITE_TAC[EXP]; ALL_TAC] THEN
MP_TAC(ISPEC `n:num` PRIMEPOW_FACTOR) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN
ASM_CASES_TAC `p:num = q` THENL
[FIRST_X_ASSUM(SUBST_ALL_TAC o SYM);
ASM_MESON_TAC[DIVIDES_REXP; LE_1; DIVIDES_RMUL; DIVIDES_REFL]] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:num` THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN
MATCH_MP_TAC(NUM_RING `m = 1 ==> x * m = x`) THEN
MATCH_MP_TAC(ARITH_RULE `~(m = 0) /\ ~(2 <= m) ==> m = 1`) THEN
CONJ_TAC THENL [ASM_MESON_TAC[COPRIME_0; PRIME_1]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP PRIMEPOW_FACTOR) THEN
DISCH_THEN(X_CHOOSE_THEN `r:num` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `r:num`) THEN
REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL
[ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL; DIVIDES_REXP; LE_1; DIVIDES_REFL];
DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_RMUL]) THEN
ASM_SIMP_TAC[COPRIME_REXP; LE_1; COPRIME_REFL] THEN
ASM_MESON_TAC[PRIME_1]]);;
(* ------------------------------------------------------------------------- *)
(* Example. *)
(* ------------------------------------------------------------------------- *)
map (time PRIME_TEST o mk_small_numeral) (0--50);;
time PRIME_TEST `65535`;;
time PRIME_TEST `65536`;;
time PRIME_TEST `65537`;;
time PROVE_PRIMEFACT (Int 222);;
time PROVE_PRIMEFACT (Int 151);;
(* ------------------------------------------------------------------------- *)
(* The "Landau trick" in Erdos's proof of Chebyshev-Bertrand theorem. *)
(* ------------------------------------------------------------------------- *)
map (time PRIME_TEST o mk_small_numeral)
[3; 5; 7; 13; 23; 43; 83; 163; 317; 631; 1259; 2503; 4001];;
|