File: products.ml

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (580 lines) | stat: -rw-r--r-- 23,962 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
(* ========================================================================= *)
(* Products of natural numbers and real numbers.                             *)
(* ========================================================================= *)

prioritize_num();;

(* ------------------------------------------------------------------------- *)
(* Products over natural numbers.                                            *)
(* ------------------------------------------------------------------------- *)

let nproduct = new_definition
  `nproduct = iterate(( * ):num->num->num)`;;

let NPRODUCT_CLAUSES = prove
 (`(!f. nproduct {} f = 1) /\
   (!x f s. FINITE(s)
            ==> (nproduct (x INSERT s) f =
                 if x IN s then nproduct s f else f(x) * nproduct s f))`,
  REWRITE_TAC[nproduct; GSYM NEUTRAL_MUL] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_MUL]);;

let NPRODUCT_SUPPORT = prove
 (`!f s. nproduct (support ( * ) f s) f = nproduct s f`,
  REWRITE_TAC[nproduct; ITERATE_SUPPORT]);;

let NPRODUCT_UNION = prove
 (`!f s t. FINITE s /\ FINITE t /\ DISJOINT s t
           ==> (nproduct (s UNION t) f = nproduct s f * nproduct t f)`,
  SIMP_TAC[nproduct; ITERATE_UNION; MONOIDAL_MUL]);;

let NPRODUCT_IMAGE = prove
 (`!f g s. (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
           ==> (nproduct (IMAGE f s) g = nproduct s (g o f))`,
  REWRITE_TAC[nproduct; GSYM NEUTRAL_MUL] THEN
  MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_MUL]);;

let NPRODUCT_ADD_SPLIT = prove
 (`!f m n p.
        m <= n + 1
        ==> (nproduct (m..(n+p)) f = nproduct(m..n) f * nproduct(n+1..n+p) f)`,
  SIMP_TAC[NUMSEG_ADD_SPLIT; NPRODUCT_UNION; DISJOINT_NUMSEG; FINITE_NUMSEG;
           ARITH_RULE `x < x + 1`]);;

let NPRODUCT_POS_LT = prove
 (`!f s. FINITE s /\ (!x. x IN s ==> 0 < f x) ==> 0 < nproduct s f`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NPRODUCT_CLAUSES; ARITH; IN_INSERT; LT_MULT]);;

let NPRODUCT_POS_LT_NUMSEG = prove
 (`!f m n. (!x. m <= x /\ x <= n ==> 0 < f x) ==> 0 < nproduct(m..n) f`,
  SIMP_TAC[NPRODUCT_POS_LT; FINITE_NUMSEG; IN_NUMSEG]);;

let NPRODUCT_OFFSET = prove
 (`!f m p. nproduct(m+p..n+p) f = nproduct(m..n) (\i. f(i + p))`,
  SIMP_TAC[NUMSEG_OFFSET_IMAGE; NPRODUCT_IMAGE;
           EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN
  REWRITE_TAC[o_DEF]);;

let NPRODUCT_SING = prove
 (`!f x. nproduct {x} f = f(x)`,
  SIMP_TAC[NPRODUCT_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; MULT_CLAUSES]);;

let NPRODUCT_SING_NUMSEG = prove
 (`!f n. nproduct(n..n) f = f(n)`,
  REWRITE_TAC[NUMSEG_SING; NPRODUCT_SING]);;

let NPRODUCT_CLAUSES_NUMSEG = prove
 (`(!m. nproduct(m..0) f = if m = 0 then f(0) else 1) /\
   (!m n. nproduct(m..SUC n) f = if m <= SUC n then nproduct(m..n) f * f(SUC n)
                                else nproduct(m..n) f)`,
  REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN
  COND_CASES_TAC THEN
  ASM_SIMP_TAC[NPRODUCT_SING; NPRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
  REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; MULT_AC]);;

let NPRODUCT_EQ = prove
 (`!f g s. (!x. x IN s ==> (f x = g x)) ==> nproduct s f = nproduct s g`,
  REWRITE_TAC[nproduct] THEN MATCH_MP_TAC ITERATE_EQ THEN
  REWRITE_TAC[MONOIDAL_MUL]);;

let NPRODUCT_EQ_NUMSEG = prove
 (`!f g m n. (!i. m <= i /\ i <= n ==> (f(i) = g(i)))
             ==> (nproduct(m..n) f = nproduct(m..n) g)`,
  MESON_TAC[NPRODUCT_EQ; FINITE_NUMSEG; IN_NUMSEG]);;

let NPRODUCT_EQ_0 = prove
 (`!f s. FINITE s ==> (nproduct s f = 0 <=> ?x. x IN s /\ f(x) = 0)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NPRODUCT_CLAUSES; MULT_EQ_0; IN_INSERT; ARITH; NOT_IN_EMPTY] THEN
  MESON_TAC[]);;

let NPRODUCT_EQ_0_NUMSEG = prove
 (`!f m n. nproduct(m..n) f = 0 <=> ?x. m <= x /\ x <= n /\ f(x) = 0`,
  SIMP_TAC[NPRODUCT_EQ_0; FINITE_NUMSEG; IN_NUMSEG; GSYM CONJ_ASSOC]);;

let NPRODUCT_LE = prove
 (`!f s. FINITE s /\ (!x. x IN s ==> 0 <= f(x) /\ f(x) <= g(x))
         ==> nproduct s f <= nproduct s g`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[IN_INSERT; NPRODUCT_CLAUSES; NOT_IN_EMPTY; LE_REFL] THEN
  MESON_TAC[LE_MULT2; LE_0]);;

let NPRODUCT_LE_NUMSEG = prove
 (`!f m n. (!i. m <= i /\ i <= n ==> 0 <= f(i) /\ f(i) <= g(i))
           ==> nproduct(m..n) f <= nproduct(m..n) g`,
  SIMP_TAC[NPRODUCT_LE; FINITE_NUMSEG; IN_NUMSEG]);;

let NPRODUCT_EQ_1 = prove
 (`!f s. (!x:A. x IN s ==> (f(x) = 1)) ==> (nproduct s f = 1)`,
  REWRITE_TAC[nproduct; GSYM NEUTRAL_MUL] THEN
  SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_MUL]);;

let NPRODUCT_EQ_1_NUMSEG = prove
 (`!f m n. (!i. m <= i /\ i <= n ==> (f(i) = 1)) ==> (nproduct(m..n) f = 1)`,
  SIMP_TAC[NPRODUCT_EQ_1; IN_NUMSEG]);;

let NPRODUCT_MUL_GEN = prove
 (`!f g s.
       FINITE {x | x IN s /\ ~(f x = 1)} /\ FINITE {x | x IN s /\ ~(g x = 1)}
       ==> nproduct s (\x. f x * g x) = nproduct s f * nproduct s g`,
  REWRITE_TAC[GSYM NEUTRAL_MUL; GSYM support; nproduct] THEN
  MATCH_MP_TAC ITERATE_OP_GEN THEN ACCEPT_TAC MONOIDAL_MUL);;

let NPRODUCT_MUL = prove
 (`!f g s. FINITE s
           ==> nproduct s (\x. f x * g x) = nproduct s f * nproduct s g`,
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NPRODUCT_CLAUSES; MULT_AC; MULT_CLAUSES]);;

let NPRODUCT_MUL_NUMSEG = prove
 (`!f g m n.
     nproduct(m..n) (\x. f x * g x) = nproduct(m..n) f * nproduct(m..n) g`,
  SIMP_TAC[NPRODUCT_MUL; FINITE_NUMSEG]);;

let NPRODUCT_CONST = prove
 (`!c s. FINITE s ==> nproduct s (\x. c) = c EXP (CARD s)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NPRODUCT_CLAUSES; CARD_CLAUSES; EXP]);;

let NPRODUCT_CONST_NUMSEG = prove
 (`!c m n. nproduct (m..n) (\x. c) = c EXP ((n + 1) - m)`,
  SIMP_TAC[NPRODUCT_CONST; CARD_NUMSEG; FINITE_NUMSEG]);;

let NPRODUCT_CONST_NUMSEG_1 = prove
 (`!c n. nproduct(1..n) (\x. c) = c EXP n`,
  SIMP_TAC[NPRODUCT_CONST; CARD_NUMSEG_1; FINITE_NUMSEG]);;

let NPRODUCT_ONE = prove
 (`!s. nproduct s (\n. 1) = 1`,
  SIMP_TAC[NPRODUCT_EQ_1]);;

let NPRODUCT_CLOSED = prove
 (`!P f:A->num s.
        P(1) /\ (!x y. P x /\ P y ==> P(x * y)) /\ (!a. a IN s ==> P(f a))
        ==> P(nproduct s f)`,
  REPEAT STRIP_TAC THEN MP_TAC(MATCH_MP ITERATE_CLOSED MONOIDAL_MUL) THEN
  DISCH_THEN(MP_TAC o SPEC `P:num->bool`) THEN
  ASM_SIMP_TAC[NEUTRAL_MUL; GSYM nproduct]);;

let NPRODUCT_CLAUSES_LEFT = prove
 (`!f m n. m <= n ==> nproduct(m..n) f = f(m) * nproduct(m+1..n) f`,
  SIMP_TAC[GSYM NUMSEG_LREC; NPRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
  ARITH_TAC);;

let NPRODUCT_CLAUSES_RIGHT = prove
 (`!f m n. 0 < n /\ m <= n ==> nproduct(m..n) f = nproduct(m..n-1) f * f(n)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  SIMP_TAC[LT_REFL; NPRODUCT_CLAUSES_NUMSEG; SUC_SUB1]);;

let NPRODUCT_SUPERSET = prove
 (`!f:A->num u v.
        u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> f(x) = 1)
        ==> nproduct v f = nproduct u f`,
  SIMP_TAC[nproduct; GSYM NEUTRAL_MUL; ITERATE_SUPERSET; MONOIDAL_MUL]);;

let NPRODUCT_UNIV = prove
 (`!f:A->num s.
        support ( * ) f (:A) SUBSET s ==> nproduct s f = nproduct (:A) f`,
  REWRITE_TAC[nproduct] THEN MATCH_MP_TAC ITERATE_UNIV THEN
  REWRITE_TAC[MONOIDAL_MUL]);;

let NPRODUCT_PAIR = prove
 (`!f m n. nproduct(2*m..2*n+1) f = nproduct(m..n) (\i. f(2*i) * f(2*i+1))`,
  MP_TAC(MATCH_MP ITERATE_PAIR MONOIDAL_MUL) THEN
  REWRITE_TAC[nproduct; NEUTRAL_MUL]);;

let NPRODUCT_REFLECT = prove
 (`!x m n. nproduct(m..n) x =
           if n < m then 1 else nproduct(0..n-m) (\i. x(n - i))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[nproduct] THEN
  GEN_REWRITE_TAC LAND_CONV [MATCH_MP ITERATE_REFLECT MONOIDAL_MUL] THEN
  REWRITE_TAC[NEUTRAL_MUL]);;

let NPRODUCT_DELETE = prove
 (`!f s a. FINITE s /\ a IN s
           ==> f(a) * nproduct(s DELETE a) f = nproduct s f`,
  SIMP_TAC[nproduct; ITERATE_DELETE; MONOIDAL_MUL]);;

let NPRODUCT_FACT = prove
 (`!n. nproduct(1..n) (\m. m) = FACT n`,
  INDUCT_TAC THEN REWRITE_TAC[NPRODUCT_CLAUSES_NUMSEG; FACT; ARITH] THEN
  ASM_REWRITE_TAC[ARITH_RULE `1 <= SUC n`; MULT_SYM]);;

let NPRODUCT_DELTA = prove
 (`!s a. nproduct s (\x. if x = a then b else 1) =
         (if a IN s then b else 1)`,
  REWRITE_TAC[nproduct; GSYM NEUTRAL_MUL] THEN
  SIMP_TAC[ITERATE_DELTA; MONOIDAL_MUL]);;

let HAS_SIZE_CART = prove
 (`!P m. (!i. 1 <= i /\ i <= dimindex(:N) ==> {x | P i x} HAS_SIZE m i)
         ==> {v:A^N | !i. 1 <= i /\ i <= dimindex(:N) ==> P i (v$i)}
             HAS_SIZE nproduct (1..dimindex(:N)) m`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN
   `!n. n <= dimindex(:N)
        ==> {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n
                          ==> P i (v$i)) /\
                     (!i. 1 <= i /\ i <= dimindex(:N) /\ n < i
                          ==> v$i = @x. F)}
            HAS_SIZE nproduct(1..n) m`
    (MP_TAC o SPEC `dimindex(:N)`) THEN REWRITE_TAC[LE_REFL; LET_ANTISYM] THEN
  INDUCT_TAC THEN REWRITE_TAC[NPRODUCT_CLAUSES_NUMSEG; ARITH_EQ] THENL
   [REWRITE_TAC[ARITH_RULE `1 <= i /\ i <= n /\ i <= 0 <=> F`] THEN
    SIMP_TAC[ARITH_RULE `1 <= i /\ i <= n /\ 0 < i <=> 1 <= i /\ i <= n`] THEN
    SUBGOAL_THEN
     `{v | !i. 1 <= i /\ i <= dimindex (:N) ==> v$i = (@x. F)} =
      {(lambda i. @x. F):A^N}`
     (fun th -> SIMP_TAC[th; HAS_SIZE; FINITE_SING; CARD_SING]) THEN
    SIMP_TAC[EXTENSION; IN_SING; IN_ELIM_THM; CART_EQ; LAMBDA_BETA];
    DISCH_TAC] THEN
  MATCH_MP_TAC(MESON[] `!t. t = s /\ t HAS_SIZE n ==> s HAS_SIZE n`) THEN
  EXISTS_TAC
   `IMAGE (\(x:A,v:A^N). (lambda i. if i = SUC n then x else v$i):A^N)
          {x,v | x IN {x:A | P (SUC n) x} /\
                 v IN {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n
                                ==> P i (v$i)) /\
                           (!i. 1 <= i /\ i <= dimindex (:N) /\ n < i
                                ==> v$i = (@x. F))}}` THEN
  CONJ_TAC THENL
   [REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN CONJ_TAC THENL
     [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN
      SIMP_TAC[IN_ELIM_THM; LAMBDA_BETA] THEN
      REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THEN
      REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[LT_REFL] THEN
      TRY ASM_ARITH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC;
      REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_PAIR_THM; EXISTS_PAIR_THM] THEN
      X_GEN_TAC `v:A^N` THEN REWRITE_TAC[IN_ELIM_THM] THEN
      STRIP_TAC THEN EXISTS_TAC `(v:A^N)$(SUC n)` THEN
      EXISTS_TAC `(lambda i. if i = SUC n then @x. F else (v:A^N)$i):A^N` THEN
      SIMP_TAC[CART_EQ; LAMBDA_BETA; ARITH_RULE `i <= n ==> ~(i = SUC n)`] THEN
      ASM_MESON_TAC[LE; ARITH_RULE `1 <= SUC n`;
                    ARITH_RULE `n < i /\ ~(i = SUC n) ==> SUC n < i`]];
    MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
     [REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
      REWRITE_TAC[IMP_IMP; PAIR_EQ; CART_EQ] THEN
      SIMP_TAC[LAMBDA_BETA] THEN
      X_GEN_TAC `a:A` THEN DISCH_TAC THEN X_GEN_TAC `v:A^N` THEN STRIP_TAC THEN
      X_GEN_TAC `b:A` THEN DISCH_TAC THEN X_GEN_TAC `w:A^N` THEN STRIP_TAC THEN
      CONJ_TAC THENL
       [REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `SUC n`)) THEN
        ASM_REWRITE_TAC[ARITH_RULE `1 <= SUC n`];
        X_GEN_TAC `i:num` THEN STRIP_TAC THEN
        REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:num`)) THEN
        ASM_REWRITE_TAC[] THEN
        ASM_CASES_TAC `(n:num) < i` THEN
        ASM_REWRITE_TAC[GSYM NOT_LT] THEN
        TRY ASM_ARITH_TAC THEN ASM_MESON_TAC[]];
      REWRITE_TAC[ARITH_RULE `1 <= SUC n`] THEN
      GEN_REWRITE_TAC RAND_CONV [MULT_SYM] THEN
      MATCH_MP_TAC HAS_SIZE_PRODUCT THEN
      CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC]]);;

let CARD_CART = prove
 (`!P. (!i. 1 <= i /\ i <= dimindex(:N) ==> FINITE {x | P i x})
       ==> CARD {v:A^N | !i. 1 <= i /\ i <= dimindex(:N) ==> P i (v$i)} =
           nproduct (1..dimindex(:N)) (\i. CARD {x | P i x})`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(MESON[HAS_SIZE] `s HAS_SIZE n ==> CARD s = n`) THEN
  MATCH_MP_TAC HAS_SIZE_CART THEN
  ASM_REWRITE_TAC[GSYM FINITE_HAS_SIZE]);;

let th = prove
   (`(!f g s.   (!x. x IN s ==> f(x) = g(x))
                ==> nproduct s (\i. f(i)) = nproduct s g) /\
     (!f g a b. (!i. a <= i /\ i <= b ==> f(i) = g(i))
                ==> nproduct(a..b) (\i. f(i)) = nproduct(a..b) g) /\
     (!f g p.   (!x. p x ==> f x = g x)
                ==> nproduct {y | p y} (\i. f(i)) = nproduct {y | p y} g)`,
    REPEAT STRIP_TAC THEN MATCH_MP_TAC NPRODUCT_EQ THEN
    ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG]) in
    extend_basic_congs (map SPEC_ALL (CONJUNCTS th));;

(* ------------------------------------------------------------------------- *)
(* Now products over real numbers.                                           *)
(* ------------------------------------------------------------------------- *)

prioritize_real();;

let product = new_definition
  `product = iterate (( * ):real->real->real)`;;

let PRODUCT_CLAUSES = prove
 (`(!f. product {} f = &1) /\
   (!x f s. FINITE(s)
            ==> (product (x INSERT s) f =
                 if x IN s then product s f else f(x) * product s f))`,
  REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_REAL_MUL]);;

let PRODUCT_SUPPORT = prove
 (`!f s. product (support ( * ) f s) f = product s f`,
  REWRITE_TAC[product; ITERATE_SUPPORT]);;

let PRODUCT_UNION = prove
 (`!f s t. FINITE s /\ FINITE t /\ DISJOINT s t
           ==> (product (s UNION t) f = product s f * product t f)`,
  SIMP_TAC[product; ITERATE_UNION; MONOIDAL_REAL_MUL]);;

let PRODUCT_IMAGE = prove
 (`!f g s. (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
           ==> (product (IMAGE f s) g = product s (g o f))`,
  REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
  MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_REAL_MUL]);;

let PRODUCT_ADD_SPLIT = prove
 (`!f m n p.
        m <= n + 1
        ==> (product (m..(n+p)) f = product(m..n) f * product(n+1..n+p) f)`,
  SIMP_TAC[NUMSEG_ADD_SPLIT; PRODUCT_UNION; DISJOINT_NUMSEG; FINITE_NUMSEG;
           ARITH_RULE `x < x + 1`]);;

let PRODUCT_POS_LE = prove
 (`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f x) ==> &0 <= product s f`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_POS; IN_INSERT; REAL_LE_MUL]);;

let PRODUCT_POS_LE_NUMSEG = prove
 (`!f m n. (!x. m <= x /\ x <= n ==> &0 <= f x) ==> &0 <= product(m..n) f`,
  SIMP_TAC[PRODUCT_POS_LE; FINITE_NUMSEG; IN_NUMSEG]);;

let PRODUCT_POS_LT = prove
 (`!f s. FINITE s /\ (!x. x IN s ==> &0 < f x) ==> &0 < product s f`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_LT_01; IN_INSERT; REAL_LT_MUL]);;

let PRODUCT_POS_LT_NUMSEG = prove
 (`!f m n. (!x. m <= x /\ x <= n ==> &0 < f x) ==> &0 < product(m..n) f`,
  SIMP_TAC[PRODUCT_POS_LT; FINITE_NUMSEG; IN_NUMSEG]);;

let PRODUCT_OFFSET = prove
 (`!f m p. product(m+p..n+p) f = product(m..n) (\i. f(i + p))`,
  SIMP_TAC[NUMSEG_OFFSET_IMAGE; PRODUCT_IMAGE;
           EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN
  REWRITE_TAC[o_DEF]);;

let PRODUCT_SING = prove
 (`!f x. product {x} f = f(x)`,
  SIMP_TAC[PRODUCT_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; REAL_MUL_RID]);;

let PRODUCT_SING_NUMSEG = prove
 (`!f n. product(n..n) f = f(n)`,
  REWRITE_TAC[NUMSEG_SING; PRODUCT_SING]);;

let PRODUCT_CLAUSES_NUMSEG = prove
 (`(!m. product(m..0) f = if m = 0 then f(0) else &1) /\
   (!m n. product(m..SUC n) f = if m <= SUC n then product(m..n) f * f(SUC n)
                                else product(m..n) f)`,
  REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN
  COND_CASES_TAC THEN
  ASM_SIMP_TAC[PRODUCT_SING; PRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
  REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; REAL_MUL_AC]);;

let PRODUCT_EQ = prove
 (`!f g s. (!x. x IN s ==> (f x = g x)) ==> product s f = product s g`,
  REWRITE_TAC[product] THEN MATCH_MP_TAC ITERATE_EQ THEN
  REWRITE_TAC[MONOIDAL_REAL_MUL]);;

let PRODUCT_EQ_NUMSEG = prove
 (`!f g m n. (!i. m <= i /\ i <= n ==> (f(i) = g(i)))
             ==> (product(m..n) f = product(m..n) g)`,
  MESON_TAC[PRODUCT_EQ; FINITE_NUMSEG; IN_NUMSEG]);;

let PRODUCT_EQ_0 = prove
 (`!f s. FINITE s ==> (product s f = &0 <=> ?x. x IN s /\ f(x) = &0)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_ENTIRE; IN_INSERT; REAL_OF_NUM_EQ; ARITH;
           NOT_IN_EMPTY] THEN
  MESON_TAC[]);;

let PRODUCT_EQ_0_NUMSEG = prove
 (`!f m n. product(m..n) f = &0 <=> ?x. m <= x /\ x <= n /\ f(x) = &0`,
  SIMP_TAC[PRODUCT_EQ_0; FINITE_NUMSEG; IN_NUMSEG; GSYM CONJ_ASSOC]);;

let PRODUCT_LE = prove
 (`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f(x) /\ f(x) <= g(x))
         ==> product s f <= product s g`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[IN_INSERT; PRODUCT_CLAUSES; NOT_IN_EMPTY; REAL_LE_REFL] THEN
  MESON_TAC[REAL_LE_MUL2; PRODUCT_POS_LE]);;

let PRODUCT_LE_NUMSEG = prove
 (`!f m n. (!i. m <= i /\ i <= n ==> &0 <= f(i) /\ f(i) <= g(i))
           ==> product(m..n) f <= product(m..n) g`,
  SIMP_TAC[PRODUCT_LE; FINITE_NUMSEG; IN_NUMSEG]);;

let PRODUCT_EQ_1 = prove
 (`!f s. (!x:A. x IN s ==> (f(x) = &1)) ==> (product s f = &1)`,
  REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
  SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_REAL_MUL]);;

let PRODUCT_EQ_1_NUMSEG = prove
 (`!f m n. (!i. m <= i /\ i <= n ==> (f(i) = &1)) ==> (product(m..n) f = &1)`,
  SIMP_TAC[PRODUCT_EQ_1; IN_NUMSEG]);;

let PRODUCT_MUL_GEN = prove
 (`!f g s.
       FINITE {x | x IN s /\ ~(f x = &1)} /\ FINITE {x | x IN s /\ ~(g x = &1)}
       ==> product s (\x. f x * g x) = product s f * product s g`,
  REWRITE_TAC[GSYM NEUTRAL_REAL_MUL; GSYM support; product] THEN
  MATCH_MP_TAC ITERATE_OP_GEN THEN ACCEPT_TAC MONOIDAL_REAL_MUL);;

let PRODUCT_MUL = prove
 (`!f g s. FINITE s ==> product s (\x. f x * g x) = product s f * product s g`,
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_MUL_AC; REAL_MUL_LID]);;

let PRODUCT_MUL_NUMSEG = prove
 (`!f g m n.
     product(m..n) (\x. f x * g x) = product(m..n) f * product(m..n) g`,
  SIMP_TAC[PRODUCT_MUL; FINITE_NUMSEG]);;

let PRODUCT_CONST = prove
 (`!c s. FINITE s ==> product s (\x. c) = c pow (CARD s)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; CARD_CLAUSES; real_pow]);;

let PRODUCT_CONST_NUMSEG = prove
 (`!c m n. product (m..n) (\x. c) = c pow ((n + 1) - m)`,
  SIMP_TAC[PRODUCT_CONST; CARD_NUMSEG; FINITE_NUMSEG]);;

let PRODUCT_CONST_NUMSEG_1 = prove
 (`!c n. product(1..n) (\x. c) = c pow n`,
  SIMP_TAC[PRODUCT_CONST; CARD_NUMSEG_1; FINITE_NUMSEG]);;

let PRODUCT_NEG = prove
 (`!f s:A->bool.
     FINITE s ==> product s (\i. --(f i)) = --(&1) pow (CARD s) * product s f`,
  SIMP_TAC[GSYM PRODUCT_CONST; GSYM PRODUCT_MUL] THEN
  REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_LID]);;

let PRODUCT_NEG_NUMSEG = prove
 (`!f m n. product(m..n) (\i. --(f i)) =
           --(&1) pow ((n + 1) - m) * product(m..n) f`,
  SIMP_TAC[PRODUCT_NEG; CARD_NUMSEG; FINITE_NUMSEG]);;

let PRODUCT_NEG_NUMSEG_1 = prove
 (`!f n. product(1..n) (\i. --(f i)) = --(&1) pow n * product(1..n) f`,
  REWRITE_TAC[PRODUCT_NEG_NUMSEG; ADD_SUB]);;

let PRODUCT_INV = prove
 (`!f s. FINITE s ==> product s (\x. inv(f x)) = inv(product s f)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_INV_1; REAL_INV_MUL]);;

let PRODUCT_DIV = prove
 (`!f g s. FINITE s ==> product s (\x. f x / g x) = product s f / product s g`,
  SIMP_TAC[real_div; PRODUCT_MUL; PRODUCT_INV]);;

let PRODUCT_DIV_NUMSEG = prove
 (`!f g m n.
         product(m..n) (\x. f x / g x) = product(m..n) f / product(m..n) g`,
  SIMP_TAC[PRODUCT_DIV; FINITE_NUMSEG]);;

let PRODUCT_ONE = prove
 (`!s. product s (\n. &1) = &1`,
  SIMP_TAC[PRODUCT_EQ_1]);;

let PRODUCT_LE_1 = prove
 (`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f x /\ f x <= &1)
         ==> product s f <= &1`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_LE_REFL; IN_INSERT] THEN
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
  MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_SIMP_TAC[PRODUCT_POS_LE]);;

let PRODUCT_ABS = prove
 (`!f s. FINITE s ==> product s (\x. abs(f x)) = abs(product s f)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_ABS_MUL; REAL_ABS_NUM]);;

let PRODUCT_CLOSED = prove
 (`!P f:A->real s.
        P(&1) /\ (!x y. P x /\ P y ==> P(x * y)) /\ (!a. a IN s ==> P(f a))
        ==> P(product s f)`,
  REPEAT STRIP_TAC THEN MP_TAC(MATCH_MP ITERATE_CLOSED MONOIDAL_REAL_MUL) THEN
  DISCH_THEN(MP_TAC o SPEC `P:real->bool`) THEN
  ASM_SIMP_TAC[NEUTRAL_REAL_MUL; GSYM product]);;

let PRODUCT_CLAUSES_LEFT = prove
 (`!f m n. m <= n ==> product(m..n) f = f(m) * product(m+1..n) f`,
  SIMP_TAC[GSYM NUMSEG_LREC; PRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
  ARITH_TAC);;

let PRODUCT_CLAUSES_RIGHT = prove
 (`!f m n. 0 < n /\ m <= n ==> product(m..n) f = product(m..n-1) f * f(n)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  SIMP_TAC[LT_REFL; PRODUCT_CLAUSES_NUMSEG; SUC_SUB1]);;

let REAL_OF_NUM_NPRODUCT = prove
 (`!f:A->num s. FINITE s ==> &(nproduct s f) = product s (\x. &(f x))`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; NPRODUCT_CLAUSES; GSYM REAL_OF_NUM_MUL]);;

let PRODUCT_SUPERSET = prove
 (`!f:A->real u v.
        u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> f(x) = &1)
        ==> product v f = product u f`,
  SIMP_TAC[product; GSYM NEUTRAL_REAL_MUL;
           ITERATE_SUPERSET; MONOIDAL_REAL_MUL]);;

let PRODUCT_UNIV = prove
 (`!f:A->real s.
        support ( * ) f (:A) SUBSET s ==> product s f = product (:A) f`,
  REWRITE_TAC[product] THEN MATCH_MP_TAC ITERATE_UNIV THEN
  REWRITE_TAC[MONOIDAL_REAL_MUL]);;

let PRODUCT_PAIR = prove
 (`!f m n. product(2*m..2*n+1) f = product(m..n) (\i. f(2*i) * f(2*i+1))`,
  MP_TAC(MATCH_MP ITERATE_PAIR MONOIDAL_REAL_MUL) THEN
  REWRITE_TAC[product; NEUTRAL_REAL_MUL]);;

let PRODUCT_REFLECT = prove
 (`!x m n. product(m..n) x =
           if n < m then &1 else product(0..n-m) (\i. x(n - i))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[product] THEN
  GEN_REWRITE_TAC LAND_CONV [MATCH_MP ITERATE_REFLECT MONOIDAL_REAL_MUL] THEN
  REWRITE_TAC[NEUTRAL_REAL_MUL]);;

let PRODUCT_DELETE = prove
 (`!f s a. FINITE s /\ a IN s ==> f(a) * product(s DELETE a) f = product s f`,
  SIMP_TAC[product; ITERATE_DELETE; MONOIDAL_REAL_MUL]);;

let PRODUCT_DELTA = prove
 (`!s a. product s (\x. if x = a then b else &1) =
         (if a IN s then b else &1)`,
  REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
  SIMP_TAC[ITERATE_DELTA; MONOIDAL_REAL_MUL]);;

let POLYNOMIAL_FUNCTION_PRODUCT = prove
 (`!s:A->bool p.
        FINITE s /\ (!i. i IN s ==> polynomial_function(\x. p x i))
        ==> polynomial_function (\x. product s (p x))`,
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; POLYNOMIAL_FUNCTION_CONST] THEN
  SIMP_TAC[FORALL_IN_INSERT; POLYNOMIAL_FUNCTION_MUL]);;

(* ------------------------------------------------------------------------- *)
(* Extend congruences.                                                       *)
(* ------------------------------------------------------------------------- *)

let th = prove
   (`(!f g s.   (!x. x IN s ==> f(x) = g(x))
                ==> product s (\i. f(i)) = product s g) /\
     (!f g a b. (!i. a <= i /\ i <= b ==> f(i) = g(i))
                ==> product(a..b) (\i. f(i)) = product(a..b) g) /\
     (!f g p.   (!x. p x ==> f x = g x)
                ==> product {y | p y} (\i. f(i)) = product {y | p y} g)`,
    REPEAT STRIP_TAC THEN MATCH_MP_TAC PRODUCT_EQ THEN
    ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG]) in
    extend_basic_congs (map SPEC_ALL (CONJUNCTS th));;