1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
(* ========================================================================= *)
(* Products of natural numbers and real numbers. *)
(* ========================================================================= *)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Products over natural numbers. *)
(* ------------------------------------------------------------------------- *)
let nproduct = new_definition
`nproduct = iterate(( * ):num->num->num)`;;
let NPRODUCT_CLAUSES = prove
(`(!f. nproduct {} f = 1) /\
(!x f s. FINITE(s)
==> (nproduct (x INSERT s) f =
if x IN s then nproduct s f else f(x) * nproduct s f))`,
REWRITE_TAC[nproduct; GSYM NEUTRAL_MUL] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_MUL]);;
let NPRODUCT_SUPPORT = prove
(`!f s. nproduct (support ( * ) f s) f = nproduct s f`,
REWRITE_TAC[nproduct; ITERATE_SUPPORT]);;
let NPRODUCT_UNION = prove
(`!f s t. FINITE s /\ FINITE t /\ DISJOINT s t
==> (nproduct (s UNION t) f = nproduct s f * nproduct t f)`,
SIMP_TAC[nproduct; ITERATE_UNION; MONOIDAL_MUL]);;
let NPRODUCT_IMAGE = prove
(`!f g s. (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
==> (nproduct (IMAGE f s) g = nproduct s (g o f))`,
REWRITE_TAC[nproduct; GSYM NEUTRAL_MUL] THEN
MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_MUL]);;
let NPRODUCT_ADD_SPLIT = prove
(`!f m n p.
m <= n + 1
==> (nproduct (m..(n+p)) f = nproduct(m..n) f * nproduct(n+1..n+p) f)`,
SIMP_TAC[NUMSEG_ADD_SPLIT; NPRODUCT_UNION; DISJOINT_NUMSEG; FINITE_NUMSEG;
ARITH_RULE `x < x + 1`]);;
let NPRODUCT_POS_LT = prove
(`!f s. FINITE s /\ (!x. x IN s ==> 0 < f x) ==> 0 < nproduct s f`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[NPRODUCT_CLAUSES; ARITH; IN_INSERT; LT_MULT]);;
let NPRODUCT_POS_LT_NUMSEG = prove
(`!f m n. (!x. m <= x /\ x <= n ==> 0 < f x) ==> 0 < nproduct(m..n) f`,
SIMP_TAC[NPRODUCT_POS_LT; FINITE_NUMSEG; IN_NUMSEG]);;
let NPRODUCT_OFFSET = prove
(`!f m p. nproduct(m+p..n+p) f = nproduct(m..n) (\i. f(i + p))`,
SIMP_TAC[NUMSEG_OFFSET_IMAGE; NPRODUCT_IMAGE;
EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN
REWRITE_TAC[o_DEF]);;
let NPRODUCT_SING = prove
(`!f x. nproduct {x} f = f(x)`,
SIMP_TAC[NPRODUCT_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; MULT_CLAUSES]);;
let NPRODUCT_SING_NUMSEG = prove
(`!f n. nproduct(n..n) f = f(n)`,
REWRITE_TAC[NUMSEG_SING; NPRODUCT_SING]);;
let NPRODUCT_CLAUSES_NUMSEG = prove
(`(!m. nproduct(m..0) f = if m = 0 then f(0) else 1) /\
(!m n. nproduct(m..SUC n) f = if m <= SUC n then nproduct(m..n) f * f(SUC n)
else nproduct(m..n) f)`,
REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC[NPRODUCT_SING; NPRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; MULT_AC]);;
let NPRODUCT_EQ = prove
(`!f g s. (!x. x IN s ==> (f x = g x)) ==> nproduct s f = nproduct s g`,
REWRITE_TAC[nproduct] THEN MATCH_MP_TAC ITERATE_EQ THEN
REWRITE_TAC[MONOIDAL_MUL]);;
let NPRODUCT_EQ_NUMSEG = prove
(`!f g m n. (!i. m <= i /\ i <= n ==> (f(i) = g(i)))
==> (nproduct(m..n) f = nproduct(m..n) g)`,
MESON_TAC[NPRODUCT_EQ; FINITE_NUMSEG; IN_NUMSEG]);;
let NPRODUCT_EQ_0 = prove
(`!f s. FINITE s ==> (nproduct s f = 0 <=> ?x. x IN s /\ f(x) = 0)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[NPRODUCT_CLAUSES; MULT_EQ_0; IN_INSERT; ARITH; NOT_IN_EMPTY] THEN
MESON_TAC[]);;
let NPRODUCT_EQ_0_NUMSEG = prove
(`!f m n. nproduct(m..n) f = 0 <=> ?x. m <= x /\ x <= n /\ f(x) = 0`,
SIMP_TAC[NPRODUCT_EQ_0; FINITE_NUMSEG; IN_NUMSEG; GSYM CONJ_ASSOC]);;
let NPRODUCT_LE = prove
(`!f s. FINITE s /\ (!x. x IN s ==> 0 <= f(x) /\ f(x) <= g(x))
==> nproduct s f <= nproduct s g`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[IN_INSERT; NPRODUCT_CLAUSES; NOT_IN_EMPTY; LE_REFL] THEN
MESON_TAC[LE_MULT2; LE_0]);;
let NPRODUCT_LE_NUMSEG = prove
(`!f m n. (!i. m <= i /\ i <= n ==> 0 <= f(i) /\ f(i) <= g(i))
==> nproduct(m..n) f <= nproduct(m..n) g`,
SIMP_TAC[NPRODUCT_LE; FINITE_NUMSEG; IN_NUMSEG]);;
let NPRODUCT_EQ_1 = prove
(`!f s. (!x:A. x IN s ==> (f(x) = 1)) ==> (nproduct s f = 1)`,
REWRITE_TAC[nproduct; GSYM NEUTRAL_MUL] THEN
SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_MUL]);;
let NPRODUCT_EQ_1_NUMSEG = prove
(`!f m n. (!i. m <= i /\ i <= n ==> (f(i) = 1)) ==> (nproduct(m..n) f = 1)`,
SIMP_TAC[NPRODUCT_EQ_1; IN_NUMSEG]);;
let NPRODUCT_MUL_GEN = prove
(`!f g s.
FINITE {x | x IN s /\ ~(f x = 1)} /\ FINITE {x | x IN s /\ ~(g x = 1)}
==> nproduct s (\x. f x * g x) = nproduct s f * nproduct s g`,
REWRITE_TAC[GSYM NEUTRAL_MUL; GSYM support; nproduct] THEN
MATCH_MP_TAC ITERATE_OP_GEN THEN ACCEPT_TAC MONOIDAL_MUL);;
let NPRODUCT_MUL = prove
(`!f g s. FINITE s
==> nproduct s (\x. f x * g x) = nproduct s f * nproduct s g`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[NPRODUCT_CLAUSES; MULT_AC; MULT_CLAUSES]);;
let NPRODUCT_MUL_NUMSEG = prove
(`!f g m n.
nproduct(m..n) (\x. f x * g x) = nproduct(m..n) f * nproduct(m..n) g`,
SIMP_TAC[NPRODUCT_MUL; FINITE_NUMSEG]);;
let NPRODUCT_CONST = prove
(`!c s. FINITE s ==> nproduct s (\x. c) = c EXP (CARD s)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[NPRODUCT_CLAUSES; CARD_CLAUSES; EXP]);;
let NPRODUCT_CONST_NUMSEG = prove
(`!c m n. nproduct (m..n) (\x. c) = c EXP ((n + 1) - m)`,
SIMP_TAC[NPRODUCT_CONST; CARD_NUMSEG; FINITE_NUMSEG]);;
let NPRODUCT_CONST_NUMSEG_1 = prove
(`!c n. nproduct(1..n) (\x. c) = c EXP n`,
SIMP_TAC[NPRODUCT_CONST; CARD_NUMSEG_1; FINITE_NUMSEG]);;
let NPRODUCT_ONE = prove
(`!s. nproduct s (\n. 1) = 1`,
SIMP_TAC[NPRODUCT_EQ_1]);;
let NPRODUCT_CLOSED = prove
(`!P f:A->num s.
P(1) /\ (!x y. P x /\ P y ==> P(x * y)) /\ (!a. a IN s ==> P(f a))
==> P(nproduct s f)`,
REPEAT STRIP_TAC THEN MP_TAC(MATCH_MP ITERATE_CLOSED MONOIDAL_MUL) THEN
DISCH_THEN(MP_TAC o SPEC `P:num->bool`) THEN
ASM_SIMP_TAC[NEUTRAL_MUL; GSYM nproduct]);;
let NPRODUCT_CLAUSES_LEFT = prove
(`!f m n. m <= n ==> nproduct(m..n) f = f(m) * nproduct(m+1..n) f`,
SIMP_TAC[GSYM NUMSEG_LREC; NPRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
ARITH_TAC);;
let NPRODUCT_CLAUSES_RIGHT = prove
(`!f m n. 0 < n /\ m <= n ==> nproduct(m..n) f = nproduct(m..n-1) f * f(n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
SIMP_TAC[LT_REFL; NPRODUCT_CLAUSES_NUMSEG; SUC_SUB1]);;
let NPRODUCT_SUPERSET = prove
(`!f:A->num u v.
u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> f(x) = 1)
==> nproduct v f = nproduct u f`,
SIMP_TAC[nproduct; GSYM NEUTRAL_MUL; ITERATE_SUPERSET; MONOIDAL_MUL]);;
let NPRODUCT_UNIV = prove
(`!f:A->num s.
support ( * ) f (:A) SUBSET s ==> nproduct s f = nproduct (:A) f`,
REWRITE_TAC[nproduct] THEN MATCH_MP_TAC ITERATE_UNIV THEN
REWRITE_TAC[MONOIDAL_MUL]);;
let NPRODUCT_PAIR = prove
(`!f m n. nproduct(2*m..2*n+1) f = nproduct(m..n) (\i. f(2*i) * f(2*i+1))`,
MP_TAC(MATCH_MP ITERATE_PAIR MONOIDAL_MUL) THEN
REWRITE_TAC[nproduct; NEUTRAL_MUL]);;
let NPRODUCT_REFLECT = prove
(`!x m n. nproduct(m..n) x =
if n < m then 1 else nproduct(0..n-m) (\i. x(n - i))`,
REPEAT GEN_TAC THEN REWRITE_TAC[nproduct] THEN
GEN_REWRITE_TAC LAND_CONV [MATCH_MP ITERATE_REFLECT MONOIDAL_MUL] THEN
REWRITE_TAC[NEUTRAL_MUL]);;
let NPRODUCT_DELETE = prove
(`!f s a. FINITE s /\ a IN s
==> f(a) * nproduct(s DELETE a) f = nproduct s f`,
SIMP_TAC[nproduct; ITERATE_DELETE; MONOIDAL_MUL]);;
let NPRODUCT_FACT = prove
(`!n. nproduct(1..n) (\m. m) = FACT n`,
INDUCT_TAC THEN REWRITE_TAC[NPRODUCT_CLAUSES_NUMSEG; FACT; ARITH] THEN
ASM_REWRITE_TAC[ARITH_RULE `1 <= SUC n`; MULT_SYM]);;
let NPRODUCT_DELTA = prove
(`!s a. nproduct s (\x. if x = a then b else 1) =
(if a IN s then b else 1)`,
REWRITE_TAC[nproduct; GSYM NEUTRAL_MUL] THEN
SIMP_TAC[ITERATE_DELTA; MONOIDAL_MUL]);;
let HAS_SIZE_CART = prove
(`!P m. (!i. 1 <= i /\ i <= dimindex(:N) ==> {x | P i x} HAS_SIZE m i)
==> {v:A^N | !i. 1 <= i /\ i <= dimindex(:N) ==> P i (v$i)}
HAS_SIZE nproduct (1..dimindex(:N)) m`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN
`!n. n <= dimindex(:N)
==> {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n
==> P i (v$i)) /\
(!i. 1 <= i /\ i <= dimindex(:N) /\ n < i
==> v$i = @x. F)}
HAS_SIZE nproduct(1..n) m`
(MP_TAC o SPEC `dimindex(:N)`) THEN REWRITE_TAC[LE_REFL; LET_ANTISYM] THEN
INDUCT_TAC THEN REWRITE_TAC[NPRODUCT_CLAUSES_NUMSEG; ARITH_EQ] THENL
[REWRITE_TAC[ARITH_RULE `1 <= i /\ i <= n /\ i <= 0 <=> F`] THEN
SIMP_TAC[ARITH_RULE `1 <= i /\ i <= n /\ 0 < i <=> 1 <= i /\ i <= n`] THEN
SUBGOAL_THEN
`{v | !i. 1 <= i /\ i <= dimindex (:N) ==> v$i = (@x. F)} =
{(lambda i. @x. F):A^N}`
(fun th -> SIMP_TAC[th; HAS_SIZE; FINITE_SING; CARD_SING]) THEN
SIMP_TAC[EXTENSION; IN_SING; IN_ELIM_THM; CART_EQ; LAMBDA_BETA];
DISCH_TAC] THEN
MATCH_MP_TAC(MESON[] `!t. t = s /\ t HAS_SIZE n ==> s HAS_SIZE n`) THEN
EXISTS_TAC
`IMAGE (\(x:A,v:A^N). (lambda i. if i = SUC n then x else v$i):A^N)
{x,v | x IN {x:A | P (SUC n) x} /\
v IN {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n
==> P i (v$i)) /\
(!i. 1 <= i /\ i <= dimindex (:N) /\ n < i
==> v$i = (@x. F))}}` THEN
CONJ_TAC THENL
[REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN CONJ_TAC THENL
[REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN
SIMP_TAC[IN_ELIM_THM; LAMBDA_BETA] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[LT_REFL] THEN
TRY ASM_ARITH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC;
REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_PAIR_THM; EXISTS_PAIR_THM] THEN
X_GEN_TAC `v:A^N` THEN REWRITE_TAC[IN_ELIM_THM] THEN
STRIP_TAC THEN EXISTS_TAC `(v:A^N)$(SUC n)` THEN
EXISTS_TAC `(lambda i. if i = SUC n then @x. F else (v:A^N)$i):A^N` THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA; ARITH_RULE `i <= n ==> ~(i = SUC n)`] THEN
ASM_MESON_TAC[LE; ARITH_RULE `1 <= SUC n`;
ARITH_RULE `n < i /\ ~(i = SUC n) ==> SUC n < i`]];
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
[REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
REWRITE_TAC[IMP_IMP; PAIR_EQ; CART_EQ] THEN
SIMP_TAC[LAMBDA_BETA] THEN
X_GEN_TAC `a:A` THEN DISCH_TAC THEN X_GEN_TAC `v:A^N` THEN STRIP_TAC THEN
X_GEN_TAC `b:A` THEN DISCH_TAC THEN X_GEN_TAC `w:A^N` THEN STRIP_TAC THEN
CONJ_TAC THENL
[REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `SUC n`)) THEN
ASM_REWRITE_TAC[ARITH_RULE `1 <= SUC n`];
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:num`)) THEN
ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `(n:num) < i` THEN
ASM_REWRITE_TAC[GSYM NOT_LT] THEN
TRY ASM_ARITH_TAC THEN ASM_MESON_TAC[]];
REWRITE_TAC[ARITH_RULE `1 <= SUC n`] THEN
GEN_REWRITE_TAC RAND_CONV [MULT_SYM] THEN
MATCH_MP_TAC HAS_SIZE_PRODUCT THEN
CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC]]);;
let CARD_CART = prove
(`!P. (!i. 1 <= i /\ i <= dimindex(:N) ==> FINITE {x | P i x})
==> CARD {v:A^N | !i. 1 <= i /\ i <= dimindex(:N) ==> P i (v$i)} =
nproduct (1..dimindex(:N)) (\i. CARD {x | P i x})`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(MESON[HAS_SIZE] `s HAS_SIZE n ==> CARD s = n`) THEN
MATCH_MP_TAC HAS_SIZE_CART THEN
ASM_REWRITE_TAC[GSYM FINITE_HAS_SIZE]);;
let th = prove
(`(!f g s. (!x. x IN s ==> f(x) = g(x))
==> nproduct s (\i. f(i)) = nproduct s g) /\
(!f g a b. (!i. a <= i /\ i <= b ==> f(i) = g(i))
==> nproduct(a..b) (\i. f(i)) = nproduct(a..b) g) /\
(!f g p. (!x. p x ==> f x = g x)
==> nproduct {y | p y} (\i. f(i)) = nproduct {y | p y} g)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC NPRODUCT_EQ THEN
ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG]) in
extend_basic_congs (map SPEC_ALL (CONJUNCTS th));;
(* ------------------------------------------------------------------------- *)
(* Now products over real numbers. *)
(* ------------------------------------------------------------------------- *)
prioritize_real();;
let product = new_definition
`product = iterate (( * ):real->real->real)`;;
let PRODUCT_CLAUSES = prove
(`(!f. product {} f = &1) /\
(!x f s. FINITE(s)
==> (product (x INSERT s) f =
if x IN s then product s f else f(x) * product s f))`,
REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_REAL_MUL]);;
let PRODUCT_SUPPORT = prove
(`!f s. product (support ( * ) f s) f = product s f`,
REWRITE_TAC[product; ITERATE_SUPPORT]);;
let PRODUCT_UNION = prove
(`!f s t. FINITE s /\ FINITE t /\ DISJOINT s t
==> (product (s UNION t) f = product s f * product t f)`,
SIMP_TAC[product; ITERATE_UNION; MONOIDAL_REAL_MUL]);;
let PRODUCT_IMAGE = prove
(`!f g s. (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
==> (product (IMAGE f s) g = product s (g o f))`,
REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_REAL_MUL]);;
let PRODUCT_ADD_SPLIT = prove
(`!f m n p.
m <= n + 1
==> (product (m..(n+p)) f = product(m..n) f * product(n+1..n+p) f)`,
SIMP_TAC[NUMSEG_ADD_SPLIT; PRODUCT_UNION; DISJOINT_NUMSEG; FINITE_NUMSEG;
ARITH_RULE `x < x + 1`]);;
let PRODUCT_POS_LE = prove
(`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f x) ==> &0 <= product s f`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_POS; IN_INSERT; REAL_LE_MUL]);;
let PRODUCT_POS_LE_NUMSEG = prove
(`!f m n. (!x. m <= x /\ x <= n ==> &0 <= f x) ==> &0 <= product(m..n) f`,
SIMP_TAC[PRODUCT_POS_LE; FINITE_NUMSEG; IN_NUMSEG]);;
let PRODUCT_POS_LT = prove
(`!f s. FINITE s /\ (!x. x IN s ==> &0 < f x) ==> &0 < product s f`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_LT_01; IN_INSERT; REAL_LT_MUL]);;
let PRODUCT_POS_LT_NUMSEG = prove
(`!f m n. (!x. m <= x /\ x <= n ==> &0 < f x) ==> &0 < product(m..n) f`,
SIMP_TAC[PRODUCT_POS_LT; FINITE_NUMSEG; IN_NUMSEG]);;
let PRODUCT_OFFSET = prove
(`!f m p. product(m+p..n+p) f = product(m..n) (\i. f(i + p))`,
SIMP_TAC[NUMSEG_OFFSET_IMAGE; PRODUCT_IMAGE;
EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN
REWRITE_TAC[o_DEF]);;
let PRODUCT_SING = prove
(`!f x. product {x} f = f(x)`,
SIMP_TAC[PRODUCT_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; REAL_MUL_RID]);;
let PRODUCT_SING_NUMSEG = prove
(`!f n. product(n..n) f = f(n)`,
REWRITE_TAC[NUMSEG_SING; PRODUCT_SING]);;
let PRODUCT_CLAUSES_NUMSEG = prove
(`(!m. product(m..0) f = if m = 0 then f(0) else &1) /\
(!m n. product(m..SUC n) f = if m <= SUC n then product(m..n) f * f(SUC n)
else product(m..n) f)`,
REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC[PRODUCT_SING; PRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; REAL_MUL_AC]);;
let PRODUCT_EQ = prove
(`!f g s. (!x. x IN s ==> (f x = g x)) ==> product s f = product s g`,
REWRITE_TAC[product] THEN MATCH_MP_TAC ITERATE_EQ THEN
REWRITE_TAC[MONOIDAL_REAL_MUL]);;
let PRODUCT_EQ_NUMSEG = prove
(`!f g m n. (!i. m <= i /\ i <= n ==> (f(i) = g(i)))
==> (product(m..n) f = product(m..n) g)`,
MESON_TAC[PRODUCT_EQ; FINITE_NUMSEG; IN_NUMSEG]);;
let PRODUCT_EQ_0 = prove
(`!f s. FINITE s ==> (product s f = &0 <=> ?x. x IN s /\ f(x) = &0)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_ENTIRE; IN_INSERT; REAL_OF_NUM_EQ; ARITH;
NOT_IN_EMPTY] THEN
MESON_TAC[]);;
let PRODUCT_EQ_0_NUMSEG = prove
(`!f m n. product(m..n) f = &0 <=> ?x. m <= x /\ x <= n /\ f(x) = &0`,
SIMP_TAC[PRODUCT_EQ_0; FINITE_NUMSEG; IN_NUMSEG; GSYM CONJ_ASSOC]);;
let PRODUCT_LE = prove
(`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f(x) /\ f(x) <= g(x))
==> product s f <= product s g`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[IN_INSERT; PRODUCT_CLAUSES; NOT_IN_EMPTY; REAL_LE_REFL] THEN
MESON_TAC[REAL_LE_MUL2; PRODUCT_POS_LE]);;
let PRODUCT_LE_NUMSEG = prove
(`!f m n. (!i. m <= i /\ i <= n ==> &0 <= f(i) /\ f(i) <= g(i))
==> product(m..n) f <= product(m..n) g`,
SIMP_TAC[PRODUCT_LE; FINITE_NUMSEG; IN_NUMSEG]);;
let PRODUCT_EQ_1 = prove
(`!f s. (!x:A. x IN s ==> (f(x) = &1)) ==> (product s f = &1)`,
REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_REAL_MUL]);;
let PRODUCT_EQ_1_NUMSEG = prove
(`!f m n. (!i. m <= i /\ i <= n ==> (f(i) = &1)) ==> (product(m..n) f = &1)`,
SIMP_TAC[PRODUCT_EQ_1; IN_NUMSEG]);;
let PRODUCT_MUL_GEN = prove
(`!f g s.
FINITE {x | x IN s /\ ~(f x = &1)} /\ FINITE {x | x IN s /\ ~(g x = &1)}
==> product s (\x. f x * g x) = product s f * product s g`,
REWRITE_TAC[GSYM NEUTRAL_REAL_MUL; GSYM support; product] THEN
MATCH_MP_TAC ITERATE_OP_GEN THEN ACCEPT_TAC MONOIDAL_REAL_MUL);;
let PRODUCT_MUL = prove
(`!f g s. FINITE s ==> product s (\x. f x * g x) = product s f * product s g`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_MUL_AC; REAL_MUL_LID]);;
let PRODUCT_MUL_NUMSEG = prove
(`!f g m n.
product(m..n) (\x. f x * g x) = product(m..n) f * product(m..n) g`,
SIMP_TAC[PRODUCT_MUL; FINITE_NUMSEG]);;
let PRODUCT_CONST = prove
(`!c s. FINITE s ==> product s (\x. c) = c pow (CARD s)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; CARD_CLAUSES; real_pow]);;
let PRODUCT_CONST_NUMSEG = prove
(`!c m n. product (m..n) (\x. c) = c pow ((n + 1) - m)`,
SIMP_TAC[PRODUCT_CONST; CARD_NUMSEG; FINITE_NUMSEG]);;
let PRODUCT_CONST_NUMSEG_1 = prove
(`!c n. product(1..n) (\x. c) = c pow n`,
SIMP_TAC[PRODUCT_CONST; CARD_NUMSEG_1; FINITE_NUMSEG]);;
let PRODUCT_NEG = prove
(`!f s:A->bool.
FINITE s ==> product s (\i. --(f i)) = --(&1) pow (CARD s) * product s f`,
SIMP_TAC[GSYM PRODUCT_CONST; GSYM PRODUCT_MUL] THEN
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_LID]);;
let PRODUCT_NEG_NUMSEG = prove
(`!f m n. product(m..n) (\i. --(f i)) =
--(&1) pow ((n + 1) - m) * product(m..n) f`,
SIMP_TAC[PRODUCT_NEG; CARD_NUMSEG; FINITE_NUMSEG]);;
let PRODUCT_NEG_NUMSEG_1 = prove
(`!f n. product(1..n) (\i. --(f i)) = --(&1) pow n * product(1..n) f`,
REWRITE_TAC[PRODUCT_NEG_NUMSEG; ADD_SUB]);;
let PRODUCT_INV = prove
(`!f s. FINITE s ==> product s (\x. inv(f x)) = inv(product s f)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_INV_1; REAL_INV_MUL]);;
let PRODUCT_DIV = prove
(`!f g s. FINITE s ==> product s (\x. f x / g x) = product s f / product s g`,
SIMP_TAC[real_div; PRODUCT_MUL; PRODUCT_INV]);;
let PRODUCT_DIV_NUMSEG = prove
(`!f g m n.
product(m..n) (\x. f x / g x) = product(m..n) f / product(m..n) g`,
SIMP_TAC[PRODUCT_DIV; FINITE_NUMSEG]);;
let PRODUCT_ONE = prove
(`!s. product s (\n. &1) = &1`,
SIMP_TAC[PRODUCT_EQ_1]);;
let PRODUCT_LE_1 = prove
(`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f x /\ f x <= &1)
==> product s f <= &1`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_LE_REFL; IN_INSERT] THEN
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_SIMP_TAC[PRODUCT_POS_LE]);;
let PRODUCT_ABS = prove
(`!f s. FINITE s ==> product s (\x. abs(f x)) = abs(product s f)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_ABS_MUL; REAL_ABS_NUM]);;
let PRODUCT_CLOSED = prove
(`!P f:A->real s.
P(&1) /\ (!x y. P x /\ P y ==> P(x * y)) /\ (!a. a IN s ==> P(f a))
==> P(product s f)`,
REPEAT STRIP_TAC THEN MP_TAC(MATCH_MP ITERATE_CLOSED MONOIDAL_REAL_MUL) THEN
DISCH_THEN(MP_TAC o SPEC `P:real->bool`) THEN
ASM_SIMP_TAC[NEUTRAL_REAL_MUL; GSYM product]);;
let PRODUCT_CLAUSES_LEFT = prove
(`!f m n. m <= n ==> product(m..n) f = f(m) * product(m+1..n) f`,
SIMP_TAC[GSYM NUMSEG_LREC; PRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
ARITH_TAC);;
let PRODUCT_CLAUSES_RIGHT = prove
(`!f m n. 0 < n /\ m <= n ==> product(m..n) f = product(m..n-1) f * f(n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
SIMP_TAC[LT_REFL; PRODUCT_CLAUSES_NUMSEG; SUC_SUB1]);;
let REAL_OF_NUM_NPRODUCT = prove
(`!f:A->num s. FINITE s ==> &(nproduct s f) = product s (\x. &(f x))`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; NPRODUCT_CLAUSES; GSYM REAL_OF_NUM_MUL]);;
let PRODUCT_SUPERSET = prove
(`!f:A->real u v.
u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> f(x) = &1)
==> product v f = product u f`,
SIMP_TAC[product; GSYM NEUTRAL_REAL_MUL;
ITERATE_SUPERSET; MONOIDAL_REAL_MUL]);;
let PRODUCT_UNIV = prove
(`!f:A->real s.
support ( * ) f (:A) SUBSET s ==> product s f = product (:A) f`,
REWRITE_TAC[product] THEN MATCH_MP_TAC ITERATE_UNIV THEN
REWRITE_TAC[MONOIDAL_REAL_MUL]);;
let PRODUCT_PAIR = prove
(`!f m n. product(2*m..2*n+1) f = product(m..n) (\i. f(2*i) * f(2*i+1))`,
MP_TAC(MATCH_MP ITERATE_PAIR MONOIDAL_REAL_MUL) THEN
REWRITE_TAC[product; NEUTRAL_REAL_MUL]);;
let PRODUCT_REFLECT = prove
(`!x m n. product(m..n) x =
if n < m then &1 else product(0..n-m) (\i. x(n - i))`,
REPEAT GEN_TAC THEN REWRITE_TAC[product] THEN
GEN_REWRITE_TAC LAND_CONV [MATCH_MP ITERATE_REFLECT MONOIDAL_REAL_MUL] THEN
REWRITE_TAC[NEUTRAL_REAL_MUL]);;
let PRODUCT_DELETE = prove
(`!f s a. FINITE s /\ a IN s ==> f(a) * product(s DELETE a) f = product s f`,
SIMP_TAC[product; ITERATE_DELETE; MONOIDAL_REAL_MUL]);;
let PRODUCT_DELTA = prove
(`!s a. product s (\x. if x = a then b else &1) =
(if a IN s then b else &1)`,
REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
SIMP_TAC[ITERATE_DELTA; MONOIDAL_REAL_MUL]);;
let POLYNOMIAL_FUNCTION_PRODUCT = prove
(`!s:A->bool p.
FINITE s /\ (!i. i IN s ==> polynomial_function(\x. p x i))
==> polynomial_function (\x. product s (p x))`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; POLYNOMIAL_FUNCTION_CONST] THEN
SIMP_TAC[FORALL_IN_INSERT; POLYNOMIAL_FUNCTION_MUL]);;
(* ------------------------------------------------------------------------- *)
(* Extend congruences. *)
(* ------------------------------------------------------------------------- *)
let th = prove
(`(!f g s. (!x. x IN s ==> f(x) = g(x))
==> product s (\i. f(i)) = product s g) /\
(!f g a b. (!i. a <= i /\ i <= b ==> f(i) = g(i))
==> product(a..b) (\i. f(i)) = product(a..b) g) /\
(!f g p. (!x. p x ==> f x = g x)
==> product {y | p y} (\i. f(i)) = product {y | p y} g)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC PRODUCT_EQ THEN
ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG]) in
extend_basic_congs (map SPEC_ALL (CONJUNCTS th));;
|