File: wo.ml

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (1278 lines) | stat: -rw-r--r-- 61,813 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
(* ========================================================================= *)
(* Proof of some useful AC equivalents like wellordering and Zorn's Lemma.   *)
(*                                                                           *)
(* This is a straight port of the old HOL88 wellorder library. I started to  *)
(* clean up the proofs to exploit first order automation, but didn't have    *)
(* the patience to persist till the end. Anyway, the proofs work!            *)
(* ========================================================================= *)

let PBETA_TAC = CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV);;

let EXPAND_TAC s = FIRST_ASSUM(SUBST1_TAC o SYM o
  check((=) s o fst o dest_var o rhs o concl)) THEN BETA_TAC;;

let SUBSET_PRED = prove
 (`!P Q. P SUBSET Q <=> !x. P x ==> Q x`,
  REWRITE_TAC[SUBSET; IN]);;

let UNIONS_PRED = prove
 (`UNIONS P = \x. ?p. P p /\ p x`,
  REWRITE_TAC[UNIONS; FUN_EQ_THM; IN_ELIM_THM; IN]);;

(* ======================================================================== *)
(* (1) Definitions and general lemmas.                                      *)
(* ======================================================================== *)

(* ------------------------------------------------------------------------ *)
(* Irreflexive version of an ordering.                                      *)
(* ------------------------------------------------------------------------ *)

let less = new_definition
  `(less l)(x,y) <=> (l:A#A->bool)(x,y) /\ ~(x = y)`;;

(* ------------------------------------------------------------------------ *)
(* Field of an uncurried binary relation                                    *)
(* ------------------------------------------------------------------------ *)

let fl = new_definition
  `fl(l:A#A->bool) x <=> ?y:A. l(x,y) \/ l(y,x)`;;

(* ------------------------------------------------------------------------ *)
(* Partial order (we infer the domain from the field of the relation)       *)
(* ------------------------------------------------------------------------ *)

let poset = new_definition
  `poset (l:A#A->bool) <=>
       (!x. fl(l) x ==> l(x,x)) /\
       (!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) /\
       (!x y. l(x,y) /\ l(y,x) ==> (x = y))`;;

(* ------------------------------------------------------------------------ *)
(* Chain in a poset (Defined as a subset of the field, not the ordering)    *)
(* ------------------------------------------------------------------------ *)

let chain = new_definition
  `chain(l:A#A->bool) P <=> (!x y. P x /\ P y ==> l(x,y) \/ l(y,x))`;;

(* ------------------------------------------------------------------------- *)
(* Total order.                                                              *)
(* ------------------------------------------------------------------------- *)

let toset = new_definition
 `toset (l:A#A->bool) <=>
        poset l /\ !x y. x IN fl(l) /\ y IN fl(l) ==> l(x,y) \/ l(y,x)`;;

(* ------------------------------------------------------------------------ *)
(* Wellorder                                                                *)
(* ------------------------------------------------------------------------ *)

let woset = new_definition
 `woset (l:A#A->bool) <=>
       (!x. fl(l) x ==> l(x,x)) /\
       (!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) /\
       (!x y. l(x,y) /\ l(y,x) ==> (x = y)) /\
       (!x y. fl(l) x /\ fl(l) y ==> l(x,y) \/ l(y,x)) /\
       (!P. (!x. P x ==> fl(l) x) /\ (?x. P x) ==>
            (?y. P y /\ (!z. P z ==> l(y,z))))`;;

(* ------------------------------------------------------------------------ *)
(* General (reflexive) notion of initial segment.                           *)
(* ------------------------------------------------------------------------ *)

parse_as_infix("inseg",(12,"right"));;

let inseg = new_definition
  `(l:A#A->bool) inseg m <=> !x y. l(x,y) <=> m(x,y) /\ fl(l) y`;;

let INSEG_ANTISYM = prove
 (`!l m:A#A->bool. l inseg m /\ m inseg l ==> l = m`,
  REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN
  REWRITE_TAC[inseg] THEN MESON_TAC[]);;

let INSEG_REFL = prove
 (`!l:A#A->bool. l inseg l`,
  REWRITE_TAC[inseg; fl] THEN MESON_TAC[]);;

let INSEG_TRANS = prove
 (`!l m n:A#A->bool. l inseg m /\ m inseg n ==> l inseg n`,
  REWRITE_TAC[inseg; fl] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------ *)
(* Specific form of initial segment: `all elements in fl(l) less than a`.   *)
(* ------------------------------------------------------------------------ *)

let linseg = new_definition
  `linseg (l:A#A->bool) a = \(x,y). l(x,y) /\ (less l)(y,a)`;;

(* ------------------------------------------------------------------------ *)
(* `Ordinals`, i.e. canonical wosets using choice operator.                 *)
(* ------------------------------------------------------------------------ *)

let ordinal = new_definition
  `ordinal(l:A#A->bool) <=>
    woset(l) /\ (!x. fl(l) x ==> (x = (@) (\y. ~(less l)(y,x))))`;;

(* ------------------------------------------------------------------------ *)
(* Now useful things about the orderings                                    *)
(* ------------------------------------------------------------------------ *)

let [POSET_REFL; POSET_TRANS; POSET_ANTISYM] =
  map (GEN `l:A#A->bool` o DISCH_ALL)
  (CONJUNCTS(PURE_ONCE_REWRITE_RULE[poset] (ASSUME `poset (l:A#A->bool)`)));;

let POSET_FLEQ = prove
 (`!l:A#A->bool. poset l ==> (!x. fl(l) x <=> l(x,x))`,
  MESON_TAC[POSET_REFL; fl]);;

let CHAIN_SUBSET = prove
 (`!(l:A#A->bool) P Q. chain(l) P /\ Q SUBSET P ==> chain(l) Q`,
  REWRITE_TAC[chain; SUBSET_PRED] THEN MESON_TAC[]);;

let [WOSET_REFL; WOSET_TRANS; WOSET_ANTISYM; WOSET_TOTAL; WOSET_WELL] =
  map (GEN `l:A#A->bool` o DISCH_ALL)
    (CONJUNCTS(PURE_ONCE_REWRITE_RULE[woset] (ASSUME `woset (l:A#A->bool)`)));;

let WOSET_POSET = prove
 (`!l:A#A->bool. woset l ==> poset l`,
  GEN_TAC THEN REWRITE_TAC[woset; poset] THEN DISCH_TAC THEN
  ASM_REWRITE_TAC[]);;

let WOSET_FLEQ = prove
 (`!l:A#A->bool. woset l ==> (!x. fl(l) x <=> l(x,x))`,
  MESON_TAC[WOSET_POSET; POSET_FLEQ]);;

let WOSET_TRANS_LESS = prove
 (`!l:A#A->bool. woset l ==>
       !x y z. (less l)(x,y) /\ l(y,z) ==> (less l)(x,z)`,
  REWRITE_TAC[woset; less] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------ *)
(* Wellfoundedness (in two slightly different senses) and either totality   *)
(* or antisymmetry are sufficient for a wellorder.                          *)
(* ------------------------------------------------------------------------ *)

let WOSET = prove
 (`!l:A#A->bool.
        woset l <=>
        (!x y. l(x,y) /\ l(y,x) ==> (x = y)) /\
        (!P. (!x. P x ==> fl(l) x) /\ (?x. P x) ==>
             (?y. P y /\ (!z. P z ==> l(y,z))))`,
  GEN_TAC THEN REWRITE_TAC[woset] THEN EQ_TAC THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `(!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) /\
                (!x:A y. fl(l) x /\ fl(l) y ==> l(x,y) \/ l(y,x))`
  MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN REPEAT STRIP_TAC THENL
   [FIRST_ASSUM(MP_TAC o SPEC `\w:A. (w = x) \/ (w = y) \/ (w = z)`) THEN
    REWRITE_TAC[fl];
    FIRST_ASSUM(MP_TAC o SPEC `\w:A. (w = x) \/ (w = y)`)] THEN
  ASM_MESON_TAC[]);;

let WOSET_WF = prove
 (`!l:A#A->bool.
        woset l <=>
        WF(\x y. l(x,y) /\ ~(x = y)) /\
        (!x y. fl l x /\ fl l y ==> l(x,y) \/ l(y,x))`,
  GEN_TAC THEN
  ASM_CASES_TAC `!x y:A. fl l x /\ fl l y ==> l(x,y) \/ l(y,x)` THENL
   [ASM_REWRITE_TAC[WOSET]; ASM_REWRITE_TAC[woset]] THEN
  ASM_CASES_TAC `!x y:A. l(x,y) /\ l(y,x) ==> x = y` THEN
  ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[WF];
    DISCH_THEN(MP_TAC o MATCH_MP WF_ANTISYM) THEN ASM_MESON_TAC[]] THEN
  EQ_TAC THENL [DISCH_TAC; MATCH_MP_TAC MONO_FORALL THEN ASM_MESON_TAC[]] THEN
  X_GEN_TAC `P:A->bool` THEN DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `\x:A. P x /\ fl l x`) THEN
  REWRITE_TAC[fl] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------ *)
(* Misc lemmas.                                                             *)
(* ------------------------------------------------------------------------ *)

let PAIRED_EXT = prove
 (`!(l:A#B->C) m. (!x y. l(x,y) = m(x,y)) <=> (l = m)`,
  REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `p:A#B` THEN
  SUBST1_TAC(SYM(SPEC `p:A#B` PAIR)) THEN POP_ASSUM MATCH_ACCEPT_TAC);;

let WOSET_TRANS_LE = prove
 (`!l:A#A->bool. woset l ==>
       !x y z. l(x,y) /\ (less l)(y,z) ==> (less l)(x,z)`,
  REWRITE_TAC[less] THEN MESON_TAC[WOSET_TRANS; WOSET_ANTISYM]);;

let WOSET_WELL_CONTRAPOS = prove
 (`!l:A#A->bool. woset l ==>
                (!P. (!x. P x ==> fl(l) x) /\ (?x. P x) ==>
                     (?y. P y /\ (!z. (less l)(z,y) ==> ~P z)))`,
  GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `P:A->bool` o MATCH_MP WOSET_WELL) THEN
  ASM_MESON_TAC[WOSET_TRANS_LE; less]);;

let WOSET_TOTAL_LE = prove
 (`!l:A#A->bool. woset l
                 ==> !x y. fl(l) x /\ fl(l) y ==> l(x,y) \/ (less l)(y,x)`,
  REWRITE_TAC[less] THEN MESON_TAC[WOSET_REFL; WOSET_TOTAL]);;

let WOSET_TOTAL_LT = prove
 (`!l:A#A->bool. woset l ==>
     !x y. fl(l) x /\ fl(l) y ==> (x = y) \/ (less l)(x,y) \/ (less l)(y,x)`,
  REWRITE_TAC[less] THEN MESON_TAC[WOSET_TOTAL]);;

let ORDINAL_IMP_WOSET = prove
 (`!l:A#A->bool. ordinal l ==> woset l`,
  SIMP_TAC[ordinal]);;

let FL = prove
 (`!l:A#A->bool. fl l = {x:A | ?y. l(x,y) \/ l(y,x)}`,
  REWRITE_TAC[FUN_EQ_THM; IN_ELIM_THM; fl]);;

let FL_SUBSET = prove
 (`!l r. l SUBSET r ==> fl l SUBSET fl r`,
  REWRITE_TAC[SUBSET; IN; fl] THEN MESON_TAC[]);;

let FINITE_FL = prove
 (`!l:A#A->bool. FINITE(fl l) <=> FINITE l`,
  GEN_TAC THEN REWRITE_TAC[FL] THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o MATCH_MP FINITE_CROSS o W CONJ) THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
    REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN SET_TAC[];
    DISCH_THEN((fun th ->
     MP_TAC(ISPEC `FST:A#A->A` th) THEN MP_TAC(ISPEC `SND:A#A->A` th)) o
     MATCH_MP FINITE_IMAGE) THEN
    REWRITE_TAC[IMP_IMP; GSYM FINITE_UNION] THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
    REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS; IN_UNION; IN_IMAGE] THEN
    REWRITE_TAC[EXISTS_PAIR_THM; IN_ELIM_THM] THEN REWRITE_TAC[IN] THEN
    SET_TAC[]]);;

let WOSET_FINITE_TOSET = prove
 (`!l:A#A->bool. toset l /\ FINITE l ==> woset l`,
  ONCE_REWRITE_TAC[GSYM FINITE_FL] THEN
  SIMP_TAC[toset; WOSET_WF; poset; IN] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC WF_FINITE THEN REWRITE_TAC[] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[]; X_GEN_TAC `a:A`] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ]
    FINITE_SUBSET)) THEN
  REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REWRITE_TAC[fl; IN] THEN
  ASM_MESON_TAC[]);;

(* ======================================================================== *)
(* (2) AXIOM OF CHOICE ==> CANTOR-ZERMELO WELLORDERING THEOREM              *)
(* ======================================================================== *)

(* ------------------------------------------------------------------------ *)
(* UNIONS of initial segments is an initial segment.                        *)
(* ------------------------------------------------------------------------ *)

let UNION_FL = prove
 (`!P (l:A#A->bool). fl(UNIONS P) x <=> ?l. P l /\ fl(l) x`,
  REPEAT GEN_TAC THEN REWRITE_TAC[UNIONS_PRED; fl] THEN MESON_TAC[]);;

let UNION_INSEG = prove
 (`!P (l:A#A->bool). (!m. P m ==> m inseg l) ==> (UNIONS P) inseg l`,
  REWRITE_TAC[inseg; UNION_FL; UNIONS_PRED] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------ *)
(* Initial segment of a woset is a woset.                                   *)
(* ------------------------------------------------------------------------ *)

let INSEG_SUBSET = prove
 (`!(l:A#A->bool) m. m inseg l ==> !x y. m(x,y) ==> l(x,y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[inseg] THEN MESON_TAC[]);;

let INSEG_SUBSET_FL = prove
 (`!(l:A#A->bool) m. m inseg l ==> !x. fl(m) x ==> fl(l) x`,
  REWRITE_TAC[fl] THEN MESON_TAC[INSEG_SUBSET]);;

let INSEG_FL_SUBSET = prove
 (`!l m:A#A->bool. l inseg m ==> fl l SUBSET fl m`,
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INSEG_SUBSET_FL) THEN
  SET_TAC[]);;

let INSEG_WOSET = prove
 (`!(l:A#A->bool) m. m inseg l /\ woset l ==> woset m`,
  REWRITE_TAC[inseg] THEN REPEAT STRIP_TAC THEN
  REWRITE_TAC[WOSET] THEN CONJ_TAC THENL
   [ASM_MESON_TAC[WOSET_ANTISYM];
    GEN_TAC THEN FIRST_ASSUM(MP_TAC o SPEC_ALL o MATCH_MP WOSET_WELL) THEN
    ASM_MESON_TAC[fl]]);;

let INSEG_ORDINAL = prove
 (`!l m:A#A->bool. m inseg l /\ ordinal l ==> ordinal m`,
  REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN STRIP_TAC THEN
  CONJ_TAC THENL [ASM_MESON_TAC[INSEG_WOSET]; ALL_TAC] THEN
  X_GEN_TAC `x:A` THEN DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP INSEG_SUBSET_FL) THEN
  ASM_SIMP_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
  AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
  RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_REWRITE_TAC[less]);;

(* ------------------------------------------------------------------------ *)
(* Properties of segments of the `linseg` form.                             *)
(* ------------------------------------------------------------------------ *)

let LINSEG_INSEG = prove
 (`!(l:A#A->bool) a. woset l ==> (linseg l a) inseg l`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[inseg; linseg; fl] THEN PBETA_TAC THEN
  ASM_MESON_TAC[WOSET_TRANS_LE]);;

let LINSEG_WOSET = prove
 (`!(l:A#A->bool) a. woset l ==> woset(linseg l a)`,
  MESON_TAC[INSEG_WOSET; LINSEG_INSEG]);;

let LINSEG_FL = prove
 (`!(l:A#A->bool) a x. woset l ==> (fl (linseg l a) x <=> (less l)(x,a))`,
  REWRITE_TAC[fl; linseg; less] THEN PBETA_TAC THEN
  MESON_TAC[WOSET_REFL; WOSET_TRANS; WOSET_ANTISYM; fl]);;

(* ------------------------------------------------------------------------ *)
(* Key fact: a proper initial segment is of the special form.               *)
(* ------------------------------------------------------------------------ *)

let INSEG_PROPER_SUBSET = prove
 (`!(l:A#A->bool) m. m inseg l /\ ~(l = m) ==>
                   ?x y. l(x,y) /\ ~m(x,y)`,
  REWRITE_TAC[GSYM PAIRED_EXT] THEN MESON_TAC[INSEG_SUBSET]);;

let INSEG_PROPER_SUBSET_FL = prove
 (`!(l:A#A->bool) m. m inseg l /\ ~(l = m) ==>
                   ?a. fl(l) a /\ ~fl(m) a`,
  MESON_TAC[INSEG_PROPER_SUBSET; fl; inseg]);;

let INSEG_LINSEG = prove
 (`!(l:A#A->bool) m. woset l ==>
      (m inseg l <=> (m = l) \/ (?a. fl(l) a /\ (m = linseg l a)))`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `m:A#A->bool = l` THEN
  ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[inseg; fl] THEN MESON_TAC[]; ALL_TAC] THEN
  EQ_TAC THEN STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[LINSEG_INSEG]] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP WOSET_WELL_CONTRAPOS) THEN
  DISCH_THEN(MP_TAC o SPEC `\x:A. fl(l) x /\ ~fl(m) x`) THEN REWRITE_TAC[] THEN
  REWRITE_TAC[linseg; GSYM PAIRED_EXT] THEN PBETA_TAC THEN
  W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL
   [ASM_MESON_TAC[INSEG_PROPER_SUBSET_FL]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[INSEG_SUBSET; INSEG_SUBSET_FL; fl;
    WOSET_TOTAL_LE; less; inseg]);;

(* ------------------------------------------------------------------------ *)
(* A proper initial segment can be extended by its bounding element.        *)
(* ------------------------------------------------------------------------ *)

let EXTEND_FL = prove
 (`!(l:A#A->bool) x. woset l ==> (fl (\(x,y). l(x,y) /\ l(y,a)) x <=> l(x,a))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN
  ASM_MESON_TAC[WOSET_TRANS; WOSET_REFL; fl]);;

let EXTEND_INSEG = prove
 (`!(l:A#A->bool) a. woset l /\ fl(l) a ==> (\(x,y). l(x,y) /\ l(y,a)) inseg l`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[inseg] THEN PBETA_TAC THEN
  REPEAT GEN_TAC THEN IMP_RES_THEN (fun t ->REWRITE_TAC[t]) EXTEND_FL);;

let EXTEND_LINSEG = prove
 (`!(l:A#A->bool) a. woset l /\ fl(l) a ==>
       (\(x,y). linseg l a (x,y) \/ (y = a) /\ (fl(linseg l a) x \/ (x = a)))
                inseg l`,
  REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
    MP_TAC (MATCH_MP EXTEND_INSEG th)) THEN
  MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
  AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM PAIRED_EXT] THEN PBETA_TAC THEN
  REPEAT GEN_TAC THEN IMP_RES_THEN (fun th -> REWRITE_TAC[th]) LINSEG_FL THEN
  REWRITE_TAC[linseg; less] THEN PBETA_TAC THEN ASM_MESON_TAC[WOSET_REFL]);;

(* ------------------------------------------------------------------------ *)
(* Key canonicality property of ordinals.                                   *)
(* ------------------------------------------------------------------------ *)

let ORDINAL_CHAINED_LEMMA = prove
 (`!(k:A#A->bool) l m. ordinal(l) /\ ordinal(m)
                       ==> k inseg l /\ k inseg m
                           ==> (k = l) \/ (k = m) \/ ?a. fl(l) a /\ fl(m) a /\
                                                         (k = linseg l a) /\
                                                         (k = linseg m a)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN STRIP_TAC THEN
  EVERY_ASSUM(fun th -> TRY
    (fun g -> REWRITE_TAC[MATCH_MP INSEG_LINSEG th] g)) THEN
  ASM_CASES_TAC `k:A#A->bool = l` THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `k:A#A->bool = m` THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC)
                             (X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC)) THEN
  EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `a:A = b` (fun th -> ASM_MESON_TAC[th]) THEN
  FIRST_ASSUM(fun th -> SUBST1_TAC(MATCH_MP th (ASSUME `fl(l) (a:A)`))) THEN
  FIRST_ASSUM(fun th -> SUBST1_TAC(MATCH_MP th (ASSUME `fl(m) (b:A)`))) THEN
  AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
  UNDISCH_TAC `k = linseg m (b:A)` THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[linseg; GSYM PAIRED_EXT] THEN PBETA_TAC THEN
  ASM_MESON_TAC[WOSET_REFL; less; fl]);;

let ORDINAL_CHAINED = prove
 (`!(l:A#A->bool) m. ordinal(l) /\ ordinal(m) ==> m inseg l \/ l inseg m`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> STRIP_ASSUME_TAC(REWRITE_RULE[ordinal] th) THEN
                       ASSUME_TAC (MATCH_MP ORDINAL_CHAINED_LEMMA th)) THEN
  MP_TAC(SPEC `\k:A#A->bool. k inseg l /\ k inseg m` UNION_INSEG) THEN
  DISCH_THEN(fun th ->
    MP_TAC(CONJ (SPEC `l:A#A->bool` th) (SPEC `m:A#A->bool` th))) THEN
  REWRITE_TAC[TAUT `(a /\ b ==> a) /\ (a /\ b ==> b)`] THEN
  DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
                       FIRST_ASSUM(REPEAT_TCL DISJ_CASES_THEN MP_TAC o
                       C MATCH_MP th)) THENL
   [ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN
  MP_TAC(ASSUME `UNIONS (\k. k inseg l /\ k inseg m) = linseg l (a:A)`) THEN
  CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN
  REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `(a:A,a)`) THEN
  REWRITE_TAC[linseg] THEN PBETA_TAC THEN REWRITE_TAC[less] THEN
  REWRITE_TAC[UNIONS_PRED] THEN EXISTS_TAC
  `\(x,y). linseg l a (x,y) \/ (y = a) /\ (fl(linseg l a) x \/ (x = a:A))` THEN
  PBETA_TAC THEN REWRITE_TAC[] THEN CONJ_TAC THENL
   [ALL_TAC;
    UNDISCH_TAC `UNIONS (\k. k inseg l /\ k inseg m) = linseg l (a:A)` THEN
    DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[]] THEN
  MATCH_MP_TAC EXTEND_LINSEG THEN ASM_REWRITE_TAC[]);;

let ORDINAL_FL_UNIQUE = prove
 (`!l m:A#A->bool.
        ordinal l /\ ordinal m /\ fl l = fl m ==> l = m`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`l:A#A->bool`; `m:A#A->bool`]
        ORDINAL_CHAINED) THEN
  REWRITE_TAC[inseg; FUN_EQ_THM; FORALL_PAIR_THM] THEN
  ASM_MESON_TAC[fl]);;

let ORDINAL_FL_SUBSET = prove
 (`!l m:A#A->bool.
        ordinal l /\ ordinal m /\ fl l SUBSET fl m ==> l inseg m`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`l:A#A->bool`; `m:A#A->bool`]
        ORDINAL_CHAINED) THEN
  ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
  MATCH_MP_TAC(MESON[INSEG_REFL] `x = y ==> x inseg y`) THEN
  MATCH_MP_TAC ORDINAL_FL_UNIQUE THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP INSEG_SUBSET_FL) THEN ASM SET_TAC[]);;

let ORDINAL_FL_SUBSET_EQ = prove
 (`!l m:A#A->bool.
        ordinal l /\ ordinal m ==> (fl l SUBSET fl m <=> l inseg m)`,
  MESON_TAC[ORDINAL_FL_SUBSET; INSEG_FL_SUBSET]);;

(* ------------------------------------------------------------------------ *)
(* Proof that any none-universe ordinal can be extended to its "successor". *)
(* ------------------------------------------------------------------------ *)

let FL_SUC = prove
 (`!(l:A#A->bool) a.
     fl(\(x,y). l(x,y) \/ (y = a) /\ (fl(l) x \/ (x = a))) x <=>
     fl(l) x \/ (x = a)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN EQ_TAC THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN TRY DISJ1_TAC THEN
  ASM_MESON_TAC[]);;

let ORDINAL_SUC = prove
 (`!l:A#A->bool. ordinal(l) /\ (?x. ~(fl(l) x)) ==>
                 ordinal(\(x,y). l(x,y) \/ (y = @y. ~fl(l) y) /\
                                           (fl(l) x \/ (x = @y. ~fl(l) y)))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN
  DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  ABBREV_TAC `a:A = @y. ~fl(l) y` THEN
  SUBGOAL_THEN `~fl(l:A#A->bool) a` ASSUME_TAC THENL
   [EXPAND_TAC "a" THEN CONV_TAC SELECT_CONV THEN
    ASM_REWRITE_TAC[]; ALL_TAC] THEN
  PBETA_TAC THEN CONJ_TAC THENL
   [REWRITE_TAC[WOSET] THEN PBETA_TAC THEN CONJ_TAC THENL
     [REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
       [ASM_MESON_TAC[WOSET_ANTISYM]; ALL_TAC; ALL_TAC] THEN
      UNDISCH_TAC `~fl(l:A#A->bool) a` THEN CONV_TAC CONTRAPOS_CONV THEN
      DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN
      DISCH_THEN SUBST_ALL_TAC THEN REWRITE_TAC[fl] THENL
       [EXISTS_TAC `y:A`; EXISTS_TAC `x:A`] THEN
      ASM_REWRITE_TAC[];
      X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[FL_SUC] THEN
      DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `w:A`)) THEN
      IMP_RES_THEN (MP_TAC o SPEC `\x:A. P x /\ fl(l) x`) WOSET_WELL THEN
      BETA_TAC THEN REWRITE_TAC[TAUT `a /\ b ==> b`] THEN
      ASM_CASES_TAC `?x:A. P x /\ fl(l) x` THEN ASM_REWRITE_TAC[] THENL
       [ASM_MESON_TAC[];
        FIRST_ASSUM(MP_TAC o SPEC `w:A` o
          GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
        ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
        ASM_MESON_TAC[]]];
    X_GEN_TAC `z:A` THEN REWRITE_TAC[FL_SUC; less] THEN
    PBETA_TAC THEN DISCH_THEN DISJ_CASES_TAC THENL
     [UNDISCH_TAC `!x:A. fl l x ==> (x = (@y. ~less l (y,x)))` THEN
      DISCH_THEN(IMP_RES_THEN MP_TAC) THEN
      DISCH_THEN(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN
      AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
      X_GEN_TAC `y:A` THEN
      BETA_TAC THEN REWRITE_TAC[less] THEN AP_TERM_TAC THEN
      ASM_CASES_TAC `y:A = z` THEN ASM_REWRITE_TAC[] THEN
      EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
      UNDISCH_TAC `fl(l:A#A->bool) z` THEN ASM_REWRITE_TAC[];
      UNDISCH_TAC `z:A = a` THEN DISCH_THEN SUBST_ALL_TAC THEN
      GEN_REWRITE_TAC LAND_CONV [SYM(ASSUME `(@y:A. ~fl(l) y) = a`)] THEN
      AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
      X_GEN_TAC `y:A` THEN
      BETA_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[] THEN
      ASM_CASES_TAC `y:A = a` THEN ASM_REWRITE_TAC[] THEN
      EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[fl] THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]]]);;

(* ------------------------------------------------------------------------ *)
(* The union of a set of ordinals is an ordinal.                            *)
(* ------------------------------------------------------------------------ *)

let ORDINAL_UNION = prove
 (`!P. (!l:A#A->bool. P l ==> ordinal(l)) ==> ordinal(UNIONS P)`,
  GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[ordinal; WOSET] THEN
  REPEAT CONJ_TAC THENL
   [MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REWRITE_TAC[UNIONS_PRED] THEN
    BETA_TAC THEN DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `l:A#A->bool` (CONJUNCTS_THEN2 (ANTE_RES_THEN ASSUME_TAC)
        ASSUME_TAC))
     (X_CHOOSE_THEN `m:A#A->bool` (CONJUNCTS_THEN2 (ANTE_RES_THEN ASSUME_TAC)
        ASSUME_TAC))) THEN
    MP_TAC(SPECL [`l:A#A->bool`; `m:A#A->bool`] ORDINAL_CHAINED) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THENL
     [MP_TAC(SPEC `l:A#A->bool` WOSET_ANTISYM);
      MP_TAC(SPEC `m:A#A->bool` WOSET_ANTISYM)] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[ordinal]) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN
    ASM_REWRITE_TAC[];
    X_GEN_TAC `Q:A->bool` THEN REWRITE_TAC[UNION_FL] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `a:A`)) THEN
    MP_TAC(ASSUME `!x:A. Q x ==> (?l. P l /\ fl l x)`) THEN
    DISCH_THEN(IMP_RES_THEN
      (X_CHOOSE_THEN `l:A#A->bool` STRIP_ASSUME_TAC)) THEN
    IMP_RES_THEN ASSUME_TAC (ASSUME `!l:A#A->bool. P l ==> ordinal l`) THEN
    ASSUME_TAC(CONJUNCT1
      (REWRITE_RULE[ordinal] (ASSUME `ordinal(l:A#A->bool)`))) THEN
    IMP_RES_THEN(MP_TAC o SPEC `\x:A. fl(l) x /\ Q x`) WOSET_WELL THEN
    BETA_TAC THEN REWRITE_TAC[TAUT `a /\ b ==> a`] THEN
    SUBGOAL_THEN `?x:A. fl(l) x /\ Q x` (fun th -> REWRITE_TAC[th]) THENL
     [EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `b:A` THEN ASM_REWRITE_TAC[] THEN
    X_GEN_TAC `x:A` THEN DISCH_TAC THEN
    ANTE_RES_THEN MP_TAC (ASSUME `(Q:A->bool) x`) THEN
    DISCH_THEN(X_CHOOSE_THEN `m:A#A->bool` STRIP_ASSUME_TAC) THEN
    ANTE_RES_THEN ASSUME_TAC (ASSUME `(P:(A#A->bool)->bool) m`) THEN
    MP_TAC(SPECL [`l:A#A->bool`; `m:A#A->bool`] ORDINAL_CHAINED) THEN
    ASM_REWRITE_TAC[UNIONS_PRED] THEN BETA_TAC THEN
    DISCH_THEN DISJ_CASES_TAC THENL
     [EXISTS_TAC `l:A#A->bool` THEN ASM_REWRITE_TAC[] THEN
      FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
      IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET_FL THEN ASM_REWRITE_TAC[];
      EXISTS_TAC `m:A#A->bool` THEN ASM_REWRITE_TAC[] THEN
      FIRST_ASSUM(MP_TAC o SPECL [`x:A`; `b:A`] o REWRITE_RULE[inseg]) THEN
      ASM_REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN
      IMP_RES_THEN (MP_TAC o SPEC `b:A`) INSEG_SUBSET_FL THEN
      ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
      MP_TAC(CONJUNCT1(REWRITE_RULE[ordinal]
        (ASSUME `ordinal(m:A#A->bool)`))) THEN
      DISCH_THEN(MP_TAC o SPECL [`b:A`; `x:A`] o MATCH_MP WOSET_TOTAL) THEN
      ASM_REWRITE_TAC[] THEN DISCH_THEN (DISJ_CASES_THEN MP_TAC) THEN
      ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
      IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN
      FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[fl] THEN
      EXISTS_TAC `b:A` THEN ASM_REWRITE_TAC[]];
    X_GEN_TAC `x:A` THEN REWRITE_TAC[UNION_FL] THEN
    DISCH_THEN(X_CHOOSE_THEN `l:A#A->bool` STRIP_ASSUME_TAC) THEN
    MP_TAC(ASSUME `!l:A#A->bool. P l ==> ordinal l`) THEN
    DISCH_THEN(IMP_RES_THEN MP_TAC) THEN REWRITE_TAC[ordinal] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:A`)) THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN
    REPEAT AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
    X_GEN_TAC `y:A` THEN BETA_TAC THEN AP_TERM_TAC THEN
    ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[less; UNIONS_PRED] THEN
    BETA_TAC THEN EQ_TAC THEN DISCH_TAC THENL
     [EXISTS_TAC `l:A#A->bool` THEN ASM_REWRITE_TAC[];
      FIRST_ASSUM(X_CHOOSE_THEN `m:A#A->bool` STRIP_ASSUME_TAC) THEN
      SUBGOAL_THEN `ordinal(l:A#A->bool) /\ ordinal(m:A#A->bool)` MP_TAC THENL
       [CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
        DISCH_THEN(DISJ_CASES_TAC o MATCH_MP ORDINAL_CHAINED)] THENL
       [IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN ASM_REWRITE_TAC[];
        RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_REWRITE_TAC[]]]]);;

(* ------------------------------------------------------------------------ *)
(* Consequently, every type can be wellordered (and by an ordinal).         *)
(* ------------------------------------------------------------------------ *)

let ORDINAL_UNION_LEMMA = prove
 (`!(l:A#A->bool) x. ordinal l ==> fl(l) x ==> fl(UNIONS(ordinal)) x`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[UNION_FL] THEN
  EXISTS_TAC `l:A#A->bool` THEN ASM_REWRITE_TAC[]);;

let ORDINAL_UP = prove
 (`!l:A#A->bool. ordinal(l) ==> (!x. fl(l) x) \/
                          (?m x. ordinal(m) /\ fl(m) x /\ ~fl(l) x)`,
  GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN
  GEN_REWRITE_TAC LAND_CONV [NOT_FORALL_THM] THEN DISCH_TAC THEN
  MP_TAC(SPEC `l:A#A->bool` ORDINAL_SUC) THEN ASM_REWRITE_TAC[] THEN
  DISCH_TAC THEN MAP_EVERY EXISTS_TAC
   [`\(x,y). l(x,y) \/ (y = @y:A. ~fl l y) /\ (fl(l) x \/ (x = @y. ~fl l y))`;
    `@y. ~fl(l:A#A->bool) y`] THEN
  ASM_REWRITE_TAC[FL_SUC] THEN
  CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[]);;

let WO_ORDINAL = prove
 (`?l:A#A->bool. ordinal(l) /\ !x. fl(l) x`,
  EXISTS_TAC `UNIONS (ordinal:(A#A->bool)->bool)` THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [MATCH_MP_TAC ORDINAL_UNION THEN REWRITE_TAC[];
    DISCH_THEN(DISJ_CASES_TAC o MATCH_MP ORDINAL_UP) THEN
    ASM_REWRITE_TAC[] THEN POP_ASSUM(X_CHOOSE_THEN `m:A#A->bool`
     (X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC)) THEN
    IMP_RES_THEN (IMP_RES_THEN MP_TAC) ORDINAL_UNION_LEMMA THEN
    ASM_REWRITE_TAC[]]);;

(* ------------------------------------------------------------------------ *)
(* At least -- every set can be wellordered.                                *)
(* ------------------------------------------------------------------------ *)

let FL_RESTRICT = prove
 (`!l. woset l ==>
       !P. fl(\(x:A,y). P x /\ P y /\ l(x,y)) x <=> P x /\ fl(l) x`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN EQ_TAC THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  TRY(EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN NO_TAC) THEN
  EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN
  IMP_RES_THEN MATCH_MP_TAC WOSET_REFL THEN
  REWRITE_TAC[fl] THEN EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[]);;

let WO = prove
 (`!P. ?l:A#A->bool. woset l /\ (fl(l) = P)`,
  GEN_TAC THEN X_CHOOSE_THEN `l:A#A->bool` STRIP_ASSUME_TAC
   (REWRITE_RULE[ordinal] WO_ORDINAL) THEN
  EXISTS_TAC `\(x:A,y). P x /\ P y /\ l(x,y)` THEN REWRITE_TAC[WOSET] THEN
  PBETA_TAC THEN
  GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FL_RESTRICT th]) THEN
  PBETA_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
   [REPEAT GEN_TAC THEN DISCH_TAC THEN
    FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP WOSET_ANTISYM) THEN
    ASM_REWRITE_TAC[];
    X_GEN_TAC `Q:A->bool` THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP WOSET_WELL) THEN
    DISCH_THEN(MP_TAC o SPEC `Q:A->bool`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN
    REPEAT CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    FIRST_ASSUM ACCEPT_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Moreover, the ordinals themselves are wellordered by "inseg".             *)
(* ------------------------------------------------------------------------- *)

let WF_INSEG_WOSET = prove
 (`WF(\(x:A#A->bool) y. woset x /\ woset y /\ x inseg y /\ ~(x = y))`,
  REWRITE_TAC[WF] THEN X_GEN_TAC `P:(A#A->bool)->bool` THEN
  DISCH_TAC THEN
  ONCE_REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN
  REWRITE_TAC[TAUT `~(p /\ q) <=> p ==> ~q`] THEN
  GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [NOT_FORALL_THM] THEN
  REWRITE_TAC[NOT_IMP] THEN DISCH_TAC THEN
  SUBGOAL_THEN `!x:A#A->bool. P x ==> woset x` ASSUME_TAC THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `!y. ?(a:A) z. P y ==> P z /\ fl y a /\ linseg y a = z`
  MP_TAC THENL
   [X_GEN_TAC `y:A#A->bool` THEN
    ASM_CASES_TAC `(P:(A#A->bool)->bool) y` THEN ASM_REWRITE_TAC[] THEN
    REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `y:A#A->bool`)) THEN
    ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[INSEG_LINSEG];
    ALL_TAC] THEN
  REWRITE_TAC[SKOLEM_THM; NOT_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`a:(A#A->bool)->A`; `l:(A#A->bool)->(A#A->bool)`] THEN
  DISCH_TAC THEN FIRST_X_ASSUM(X_CHOOSE_TAC `z:A#A->bool`) THEN
  SUBGOAL_THEN `woset(z:A#A->bool)` MP_TAC THENL
   [ASM_MESON_TAC[]; REWRITE_TAC[woset]] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  DISCH_THEN(MP_TAC o SPEC `{(a:(A#A->bool)->A) x | P x /\ x inseg z}`) THEN
  REWRITE_TAC[IN_ELIM_THM] THEN
  REWRITE_TAC[TAUT `P /\ x = y <=> x = y /\ P`] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC] THEN
  ONCE_REWRITE_TAC[SWAP_EXISTS_THM; SWAP_FORALL_THM] THEN
  REWRITE_TAC[UNWIND_THM2; FORALL_UNWIND_THM2; IMP_CONJ;
              RIGHT_FORALL_IMP_THM] THEN
  ONCE_REWRITE_TAC[SWAP_EXISTS_THM; SWAP_FORALL_THM] THEN
  REWRITE_TAC[UNWIND_THM2; FORALL_UNWIND_THM2; IMP_CONJ;
              RIGHT_FORALL_IMP_THM; NOT_IMP] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[INSEG_SUBSET_FL]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[INSEG_REFL]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `w:A#A->bool` MP_TAC) THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  DISCH_THEN(MP_TAC o SPEC `(l:(A#A->bool)->(A#A->bool)) w`) THEN
  ASM_SIMP_TAC[NOT_IMP] THEN CONJ_TAC THENL
   [ASM_MESON_TAC[LINSEG_INSEG; INSEG_TRANS]; DISCH_TAC] THEN
  FIRST_X_ASSUM(fun th ->
   MP_TAC(SPEC `(l:(A#A->bool)->(A#A->bool)) w` th) THEN
   MP_TAC(SPEC `w:A#A->bool` th)) THEN
  ASM_SIMP_TAC[] THEN REPEAT STRIP_TAC THEN
  UNDISCH_TAC `fl ((l:(A#A->bool)->(A#A->bool)) w) (a (l w))` THEN
  FIRST_X_ASSUM(fun th ->
    GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SYM th]) THEN
  ASM_SIMP_TAC[LINSEG_FL; less] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
  RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_MESON_TAC[]);;

let WOSET_INSEG_ORDINAL = prove
 (`woset (\(x:A#A->bool,y). ordinal x /\ ordinal y /\ x inseg y)`,
  REWRITE_TAC[WOSET_WF; fl] THEN
  CONJ_TAC THENL [ALL_TAC; MESON_TAC[ORDINAL_CHAINED]] THEN
  MATCH_MP_TAC(MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] WF_SUBSET)
        WF_INSEG_WOSET) THEN
  SIMP_TAC[ordinal]);;

let SUBWOSET_ISO_INSEG = prove
 (`!l s. woset l /\ fl l = (:A)
         ==> ?f. (!x y. x IN s /\ y IN s ==> (l(f x,f y) <=> l(x,y))) /\
                 (!x y. y IN IMAGE f s /\ l(x,y) ==> x IN IMAGE f s)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o last o CONJUNCTS o GEN_REWRITE_RULE I [woset]) THEN
  DISCH_THEN(MP_TAC o GEN `s:A->bool` o SPEC `\x:A. x IN s`) THEN
  ASM_REWRITE_TAC[UNIV; MEMBER_NOT_EMPTY] THEN
  GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `m:(A->bool)->A` THEN DISCH_TAC THEN
  SUBGOAL_THEN
   `?f:A->A. !x. f(x) = m (UNIV DIFF IMAGE f {u | u IN s /\ less l (u,x)})`
  MP_TAC THENL
   [FIRST_ASSUM(MP_TAC o CONJUNCT1 o REWRITE_RULE[WOSET_WF]) THEN
    DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC) THEN
    REWRITE_TAC[less] THEN REPEAT STRIP_TAC THEN
    AP_TERM_TAC THEN ASM SET_TAC[];
    MATCH_MP_TAC MONO_EXISTS] THEN
  X_GEN_TAC `f:A->A` THEN DISCH_THEN(ASSUME_TAC o GSYM) THEN
  SUBGOAL_THEN `!x. x IN s ==> (l:A#A->bool)(f x,x)` ASSUME_TAC THENL
   [FIRST_ASSUM(MP_TAC o CONJUNCT1 o REWRITE_RULE[WOSET_WF]) THEN
    REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN
    X_GEN_TAC `x:A` THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN
    STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC
     `(:A) DIFF IMAGE (f:A->A) {u | u IN s /\ less l (u,x)}`) THEN
    ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
     [REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[];
      REWRITE_TAC[IN_DIFF; IN_IMAGE; IN_ELIM_THM; IN_UNIV] THEN
      DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN
      REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[]];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP MONO_FORALL o GEN `x:A` o SPEC
     `(:A) DIFF IMAGE (f:A->A) {u | u IN s /\ less l (u,x)}`) THEN
  ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
   [REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[];
    FIRST_X_ASSUM(K ALL_TAC o CONV_RULE (BINDER_CONV SYM_CONV))] THEN
  REWRITE_TAC[IN_UNIV; IN_IMAGE; IN_DIFF; IN_ELIM_THM; FORALL_AND_THM] THEN
  STRIP_TAC THEN
  SUBGOAL_THEN
   `!x z:A. x IN s /\ less l (z,f x) ==> ?u. u IN s /\ less l (u,x) /\ f u = z`
  ASSUME_TAC THENL
   [REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!x z:A. x IN s /\ l(z,f x) ==> ?u. u IN s /\ l(u,x) /\ f u = z`
  ASSUME_TAC THENL
   [REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[];
    ALL_TAC] THEN
  CONJ_TAC THENL
   [SUBGOAL_THEN
     `!x y:A. x IN s /\ y IN s /\ less l (x,y) ==> less l (f x,f y)`
    MP_TAC THENL
     [REPEAT STRIP_TAC THEN
      REPEAT(FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `(f:A->A) y`])) THEN
      REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[];
      MATCH_MP_TAC(MESON[]
       `(!x y. P x y /\ P y x ==> Q x y)
        ==> (!x y. P x y) ==> (!x y. Q x y)`) THEN
      REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[]];
    REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[]]);;

(* ======================================================================== *)
(* (3) CANTOR-ZERMELO WELL-ORDERING THEOREM ==> HAUSDORFF MAXIMAL PRINCIPLE *)
(* ======================================================================== *)

let HP = prove
 (`!l:A#A->bool. poset l ==>
        ?P. chain(l) P /\ !Q. chain(l) Q  /\ P SUBSET Q ==> (Q = P)`,
  GEN_TAC THEN DISCH_TAC THEN
  X_CHOOSE_THEN `w:A#A->bool` MP_TAC (SPEC `\x:A. T` WO) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  GEN_REWRITE_TAC LAND_CONV [FUN_EQ_THM] THEN BETA_TAC THEN
  REWRITE_TAC[] THEN DISCH_TAC THEN
  IMP_RES_THEN (MP_TAC o SPEC `\x:A. fl(l) x`) WOSET_WELL THEN
  BETA_TAC THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `?x:A. fl(l) x` THEN ASM_REWRITE_TAC[] THENL
   [DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC);
    FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
    EXISTS_TAC `\x:A. F` THEN REWRITE_TAC[chain; SUBSET_PRED] THEN
    GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN
    CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `u:A` MP_TAC o
      GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN
    REWRITE_TAC[] THEN DISCH_TAC THEN
    DISCH_THEN(MP_TAC o SPECL [`u:A`; `u:A`]) THEN
    IMP_RES_THEN(ASSUME_TAC o GSYM) POSET_FLEQ THEN ASM_REWRITE_TAC[]] THEN
  SUBGOAL_THEN `?f. !x. f x = if fl(l) x /\
                                 (!y. less w (y,x) ==> l (x,f y) \/ l (f y,x))
                              then (x:A) else b`
  (CHOOSE_TAC o GSYM) THENL
   [SUBGOAL_THEN `WF(\x:A y. (less w)(x,y))` MP_TAC THENL
     [REWRITE_TAC[WF] THEN GEN_TAC THEN
      FIRST_ASSUM(MP_TAC o SPEC_ALL o MATCH_MP WOSET_WELL) THEN
      ASM_REWRITE_TAC[less] THEN ASM_MESON_TAC[WOSET_ANTISYM];
      DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC) THEN
      REWRITE_TAC[] THEN REPEAT GEN_TAC THEN
      REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
      ASM_MESON_TAC[]]; ALL_TAC] THEN
  IMP_RES_THEN(IMP_RES_THEN ASSUME_TAC) POSET_REFL THEN
  SUBGOAL_THEN `(f:A->A) b = b` ASSUME_TAC THENL
   [FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `b:A`) THEN
    REWRITE_TAC[COND_ID] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `!x:A. fl(l:A#A->bool) (f x)` ASSUME_TAC THENL
   [GEN_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`) THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
  FIRST_ASSUM(ANTE_RES_THEN (ASSUME_TAC o GEN_ALL) o SPEC_ALL) THEN
  SUBGOAL_THEN `!x:A. (l:A#A->bool)(b,f x) \/ l(f x,b)` ASSUME_TAC THENL
   [GEN_TAC THEN MP_TAC(SPEC `x:A` (ASSUME `!x:A. (w:A#A->bool)(b,f x)`)) THEN
    FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`) THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `x:A = b` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
    SUBGOAL_THEN `(less w)(b:A,x)` MP_TAC THENL
     [ASM_REWRITE_TAC[less] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN
      FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN
    DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th o CONJUNCT2)) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THEN
    ASM_REWRITE_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `!x y. l((f:A->A) x,f y) \/ l(f y,f x)` ASSUME_TAC THENL
   [REPEAT GEN_TAC THEN
    IMP_RES_THEN(MP_TAC o SPECL [`x:A`; `y:A`]) WOSET_TOTAL_LT THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC) THENL
     [ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC POSET_REFL;
      ONCE_REWRITE_TAC[DISJ_SYM] THEN
      FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `y:A`);
      FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`)] THEN
    TRY COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM(IMP_RES_THEN ACCEPT_TAC o CONJUNCT2); ALL_TAC] THEN
  EXISTS_TAC `\y:A. ?x:A. y = f(x)` THEN
  SUBGOAL_THEN `chain(l:A#A->bool)(\y. ?x:A. y = f x)` ASSUME_TAC THENL
   [REWRITE_TAC[chain] THEN BETA_TAC THEN REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN(CHOOSE_THEN SUBST1_TAC)); ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN X_GEN_TAC `Q:A->bool` THEN STRIP_TAC THEN
  GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `z:A` THEN EQ_TAC THENL
   [DISCH_TAC THEN BETA_TAC THEN EXISTS_TAC `z:A` THEN
    FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `z:A`) THEN
    SUBGOAL_THEN `fl(l:A#A->bool) z /\
                  !y. (less w)(y,z) ==> l(z,f y) \/ l(f y,z)`
    (fun th -> REWRITE_TAC[th]) THEN CONJ_TAC THENL
     [UNDISCH_TAC `chain(l:A#A->bool) Q` THEN REWRITE_TAC[chain] THEN
      DISCH_THEN(MP_TAC o SPECL [`z:A`; `z:A`]) THEN ASM_REWRITE_TAC[fl] THEN
      DISCH_TAC THEN EXISTS_TAC `z:A` THEN ASM_REWRITE_TAC[];
      X_GEN_TAC `y:A` THEN DISCH_TAC THEN
      UNDISCH_TAC `chain(l:A#A->bool) Q` THEN REWRITE_TAC[chain] THEN
      DISCH_THEN(MP_TAC o SPECL [`z:A`; `(f:A->A) y`]) THEN
      DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
      FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN
      BETA_TAC THEN EXISTS_TAC `y:A` THEN REFL_TAC];
    SPEC_TAC(`z:A`,`z:A`) THEN ASM_REWRITE_TAC[GSYM SUBSET_PRED]]);;

(* ======================================================================== *)
(* (4) HAUSDORFF MAXIMAL PRINCIPLE ==> ZORN'S LEMMA                         *)
(* ======================================================================== *)

let ZL = prove
 (`!l:A#A->bool. poset l /\
           (!P. chain(l) P ==> (?y. fl(l) y /\ !x. P x ==> l(x,y))) ==>
        ?y. fl(l) y /\ !x. l(y,x) ==> (y = x)`,
  GEN_TAC THEN STRIP_TAC THEN
  FIRST_ASSUM(X_CHOOSE_THEN `M:A->bool` STRIP_ASSUME_TAC o MATCH_MP HP) THEN
  UNDISCH_TAC `!P. chain(l:A#A->bool) P
                   ==> (?y. fl(l) y /\ !x. P x ==> l(x,y))` THEN
  DISCH_THEN(MP_TAC o SPEC `M:A->bool`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:A` THEN
  DISCH_TAC THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN DISCH_TAC THEN
  SUBGOAL_THEN `chain(l) (\x:A. M x \/ (x = z))` MP_TAC THENL
   [REWRITE_TAC[chain] THEN BETA_TAC THEN REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN DISJ_CASES_TAC) THEN
    ASM_REWRITE_TAC[] THENL
     [UNDISCH_TAC `chain(l:A#A->bool) M` THEN REWRITE_TAC[chain] THEN
      DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
      DISJ1_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_TRANS) THEN
      EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN
      FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC;
      DISJ2_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_TRANS) THEN
      EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN
      FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC;
      FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_REFL) THEN
      REWRITE_TAC[fl] THEN EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[]];
    ALL_TAC] THEN
  SUBGOAL_THEN `M SUBSET (\x:A. M x \/ (x = z))` MP_TAC THENL
   [REWRITE_TAC[SUBSET_PRED] THEN GEN_TAC THEN BETA_TAC THEN
    DISCH_THEN(fun th -> REWRITE_TAC[th]); ALL_TAC] THEN
  GEN_REWRITE_TAC I [TAUT `(a ==> b ==> c) <=> (b /\ a ==> c)`] THEN
  DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
  REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN
  DISCH_THEN(MP_TAC o SPEC `z:A`) THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(fun th -> FIRST_ASSUM(ASSUME_TAC o C MATCH_MP th)) THEN
  FIRST_ASSUM(MP_TAC o SPECL [`m:A`; `z:A`] o MATCH_MP POSET_ANTISYM) THEN
  ASM_REWRITE_TAC[]);;

(* ======================================================================== *)
(* (5) ZORN'S LEMMA ==> KURATOWSKI'S LEMMA                                  *)
(* ======================================================================== *)

let KL_POSET_LEMMA = prove
 (`poset (\(c1,c2). C SUBSET c1 /\ c1 SUBSET c2 /\ chain(l:A#A->bool) c2)`,
  REWRITE_TAC[poset] THEN PBETA_TAC THEN REPEAT CONJ_TAC THENL
   [X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN
    DISCH_THEN(X_CHOOSE_THEN `Q:A->bool` STRIP_ASSUME_TAC) THEN
    ASM_REWRITE_TAC[SUBSET_REFL] THENL
     [MATCH_MP_TAC CHAIN_SUBSET; MATCH_MP_TAC SUBSET_TRANS];
    GEN_TAC THEN X_GEN_TAC `Q:A->bool` THEN GEN_TAC THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS;
    REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM] THEN
  TRY(EXISTS_TAC `Q:A->bool`) THEN ASM_REWRITE_TAC[]);;

let KL = prove
 (`!l:A#A->bool. poset l ==>
        !C. chain(l) C ==>
            ?P. (chain(l) P /\ C SUBSET P) /\
                (!R. chain(l) R /\ P SUBSET R ==> (R = P))`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPEC `\(c1,c2). C SUBSET c1 /\ c1 SUBSET c2 /\
                          chain(l:A#A->bool) c2` ZL) THEN PBETA_TAC THEN
  REWRITE_TAC[KL_POSET_LEMMA; MATCH_MP POSET_FLEQ KL_POSET_LEMMA] THEN
  PBETA_TAC THEN
  W(C SUBGOAL_THEN (fun t ->REWRITE_TAC[t]) o
  funpow 2 (fst o dest_imp) o snd) THENL
   [X_GEN_TAC `P:(A->bool)->bool` THEN GEN_REWRITE_TAC LAND_CONV [chain] THEN
    PBETA_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `?D:A->bool. P D` THENL
     [EXISTS_TAC `UNIONS(P) :A->bool` THEN REWRITE_TAC[SUBSET_REFL] THEN
      FIRST_ASSUM(X_CHOOSE_TAC `D:A->bool`) THEN
      FIRST_ASSUM(MP_TAC o SPECL [`D:A->bool`; `D:A->bool`]) THEN
      REWRITE_TAC[ASSUME `(P:(A->bool)->bool) D`; SUBSET_REFL] THEN
      STRIP_TAC THEN
      MATCH_MP_TAC(TAUT `a /\ b /\ (a /\ b ==> c) ==> (a /\ b) /\ c`) THEN
      REPEAT CONJ_TAC THENL
       [REWRITE_TAC[UNIONS_PRED; SUBSET_PRED] THEN REPEAT STRIP_TAC THEN
        BETA_TAC THEN EXISTS_TAC `D:A->bool` THEN ASM_REWRITE_TAC[] THEN
        FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN
        ASM_REWRITE_TAC[];
        REWRITE_TAC[chain; UNIONS_PRED] THEN
        MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN
        BETA_TAC THEN DISCH_THEN(CONJUNCTS_THEN2
         (X_CHOOSE_TAC `A:A->bool`) (X_CHOOSE_TAC `B:A->bool`)) THEN
        FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
        DISCH_THEN(MP_TAC o SPECL [`A:A->bool`; `B:A->bool`]) THEN
        ASM_REWRITE_TAC[] THEN STRIP_TAC THENL
         [UNDISCH_TAC `chain(l:A#A->bool) B`;
          UNDISCH_TAC `chain(l:A#A->bool) A`] THEN
        REWRITE_TAC[chain] THEN DISCH_THEN MATCH_MP_TAC THEN
        ASM_REWRITE_TAC[] THEN
        FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN
        ASM_REWRITE_TAC[];
        STRIP_TAC THEN X_GEN_TAC `X:A->bool` THEN DISCH_TAC THEN
        FIRST_ASSUM(MP_TAC o SPECL [`X:A->bool`; `X:A->bool`]) THEN
        REWRITE_TAC[] THEN DISCH_THEN(IMP_RES_THEN STRIP_ASSUME_TAC) THEN
        ASM_REWRITE_TAC[] THEN REWRITE_TAC[UNIONS_PRED; SUBSET_PRED] THEN
        REPEAT STRIP_TAC THEN BETA_TAC THEN EXISTS_TAC `X:A->bool` THEN
        ASM_REWRITE_TAC[]];
      EXISTS_TAC `C:A->bool` THEN
      FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
      ASM_REWRITE_TAC[SUBSET_REFL]];
    DISCH_THEN(X_CHOOSE_THEN `D:A->bool` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `D:A->bool` THEN ASM_REWRITE_TAC[] THEN
    REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Special case of Zorn's Lemma for restriction of subset lattice.           *)
(* ------------------------------------------------------------------------- *)

let POSET_RESTRICTED_SUBSET = prove
 (`!P. poset(\(x,y). P(x) /\ P(y) /\ x SUBSET y)`,
  GEN_TAC THEN REWRITE_TAC[poset; fl] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[SUBSET; EXTENSION] THEN MESON_TAC[]);;

let FL_RESTRICTED_SUBSET = prove
 (`!P. fl(\(x,y). P(x) /\ P(y) /\ x SUBSET y) = P`,
  REWRITE_TAC[fl; FORALL_PAIR_THM; FUN_EQ_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[SUBSET_REFL]);;

let ZL_SUBSETS = prove
 (`!P. (!c. (!x. x IN c ==> P x) /\
            (!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x)
            ==> ?z. P z /\ (!x. x IN c ==> x SUBSET z))
       ==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`,
  GEN_TAC THEN
  MP_TAC(ISPEC `\(x,y). P(x:A->bool) /\ P(y) /\ x SUBSET y` ZL) THEN
  REWRITE_TAC[POSET_RESTRICTED_SUBSET; FL_RESTRICTED_SUBSET] THEN
  REWRITE_TAC[chain] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[IN] THEN MATCH_MP_TAC MONO_IMP THEN CONJ_TAC THENL
   [MATCH_MP_TAC MONO_FORALL; ALL_TAC] THEN
  MESON_TAC[]);;

let ZL_SUBSETS_UNIONS = prove
 (`!P. (!c. (!x. x IN c ==> P x) /\
            (!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x)
            ==> P(UNIONS c))
       ==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS THEN
  REPEAT STRIP_TAC THEN EXISTS_TAC `UNIONS(c:(A->bool)->bool)` THEN
  ASM_MESON_TAC[SUBSET; IN_UNIONS]);;

let ZL_SUBSETS_UNIONS_NONEMPTY = prove
 (`!P. (?x. P x) /\
       (!c. (?x. x IN c) /\
            (!x. x IN c ==> P x) /\
            (!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x)
            ==> P(UNIONS c))
       ==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS THEN
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `?x:A->bool. x IN c` THENL
   [EXISTS_TAC `UNIONS(c:(A->bool)->bool)` THEN
    ASM_SIMP_TAC[] THEN MESON_TAC[SUBSET; IN_UNIONS];
    ASM_MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* A form of Tukey's lemma.                                                  *)
(* ------------------------------------------------------------------------- *)

let TUKEY = prove
 (`!s:(A->bool)->bool.
        ~(s = {}) /\
        (!t. (!c. FINITE c /\ c SUBSET t ==> c IN s) <=> t IN s)
        ==> ?u. u IN s /\ !v. v IN s /\ u SUBSET v ==> u = v`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS_UNIONS_NONEMPTY THEN
  CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  X_GEN_TAC `c:(A->bool)->bool` THEN
  DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN
  SUBGOAL_THEN
   `!d. FINITE d ==> d SUBSET UNIONS c ==> ?e:A->bool. e IN c /\ d SUBSET e`
  MP_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_FORALL THEN ASM SET_TAC[]] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[INSERT_SUBSET] THEN ASM SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Also the order extension theorem, using Abian's proof.                    *)
(* ------------------------------------------------------------------------- *)

let OEP = prove
 (`!p:A#A->bool. poset p ==> ?t. toset t /\ fl(t) = fl(p) /\ p SUBSET t`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPEC `fl(p:A#A->bool)` WO) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `w:A#A->bool` STRIP_ASSUME_TAC) THEN
  ABBREV_TAC
   `t = \(x:A,y:A). fl p x /\ fl p y /\
                    (x = y \/
                     ?i. fl p i /\
                         (!j. w(j,i) /\ ~(j = i) ==> (p(j,x) <=> p(j,y))) /\
                         ~p(i,x) /\ p(i,y))` THEN
  EXISTS_TAC `t:A#A->bool` THEN
  SUBGOAL_THEN
   `!x:A y:A. fl p x /\ fl p y /\ ~(x = y)
              ==> ?i. fl p i /\
                      (!j:A. w(j,i) /\ ~(j = i) ==> (p(j,x) <=> p(j,y))) /\
                      ~(p(i,x) <=> p(i,y))`
  (LABEL_TAC "*") THENL
   [REPEAT STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN ASM_SIMP_TAC[] THEN
    REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(MP_TAC o SPEC `\i:A. fl p i /\ ~(p(i,x) <=> p(i,y))`) THEN
    ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
     [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [poset]) THEN ASM_MESON_TAC[];
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:A` THEN
       ASM_MESON_TAC[fl]];
    ALL_TAC] THEN
  SUBGOAL_THEN `!x:A y:A. p(x,y) ==> t(x,y)` ASSUME_TAC THENL
   [EXPAND_TAC "t" THEN REWRITE_TAC[] THEN
    REPEAT GEN_TAC THEN STRIP_TAC THEN
    REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[fl]; ALL_TAC]) THEN
    ASM_CASES_TAC `x:A = y` THENL [ASM_MESON_TAC[fl]; ALL_TAC] THEN
    REMOVE_THEN "*" (MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_SIMP_TAC[] THEN
    ANTS_TAC THENL [ASM_MESON_TAC[fl]; MATCH_MP_TAC MONO_EXISTS] THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [poset]) THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN] THEN
  MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL
   [MATCH_MP_TAC SUBSET_ANTISYM THEN
    ASM_REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN] THEN
    EXPAND_TAC "t" THEN REWRITE_TAC[fl] THEN ASM_MESON_TAC[];
    DISCH_TAC THEN ASM_REWRITE_TAC[toset; poset]] THEN
  EXPAND_TAC "t" THEN REWRITE_TAC[] THEN
  FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [poset]) THEN
  REPEAT CONJ_TAC THENL
   [MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN
    ASM_CASES_TAC `x:A = z` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN
    ASM_CASES_TAC `y:A = z` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN
    ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN
    ASM_CASES_TAC `fl p (x:A)` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `fl p (y:A)` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `fl p (z:A)` THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC)
     (X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC)) THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN
    REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(MP_TAC o SPECL [`m:A`; `n:A`] o CONJUNCT1) THEN
    ANTS_TAC THENL [ASM_MESON_TAC[fl]; ALL_TAC] THEN STRIP_TAC THENL
     [EXISTS_TAC `m:A`; EXISTS_TAC `n:A`] THEN ASM_MESON_TAC[];
    MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN
    ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `fl p (x:A)` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `fl p (y:A)` THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC)
     (X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC)) THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN
    REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(MP_TAC o SPECL [`m:A`; `n:A`] o CONJUNCT1) THEN
    ASM_MESON_TAC[];
    MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN
    ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[IN] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    REMOVE_THEN "*" (MP_TAC o SPECL [`x:A`; `y:A`]) THEN
    ASM_REWRITE_TAC[OR_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN
    MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Every toset contains a cofinal woset.                                     *)
(* ------------------------------------------------------------------------- *)

let TOSET_COFINAL_WOSET = prove
 (`!l. toset l
       ==> ?w. w SUBSET l /\ woset w /\
               !x:A. x IN fl l ==> ?y. y IN fl w /\ l(x,y)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `fl l:A->bool = {}` THENL
   [ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
    EXISTS_TAC `(\(x,y). F):A#A->bool` THEN
    ASM_REWRITE_TAC[woset; FORALL_PAIR_THM; fl; SUBSET] THEN
    REWRITE_TAC[IN] THEN MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `?r. ordinal r /\ fl r = (:A->bool)` STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_UNIV] THEN REWRITE_TAC[IN; WO_ORDINAL];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `?f. !w. f w = if ?x:A. x IN fl l /\
                           !v:A->bool. r(v,w) /\ ~(v = w) ==> ~l(x,f v)
                  then @x:A. x IN fl l /\
                             !v. r(v,w) /\ ~(v = w) ==> ~l(x,f v)
                  else @x:A. x IN fl l`
  STRIP_ASSUME_TAC THENL
   [FIRST_ASSUM(MP_TAC o MATCH_MP ORDINAL_IMP_WOSET) THEN
    REWRITE_TAC[WOSET_WF] THEN
    DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC o CONJUNCT1) THEN
    REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
    MATCH_MP_TAC(MESON[]
     `(p <=> p') /\ x' = x
      ==> (if p then x else a) = (if p' then x' else a)`) THEN
    CONJ_TAC THENL [ALL_TAC; AP_TERM_TAC THEN ABS_TAC] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!w. (f:(A->bool)->A) w IN fl l`
  ASSUME_TAC THENL
   [GEN_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN
    COND_CASES_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `?w:A->bool. (!x. x IN fl l ==> ?v. r(v,w) /\ ~(v = w) /\ l(x:A,f v)) /\
                !z. (!x. x IN fl l ==> ?v. r(v,z) /\ ~(v = z) /\ l(x,f v))
                    ==> r(w,z)`
  STRIP_ASSUME_TAC THENL
   [FIRST_ASSUM(MATCH_MP_TAC o last o CONJUNCTS o REWRITE_RULE[woset] o
        MATCH_MP ORDINAL_IMP_WOSET) THEN
    CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
    ONCE_REWRITE_TAC[MESON[] `(?w. P w) <=> ~(!w. ~P w)`] THEN
    GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [NOT_FORALL_THM] THEN
    REWRITE_TAC[NOT_IMP; NOT_EXISTS_THM; TAUT
     `~(p /\ q /\ r) <=> (p /\ q ==> ~r)`] THEN
    DISCH_TAC THEN
    SUBGOAL_THEN `!v w:A->bool. f v:A = f w ==> v = w` MP_TAC THENL
     [FIRST_ASSUM(MP_TAC o el 3 o CONJUNCTS o REWRITE_RULE[woset] o
        MATCH_MP ORDINAL_IMP_WOSET) THEN
      FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC[UNIV] THEN
      MATCH_MP_TAC(MESON[]
       `(!x y. P x y ==> P y x) /\ (!x y. R x y ==> P x y)
        ==> (!x y. R x y \/ R y x) ==> (!x y. P x y)`) THEN
      CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
      REPEAT GEN_TAC THEN DISCH_TAC THEN
      GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN
      FIRST_X_ASSUM(fun t -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [t]) THEN
      ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[]
       `(y = @x. P x) ==> (?x. P x) ==> P y`)) THEN
      ASM_SIMP_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[toset]) THEN
      ASM_MESON_TAC[];
      REWRITE_TAC[INJECTIVE_LEFT_INVERSE; NOT_EXISTS_THM] THEN
      X_GEN_TAC `g:A->(A->bool)` THEN
      DISCH_THEN(MP_TAC o SPEC `\x:A. ~(g x x)`) THEN
      REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!x y. r(x,y) /\ r(y,w) /\ ~(y = w) ==> l((f:(A->bool)->A) x,f y)`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN
    MATCH_MP_TAC(MESON[]
     `(l(a,b) \/ l(b,a)) /\ (~(b = a) ==> ~l(b,a)) ==> l(a,b)`) THEN
    CONJ_TAC THENL
     [RULE_ASSUM_TAC(REWRITE_RULE[toset]) THEN ASM SET_TAC[];
      DISCH_THEN(ASSUME_TAC o MATCH_MP (MESON[]
       `~(f x = f y) ==> ~(x = y)`))] THEN
    FIRST_X_ASSUM(fun th ->
     GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV) [th]) THEN
    COND_CASES_TAC THENL
     [FIRST_X_ASSUM(MATCH_MP_TAC o CONJUNCT2 o SELECT_RULE) THEN
      ASM_REWRITE_TAC[];
      FIRST_ASSUM(MP_TAC o REWRITE_RULE[woset] o
       MATCH_MP ORDINAL_IMP_WOSET) THEN
      ASM_MESON_TAC[]];
    ALL_TAC] THEN
  EXISTS_TAC `\(x,y). x IN IMAGE (f:(A->bool)->A) {v | r(v,w) /\ ~(v = w)} /\
                      y IN IMAGE (f:(A->bool)->A) {v | r(v,w) /\ ~(v = w)} /\
                      l(x,y)` THEN
  SUBGOAL_THEN
   `fl(\(x,y). x IN IMAGE (f:(A->bool)->A) {v | r(v,w) /\ ~(v = w)} /\
               y IN IMAGE (f:(A->bool)->A) {v | r(v,w) /\ ~(v = w)} /\
               l(x,y)) =
    IMAGE f {v | r(v,w) /\ ~(v = w)}`
  ASSUME_TAC THENL
   [GEN_REWRITE_TAC I [EXTENSION] THEN
    REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN
    REWRITE_TAC[IN; fl] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[toset]) THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  REPEAT CONJ_TAC THENL
   [SIMP_TAC[SUBSET; FORALL_PAIR_THM; IN];
    ASM_REWRITE_TAC[REWRITE_RULE[SET_RULE `fl l x <=> x IN fl l`] woset];
    ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN
    ASM SET_TAC[]] THEN
  FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [toset]) THEN
  FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [poset]) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[SET_RULE `fl l x <=> x IN fl l`]) THEN
  REWRITE_TAC[CONJ_ASSOC] THEN
  CONJ_TAC THENL [ASM SET_TAC[]; SIMP_TAC[]] THEN
  X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[] THEN STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP ORDINAL_IMP_WOSET) THEN
  REWRITE_TAC[woset] THEN
  DISCH_THEN(MP_TAC o SPEC
    `\x:A->bool. (P:A->bool) (f x)` o last o CONJUNCTS) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `z:A->bool` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `(f:(A->bool)->A) z` THEN
  CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
   `(!z. P z ==> z IN IMAGE f s)
    ==> (!x. x IN s /\ P(f x) ==> Q(f x))
        ==> !y. P y ==> Q y`)) THEN
  X_GEN_TAC `y:A->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
  CONJ_TAC THENL
   [FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC;
    ASM SET_TAC[]]);;