1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
|
(* ========================================================================= *)
(* Proof of some useful AC equivalents like wellordering and Zorn's Lemma. *)
(* *)
(* This is a straight port of the old HOL88 wellorder library. I started to *)
(* clean up the proofs to exploit first order automation, but didn't have *)
(* the patience to persist till the end. Anyway, the proofs work! *)
(* ========================================================================= *)
let PBETA_TAC = CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV);;
let EXPAND_TAC s = FIRST_ASSUM(SUBST1_TAC o SYM o
check((=) s o fst o dest_var o rhs o concl)) THEN BETA_TAC;;
let SUBSET_PRED = prove
(`!P Q. P SUBSET Q <=> !x. P x ==> Q x`,
REWRITE_TAC[SUBSET; IN]);;
let UNIONS_PRED = prove
(`UNIONS P = \x. ?p. P p /\ p x`,
REWRITE_TAC[UNIONS; FUN_EQ_THM; IN_ELIM_THM; IN]);;
(* ======================================================================== *)
(* (1) Definitions and general lemmas. *)
(* ======================================================================== *)
(* ------------------------------------------------------------------------ *)
(* Irreflexive version of an ordering. *)
(* ------------------------------------------------------------------------ *)
let less = new_definition
`(less l)(x,y) <=> (l:A#A->bool)(x,y) /\ ~(x = y)`;;
(* ------------------------------------------------------------------------ *)
(* Field of an uncurried binary relation *)
(* ------------------------------------------------------------------------ *)
let fl = new_definition
`fl(l:A#A->bool) x <=> ?y:A. l(x,y) \/ l(y,x)`;;
(* ------------------------------------------------------------------------ *)
(* Partial order (we infer the domain from the field of the relation) *)
(* ------------------------------------------------------------------------ *)
let poset = new_definition
`poset (l:A#A->bool) <=>
(!x. fl(l) x ==> l(x,x)) /\
(!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) /\
(!x y. l(x,y) /\ l(y,x) ==> (x = y))`;;
(* ------------------------------------------------------------------------ *)
(* Chain in a poset (Defined as a subset of the field, not the ordering) *)
(* ------------------------------------------------------------------------ *)
let chain = new_definition
`chain(l:A#A->bool) P <=> (!x y. P x /\ P y ==> l(x,y) \/ l(y,x))`;;
(* ------------------------------------------------------------------------- *)
(* Total order. *)
(* ------------------------------------------------------------------------- *)
let toset = new_definition
`toset (l:A#A->bool) <=>
poset l /\ !x y. x IN fl(l) /\ y IN fl(l) ==> l(x,y) \/ l(y,x)`;;
(* ------------------------------------------------------------------------ *)
(* Wellorder *)
(* ------------------------------------------------------------------------ *)
let woset = new_definition
`woset (l:A#A->bool) <=>
(!x. fl(l) x ==> l(x,x)) /\
(!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) /\
(!x y. l(x,y) /\ l(y,x) ==> (x = y)) /\
(!x y. fl(l) x /\ fl(l) y ==> l(x,y) \/ l(y,x)) /\
(!P. (!x. P x ==> fl(l) x) /\ (?x. P x) ==>
(?y. P y /\ (!z. P z ==> l(y,z))))`;;
(* ------------------------------------------------------------------------ *)
(* General (reflexive) notion of initial segment. *)
(* ------------------------------------------------------------------------ *)
parse_as_infix("inseg",(12,"right"));;
let inseg = new_definition
`(l:A#A->bool) inseg m <=> !x y. l(x,y) <=> m(x,y) /\ fl(l) y`;;
let INSEG_ANTISYM = prove
(`!l m:A#A->bool. l inseg m /\ m inseg l ==> l = m`,
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN
REWRITE_TAC[inseg] THEN MESON_TAC[]);;
let INSEG_REFL = prove
(`!l:A#A->bool. l inseg l`,
REWRITE_TAC[inseg; fl] THEN MESON_TAC[]);;
let INSEG_TRANS = prove
(`!l m n:A#A->bool. l inseg m /\ m inseg n ==> l inseg n`,
REWRITE_TAC[inseg; fl] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------ *)
(* Specific form of initial segment: `all elements in fl(l) less than a`. *)
(* ------------------------------------------------------------------------ *)
let linseg = new_definition
`linseg (l:A#A->bool) a = \(x,y). l(x,y) /\ (less l)(y,a)`;;
(* ------------------------------------------------------------------------ *)
(* `Ordinals`, i.e. canonical wosets using choice operator. *)
(* ------------------------------------------------------------------------ *)
let ordinal = new_definition
`ordinal(l:A#A->bool) <=>
woset(l) /\ (!x. fl(l) x ==> (x = (@) (\y. ~(less l)(y,x))))`;;
(* ------------------------------------------------------------------------ *)
(* Now useful things about the orderings *)
(* ------------------------------------------------------------------------ *)
let [POSET_REFL; POSET_TRANS; POSET_ANTISYM] =
map (GEN `l:A#A->bool` o DISCH_ALL)
(CONJUNCTS(PURE_ONCE_REWRITE_RULE[poset] (ASSUME `poset (l:A#A->bool)`)));;
let POSET_FLEQ = prove
(`!l:A#A->bool. poset l ==> (!x. fl(l) x <=> l(x,x))`,
MESON_TAC[POSET_REFL; fl]);;
let CHAIN_SUBSET = prove
(`!(l:A#A->bool) P Q. chain(l) P /\ Q SUBSET P ==> chain(l) Q`,
REWRITE_TAC[chain; SUBSET_PRED] THEN MESON_TAC[]);;
let [WOSET_REFL; WOSET_TRANS; WOSET_ANTISYM; WOSET_TOTAL; WOSET_WELL] =
map (GEN `l:A#A->bool` o DISCH_ALL)
(CONJUNCTS(PURE_ONCE_REWRITE_RULE[woset] (ASSUME `woset (l:A#A->bool)`)));;
let WOSET_POSET = prove
(`!l:A#A->bool. woset l ==> poset l`,
GEN_TAC THEN REWRITE_TAC[woset; poset] THEN DISCH_TAC THEN
ASM_REWRITE_TAC[]);;
let WOSET_FLEQ = prove
(`!l:A#A->bool. woset l ==> (!x. fl(l) x <=> l(x,x))`,
MESON_TAC[WOSET_POSET; POSET_FLEQ]);;
let WOSET_TRANS_LESS = prove
(`!l:A#A->bool. woset l ==>
!x y z. (less l)(x,y) /\ l(y,z) ==> (less l)(x,z)`,
REWRITE_TAC[woset; less] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------ *)
(* Wellfoundedness (in two slightly different senses) and either totality *)
(* or antisymmetry are sufficient for a wellorder. *)
(* ------------------------------------------------------------------------ *)
let WOSET = prove
(`!l:A#A->bool.
woset l <=>
(!x y. l(x,y) /\ l(y,x) ==> (x = y)) /\
(!P. (!x. P x ==> fl(l) x) /\ (?x. P x) ==>
(?y. P y /\ (!z. P z ==> l(y,z))))`,
GEN_TAC THEN REWRITE_TAC[woset] THEN EQ_TAC THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `(!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) /\
(!x:A y. fl(l) x /\ fl(l) y ==> l(x,y) \/ l(y,x))`
MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN REPEAT STRIP_TAC THENL
[FIRST_ASSUM(MP_TAC o SPEC `\w:A. (w = x) \/ (w = y) \/ (w = z)`) THEN
REWRITE_TAC[fl];
FIRST_ASSUM(MP_TAC o SPEC `\w:A. (w = x) \/ (w = y)`)] THEN
ASM_MESON_TAC[]);;
let WOSET_WF = prove
(`!l:A#A->bool.
woset l <=>
WF(\x y. l(x,y) /\ ~(x = y)) /\
(!x y. fl l x /\ fl l y ==> l(x,y) \/ l(y,x))`,
GEN_TAC THEN
ASM_CASES_TAC `!x y:A. fl l x /\ fl l y ==> l(x,y) \/ l(y,x)` THENL
[ASM_REWRITE_TAC[WOSET]; ASM_REWRITE_TAC[woset]] THEN
ASM_CASES_TAC `!x y:A. l(x,y) /\ l(y,x) ==> x = y` THEN
ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[WF];
DISCH_THEN(MP_TAC o MATCH_MP WF_ANTISYM) THEN ASM_MESON_TAC[]] THEN
EQ_TAC THENL [DISCH_TAC; MATCH_MP_TAC MONO_FORALL THEN ASM_MESON_TAC[]] THEN
X_GEN_TAC `P:A->bool` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `\x:A. P x /\ fl l x`) THEN
REWRITE_TAC[fl] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------ *)
(* Misc lemmas. *)
(* ------------------------------------------------------------------------ *)
let PAIRED_EXT = prove
(`!(l:A#B->C) m. (!x y. l(x,y) = m(x,y)) <=> (l = m)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `p:A#B` THEN
SUBST1_TAC(SYM(SPEC `p:A#B` PAIR)) THEN POP_ASSUM MATCH_ACCEPT_TAC);;
let WOSET_TRANS_LE = prove
(`!l:A#A->bool. woset l ==>
!x y z. l(x,y) /\ (less l)(y,z) ==> (less l)(x,z)`,
REWRITE_TAC[less] THEN MESON_TAC[WOSET_TRANS; WOSET_ANTISYM]);;
let WOSET_WELL_CONTRAPOS = prove
(`!l:A#A->bool. woset l ==>
(!P. (!x. P x ==> fl(l) x) /\ (?x. P x) ==>
(?y. P y /\ (!z. (less l)(z,y) ==> ~P z)))`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `P:A->bool` o MATCH_MP WOSET_WELL) THEN
ASM_MESON_TAC[WOSET_TRANS_LE; less]);;
let WOSET_TOTAL_LE = prove
(`!l:A#A->bool. woset l
==> !x y. fl(l) x /\ fl(l) y ==> l(x,y) \/ (less l)(y,x)`,
REWRITE_TAC[less] THEN MESON_TAC[WOSET_REFL; WOSET_TOTAL]);;
let WOSET_TOTAL_LT = prove
(`!l:A#A->bool. woset l ==>
!x y. fl(l) x /\ fl(l) y ==> (x = y) \/ (less l)(x,y) \/ (less l)(y,x)`,
REWRITE_TAC[less] THEN MESON_TAC[WOSET_TOTAL]);;
let ORDINAL_IMP_WOSET = prove
(`!l:A#A->bool. ordinal l ==> woset l`,
SIMP_TAC[ordinal]);;
let FL = prove
(`!l:A#A->bool. fl l = {x:A | ?y. l(x,y) \/ l(y,x)}`,
REWRITE_TAC[FUN_EQ_THM; IN_ELIM_THM; fl]);;
let FL_SUBSET = prove
(`!l r. l SUBSET r ==> fl l SUBSET fl r`,
REWRITE_TAC[SUBSET; IN; fl] THEN MESON_TAC[]);;
let FINITE_FL = prove
(`!l:A#A->bool. FINITE(fl l) <=> FINITE l`,
GEN_TAC THEN REWRITE_TAC[FL] THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o MATCH_MP FINITE_CROSS o W CONJ) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN SET_TAC[];
DISCH_THEN((fun th ->
MP_TAC(ISPEC `FST:A#A->A` th) THEN MP_TAC(ISPEC `SND:A#A->A` th)) o
MATCH_MP FINITE_IMAGE) THEN
REWRITE_TAC[IMP_IMP; GSYM FINITE_UNION] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS; IN_UNION; IN_IMAGE] THEN
REWRITE_TAC[EXISTS_PAIR_THM; IN_ELIM_THM] THEN REWRITE_TAC[IN] THEN
SET_TAC[]]);;
let WOSET_FINITE_TOSET = prove
(`!l:A#A->bool. toset l /\ FINITE l ==> woset l`,
ONCE_REWRITE_TAC[GSYM FINITE_FL] THEN
SIMP_TAC[toset; WOSET_WF; poset; IN] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC WF_FINITE THEN REWRITE_TAC[] THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; X_GEN_TAC `a:A`] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ]
FINITE_SUBSET)) THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REWRITE_TAC[fl; IN] THEN
ASM_MESON_TAC[]);;
(* ======================================================================== *)
(* (2) AXIOM OF CHOICE ==> CANTOR-ZERMELO WELLORDERING THEOREM *)
(* ======================================================================== *)
(* ------------------------------------------------------------------------ *)
(* UNIONS of initial segments is an initial segment. *)
(* ------------------------------------------------------------------------ *)
let UNION_FL = prove
(`!P (l:A#A->bool). fl(UNIONS P) x <=> ?l. P l /\ fl(l) x`,
REPEAT GEN_TAC THEN REWRITE_TAC[UNIONS_PRED; fl] THEN MESON_TAC[]);;
let UNION_INSEG = prove
(`!P (l:A#A->bool). (!m. P m ==> m inseg l) ==> (UNIONS P) inseg l`,
REWRITE_TAC[inseg; UNION_FL; UNIONS_PRED] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------ *)
(* Initial segment of a woset is a woset. *)
(* ------------------------------------------------------------------------ *)
let INSEG_SUBSET = prove
(`!(l:A#A->bool) m. m inseg l ==> !x y. m(x,y) ==> l(x,y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[inseg] THEN MESON_TAC[]);;
let INSEG_SUBSET_FL = prove
(`!(l:A#A->bool) m. m inseg l ==> !x. fl(m) x ==> fl(l) x`,
REWRITE_TAC[fl] THEN MESON_TAC[INSEG_SUBSET]);;
let INSEG_FL_SUBSET = prove
(`!l m:A#A->bool. l inseg m ==> fl l SUBSET fl m`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INSEG_SUBSET_FL) THEN
SET_TAC[]);;
let INSEG_WOSET = prove
(`!(l:A#A->bool) m. m inseg l /\ woset l ==> woset m`,
REWRITE_TAC[inseg] THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[WOSET] THEN CONJ_TAC THENL
[ASM_MESON_TAC[WOSET_ANTISYM];
GEN_TAC THEN FIRST_ASSUM(MP_TAC o SPEC_ALL o MATCH_MP WOSET_WELL) THEN
ASM_MESON_TAC[fl]]);;
let INSEG_ORDINAL = prove
(`!l m:A#A->bool. m inseg l /\ ordinal l ==> ordinal m`,
REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN STRIP_TAC THEN
CONJ_TAC THENL [ASM_MESON_TAC[INSEG_WOSET]; ALL_TAC] THEN
X_GEN_TAC `x:A` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP INSEG_SUBSET_FL) THEN
ASM_SIMP_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_REWRITE_TAC[less]);;
(* ------------------------------------------------------------------------ *)
(* Properties of segments of the `linseg` form. *)
(* ------------------------------------------------------------------------ *)
let LINSEG_INSEG = prove
(`!(l:A#A->bool) a. woset l ==> (linseg l a) inseg l`,
REPEAT STRIP_TAC THEN REWRITE_TAC[inseg; linseg; fl] THEN PBETA_TAC THEN
ASM_MESON_TAC[WOSET_TRANS_LE]);;
let LINSEG_WOSET = prove
(`!(l:A#A->bool) a. woset l ==> woset(linseg l a)`,
MESON_TAC[INSEG_WOSET; LINSEG_INSEG]);;
let LINSEG_FL = prove
(`!(l:A#A->bool) a x. woset l ==> (fl (linseg l a) x <=> (less l)(x,a))`,
REWRITE_TAC[fl; linseg; less] THEN PBETA_TAC THEN
MESON_TAC[WOSET_REFL; WOSET_TRANS; WOSET_ANTISYM; fl]);;
(* ------------------------------------------------------------------------ *)
(* Key fact: a proper initial segment is of the special form. *)
(* ------------------------------------------------------------------------ *)
let INSEG_PROPER_SUBSET = prove
(`!(l:A#A->bool) m. m inseg l /\ ~(l = m) ==>
?x y. l(x,y) /\ ~m(x,y)`,
REWRITE_TAC[GSYM PAIRED_EXT] THEN MESON_TAC[INSEG_SUBSET]);;
let INSEG_PROPER_SUBSET_FL = prove
(`!(l:A#A->bool) m. m inseg l /\ ~(l = m) ==>
?a. fl(l) a /\ ~fl(m) a`,
MESON_TAC[INSEG_PROPER_SUBSET; fl; inseg]);;
let INSEG_LINSEG = prove
(`!(l:A#A->bool) m. woset l ==>
(m inseg l <=> (m = l) \/ (?a. fl(l) a /\ (m = linseg l a)))`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `m:A#A->bool = l` THEN
ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[inseg; fl] THEN MESON_TAC[]; ALL_TAC] THEN
EQ_TAC THEN STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[LINSEG_INSEG]] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP WOSET_WELL_CONTRAPOS) THEN
DISCH_THEN(MP_TAC o SPEC `\x:A. fl(l) x /\ ~fl(m) x`) THEN REWRITE_TAC[] THEN
REWRITE_TAC[linseg; GSYM PAIRED_EXT] THEN PBETA_TAC THEN
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL
[ASM_MESON_TAC[INSEG_PROPER_SUBSET_FL]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[INSEG_SUBSET; INSEG_SUBSET_FL; fl;
WOSET_TOTAL_LE; less; inseg]);;
(* ------------------------------------------------------------------------ *)
(* A proper initial segment can be extended by its bounding element. *)
(* ------------------------------------------------------------------------ *)
let EXTEND_FL = prove
(`!(l:A#A->bool) x. woset l ==> (fl (\(x,y). l(x,y) /\ l(y,a)) x <=> l(x,a))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN
ASM_MESON_TAC[WOSET_TRANS; WOSET_REFL; fl]);;
let EXTEND_INSEG = prove
(`!(l:A#A->bool) a. woset l /\ fl(l) a ==> (\(x,y). l(x,y) /\ l(y,a)) inseg l`,
REPEAT STRIP_TAC THEN REWRITE_TAC[inseg] THEN PBETA_TAC THEN
REPEAT GEN_TAC THEN IMP_RES_THEN (fun t ->REWRITE_TAC[t]) EXTEND_FL);;
let EXTEND_LINSEG = prove
(`!(l:A#A->bool) a. woset l /\ fl(l) a ==>
(\(x,y). linseg l a (x,y) \/ (y = a) /\ (fl(linseg l a) x \/ (x = a)))
inseg l`,
REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
MP_TAC (MATCH_MP EXTEND_INSEG th)) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM PAIRED_EXT] THEN PBETA_TAC THEN
REPEAT GEN_TAC THEN IMP_RES_THEN (fun th -> REWRITE_TAC[th]) LINSEG_FL THEN
REWRITE_TAC[linseg; less] THEN PBETA_TAC THEN ASM_MESON_TAC[WOSET_REFL]);;
(* ------------------------------------------------------------------------ *)
(* Key canonicality property of ordinals. *)
(* ------------------------------------------------------------------------ *)
let ORDINAL_CHAINED_LEMMA = prove
(`!(k:A#A->bool) l m. ordinal(l) /\ ordinal(m)
==> k inseg l /\ k inseg m
==> (k = l) \/ (k = m) \/ ?a. fl(l) a /\ fl(m) a /\
(k = linseg l a) /\
(k = linseg m a)`,
REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN STRIP_TAC THEN
EVERY_ASSUM(fun th -> TRY
(fun g -> REWRITE_TAC[MATCH_MP INSEG_LINSEG th] g)) THEN
ASM_CASES_TAC `k:A#A->bool = l` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `k:A#A->bool = m` THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `a:A = b` (fun th -> ASM_MESON_TAC[th]) THEN
FIRST_ASSUM(fun th -> SUBST1_TAC(MATCH_MP th (ASSUME `fl(l) (a:A)`))) THEN
FIRST_ASSUM(fun th -> SUBST1_TAC(MATCH_MP th (ASSUME `fl(m) (b:A)`))) THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
UNDISCH_TAC `k = linseg m (b:A)` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[linseg; GSYM PAIRED_EXT] THEN PBETA_TAC THEN
ASM_MESON_TAC[WOSET_REFL; less; fl]);;
let ORDINAL_CHAINED = prove
(`!(l:A#A->bool) m. ordinal(l) /\ ordinal(m) ==> m inseg l \/ l inseg m`,
REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC(REWRITE_RULE[ordinal] th) THEN
ASSUME_TAC (MATCH_MP ORDINAL_CHAINED_LEMMA th)) THEN
MP_TAC(SPEC `\k:A#A->bool. k inseg l /\ k inseg m` UNION_INSEG) THEN
DISCH_THEN(fun th ->
MP_TAC(CONJ (SPEC `l:A#A->bool` th) (SPEC `m:A#A->bool` th))) THEN
REWRITE_TAC[TAUT `(a /\ b ==> a) /\ (a /\ b ==> b)`] THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
FIRST_ASSUM(REPEAT_TCL DISJ_CASES_THEN MP_TAC o
C MATCH_MP th)) THENL
[ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN
MP_TAC(ASSUME `UNIONS (\k. k inseg l /\ k inseg m) = linseg l (a:A)`) THEN
CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `(a:A,a)`) THEN
REWRITE_TAC[linseg] THEN PBETA_TAC THEN REWRITE_TAC[less] THEN
REWRITE_TAC[UNIONS_PRED] THEN EXISTS_TAC
`\(x,y). linseg l a (x,y) \/ (y = a) /\ (fl(linseg l a) x \/ (x = a:A))` THEN
PBETA_TAC THEN REWRITE_TAC[] THEN CONJ_TAC THENL
[ALL_TAC;
UNDISCH_TAC `UNIONS (\k. k inseg l /\ k inseg m) = linseg l (a:A)` THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[]] THEN
MATCH_MP_TAC EXTEND_LINSEG THEN ASM_REWRITE_TAC[]);;
let ORDINAL_FL_UNIQUE = prove
(`!l m:A#A->bool.
ordinal l /\ ordinal m /\ fl l = fl m ==> l = m`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`l:A#A->bool`; `m:A#A->bool`]
ORDINAL_CHAINED) THEN
REWRITE_TAC[inseg; FUN_EQ_THM; FORALL_PAIR_THM] THEN
ASM_MESON_TAC[fl]);;
let ORDINAL_FL_SUBSET = prove
(`!l m:A#A->bool.
ordinal l /\ ordinal m /\ fl l SUBSET fl m ==> l inseg m`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`l:A#A->bool`; `m:A#A->bool`]
ORDINAL_CHAINED) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
MATCH_MP_TAC(MESON[INSEG_REFL] `x = y ==> x inseg y`) THEN
MATCH_MP_TAC ORDINAL_FL_UNIQUE THEN
FIRST_ASSUM(MP_TAC o MATCH_MP INSEG_SUBSET_FL) THEN ASM SET_TAC[]);;
let ORDINAL_FL_SUBSET_EQ = prove
(`!l m:A#A->bool.
ordinal l /\ ordinal m ==> (fl l SUBSET fl m <=> l inseg m)`,
MESON_TAC[ORDINAL_FL_SUBSET; INSEG_FL_SUBSET]);;
(* ------------------------------------------------------------------------ *)
(* Proof that any none-universe ordinal can be extended to its "successor". *)
(* ------------------------------------------------------------------------ *)
let FL_SUC = prove
(`!(l:A#A->bool) a.
fl(\(x,y). l(x,y) \/ (y = a) /\ (fl(l) x \/ (x = a))) x <=>
fl(l) x \/ (x = a)`,
REPEAT GEN_TAC THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN EQ_TAC THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN TRY DISJ1_TAC THEN
ASM_MESON_TAC[]);;
let ORDINAL_SUC = prove
(`!l:A#A->bool. ordinal(l) /\ (?x. ~(fl(l) x)) ==>
ordinal(\(x,y). l(x,y) \/ (y = @y. ~fl(l) y) /\
(fl(l) x \/ (x = @y. ~fl(l) y)))`,
REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
ABBREV_TAC `a:A = @y. ~fl(l) y` THEN
SUBGOAL_THEN `~fl(l:A#A->bool) a` ASSUME_TAC THENL
[EXPAND_TAC "a" THEN CONV_TAC SELECT_CONV THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
PBETA_TAC THEN CONJ_TAC THENL
[REWRITE_TAC[WOSET] THEN PBETA_TAC THEN CONJ_TAC THENL
[REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[WOSET_ANTISYM]; ALL_TAC; ALL_TAC] THEN
UNDISCH_TAC `~fl(l:A#A->bool) a` THEN CONV_TAC CONTRAPOS_CONV THEN
DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN
DISCH_THEN SUBST_ALL_TAC THEN REWRITE_TAC[fl] THENL
[EXISTS_TAC `y:A`; EXISTS_TAC `x:A`] THEN
ASM_REWRITE_TAC[];
X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[FL_SUC] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `w:A`)) THEN
IMP_RES_THEN (MP_TAC o SPEC `\x:A. P x /\ fl(l) x`) WOSET_WELL THEN
BETA_TAC THEN REWRITE_TAC[TAUT `a /\ b ==> b`] THEN
ASM_CASES_TAC `?x:A. P x /\ fl(l) x` THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[];
FIRST_ASSUM(MP_TAC o SPEC `w:A` o
GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
ASM_MESON_TAC[]]];
X_GEN_TAC `z:A` THEN REWRITE_TAC[FL_SUC; less] THEN
PBETA_TAC THEN DISCH_THEN DISJ_CASES_TAC THENL
[UNDISCH_TAC `!x:A. fl l x ==> (x = (@y. ~less l (y,x)))` THEN
DISCH_THEN(IMP_RES_THEN MP_TAC) THEN
DISCH_THEN(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `y:A` THEN
BETA_TAC THEN REWRITE_TAC[less] THEN AP_TERM_TAC THEN
ASM_CASES_TAC `y:A = z` THEN ASM_REWRITE_TAC[] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `fl(l:A#A->bool) z` THEN ASM_REWRITE_TAC[];
UNDISCH_TAC `z:A = a` THEN DISCH_THEN SUBST_ALL_TAC THEN
GEN_REWRITE_TAC LAND_CONV [SYM(ASSUME `(@y:A. ~fl(l) y) = a`)] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `y:A` THEN
BETA_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[] THEN
ASM_CASES_TAC `y:A = a` THEN ASM_REWRITE_TAC[] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[fl] THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]]]);;
(* ------------------------------------------------------------------------ *)
(* The union of a set of ordinals is an ordinal. *)
(* ------------------------------------------------------------------------ *)
let ORDINAL_UNION = prove
(`!P. (!l:A#A->bool. P l ==> ordinal(l)) ==> ordinal(UNIONS P)`,
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[ordinal; WOSET] THEN
REPEAT CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REWRITE_TAC[UNIONS_PRED] THEN
BETA_TAC THEN DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `l:A#A->bool` (CONJUNCTS_THEN2 (ANTE_RES_THEN ASSUME_TAC)
ASSUME_TAC))
(X_CHOOSE_THEN `m:A#A->bool` (CONJUNCTS_THEN2 (ANTE_RES_THEN ASSUME_TAC)
ASSUME_TAC))) THEN
MP_TAC(SPECL [`l:A#A->bool`; `m:A#A->bool`] ORDINAL_CHAINED) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THENL
[MP_TAC(SPEC `l:A#A->bool` WOSET_ANTISYM);
MP_TAC(SPEC `m:A#A->bool` WOSET_ANTISYM)] THEN
RULE_ASSUM_TAC(REWRITE_RULE[ordinal]) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN
ASM_REWRITE_TAC[];
X_GEN_TAC `Q:A->bool` THEN REWRITE_TAC[UNION_FL] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `a:A`)) THEN
MP_TAC(ASSUME `!x:A. Q x ==> (?l. P l /\ fl l x)`) THEN
DISCH_THEN(IMP_RES_THEN
(X_CHOOSE_THEN `l:A#A->bool` STRIP_ASSUME_TAC)) THEN
IMP_RES_THEN ASSUME_TAC (ASSUME `!l:A#A->bool. P l ==> ordinal l`) THEN
ASSUME_TAC(CONJUNCT1
(REWRITE_RULE[ordinal] (ASSUME `ordinal(l:A#A->bool)`))) THEN
IMP_RES_THEN(MP_TAC o SPEC `\x:A. fl(l) x /\ Q x`) WOSET_WELL THEN
BETA_TAC THEN REWRITE_TAC[TAUT `a /\ b ==> a`] THEN
SUBGOAL_THEN `?x:A. fl(l) x /\ Q x` (fun th -> REWRITE_TAC[th]) THENL
[EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `b:A` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `x:A` THEN DISCH_TAC THEN
ANTE_RES_THEN MP_TAC (ASSUME `(Q:A->bool) x`) THEN
DISCH_THEN(X_CHOOSE_THEN `m:A#A->bool` STRIP_ASSUME_TAC) THEN
ANTE_RES_THEN ASSUME_TAC (ASSUME `(P:(A#A->bool)->bool) m`) THEN
MP_TAC(SPECL [`l:A#A->bool`; `m:A#A->bool`] ORDINAL_CHAINED) THEN
ASM_REWRITE_TAC[UNIONS_PRED] THEN BETA_TAC THEN
DISCH_THEN DISJ_CASES_TAC THENL
[EXISTS_TAC `l:A#A->bool` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET_FL THEN ASM_REWRITE_TAC[];
EXISTS_TAC `m:A#A->bool` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(MP_TAC o SPECL [`x:A`; `b:A`] o REWRITE_RULE[inseg]) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN
IMP_RES_THEN (MP_TAC o SPEC `b:A`) INSEG_SUBSET_FL THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
MP_TAC(CONJUNCT1(REWRITE_RULE[ordinal]
(ASSUME `ordinal(m:A#A->bool)`))) THEN
DISCH_THEN(MP_TAC o SPECL [`b:A`; `x:A`] o MATCH_MP WOSET_TOTAL) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN (DISJ_CASES_THEN MP_TAC) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[fl] THEN
EXISTS_TAC `b:A` THEN ASM_REWRITE_TAC[]];
X_GEN_TAC `x:A` THEN REWRITE_TAC[UNION_FL] THEN
DISCH_THEN(X_CHOOSE_THEN `l:A#A->bool` STRIP_ASSUME_TAC) THEN
MP_TAC(ASSUME `!l:A#A->bool. P l ==> ordinal l`) THEN
DISCH_THEN(IMP_RES_THEN MP_TAC) THEN REWRITE_TAC[ordinal] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:A`)) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN
REPEAT AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `y:A` THEN BETA_TAC THEN AP_TERM_TAC THEN
ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[less; UNIONS_PRED] THEN
BETA_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[EXISTS_TAC `l:A#A->bool` THEN ASM_REWRITE_TAC[];
FIRST_ASSUM(X_CHOOSE_THEN `m:A#A->bool` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `ordinal(l:A#A->bool) /\ ordinal(m:A#A->bool)` MP_TAC THENL
[CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
DISCH_THEN(DISJ_CASES_TAC o MATCH_MP ORDINAL_CHAINED)] THENL
[IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN ASM_REWRITE_TAC[];
RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_REWRITE_TAC[]]]]);;
(* ------------------------------------------------------------------------ *)
(* Consequently, every type can be wellordered (and by an ordinal). *)
(* ------------------------------------------------------------------------ *)
let ORDINAL_UNION_LEMMA = prove
(`!(l:A#A->bool) x. ordinal l ==> fl(l) x ==> fl(UNIONS(ordinal)) x`,
REPEAT STRIP_TAC THEN REWRITE_TAC[UNION_FL] THEN
EXISTS_TAC `l:A#A->bool` THEN ASM_REWRITE_TAC[]);;
let ORDINAL_UP = prove
(`!l:A#A->bool. ordinal(l) ==> (!x. fl(l) x) \/
(?m x. ordinal(m) /\ fl(m) x /\ ~fl(l) x)`,
GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN
GEN_REWRITE_TAC LAND_CONV [NOT_FORALL_THM] THEN DISCH_TAC THEN
MP_TAC(SPEC `l:A#A->bool` ORDINAL_SUC) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN MAP_EVERY EXISTS_TAC
[`\(x,y). l(x,y) \/ (y = @y:A. ~fl l y) /\ (fl(l) x \/ (x = @y. ~fl l y))`;
`@y. ~fl(l:A#A->bool) y`] THEN
ASM_REWRITE_TAC[FL_SUC] THEN
CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[]);;
let WO_ORDINAL = prove
(`?l:A#A->bool. ordinal(l) /\ !x. fl(l) x`,
EXISTS_TAC `UNIONS (ordinal:(A#A->bool)->bool)` THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
[MATCH_MP_TAC ORDINAL_UNION THEN REWRITE_TAC[];
DISCH_THEN(DISJ_CASES_TAC o MATCH_MP ORDINAL_UP) THEN
ASM_REWRITE_TAC[] THEN POP_ASSUM(X_CHOOSE_THEN `m:A#A->bool`
(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC)) THEN
IMP_RES_THEN (IMP_RES_THEN MP_TAC) ORDINAL_UNION_LEMMA THEN
ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------ *)
(* At least -- every set can be wellordered. *)
(* ------------------------------------------------------------------------ *)
let FL_RESTRICT = prove
(`!l. woset l ==>
!P. fl(\(x:A,y). P x /\ P y /\ l(x,y)) x <=> P x /\ fl(l) x`,
REPEAT STRIP_TAC THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN EQ_TAC THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
TRY(EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN NO_TAC) THEN
EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN
IMP_RES_THEN MATCH_MP_TAC WOSET_REFL THEN
REWRITE_TAC[fl] THEN EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[]);;
let WO = prove
(`!P. ?l:A#A->bool. woset l /\ (fl(l) = P)`,
GEN_TAC THEN X_CHOOSE_THEN `l:A#A->bool` STRIP_ASSUME_TAC
(REWRITE_RULE[ordinal] WO_ORDINAL) THEN
EXISTS_TAC `\(x:A,y). P x /\ P y /\ l(x,y)` THEN REWRITE_TAC[WOSET] THEN
PBETA_TAC THEN
GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FL_RESTRICT th]) THEN
PBETA_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP WOSET_ANTISYM) THEN
ASM_REWRITE_TAC[];
X_GEN_TAC `Q:A->bool` THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP WOSET_WELL) THEN
DISCH_THEN(MP_TAC o SPEC `Q:A->bool`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN
REPEAT CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM ACCEPT_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Moreover, the ordinals themselves are wellordered by "inseg". *)
(* ------------------------------------------------------------------------- *)
let WF_INSEG_WOSET = prove
(`WF(\(x:A#A->bool) y. woset x /\ woset y /\ x inseg y /\ ~(x = y))`,
REWRITE_TAC[WF] THEN X_GEN_TAC `P:(A#A->bool)->bool` THEN
DISCH_TAC THEN
ONCE_REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN
REWRITE_TAC[TAUT `~(p /\ q) <=> p ==> ~q`] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [NOT_FORALL_THM] THEN
REWRITE_TAC[NOT_IMP] THEN DISCH_TAC THEN
SUBGOAL_THEN `!x:A#A->bool. P x ==> woset x` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!y. ?(a:A) z. P y ==> P z /\ fl y a /\ linseg y a = z`
MP_TAC THENL
[X_GEN_TAC `y:A#A->bool` THEN
ASM_CASES_TAC `(P:(A#A->bool)->bool) y` THEN ASM_REWRITE_TAC[] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `y:A#A->bool`)) THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[INSEG_LINSEG];
ALL_TAC] THEN
REWRITE_TAC[SKOLEM_THM; NOT_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:(A#A->bool)->A`; `l:(A#A->bool)->(A#A->bool)`] THEN
DISCH_TAC THEN FIRST_X_ASSUM(X_CHOOSE_TAC `z:A#A->bool`) THEN
SUBGOAL_THEN `woset(z:A#A->bool)` MP_TAC THENL
[ASM_MESON_TAC[]; REWRITE_TAC[woset]] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(MP_TAC o SPEC `{(a:(A#A->bool)->A) x | P x /\ x inseg z}`) THEN
REWRITE_TAC[IN_ELIM_THM] THEN
REWRITE_TAC[TAUT `P /\ x = y <=> x = y /\ P`] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
REWRITE_TAC[GSYM CONJ_ASSOC] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM; SWAP_FORALL_THM] THEN
REWRITE_TAC[UNWIND_THM2; FORALL_UNWIND_THM2; IMP_CONJ;
RIGHT_FORALL_IMP_THM] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM; SWAP_FORALL_THM] THEN
REWRITE_TAC[UNWIND_THM2; FORALL_UNWIND_THM2; IMP_CONJ;
RIGHT_FORALL_IMP_THM; NOT_IMP] THEN
CONJ_TAC THENL [ASM_MESON_TAC[INSEG_SUBSET_FL]; ALL_TAC] THEN
CONJ_TAC THENL [ASM_MESON_TAC[INSEG_REFL]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `w:A#A->bool` MP_TAC) THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(MP_TAC o SPEC `(l:(A#A->bool)->(A#A->bool)) w`) THEN
ASM_SIMP_TAC[NOT_IMP] THEN CONJ_TAC THENL
[ASM_MESON_TAC[LINSEG_INSEG; INSEG_TRANS]; DISCH_TAC] THEN
FIRST_X_ASSUM(fun th ->
MP_TAC(SPEC `(l:(A#A->bool)->(A#A->bool)) w` th) THEN
MP_TAC(SPEC `w:A#A->bool` th)) THEN
ASM_SIMP_TAC[] THEN REPEAT STRIP_TAC THEN
UNDISCH_TAC `fl ((l:(A#A->bool)->(A#A->bool)) w) (a (l w))` THEN
FIRST_X_ASSUM(fun th ->
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SYM th]) THEN
ASM_SIMP_TAC[LINSEG_FL; less] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_MESON_TAC[]);;
let WOSET_INSEG_ORDINAL = prove
(`woset (\(x:A#A->bool,y). ordinal x /\ ordinal y /\ x inseg y)`,
REWRITE_TAC[WOSET_WF; fl] THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[ORDINAL_CHAINED]] THEN
MATCH_MP_TAC(MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] WF_SUBSET)
WF_INSEG_WOSET) THEN
SIMP_TAC[ordinal]);;
let SUBWOSET_ISO_INSEG = prove
(`!l s. woset l /\ fl l = (:A)
==> ?f. (!x y. x IN s /\ y IN s ==> (l(f x,f y) <=> l(x,y))) /\
(!x y. y IN IMAGE f s /\ l(x,y) ==> x IN IMAGE f s)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o last o CONJUNCTS o GEN_REWRITE_RULE I [woset]) THEN
DISCH_THEN(MP_TAC o GEN `s:A->bool` o SPEC `\x:A. x IN s`) THEN
ASM_REWRITE_TAC[UNIV; MEMBER_NOT_EMPTY] THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `m:(A->bool)->A` THEN DISCH_TAC THEN
SUBGOAL_THEN
`?f:A->A. !x. f(x) = m (UNIV DIFF IMAGE f {u | u IN s /\ less l (u,x)})`
MP_TAC THENL
[FIRST_ASSUM(MP_TAC o CONJUNCT1 o REWRITE_RULE[WOSET_WF]) THEN
DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC) THEN
REWRITE_TAC[less] THEN REPEAT STRIP_TAC THEN
AP_TERM_TAC THEN ASM SET_TAC[];
MATCH_MP_TAC MONO_EXISTS] THEN
X_GEN_TAC `f:A->A` THEN DISCH_THEN(ASSUME_TAC o GSYM) THEN
SUBGOAL_THEN `!x. x IN s ==> (l:A#A->bool)(f x,x)` ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o CONJUNCT1 o REWRITE_RULE[WOSET_WF]) THEN
REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN
X_GEN_TAC `x:A` THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC
`(:A) DIFF IMAGE (f:A->A) {u | u IN s /\ less l (u,x)}`) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[];
REWRITE_TAC[IN_DIFF; IN_IMAGE; IN_ELIM_THM; IN_UNIV] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[]];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP MONO_FORALL o GEN `x:A` o SPEC
`(:A) DIFF IMAGE (f:A->A) {u | u IN s /\ less l (u,x)}`) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[];
FIRST_X_ASSUM(K ALL_TAC o CONV_RULE (BINDER_CONV SYM_CONV))] THEN
REWRITE_TAC[IN_UNIV; IN_IMAGE; IN_DIFF; IN_ELIM_THM; FORALL_AND_THM] THEN
STRIP_TAC THEN
SUBGOAL_THEN
`!x z:A. x IN s /\ less l (z,f x) ==> ?u. u IN s /\ less l (u,x) /\ f u = z`
ASSUME_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`!x z:A. x IN s /\ l(z,f x) ==> ?u. u IN s /\ l(u,x) /\ f u = z`
ASSUME_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[];
ALL_TAC] THEN
CONJ_TAC THENL
[SUBGOAL_THEN
`!x y:A. x IN s /\ y IN s /\ less l (x,y) ==> less l (f x,f y)`
MP_TAC THENL
[REPEAT STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `(f:A->A) y`])) THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[];
MATCH_MP_TAC(MESON[]
`(!x y. P x y /\ P y x ==> Q x y)
==> (!x y. P x y) ==> (!x y. Q x y)`) THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[]];
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[less; woset] THEN SET_TAC[]]);;
(* ======================================================================== *)
(* (3) CANTOR-ZERMELO WELL-ORDERING THEOREM ==> HAUSDORFF MAXIMAL PRINCIPLE *)
(* ======================================================================== *)
let HP = prove
(`!l:A#A->bool. poset l ==>
?P. chain(l) P /\ !Q. chain(l) Q /\ P SUBSET Q ==> (Q = P)`,
GEN_TAC THEN DISCH_TAC THEN
X_CHOOSE_THEN `w:A#A->bool` MP_TAC (SPEC `\x:A. T` WO) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
GEN_REWRITE_TAC LAND_CONV [FUN_EQ_THM] THEN BETA_TAC THEN
REWRITE_TAC[] THEN DISCH_TAC THEN
IMP_RES_THEN (MP_TAC o SPEC `\x:A. fl(l) x`) WOSET_WELL THEN
BETA_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `?x:A. fl(l) x` THEN ASM_REWRITE_TAC[] THENL
[DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC);
FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
EXISTS_TAC `\x:A. F` THEN REWRITE_TAC[chain; SUBSET_PRED] THEN
GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `u:A` MP_TAC o
GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN
REWRITE_TAC[] THEN DISCH_TAC THEN
DISCH_THEN(MP_TAC o SPECL [`u:A`; `u:A`]) THEN
IMP_RES_THEN(ASSUME_TAC o GSYM) POSET_FLEQ THEN ASM_REWRITE_TAC[]] THEN
SUBGOAL_THEN `?f. !x. f x = if fl(l) x /\
(!y. less w (y,x) ==> l (x,f y) \/ l (f y,x))
then (x:A) else b`
(CHOOSE_TAC o GSYM) THENL
[SUBGOAL_THEN `WF(\x:A y. (less w)(x,y))` MP_TAC THENL
[REWRITE_TAC[WF] THEN GEN_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC_ALL o MATCH_MP WOSET_WELL) THEN
ASM_REWRITE_TAC[less] THEN ASM_MESON_TAC[WOSET_ANTISYM];
DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC) THEN
REWRITE_TAC[] THEN REPEAT GEN_TAC THEN
REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[]]; ALL_TAC] THEN
IMP_RES_THEN(IMP_RES_THEN ASSUME_TAC) POSET_REFL THEN
SUBGOAL_THEN `(f:A->A) b = b` ASSUME_TAC THENL
[FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `b:A`) THEN
REWRITE_TAC[COND_ID] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!x:A. fl(l:A#A->bool) (f x)` ASSUME_TAC THENL
[GEN_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`) THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
FIRST_ASSUM(ANTE_RES_THEN (ASSUME_TAC o GEN_ALL) o SPEC_ALL) THEN
SUBGOAL_THEN `!x:A. (l:A#A->bool)(b,f x) \/ l(f x,b)` ASSUME_TAC THENL
[GEN_TAC THEN MP_TAC(SPEC `x:A` (ASSUME `!x:A. (w:A#A->bool)(b,f x)`)) THEN
FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`) THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `x:A = b` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
SUBGOAL_THEN `(less w)(b:A,x)` MP_TAC THENL
[ASM_REWRITE_TAC[less] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN
FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th o CONJUNCT2)) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!x y. l((f:A->A) x,f y) \/ l(f y,f x)` ASSUME_TAC THENL
[REPEAT GEN_TAC THEN
IMP_RES_THEN(MP_TAC o SPECL [`x:A`; `y:A`]) WOSET_TOTAL_LT THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC) THENL
[ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC POSET_REFL;
ONCE_REWRITE_TAC[DISJ_SYM] THEN
FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `y:A`);
FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`)] THEN
TRY COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(IMP_RES_THEN ACCEPT_TAC o CONJUNCT2); ALL_TAC] THEN
EXISTS_TAC `\y:A. ?x:A. y = f(x)` THEN
SUBGOAL_THEN `chain(l:A#A->bool)(\y. ?x:A. y = f x)` ASSUME_TAC THENL
[REWRITE_TAC[chain] THEN BETA_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN(CHOOSE_THEN SUBST1_TAC)); ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `Q:A->bool` THEN STRIP_TAC THEN
GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `z:A` THEN EQ_TAC THENL
[DISCH_TAC THEN BETA_TAC THEN EXISTS_TAC `z:A` THEN
FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `z:A`) THEN
SUBGOAL_THEN `fl(l:A#A->bool) z /\
!y. (less w)(y,z) ==> l(z,f y) \/ l(f y,z)`
(fun th -> REWRITE_TAC[th]) THEN CONJ_TAC THENL
[UNDISCH_TAC `chain(l:A#A->bool) Q` THEN REWRITE_TAC[chain] THEN
DISCH_THEN(MP_TAC o SPECL [`z:A`; `z:A`]) THEN ASM_REWRITE_TAC[fl] THEN
DISCH_TAC THEN EXISTS_TAC `z:A` THEN ASM_REWRITE_TAC[];
X_GEN_TAC `y:A` THEN DISCH_TAC THEN
UNDISCH_TAC `chain(l:A#A->bool) Q` THEN REWRITE_TAC[chain] THEN
DISCH_THEN(MP_TAC o SPECL [`z:A`; `(f:A->A) y`]) THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN
BETA_TAC THEN EXISTS_TAC `y:A` THEN REFL_TAC];
SPEC_TAC(`z:A`,`z:A`) THEN ASM_REWRITE_TAC[GSYM SUBSET_PRED]]);;
(* ======================================================================== *)
(* (4) HAUSDORFF MAXIMAL PRINCIPLE ==> ZORN'S LEMMA *)
(* ======================================================================== *)
let ZL = prove
(`!l:A#A->bool. poset l /\
(!P. chain(l) P ==> (?y. fl(l) y /\ !x. P x ==> l(x,y))) ==>
?y. fl(l) y /\ !x. l(y,x) ==> (y = x)`,
GEN_TAC THEN STRIP_TAC THEN
FIRST_ASSUM(X_CHOOSE_THEN `M:A->bool` STRIP_ASSUME_TAC o MATCH_MP HP) THEN
UNDISCH_TAC `!P. chain(l:A#A->bool) P
==> (?y. fl(l) y /\ !x. P x ==> l(x,y))` THEN
DISCH_THEN(MP_TAC o SPEC `M:A->bool`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:A` THEN
DISCH_TAC THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN DISCH_TAC THEN
SUBGOAL_THEN `chain(l) (\x:A. M x \/ (x = z))` MP_TAC THENL
[REWRITE_TAC[chain] THEN BETA_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN DISJ_CASES_TAC) THEN
ASM_REWRITE_TAC[] THENL
[UNDISCH_TAC `chain(l:A#A->bool) M` THEN REWRITE_TAC[chain] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
DISJ1_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_TRANS) THEN
EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC;
DISJ2_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_TRANS) THEN
EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC;
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_REFL) THEN
REWRITE_TAC[fl] THEN EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[]];
ALL_TAC] THEN
SUBGOAL_THEN `M SUBSET (\x:A. M x \/ (x = z))` MP_TAC THENL
[REWRITE_TAC[SUBSET_PRED] THEN GEN_TAC THEN BETA_TAC THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]); ALL_TAC] THEN
GEN_REWRITE_TAC I [TAUT `(a ==> b ==> c) <=> (b /\ a ==> c)`] THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN
DISCH_THEN(MP_TAC o SPEC `z:A`) THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(fun th -> FIRST_ASSUM(ASSUME_TAC o C MATCH_MP th)) THEN
FIRST_ASSUM(MP_TAC o SPECL [`m:A`; `z:A`] o MATCH_MP POSET_ANTISYM) THEN
ASM_REWRITE_TAC[]);;
(* ======================================================================== *)
(* (5) ZORN'S LEMMA ==> KURATOWSKI'S LEMMA *)
(* ======================================================================== *)
let KL_POSET_LEMMA = prove
(`poset (\(c1,c2). C SUBSET c1 /\ c1 SUBSET c2 /\ chain(l:A#A->bool) c2)`,
REWRITE_TAC[poset] THEN PBETA_TAC THEN REPEAT CONJ_TAC THENL
[X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN
DISCH_THEN(X_CHOOSE_THEN `Q:A->bool` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[SUBSET_REFL] THENL
[MATCH_MP_TAC CHAIN_SUBSET; MATCH_MP_TAC SUBSET_TRANS];
GEN_TAC THEN X_GEN_TAC `Q:A->bool` THEN GEN_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS;
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM] THEN
TRY(EXISTS_TAC `Q:A->bool`) THEN ASM_REWRITE_TAC[]);;
let KL = prove
(`!l:A#A->bool. poset l ==>
!C. chain(l) C ==>
?P. (chain(l) P /\ C SUBSET P) /\
(!R. chain(l) R /\ P SUBSET R ==> (R = P))`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `\(c1,c2). C SUBSET c1 /\ c1 SUBSET c2 /\
chain(l:A#A->bool) c2` ZL) THEN PBETA_TAC THEN
REWRITE_TAC[KL_POSET_LEMMA; MATCH_MP POSET_FLEQ KL_POSET_LEMMA] THEN
PBETA_TAC THEN
W(C SUBGOAL_THEN (fun t ->REWRITE_TAC[t]) o
funpow 2 (fst o dest_imp) o snd) THENL
[X_GEN_TAC `P:(A->bool)->bool` THEN GEN_REWRITE_TAC LAND_CONV [chain] THEN
PBETA_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `?D:A->bool. P D` THENL
[EXISTS_TAC `UNIONS(P) :A->bool` THEN REWRITE_TAC[SUBSET_REFL] THEN
FIRST_ASSUM(X_CHOOSE_TAC `D:A->bool`) THEN
FIRST_ASSUM(MP_TAC o SPECL [`D:A->bool`; `D:A->bool`]) THEN
REWRITE_TAC[ASSUME `(P:(A->bool)->bool) D`; SUBSET_REFL] THEN
STRIP_TAC THEN
MATCH_MP_TAC(TAUT `a /\ b /\ (a /\ b ==> c) ==> (a /\ b) /\ c`) THEN
REPEAT CONJ_TAC THENL
[REWRITE_TAC[UNIONS_PRED; SUBSET_PRED] THEN REPEAT STRIP_TAC THEN
BETA_TAC THEN EXISTS_TAC `D:A->bool` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN
ASM_REWRITE_TAC[];
REWRITE_TAC[chain; UNIONS_PRED] THEN
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN
BETA_TAC THEN DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_TAC `A:A->bool`) (X_CHOOSE_TAC `B:A->bool`)) THEN
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
DISCH_THEN(MP_TAC o SPECL [`A:A->bool`; `B:A->bool`]) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THENL
[UNDISCH_TAC `chain(l:A#A->bool) B`;
UNDISCH_TAC `chain(l:A#A->bool) A`] THEN
REWRITE_TAC[chain] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN
ASM_REWRITE_TAC[];
STRIP_TAC THEN X_GEN_TAC `X:A->bool` THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPECL [`X:A->bool`; `X:A->bool`]) THEN
REWRITE_TAC[] THEN DISCH_THEN(IMP_RES_THEN STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[UNIONS_PRED; SUBSET_PRED] THEN
REPEAT STRIP_TAC THEN BETA_TAC THEN EXISTS_TAC `X:A->bool` THEN
ASM_REWRITE_TAC[]];
EXISTS_TAC `C:A->bool` THEN
FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
ASM_REWRITE_TAC[SUBSET_REFL]];
DISCH_THEN(X_CHOOSE_THEN `D:A->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `D:A->bool` THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Special case of Zorn's Lemma for restriction of subset lattice. *)
(* ------------------------------------------------------------------------- *)
let POSET_RESTRICTED_SUBSET = prove
(`!P. poset(\(x,y). P(x) /\ P(y) /\ x SUBSET y)`,
GEN_TAC THEN REWRITE_TAC[poset; fl] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[SUBSET; EXTENSION] THEN MESON_TAC[]);;
let FL_RESTRICTED_SUBSET = prove
(`!P. fl(\(x,y). P(x) /\ P(y) /\ x SUBSET y) = P`,
REWRITE_TAC[fl; FORALL_PAIR_THM; FUN_EQ_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[SUBSET_REFL]);;
let ZL_SUBSETS = prove
(`!P. (!c. (!x. x IN c ==> P x) /\
(!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x)
==> ?z. P z /\ (!x. x IN c ==> x SUBSET z))
==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`,
GEN_TAC THEN
MP_TAC(ISPEC `\(x,y). P(x:A->bool) /\ P(y) /\ x SUBSET y` ZL) THEN
REWRITE_TAC[POSET_RESTRICTED_SUBSET; FL_RESTRICTED_SUBSET] THEN
REWRITE_TAC[chain] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[IN] THEN MATCH_MP_TAC MONO_IMP THEN CONJ_TAC THENL
[MATCH_MP_TAC MONO_FORALL; ALL_TAC] THEN
MESON_TAC[]);;
let ZL_SUBSETS_UNIONS = prove
(`!P. (!c. (!x. x IN c ==> P x) /\
(!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x)
==> P(UNIONS c))
==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS THEN
REPEAT STRIP_TAC THEN EXISTS_TAC `UNIONS(c:(A->bool)->bool)` THEN
ASM_MESON_TAC[SUBSET; IN_UNIONS]);;
let ZL_SUBSETS_UNIONS_NONEMPTY = prove
(`!P. (?x. P x) /\
(!c. (?x. x IN c) /\
(!x. x IN c ==> P x) /\
(!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x)
==> P(UNIONS c))
==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS THEN
REPEAT STRIP_TAC THEN ASM_CASES_TAC `?x:A->bool. x IN c` THENL
[EXISTS_TAC `UNIONS(c:(A->bool)->bool)` THEN
ASM_SIMP_TAC[] THEN MESON_TAC[SUBSET; IN_UNIONS];
ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* A form of Tukey's lemma. *)
(* ------------------------------------------------------------------------- *)
let TUKEY = prove
(`!s:(A->bool)->bool.
~(s = {}) /\
(!t. (!c. FINITE c /\ c SUBSET t ==> c IN s) <=> t IN s)
==> ?u. u IN s /\ !v. v IN s /\ u SUBSET v ==> u = v`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS_UNIONS_NONEMPTY THEN
CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
X_GEN_TAC `c:(A->bool)->bool` THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN
SUBGOAL_THEN
`!d. FINITE d ==> d SUBSET UNIONS c ==> ?e:A->bool. e IN c /\ d SUBSET e`
MP_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_FORALL THEN ASM SET_TAC[]] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[INSERT_SUBSET] THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Also the order extension theorem, using Abian's proof. *)
(* ------------------------------------------------------------------------- *)
let OEP = prove
(`!p:A#A->bool. poset p ==> ?t. toset t /\ fl(t) = fl(p) /\ p SUBSET t`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `fl(p:A#A->bool)` WO) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `w:A#A->bool` STRIP_ASSUME_TAC) THEN
ABBREV_TAC
`t = \(x:A,y:A). fl p x /\ fl p y /\
(x = y \/
?i. fl p i /\
(!j. w(j,i) /\ ~(j = i) ==> (p(j,x) <=> p(j,y))) /\
~p(i,x) /\ p(i,y))` THEN
EXISTS_TAC `t:A#A->bool` THEN
SUBGOAL_THEN
`!x:A y:A. fl p x /\ fl p y /\ ~(x = y)
==> ?i. fl p i /\
(!j:A. w(j,i) /\ ~(j = i) ==> (p(j,x) <=> p(j,y))) /\
~(p(i,x) <=> p(i,y))`
(LABEL_TAC "*") THENL
[REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN ASM_SIMP_TAC[] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(MP_TAC o SPEC `\i:A. fl p i /\ ~(p(i,x) <=> p(i,y))`) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [poset]) THEN ASM_MESON_TAC[];
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:A` THEN
ASM_MESON_TAC[fl]];
ALL_TAC] THEN
SUBGOAL_THEN `!x:A y:A. p(x,y) ==> t(x,y)` ASSUME_TAC THENL
[EXPAND_TAC "t" THEN REWRITE_TAC[] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[fl]; ALL_TAC]) THEN
ASM_CASES_TAC `x:A = y` THENL [ASM_MESON_TAC[fl]; ALL_TAC] THEN
REMOVE_THEN "*" (MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_SIMP_TAC[] THEN
ANTS_TAC THENL [ASM_MESON_TAC[fl]; MATCH_MP_TAC MONO_EXISTS] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [poset]) THEN ASM_MESON_TAC[];
ALL_TAC] THEN
ASM_REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN] THEN
MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL
[MATCH_MP_TAC SUBSET_ANTISYM THEN
ASM_REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN] THEN
EXPAND_TAC "t" THEN REWRITE_TAC[fl] THEN ASM_MESON_TAC[];
DISCH_TAC THEN ASM_REWRITE_TAC[toset; poset]] THEN
EXPAND_TAC "t" THEN REWRITE_TAC[] THEN
FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [poset]) THEN
REPEAT CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN
ASM_CASES_TAC `x:A = z` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN
ASM_CASES_TAC `y:A = z` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN
ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN
ASM_CASES_TAC `fl p (x:A)` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `fl p (y:A)` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `fl p (z:A)` THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC)) THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN
REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(MP_TAC o SPECL [`m:A`; `n:A`] o CONJUNCT1) THEN
ANTS_TAC THENL [ASM_MESON_TAC[fl]; ALL_TAC] THEN STRIP_TAC THENL
[EXISTS_TAC `m:A`; EXISTS_TAC `n:A`] THEN ASM_MESON_TAC[];
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN
ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `fl p (x:A)` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `fl p (y:A)` THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC)) THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN
REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(MP_TAC o SPECL [`m:A`; `n:A`] o CONJUNCT1) THEN
ASM_MESON_TAC[];
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN
ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[IN] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REMOVE_THEN "*" (MP_TAC o SPECL [`x:A`; `y:A`]) THEN
ASM_REWRITE_TAC[OR_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN
MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Every toset contains a cofinal woset. *)
(* ------------------------------------------------------------------------- *)
let TOSET_COFINAL_WOSET = prove
(`!l. toset l
==> ?w. w SUBSET l /\ woset w /\
!x:A. x IN fl l ==> ?y. y IN fl w /\ l(x,y)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `fl l:A->bool = {}` THENL
[ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
EXISTS_TAC `(\(x,y). F):A#A->bool` THEN
ASM_REWRITE_TAC[woset; FORALL_PAIR_THM; fl; SUBSET] THEN
REWRITE_TAC[IN] THEN MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `?r. ordinal r /\ fl r = (:A->bool)` STRIP_ASSUME_TAC THENL
[REWRITE_TAC[EXTENSION; IN_UNIV] THEN REWRITE_TAC[IN; WO_ORDINAL];
ALL_TAC] THEN
SUBGOAL_THEN
`?f. !w. f w = if ?x:A. x IN fl l /\
!v:A->bool. r(v,w) /\ ~(v = w) ==> ~l(x,f v)
then @x:A. x IN fl l /\
!v. r(v,w) /\ ~(v = w) ==> ~l(x,f v)
else @x:A. x IN fl l`
STRIP_ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP ORDINAL_IMP_WOSET) THEN
REWRITE_TAC[WOSET_WF] THEN
DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC o CONJUNCT1) THEN
REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC(MESON[]
`(p <=> p') /\ x' = x
==> (if p then x else a) = (if p' then x' else a)`) THEN
CONJ_TAC THENL [ALL_TAC; AP_TERM_TAC THEN ABS_TAC] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`!w. (f:(A->bool)->A) w IN fl l`
ASSUME_TAC THENL
[GEN_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY];
ALL_TAC] THEN
SUBGOAL_THEN
`?w:A->bool. (!x. x IN fl l ==> ?v. r(v,w) /\ ~(v = w) /\ l(x:A,f v)) /\
!z. (!x. x IN fl l ==> ?v. r(v,z) /\ ~(v = z) /\ l(x,f v))
==> r(w,z)`
STRIP_ASSUME_TAC THENL
[FIRST_ASSUM(MATCH_MP_TAC o last o CONJUNCTS o REWRITE_RULE[woset] o
MATCH_MP ORDINAL_IMP_WOSET) THEN
CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
ONCE_REWRITE_TAC[MESON[] `(?w. P w) <=> ~(!w. ~P w)`] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [NOT_FORALL_THM] THEN
REWRITE_TAC[NOT_IMP; NOT_EXISTS_THM; TAUT
`~(p /\ q /\ r) <=> (p /\ q ==> ~r)`] THEN
DISCH_TAC THEN
SUBGOAL_THEN `!v w:A->bool. f v:A = f w ==> v = w` MP_TAC THENL
[FIRST_ASSUM(MP_TAC o el 3 o CONJUNCTS o REWRITE_RULE[woset] o
MATCH_MP ORDINAL_IMP_WOSET) THEN
FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC[UNIV] THEN
MATCH_MP_TAC(MESON[]
`(!x y. P x y ==> P y x) /\ (!x y. R x y ==> P x y)
==> (!x y. R x y \/ R y x) ==> (!x y. P x y)`) THEN
CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN
GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN
FIRST_X_ASSUM(fun t -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [t]) THEN
ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[]
`(y = @x. P x) ==> (?x. P x) ==> P y`)) THEN
ASM_SIMP_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[toset]) THEN
ASM_MESON_TAC[];
REWRITE_TAC[INJECTIVE_LEFT_INVERSE; NOT_EXISTS_THM] THEN
X_GEN_TAC `g:A->(A->bool)` THEN
DISCH_THEN(MP_TAC o SPEC `\x:A. ~(g x x)`) THEN
REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]];
ALL_TAC] THEN
SUBGOAL_THEN
`!x y. r(x,y) /\ r(y,w) /\ ~(y = w) ==> l((f:(A->bool)->A) x,f y)`
ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN
MATCH_MP_TAC(MESON[]
`(l(a,b) \/ l(b,a)) /\ (~(b = a) ==> ~l(b,a)) ==> l(a,b)`) THEN
CONJ_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[toset]) THEN ASM SET_TAC[];
DISCH_THEN(ASSUME_TAC o MATCH_MP (MESON[]
`~(f x = f y) ==> ~(x = y)`))] THEN
FIRST_X_ASSUM(fun th ->
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV) [th]) THEN
COND_CASES_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o CONJUNCT2 o SELECT_RULE) THEN
ASM_REWRITE_TAC[];
FIRST_ASSUM(MP_TAC o REWRITE_RULE[woset] o
MATCH_MP ORDINAL_IMP_WOSET) THEN
ASM_MESON_TAC[]];
ALL_TAC] THEN
EXISTS_TAC `\(x,y). x IN IMAGE (f:(A->bool)->A) {v | r(v,w) /\ ~(v = w)} /\
y IN IMAGE (f:(A->bool)->A) {v | r(v,w) /\ ~(v = w)} /\
l(x,y)` THEN
SUBGOAL_THEN
`fl(\(x,y). x IN IMAGE (f:(A->bool)->A) {v | r(v,w) /\ ~(v = w)} /\
y IN IMAGE (f:(A->bool)->A) {v | r(v,w) /\ ~(v = w)} /\
l(x,y)) =
IMAGE f {v | r(v,w) /\ ~(v = w)}`
ASSUME_TAC THENL
[GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN
REWRITE_TAC[IN; fl] THEN
RULE_ASSUM_TAC(REWRITE_RULE[toset]) THEN ASM_MESON_TAC[];
ALL_TAC] THEN
REPEAT CONJ_TAC THENL
[SIMP_TAC[SUBSET; FORALL_PAIR_THM; IN];
ASM_REWRITE_TAC[REWRITE_RULE[SET_RULE `fl l x <=> x IN fl l`] woset];
ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN
ASM SET_TAC[]] THEN
FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [toset]) THEN
FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [poset]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[SET_RULE `fl l x <=> x IN fl l`]) THEN
REWRITE_TAC[CONJ_ASSOC] THEN
CONJ_TAC THENL [ASM SET_TAC[]; SIMP_TAC[]] THEN
X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[] THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP ORDINAL_IMP_WOSET) THEN
REWRITE_TAC[woset] THEN
DISCH_THEN(MP_TAC o SPEC
`\x:A->bool. (P:A->bool) (f x)` o last o CONJUNCTS) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `z:A->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(f:(A->bool)->A) z` THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
`(!z. P z ==> z IN IMAGE f s)
==> (!x. x IN s /\ P(f x) ==> Q(f x))
==> !y. P y ==> Q y`)) THEN
X_GEN_TAC `y:A->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC;
ASM SET_TAC[]]);;
|