File: linear.ml

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (765 lines) | stat: -rw-r--r-- 36,380 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
(* ========================================================================= *)
(* Linear refutations.                                                       *)
(* ========================================================================= *)

(* ------------------------------------------------------------------------- *)
(* Some clause-preservation lemmas.                                          *)
(* ------------------------------------------------------------------------- *)

let RESOLVE_CLAUSE = prove
 (`!c1 c2 p. clause c1 /\ clause c2 ==> clause(resolve p c1 c2)`,
  REWRITE_TAC[clause; resolve; FINITE_UNION; IN_UNION; IN_DELETE] THEN
  MESON_TAC[DELETE_SUBSET; FINITE_SUBSET]);;

let PRESPROOF_CLAUSE = prove
 (`!hyps cl. (!c. c IN hyps ==> clause c) /\ presproof hyps cl ==> clause cl`,
  REWRITE_TAC[IMP_CONJ] THEN
  GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
  MATCH_MP_TAC presproof_INDUCT THEN ASM_MESON_TAC[RESOLVE_CLAUSE]);;

let RESOLVE_MONO = prove
 (`!c1 c2 c1' c2' p.
        c1 SUBSET c1' /\ c2 SUBSET c2'
        ==> (resolve p c1 c2) SUBSET (resolve p c1' c2')`,
  REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* More refined provability predicate, tracking participating hypotheses.    *)
(* ------------------------------------------------------------------------- *)

let ppresproof_RULES,ppresproof_INDUCT,ppresproof_CASES =
  new_inductive_definition
   `(!c. clause(c) ==> ppresproof {c} c) /\
    (!p asm1 asm2 c1 c2.
            ppresproof asm1 c1 /\ ppresproof asm2 c2 /\
            p IN c1 /\ ~~ p IN c2
                ==> ppresproof (asm1 UNION asm2) (resolve p c1 c2))`;;

let PPRESPROOF = prove
 (`!hyps. (!c. c IN hyps ==> clause c)
          ==> !c. presproof hyps c <=>
                        ?asm. asm SUBSET hyps /\ ppresproof asm c`,
  REPEAT STRIP_TAC THEN EQ_TAC THENL
   [SPEC_TAC(`c:form->bool`,`c:form->bool`) THEN
    MATCH_MP_TAC presproof_INDUCT THEN CONJ_TAC THENL
     [X_GEN_TAC `c:form->bool` THEN DISCH_TAC THEN
      EXISTS_TAC `{c:form->bool}` THEN
      ASM_SIMP_TAC[ppresproof_RULES] THEN
      UNDISCH_TAC `c:form->bool IN hyps` THEN SET_TAC[];
      ALL_TAC] THEN
    REWRITE_TAC[SUBSET] THEN MESON_TAC[ppresproof_RULES; IN_UNION];
    DISCH_THEN(X_CHOOSE_THEN `asm:(form->bool)->bool` MP_TAC) THEN
    ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN
    MAP_EVERY (fun s -> SPEC_TAC(s,s))
     [`c:form->bool`; `asm:(form->bool)->bool`] THEN
    MATCH_MP_TAC ppresproof_INDUCT THEN
    REWRITE_TAC[SUBSET; IN_INSERT; IN_UNION; NOT_IN_EMPTY] THEN
    MESON_TAC[presproof_RULES]]);;

let PPRESPROOF_CLAUSE = prove
 (`!asm cl. ppresproof asm cl ==> clause cl /\ (!c. c IN asm ==> clause c)`,
  MATCH_MP_TAC ppresproof_INDUCT THEN SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
  SIMP_TAC[IN_UNION; RESOLVE_CLAUSE] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* A kind of soundness used later to pick the set-of-support.                *)
(* ------------------------------------------------------------------------- *)

let PPRESPROOF_CONSEQUENCE = prove
 (`!asm cl. ppresproof asm cl
            ==> !d. d psatisfies (IMAGE interp asm) ==> pholds d (interp cl)`,
  SUBGOAL_THEN
   `!asm cl. ppresproof asm cl
            ==> !d. (!c. c IN asm ==> ?p. p IN c /\ pholds d p)
                    ==> ?p. p IN cl /\ pholds d p`
  MP_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
    MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
    ASM_CASES_TAC `ppresproof asm cl` THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[psatisfies] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
    SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN
    ASM_MESON_TAC[PHOLDS_INTERP; clause; PPRESPROOF_CLAUSE]] THEN
  MATCH_MP_TAC ppresproof_INDUCT THEN CONJ_TAC THENL
   [REWRITE_TAC[IMAGE; IN_INSERT; NOT_IN_EMPTY; psatisfies; IN_ELIM_THM] THEN
    MESON_TAC[]; ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC
   [`p:form`; `asm1:(form->bool)->bool`; `asm2:(form->bool)->bool`;
    `c1:form->bool`; `c2:form->bool`] THEN
  REWRITE_TAC[IMAGE_UNION] THEN
  REWRITE_TAC[psatisfies; IN_UNION] THEN
  DISCH_THEN(fun th -> GEN_TAC THEN DISCH_TAC THEN MP_TAC th) THEN
  REWRITE_TAC[CONJ_ASSOC; AND_FORALL_THM] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `d:form->bool`) MP_TAC) THEN
  STRIP_TAC THEN ASM_SIMP_TAC[] THEN
  DISCH_THEN(CONJUNCTS_THEN2
   (X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC)
   (X_CHOOSE_THEN `r:form` STRIP_ASSUME_TAC)) THEN
  REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN
  ASM_MESON_TAC[PHOLDS_NEGATE]);;

let PPRESPROOF_SOUND = prove
 (`!asm. ppresproof asm {} ==> ~(psatisfiable (IMAGE interp asm))`,
  GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP PPRESPROOF_CONSEQUENCE) THEN
  REWRITE_TAC[psatisfiable] THEN
  SIMP_TAC[PHOLDS_INTERP; FINITE_RULES; NOT_IN_EMPTY] THEN
  REWRITE_TAC[psatisfies] THEN MESON_TAC[]);;

let PPRESPROOF_ALLNEGATIVE = prove
 (`!asm. ppresproof asm {} ==> ?c. c IN asm /\ !p. p IN c ==> negative p`,
  GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP PPRESPROOF_SOUND) THEN
  CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[psatisfiable] THEN
  REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN
  EXISTS_TAC `\x:form. T` THEN
  SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN
  GEN_TAC THEN X_GEN_TAC `c:form->bool` THEN
  DISCH_THEN(CONJUNCTS_THEN2 (K ALL_TAC) ASSUME_TAC) THEN
  SUBGOAL_THEN `FINITE(c:form->bool)`
   (fun th -> SIMP_TAC[th; PHOLDS_INTERP])
  THENL [ASM_MESON_TAC[PPRESPROOF_CLAUSE; clause]; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `c:form->bool`) THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN
  SIMP_TAC[] THEN STRIP_TAC THEN
  SUBGOAL_THEN `literal q` MP_TAC THENL
   [ASM_MESON_TAC[PPRESPROOF_CLAUSE; clause]; ALL_TAC] THEN
  REWRITE_TAC[literal; ATOM] THEN
  REPEAT STRIP_TAC THEN UNDISCH_TAC `~(negative q)` THEN
  ASM_REWRITE_TAC[pholds] THEN
  REWRITE_TAC[negative; Not_DEF; form_INJ] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Linear propositional proof.                                               *)
(* ------------------------------------------------------------------------- *)

let lpresproof_RULES,lpresproof_INDUCT,lpresproof_CASES =
  new_inductive_definition
   `(!cl. cl IN hyps ==> lpresproof hyps [cl]) /\
    (!c1 c2 lis p.
        lpresproof hyps (CONS c1 lis) /\
        (c2 IN hyps \/ MEM c2 lis) /\
        p IN c1 /\ ~~p IN c2
        ==> lpresproof hyps (CONS (resolve p c1 c2) (CONS c1 lis)))`;;

let LPRESPROOF_MONO = prove
 (`!hyps hyps' c.
        hyps SUBSET hyps' /\ lpresproof hyps c ==> lpresproof hyps' c`,
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  SPEC_TAC(`c:(form->bool)list`,`c:(form->bool)list`) THEN
  MATCH_MP_TAC lpresproof_INDUCT THEN
  ASM_MESON_TAC[lpresproof_RULES; SUBSET]);;

(* ------------------------------------------------------------------------- *)
(* Resolution where one argument is a tautology.                             *)
(* ------------------------------------------------------------------------- *)

let RESOLVE_SYM = prove
 (`!c1 c2 p. literal p ==> (resolve (~~p) c1 c2 = resolve p c2 c1)`,
  SIMP_TAC[resolve; NEGATE_NEGATE; UNION_ACI]);;

let RESOLVE_TAUT_L = prove
 (`!c1 c2 p. clause c1 /\ tautologous c1
             ==> tautologous(resolve p c1 c2) \/ c2 SUBSET (resolve p c1 c2)`,
  REWRITE_TAC[tautologous; SUBSET; resolve; IN_DELETE; IN_UNION; clause] THEN
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN
  ASM_CASES_TAC `(p = q) \/ (p = ~~q)` THENL
   [FIRST_X_ASSUM(DISJ_CASES_THEN SUBST_ALL_TAC); ALL_TAC] THEN
  ASM_MESON_TAC[NEGATE_REFL; NEGATE_NEGATE]);;

let RESOLVE_TAUT_R = prove
 (`!c1 c2 p. clause c2 /\ tautologous c2 /\ literal p
             ==> tautologous(resolve p c1 c2) \/ c1 SUBSET (resolve p c1 c2)`,
  REWRITE_TAC[tautologous; SUBSET; resolve; IN_DELETE; IN_UNION; clause] THEN
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN
  ASM_CASES_TAC `(p = q) \/ (p = ~~q)` THENL
   [FIRST_X_ASSUM(DISJ_CASES_THEN SUBST_ALL_TAC); ALL_TAC] THEN
  ASM_MESON_TAC[NEGATE_REFL; NEGATE_NEGATE]);;

let SUBSET_TAUT = prove
 (`!c1 c2. tautologous c1 /\ c1 SUBSET c2 ==> tautologous c2`,
  REWRITE_TAC[tautologous; SUBSET] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Auxiliary concept about preserving the branch.                            *)
(* ------------------------------------------------------------------------- *)

let suffix = new_recursive_definition list_RECURSION
  `(suffix lis [] <=> (lis = [])) /\
   (suffix lis (CONS s cs) <=> (lis = CONS s cs) \/ suffix lis cs)`;;

let SUFFIX_REFL = prove
 (`!lis. suffix lis lis`,
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[suffix]);;

let SUFFIX_BUTLAST = prove
 (`!l1 l2. suffix l1 l2 /\ ~(l1 = []) ==> (LAST l1 :A = LAST l2)`,
  GEN_TAC THEN ASM_CASES_TAC `l1:(A)list = []` THEN ASM_REWRITE_TAC[] THEN
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[suffix; LAST] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[LAST] THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[suffix]);;

let SUFFIX_TRANS = prove
 (`!l1 l2 l3. suffix l1 l2 /\ suffix l2 l3 ==> suffix l1 l3`,
  GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[suffix] THEN
  ASM_MESON_TAC[suffix]);;

let SUFFIX_MEM = prove
 (`!x:A l lis. suffix (CONS x l) lis ==> MEM x lis`,
  GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
  REWRITE_TAC[MEM; suffix; NOT_CONS_NIL; CONS_11] THEN ASM_MESON_TAC[]);;

let SUFFIX_CONS = prove
 (`!x l1 l2. suffix l1 l2 ==> suffix l1 (CONS x l2)`,
  MESON_TAC[suffix]);;

let SUFFIX_LENGTH = prove
 (`!l1 l2. suffix l1 l2 ==> LENGTH l1 <= LENGTH l2`,
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN LIST_INDUCT_TAC THEN
  ASM_SIMP_TAC[suffix; LENGTH; NOT_CONS_NIL; LE_0] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[LENGTH; LE_SUC; LE_REFL] THEN
  ASM_MESON_TAC[ARITH_RULE `x <= y ==> x <= SUC y`]);;

let NOT_SUFFIX_TAIL = prove
 (`!x l. ~(suffix (CONS x l) l)`,
  MESON_TAC[SUFFIX_LENGTH; LENGTH; ARITH_RULE `~(SUC n <= n)`]);;

let SUFFIX_ANTISYM = prove
 (`!l1 l2. suffix l1 l2 /\ suffix l2 l1 ==> (l1 = l2)`,
  LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
  REWRITE_TAC[suffix; NOT_CONS_NIL; CONS_11] THEN
  ASM_MESON_TAC[NOT_SUFFIX_TAIL; SUFFIX_TRANS; SUFFIX_CONS]);;

(* ------------------------------------------------------------------------- *)
(* Main linearization theorem.                                               *)
(* ------------------------------------------------------------------------- *)

let NEGATE_LITERAL = prove
 (`!q. literal q ==> literal(~~q)`,
  REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[] THEN ASM_MESON_TAC[ATOM; NEGATE_ATOM; NEGATE_NEG]);;

let SYMMETRY_LEMMA_1 = prove
  (`(!q basm B casm C c.
        literal q
        ==> (P q basm B casm C c = P (~~q) casm C basm B c)) /\
    (!q basm B casm C. literal q
        ==> (Q q basm B casm C = Q (~~q) casm C basm B)) /\
    (!q basm B casm C.
        Q q basm B casm C
        ==> literal q ==> !c. c IN basm ==> P q basm B casm C c)
    ==> !q basm B casm C.
        Q q basm B casm C
        ==> literal q ==> !c. c IN basm UNION casm ==> P q basm B casm C c`,
  REWRITE_TAC[IN_UNION] THEN MESON_TAC[NEGATE_LITERAL; NEGATE_NEGATE]);;

let SYMMETRY_LEMMA_2 = prove
  (`(!p q basm B casm C main aasm A.
        literal q
        ==> (P p q basm B casm C main aasm A =
             P p (~~q) casm C basm B main aasm A)) /\
    (!p q basm B casm C main aasm A.
        ~~p IN B ==> literal q ==> P p q basm B casm C main aasm A)
    ==> !p q basm B casm C main aasm A.
            ~~p IN B \/ ~~p IN C ==> literal q
            ==> P p q basm B casm C main aasm A`,
  REWRITE_TAC[IN_UNION] THEN MESON_TAC[NEGATE_LITERAL; NEGATE_NEGATE]);;

let LINEARIZATION = prove
 (`!asm cl. ppresproof asm cl
            ==> !c. c IN asm
                    ==> ?cl' lis. lpresproof asm (CONS cl' lis) /\
                                  cl' SUBSET cl /\
                                  (LAST (CONS cl' lis) = c)`,
  SUBGOAL_THEN
   `!asm cl. ppresproof asm cl
             ==> (!c. c IN asm ==> clause c) /\ clause cl /\
                 (!c. c IN asm
                      ==> ?cl' lis. lpresproof asm (CONS cl' lis) /\
                                    cl' SUBSET cl /\
                                    (LAST (CONS cl' lis) = c)) /\
                 (!c lis p asm'.
                        clause c /\
                        lpresproof asm' (CONS c lis) /\ p IN c /\ ~~p IN cl
                        ==> ?c' lis'. suffix (CONS c lis) (CONS c' lis') /\
                                      lpresproof (asm UNION asm')
                                                 (CONS c' lis') /\
                                      c' SUBSET (resolve p c cl))`
   (fun th -> SIMP_TAC[th]) THEN
  MATCH_MP_TAC ppresproof_INDUCT THEN CONJ_TAC THENL
   [X_GEN_TAC `cl:form->bool` THEN DISCH_TAC THEN
    ASM_SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN CONJ_TAC THENL
     [GEN_TAC THEN DISCH_THEN(K ALL_TAC) THEN
      MAP_EVERY EXISTS_TAC [`cl:form->bool`; `[]:(form->bool)list`] THEN
      REWRITE_TAC[LAST; SUBSET_REFL] THEN
      SIMP_TAC[lpresproof_RULES; IN_INSERT; NOT_IN_EMPTY]; ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC
     [`c:form->bool`; `lis:(form->bool)list`; `p:form`;
      `hyp:(form->bool)->bool`] THEN
    STRIP_TAC THEN
    MAP_EVERY EXISTS_TAC [`resolve p c cl`; `CONS (c:form->bool) lis`] THEN
    REWRITE_TAC[SUBSET_REFL; suffix; SUFFIX_REFL] THEN
    MATCH_MP_TAC(CONJUNCT2(SPEC_ALL lpresproof_RULES)) THEN
    ASM_REWRITE_TAC[IN_UNION; IN_INSERT] THEN
    ASM_MESON_TAC[IN_UNION; SUBSET; LPRESPROOF_MONO]; ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC
   [`q:form`; `basm:(form->bool)->bool`; `casm:(form->bool)->bool`;
    `B:form->bool`; `C:form->bool`] THEN
  DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  ASM_SIMP_TAC[RESOLVE_CLAUSE] THEN REPEAT CONJ_TAC THENL
   [ASM_MESON_TAC[IN_UNION];
    ASM_SIMP_TAC[RESOLVE_CLAUSE] THEN
    SUBGOAL_THEN `literal q` MP_TAC THENL [ASM_MESON_TAC[clause]; ALL_TAC] THEN
    POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
    MAP_EVERY (fun s -> SPEC_TAC(s,s))
     [`C:form->bool`; `casm:(form->bool)->bool`;
      `B:form->bool`; `basm:(form->bool)->bool`; `q:form`] THEN
    MATCH_MP_TAC SYMMETRY_LEMMA_1 THEN REPEAT CONJ_TAC THENL
     [SIMP_TAC[resolve; NEGATE_NEGATE; UNION_ACI];
      SIMP_TAC[CONJ_ACI; NEGATE_NEGATE];
      ALL_TAC] THEN
    REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
    DISCH_TAC THEN X_GEN_TAC `c:form->bool` THEN DISCH_TAC THEN
    UNDISCH_TAC
     `!c. c IN basm
           ==> (?cl' lis.
                    lpresproof basm (CONS cl' lis) /\
                    cl' SUBSET B /\
                    (LAST (CONS cl' lis) = c))` THEN
    DISCH_THEN(MP_TAC o SPEC `c:form->bool`) THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`B1:form->bool`; `main:(form->bool)list`] THEN
    STRIP_TAC THEN ASM_CASES_TAC `q:form IN B1` THENL
     [UNDISCH_TAC
       `!c lis p asm'.
           clause c /\ lpresproof asm' (CONS c lis) /\ p IN c /\ ~~ p IN C
           ==> (?c' lis'.
                    suffix (CONS c lis) (CONS c' lis') /\
                    lpresproof (casm UNION asm') (CONS c' lis') /\
                    c' SUBSET resolve p c C)` THEN
      DISCH_THEN(MP_TAC o SPECL
       [`B1:form->bool`; `main:(form->bool)list`; `q:form`;
        `basm:(form->bool)->bool`]) THEN ASM_REWRITE_TAC[] THEN
      ANTS_TAC THENL [ASM_MESON_TAC[CLAUSE_SUBSET]; ALL_TAC] THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `D:form->bool` THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `final:(form->bool)list` THEN
      STRIP_TAC THEN REPEAT CONJ_TAC THENL
       [ONCE_REWRITE_TAC[UNION_COMM] THEN ASM_REWRITE_TAC[];
        ASM_MESON_TAC[RESOLVE_MONO; SUBSET_TRANS; SUBSET_REFL];
        ASM_MESON_TAC[SUFFIX_BUTLAST; NOT_CONS_NIL]];
      ALL_TAC] THEN
    MAP_EVERY EXISTS_TAC [`B1:form->bool`; `main:(form->bool)list`] THEN
    ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
     [ASM_MESON_TAC[LPRESPROOF_MONO; IN_UNION; SUBSET]; ALL_TAC] THEN
    UNDISCH_TAC `B1:(form->bool) SUBSET B` THEN
    UNDISCH_TAC `~(q:form IN B1)` THEN
    REWRITE_TAC[resolve; SUBSET; IN_UNION; IN_DELETE] THEN MESON_TAC[];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`A:form->bool`; `main:(form->bool)list`;
                       `p:form`; `aasm:(form->bool)->bool`] THEN
  STRIP_TAC THEN
  SUBGOAL_THEN `~~p IN B \/ ~~p IN C`
   (fun th1 ->
      SUBGOAL_THEN `literal q`
        (fun th2 -> POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
                    MP_TAC th2 THEN MP_TAC th1)
      THENL [ASM_MESON_TAC[clause]; ALL_TAC])
  THENL
   [UNDISCH_TAC `~~p IN resolve q B C` THEN
    REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]; ALL_TAC] THEN
  MAP_EVERY (fun s -> SPEC_TAC(s,s))
    [`A:form->bool`; `aasm:(form->bool)->bool`; `main:(form->bool)list`;
     `C:form->bool`; `casm:(form->bool)->bool`;
     `B:form->bool`; `basm:(form->bool)->bool`; `q:form`; `p:form`] THEN
  MATCH_MP_TAC SYMMETRY_LEMMA_2 THEN CONJ_TAC THENL
   [SIMP_TAC[resolve; NEGATE_NEGATE] THEN
    REWRITE_TAC[UNION_ACI] THEN REWRITE_TAC[CONJ_ACI]; ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC
   [`p:form`; `q:form`; `basm:(form->bool)->bool`; `B:form->bool`;
    `casm:(form->bool)->bool`; `C:form->bool`; `main:(form->bool)list`;
    `aasm:(form->bool)->bool`; `A:form->bool`] THEN
  REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `p:form = q` THENL
   [UNDISCH_THEN `p:form = q` SUBST_ALL_TAC THEN
    UNDISCH_TAC
     `!c lis p asm'.
           clause c /\ lpresproof asm' (CONS c lis) /\ p IN c /\ ~~ p IN C
           ==> (?c' lis'.
                    suffix (CONS c lis) (CONS c' lis') /\
                    lpresproof (casm UNION asm') (CONS c' lis') /\
                    c' SUBSET resolve p c C)` THEN
    DISCH_THEN(MP_TAC o SPECL
     [`A:form->bool`; `main:(form->bool)list`; `q:form`;
      `aasm:(form->bool)->bool`]) THEN
    ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `D:form->bool` THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `final:(form->bool)list` THEN
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
     [MATCH_MP_TAC LPRESPROOF_MONO THEN
      EXISTS_TAC `casm:(form->bool)->bool UNION aasm` THEN
      ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; IN_UNION] THEN
      GEN_TAC THEN CONV_TAC TAUT;
      SUBGOAL_THEN `C SUBSET (resolve q B C)` (fun th ->
        ASM_MESON_TAC[SUBSET_TRANS; RESOLVE_MONO; SUBSET_REFL; th]) THEN
      UNDISCH_TAC `~~q IN B` THEN
      REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN
      MESON_TAC[NEGATE_REFL]]; ALL_TAC] THEN
  ASM_CASES_TAC `p = ~~q` THENL
   [UNDISCH_THEN `p = ~~q` SUBST_ALL_TAC THEN
    UNDISCH_TAC
      `!c lis p asm'.
           clause c /\ lpresproof asm' (CONS c lis) /\ p IN c /\ ~~ p IN B
           ==> (?c' lis'.
                    suffix (CONS c lis) (CONS c' lis') /\
                    lpresproof (basm UNION asm') (CONS c' lis') /\
                    c' SUBSET resolve p c B)` THEN
    DISCH_THEN(MP_TAC o SPECL
     [`A:form->bool`; `main:(form->bool)list`; `~~q`;
      `aasm:(form->bool)->bool`]) THEN
    SUBST_ALL_TAC(MATCH_MP NEGATE_NEGATE (ASSUME `literal q`)) THEN
    ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `D:form->bool` THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `final:(form->bool)list` THEN
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
     [MATCH_MP_TAC LPRESPROOF_MONO THEN
      EXISTS_TAC `basm:(form->bool)->bool UNION aasm` THEN
      ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; IN_UNION] THEN
      GEN_TAC THEN CONV_TAC TAUT;
      SUBGOAL_THEN `B SUBSET (resolve q B C)` (fun th ->
        ASM_MESON_TAC[SUBSET_TRANS; RESOLVE_MONO; SUBSET_REFL; th]) THEN
      SUBGOAL_THEN `q:form IN C` MP_TAC THENL
       [ALL_TAC;
        REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN
        MESON_TAC[NEGATE_REFL]] THEN
      UNDISCH_TAC `q IN resolve q B C` THEN
      REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]];
    ALL_TAC] THEN
  UNDISCH_TAC
   `!c lis p asm'.
           clause c /\ lpresproof asm' (CONS c lis) /\ p IN c /\ ~~ p IN B
           ==> (?c' lis'.
                    suffix (CONS c lis) (CONS c' lis') /\
                    lpresproof (basm UNION asm') (CONS c' lis') /\
                    c' SUBSET resolve p c B)` THEN
  DISCH_THEN(MP_TAC o SPECL
   [`A:form->bool`; `main:(form->bool)list`; `p:form`;
    `aasm:(form->bool)->bool`]) THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`D:form->bool`; `middle:(form->bool)list`] THEN
  STRIP_TAC THEN
  SUBGOAL_THEN
   `?c' lis'.
       suffix (CONS D middle) (CONS c' lis') /\
       suffix (CONS A main) (CONS c' lis') /\
       lpresproof ((basm UNION casm) UNION aasm) (CONS c' lis') /\
       c' SUBSET resolve q (resolve p A B) C`
  MP_TAC THENL
   [ASM_CASES_TAC `q:form IN D` THENL
     [UNDISCH_TAC
       `!c lis p asm'.
               clause c /\ lpresproof asm' (CONS c lis) /\ p IN c /\ ~~ p IN C
               ==> (?c' lis'.
                        suffix (CONS c lis) (CONS c' lis') /\
                        lpresproof (casm UNION asm') (CONS c' lis') /\
                        c' SUBSET resolve p c C)` THEN
      DISCH_THEN(MP_TAC o SPECL
       [`D:form->bool`; `middle:(form->bool)list`;
        `q:form`; `basm:(form->bool)->bool UNION aasm`]) THEN
      ASM_REWRITE_TAC[] THEN
      ANTS_TAC THENL
       [ASM_MESON_TAC[RESOLVE_CLAUSE; CLAUSE_SUBSET]; ALL_TAC] THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `E:form->bool` THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `final:(form->bool)list` THEN
      SIMP_TAC[UNION_ACI] THEN REPEAT STRIP_TAC THENL
       [ASM_MESON_TAC[SUFFIX_TRANS]; ALL_TAC] THEN
      ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]; ALL_TAC] THEN
    MAP_EVERY EXISTS_TAC [`D:form->bool`; `middle:(form->bool)list`] THEN
    ASM_REWRITE_TAC[SUFFIX_REFL] THEN CONJ_TAC THENL
     [ASM_MESON_TAC[LPRESPROOF_MONO; SUBSET; IN_UNION]; ALL_TAC] THEN
    UNDISCH_TAC `D SUBSET resolve p A B` THEN
    UNDISCH_TAC `~(q:form IN D)` THEN
    REWRITE_TAC[resolve; SUBSET; IN_UNION; IN_DELETE] THEN
    MESON_TAC[]; ALL_TAC] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`E:form->bool`; `final:(form->bool)list`] THEN
  STRIP_TAC THEN ASM_CASES_TAC `~~p IN E` THENL
   [ALL_TAC;
    MAP_EVERY EXISTS_TAC [`E:form->bool`; `final:(form->bool)list`] THEN
    ASM_REWRITE_TAC[] THEN
    MAP_EVERY UNDISCH_TAC
     [`E SUBSET resolve q (resolve p A B) C`;
      `~(~~ p IN E)`; `~(p = ~~ q)`; `~(p:form = q)`;
      `q:form IN B`; `~~q IN C`; `~~p IN resolve q B C`;
      `~~p IN B`] THEN
    REWRITE_TAC[resolve; IN_UNION; IN_DELETE; SUBSET] THEN
    MESON_TAC[]] THEN
  ASM_CASES_TAC `CONS (A:form->bool) main = CONS E final` THENL
   [ALL_TAC;
    EXISTS_TAC `resolve (~~p) E A` THEN
    EXISTS_TAC `CONS (E:form->bool) final` THEN REPEAT CONJ_TAC THENL
     [ASM_MESON_TAC[suffix];
      MATCH_MP_TAC(CONJUNCT2(SPEC_ALL lpresproof_RULES)) THEN
      ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
       [DISJ2_TAC THEN
        UNDISCH_TAC `suffix (CONS (A:form->bool) main) (CONS E final)` THEN
        ASM_REWRITE_TAC[suffix] THEN MESON_TAC[SUFFIX_MEM];
        SUBGOAL_THEN `~~(~~p) = p` (fun th -> ASM_REWRITE_TAC[th]) THEN
        MATCH_MP_TAC NEGATE_NEGATE THEN ASM_MESON_TAC[clause]];
      SUBGOAL_THEN `(~~(~~p) = p) /\ (~~(~~q) = q)` MP_TAC THENL
       [ASM_MESON_TAC[NEGATE_NEGATE; clause]; ALL_TAC] THEN
      MAP_EVERY UNDISCH_TAC
       [`~~ p IN E`;
        `E SUBSET resolve q (resolve p A B) C`;
        `~(p = ~~ q)`; `~(p:form = q)`; `q:form IN B`;
        `~~q IN C`; `p:form IN A`; `~~p IN resolve q B C`;
        `~~p IN B`] THEN
      REWRITE_TAC[resolve; IN_UNION; IN_DELETE; SUBSET] THEN
      MESON_TAC[]]] THEN
  UNDISCH_TAC `CONS (A:form->bool) main = CONS E final` THEN
  REWRITE_TAC[CONS_11] THEN
  DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN
  SUBGOAL_THEN `CONS (D:form->bool) middle = CONS A main` MP_TAC THENL
   [ASM_MESON_TAC[SUFFIX_ANTISYM]; ALL_TAC] THEN
  REWRITE_TAC[CONS_11] THEN DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN
  MAP_EVERY EXISTS_TAC [`A:form->bool`; `main:(form->bool)list`] THEN
  ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC `A SUBSET resolve p A B` THEN
  UNDISCH_TAC `A SUBSET resolve q (resolve p A B) C` THEN
  REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Linear resolution at the first order level.                               *)
(* ------------------------------------------------------------------------- *)

let lresproof_RULES,lresproof_INDUCT,lresproof_CASES =
  new_inductive_definition
   `(!cl. cl IN hyps ==> lresproof hyps [cl]) /\
    (!c1 c2 lis cl.
        lresproof hyps (CONS c1 lis) /\ (c2 IN hyps \/ MEM c2 lis) /\
        isaresolvent cl (c1,c2)
        ==> lresproof hyps (CONS cl (CONS c1 lis)))`;;

(* ------------------------------------------------------------------------- *)
(* Completeness of linear resolution.                                        *)
(* ------------------------------------------------------------------------- *)

let ALL2_BUTLAST = prove
 (`!P:(A->A->bool) l1 l2.
       ~(l1 = []) /\ ALL2 P l1 l2 ==> P (LAST l1) (LAST l2)`,
  GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[NOT_CONS_NIL] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[ALL2] THEN
  REWRITE_TAC[LAST] THEN
  ASM_CASES_TAC `t:A list = []` THEN ASM_REWRITE_TAC[] THENL
   [SPEC_TAC(`t':A list`,`t':A list`) THEN
    LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2; NOT_CONS_NIL];
    ALL_TAC] THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN
  UNDISCH_TAC `~(t:A list = [])` THEN
  SPEC_TAC(`t:A list`,`t:A list`) THEN
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2; NOT_CONS_NIL]);;

let ALL2_MEM = prove
 (`!l1 l2. ALL2 P l1 l2 /\ MEM x l1 ==> ?y. MEM y l2 /\ P x y`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[ALL2; MEM] THEN ASM_MESON_TAC[]);;

let LRESPROOF_CLAUSE = prove
 (`!hyps. (!c. c IN hyps ==> clause c)
          ==> !lis. lresproof hyps lis ==> ALL clause lis`,
  GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC lresproof_INDUCT THEN
  REWRITE_TAC[ALL] THEN ASM_MESON_TAC[ISARESOLVENT_CLAUSE; ALL_MEM]);;

let LINEAR_RESOLUTION_COMPLETE = prove
 (`(!cl. cl IN hyps ==> clause cl) /\
   ~(?M:(term->bool)#(num->term list->term)#(num->term list->bool).
        interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\
        M satisfies (IMAGE interp hyps))
   ==> ?lis. lresproof hyps (CONS {} lis) /\
             (!p. p IN (LAST (CONS {} lis)) ==> negative p)`,
  REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN
  ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
   [REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN
  DISCH_TAC THEN
  SUBGOAL_THEN
   `~(psatisfiable
        {interp cl |
         cl IN {IMAGE(formsubst v) cl | cl,v | cl IN hyps}})`
  MP_TAC THENL
   [REWRITE_TAC[psatisfiable] THEN
    FIRST_X_ASSUM(fun th -> MP_TAC th THEN
      MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> ~b`)) THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN
    REWRITE_TAC[psatisfies] THEN
    SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM;
             RIGHT_AND_EXISTS_THM; IN_IMAGE] THEN
    ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE] THEN MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o MATCH_MP
   (REWRITE_RULE[IMP_CONJ_ALT]
                PRESPROOF_REFUTATION_COMPLETE)) THEN
  ANTS_TAC THENL
   [SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
    ASM_SIMP_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN
  MP_TAC(SPEC `{IMAGE (formsubst v) cl | cl,v | cl IN hyps}` PPRESPROOF) THEN
  ANTS_TAC THENL
   [REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN
    ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN
  DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN
  DISCH_THEN(X_CHOOSE_THEN `asm:(form->bool)->bool` STRIP_ASSUME_TAC) THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP PPRESPROOF_ALLNEGATIVE) THEN
  DISCH_THEN(X_CHOOSE_THEN `sos:form->bool` STRIP_ASSUME_TAC) THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP LINEARIZATION) THEN
  DISCH_THEN(MP_TAC o SPEC `sos:form->bool`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `emptyclause:form->bool` MP_TAC) THEN
  REWRITE_TAC[SUBSET_EMPTY] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN
  REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `qlist:(form->bool)list` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN
   `!plis. lpresproof asm plis
           ==> ?lis. lresproof hyps lis /\ ALL2 (instance_of) plis lis`
  MP_TAC THENL
   [ALL_TAC;
    DISCH_THEN(MP_TAC o SPEC `CONS {} (qlist:(form->bool)list)`) THEN
    ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL2] THEN
    MAP_EVERY X_GEN_TAC [`emp:form->bool`; `lis:(form->bool)list`] THEN
    DISCH_THEN(K ALL_TAC) THEN STRIP_TAC THEN
    SUBGOAL_THEN `emp:form->bool = {}` SUBST_ALL_TAC THENL
     [UNDISCH_TAC `{} instance_of emp` THEN
      REWRITE_TAC[instance_of; EXTENSION; IN_IMAGE; NOT_IN_EMPTY] THEN
      MESON_TAC[]; ALL_TAC] THEN
    EXISTS_TAC `lis:(form->bool)list` THEN
    ASM_REWRITE_TAC[] THEN
    X_GEN_TAC `p:form` THEN
    SUBGOAL_THEN `sos instance_of (LAST (CONS {} lis))` MP_TAC THENL
     [EXPAND_TAC "sos" THEN MATCH_MP_TAC ALL2_BUTLAST THEN
      ASM_REWRITE_TAC[ALL2; NOT_CONS_NIL]; ALL_TAC] THEN
    REWRITE_TAC[instance_of] THEN
    DISCH_THEN(X_CHOOSE_THEN `jj:num->term` SUBST_ALL_TAC) THEN
    DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `formsubst jj p`) THEN
    REWRITE_TAC[NEGATIVE_FORMSUBST] THEN DISCH_THEN MATCH_MP_TAC THEN
    REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[]] THEN
  SUBGOAL_THEN
   `!plis. lpresproof asm plis
           ==> (!c. MEM c plis ==> clause c) /\
               ?lis. lresproof hyps lis /\ ALL2 (instance_of) plis lis`
   (fun th -> MESON_TAC[th]) THEN
  MATCH_MP_TAC lpresproof_INDUCT THEN CONJ_TAC THENL
   [X_GEN_TAC `cl:form->bool` THEN DISCH_TAC THEN CONJ_TAC THENL
     [SUBGOAL_THEN `clause cl` (fun th -> ASM_MESON_TAC[MEM; th]) THEN
      UNDISCH_TAC `asm SUBSET {IMAGE (formsubst v) cl | cl,v | cl IN hyps}` THEN
      REWRITE_TAC[SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN
      ASM_REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN
      ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN
    UNDISCH_TAC `asm SUBSET {IMAGE (formsubst v) cl | cl,v | cl IN hyps}` THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
    DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN
    ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`cl0:form->bool`; `jj:num->term`] THEN
    STRIP_TAC THEN EXISTS_TAC `[cl0:form->bool]` THEN
    ASM_SIMP_TAC[lresproof_RULES; ALL2] THEN
    REWRITE_TAC[instance_of] THEN MESON_TAC[]; ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC
   [`A':form->bool`; `B':form->bool`; `lis':(form->bool)list`; `p:form`] THEN
  DISCH_THEN(CONJUNCTS_THEN2
   (CONJUNCTS_THEN2 ASSUME_TAC
   (X_CHOOSE_THEN `alist:(form->bool)list` STRIP_ASSUME_TAC))
   (REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN
  SUBGOAL_THEN `clause A'` ASSUME_TAC THENL
   [ASM_MESON_TAC[MEM]; ALL_TAC] THEN
  SUBGOAL_THEN `clause B'` ASSUME_TAC THENL
   [FIRST_X_ASSUM DISJ_CASES_TAC THENL
     [ALL_TAC; ASM_MESON_TAC[MEM]] THEN
    UNDISCH_TAC `asm SUBSET {IMAGE (formsubst v) cl | cl,v | cl IN hyps}` THEN
    REWRITE_TAC[SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `B':form->bool`) THEN
    ASM_REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN
    ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN
  CONJ_TAC THENL
   [GEN_TAC THEN ONCE_REWRITE_TAC[MEM] THEN ASM_MESON_TAC[RESOLVE_CLAUSE];
    ALL_TAC] THEN
  UNDISCH_TAC `lresproof hyps alist` THEN
  UNDISCH_TAC `ALL2 (instance_of) (CONS A' lis') alist` THEN
  SPEC_TAC(`alist:(form->bool)list`,`alist:(form->bool)list`) THEN
  MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL2] THEN
  MAP_EVERY X_GEN_TAC [`A:form->bool`; `lis:(form->bool)list`] THEN
  DISCH_THEN(K ALL_TAC) THEN STRIP_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN `clause A /\ !c. MEM c lis ==> clause c` STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[ALL_MEM; GSYM(CONJUNCT2 ALL)] THEN
    ASM_MESON_TAC[LRESPROOF_CLAUSE]; ALL_TAC] THEN
  SUBGOAL_THEN `?B. B' instance_of B /\ (B IN hyps \/ MEM B lis)` MP_TAC THENL
   [FIRST_X_ASSUM DISJ_CASES_TAC THENL
     [UNDISCH_TAC `asm SUBSET {IMAGE (formsubst v) cl | cl,v | cl IN hyps}` THEN
      REWRITE_TAC[SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `B':form->bool`) THEN
      ASM_REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN
      REWRITE_TAC[instance_of] THEN MESON_TAC[]; ALL_TAC] THEN
    ASM_MESON_TAC[ALL2_MEM]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `B:form->bool` (CONJUNCTS_THEN ASSUME_TAC)) THEN
  SUBGOAL_THEN `clause B` ASSUME_TAC THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  MP_TAC(SPECL
   [`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`;
    `A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`]
   LIFTING_LEMMA) THEN
  ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN
  MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN
  ANTS_TAC THENL
   [ASM_MESON_TAC[FVS_CLAUSE_FINITE; RESPROOF_CLAUSE]; ALL_TAC] THEN
  ASM_REWRITE_TAC[renaming] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
   [FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN
  ANTS_TAC THEN REPEAT CONJ_TAC THENL
   [ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; RESPROOF_CLAUSE];
    ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[];
    UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN
    DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN
    EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN
    EXISTS_TAC `termsubst k o (j:num->term)` THEN
    SUBGOAL_THEN
     `termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))`
    MP_TAC THENL
     [REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL
       [ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM];
        SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN
        REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]];
      ALL_TAC] THEN
    REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN
    REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN
    ASM_MESON_TAC[RESPROOF_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool`
      MP_TAC)) THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN
  ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
   [MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN
    REPEAT CONJ_TAC THENL
     [ASM_MESON_TAC[RESPROOF_CLAUSE; clause; FINITE_SUBSET];
      SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL
       [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN
        MESON_TAC[]; ALL_TAC] THEN
      ASM_MESON_TAC[RESPROOF_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE];
      REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN
      ASM_MESON_TAC[RESPROOF_CLAUSE; clause; QFREE_LITERAL; SUBSET;
                    IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]];
    ALL_TAC] THEN
  DISCH_TAC THEN
  EXISTS_TAC `CONS (IMAGE (formsubst (mgu (A1 UNION {~~ l | l IN B1})))
                          (A DIFF A1 UNION C DIFF B1))
                   (CONS A lis)` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC (CONJUNCT2(SPEC_ALL lresproof_RULES)) THEN
    EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[isaresolvent] THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
    MAP_EVERY EXISTS_TAC [`A1:form->bool`; `B1:form->bool`] THEN
    ASM_REWRITE_TAC[] THEN
    CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN REWRITE_TAC[]; ALL_TAC] THEN
  ASM_REWRITE_TAC[ALL2]);;