1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
|
(* ========================================================================= *)
(* Linear refutations. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Some clause-preservation lemmas. *)
(* ------------------------------------------------------------------------- *)
let RESOLVE_CLAUSE = prove
(`!c1 c2 p. clause c1 /\ clause c2 ==> clause(resolve p c1 c2)`,
REWRITE_TAC[clause; resolve; FINITE_UNION; IN_UNION; IN_DELETE] THEN
MESON_TAC[DELETE_SUBSET; FINITE_SUBSET]);;
let PRESPROOF_CLAUSE = prove
(`!hyps cl. (!c. c IN hyps ==> clause c) /\ presproof hyps cl ==> clause cl`,
REWRITE_TAC[IMP_CONJ] THEN
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
MATCH_MP_TAC presproof_INDUCT THEN ASM_MESON_TAC[RESOLVE_CLAUSE]);;
let RESOLVE_MONO = prove
(`!c1 c2 c1' c2' p.
c1 SUBSET c1' /\ c2 SUBSET c2'
==> (resolve p c1 c2) SUBSET (resolve p c1' c2')`,
REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* More refined provability predicate, tracking participating hypotheses. *)
(* ------------------------------------------------------------------------- *)
let ppresproof_RULES,ppresproof_INDUCT,ppresproof_CASES =
new_inductive_definition
`(!c. clause(c) ==> ppresproof {c} c) /\
(!p asm1 asm2 c1 c2.
ppresproof asm1 c1 /\ ppresproof asm2 c2 /\
p IN c1 /\ ~~ p IN c2
==> ppresproof (asm1 UNION asm2) (resolve p c1 c2))`;;
let PPRESPROOF = prove
(`!hyps. (!c. c IN hyps ==> clause c)
==> !c. presproof hyps c <=>
?asm. asm SUBSET hyps /\ ppresproof asm c`,
REPEAT STRIP_TAC THEN EQ_TAC THENL
[SPEC_TAC(`c:form->bool`,`c:form->bool`) THEN
MATCH_MP_TAC presproof_INDUCT THEN CONJ_TAC THENL
[X_GEN_TAC `c:form->bool` THEN DISCH_TAC THEN
EXISTS_TAC `{c:form->bool}` THEN
ASM_SIMP_TAC[ppresproof_RULES] THEN
UNDISCH_TAC `c:form->bool IN hyps` THEN SET_TAC[];
ALL_TAC] THEN
REWRITE_TAC[SUBSET] THEN MESON_TAC[ppresproof_RULES; IN_UNION];
DISCH_THEN(X_CHOOSE_THEN `asm:(form->bool)->bool` MP_TAC) THEN
ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN
MAP_EVERY (fun s -> SPEC_TAC(s,s))
[`c:form->bool`; `asm:(form->bool)->bool`] THEN
MATCH_MP_TAC ppresproof_INDUCT THEN
REWRITE_TAC[SUBSET; IN_INSERT; IN_UNION; NOT_IN_EMPTY] THEN
MESON_TAC[presproof_RULES]]);;
let PPRESPROOF_CLAUSE = prove
(`!asm cl. ppresproof asm cl ==> clause cl /\ (!c. c IN asm ==> clause c)`,
MATCH_MP_TAC ppresproof_INDUCT THEN SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
SIMP_TAC[IN_UNION; RESOLVE_CLAUSE] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* A kind of soundness used later to pick the set-of-support. *)
(* ------------------------------------------------------------------------- *)
let PPRESPROOF_CONSEQUENCE = prove
(`!asm cl. ppresproof asm cl
==> !d. d psatisfies (IMAGE interp asm) ==> pholds d (interp cl)`,
SUBGOAL_THEN
`!asm cl. ppresproof asm cl
==> !d. (!c. c IN asm ==> ?p. p IN c /\ pholds d p)
==> ?p. p IN cl /\ pholds d p`
MP_TAC THENL
[ALL_TAC;
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
ASM_CASES_TAC `ppresproof asm cl` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[psatisfies] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN
ASM_MESON_TAC[PHOLDS_INTERP; clause; PPRESPROOF_CLAUSE]] THEN
MATCH_MP_TAC ppresproof_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[IMAGE; IN_INSERT; NOT_IN_EMPTY; psatisfies; IN_ELIM_THM] THEN
MESON_TAC[]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC
[`p:form`; `asm1:(form->bool)->bool`; `asm2:(form->bool)->bool`;
`c1:form->bool`; `c2:form->bool`] THEN
REWRITE_TAC[IMAGE_UNION] THEN
REWRITE_TAC[psatisfies; IN_UNION] THEN
DISCH_THEN(fun th -> GEN_TAC THEN DISCH_TAC THEN MP_TAC th) THEN
REWRITE_TAC[CONJ_ASSOC; AND_FORALL_THM] THEN
REWRITE_TAC[GSYM CONJ_ASSOC] THEN
DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `d:form->bool`) MP_TAC) THEN
STRIP_TAC THEN ASM_SIMP_TAC[] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `r:form` STRIP_ASSUME_TAC)) THEN
REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN
ASM_MESON_TAC[PHOLDS_NEGATE]);;
let PPRESPROOF_SOUND = prove
(`!asm. ppresproof asm {} ==> ~(psatisfiable (IMAGE interp asm))`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP PPRESPROOF_CONSEQUENCE) THEN
REWRITE_TAC[psatisfiable] THEN
SIMP_TAC[PHOLDS_INTERP; FINITE_RULES; NOT_IN_EMPTY] THEN
REWRITE_TAC[psatisfies] THEN MESON_TAC[]);;
let PPRESPROOF_ALLNEGATIVE = prove
(`!asm. ppresproof asm {} ==> ?c. c IN asm /\ !p. p IN c ==> negative p`,
GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PPRESPROOF_SOUND) THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[psatisfiable] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN
EXISTS_TAC `\x:form. T` THEN
SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN
GEN_TAC THEN X_GEN_TAC `c:form->bool` THEN
DISCH_THEN(CONJUNCTS_THEN2 (K ALL_TAC) ASSUME_TAC) THEN
SUBGOAL_THEN `FINITE(c:form->bool)`
(fun th -> SIMP_TAC[th; PHOLDS_INTERP])
THENL [ASM_MESON_TAC[PPRESPROOF_CLAUSE; clause]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `c:form->bool`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN
SIMP_TAC[] THEN STRIP_TAC THEN
SUBGOAL_THEN `literal q` MP_TAC THENL
[ASM_MESON_TAC[PPRESPROOF_CLAUSE; clause]; ALL_TAC] THEN
REWRITE_TAC[literal; ATOM] THEN
REPEAT STRIP_TAC THEN UNDISCH_TAC `~(negative q)` THEN
ASM_REWRITE_TAC[pholds] THEN
REWRITE_TAC[negative; Not_DEF; form_INJ] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Linear propositional proof. *)
(* ------------------------------------------------------------------------- *)
let lpresproof_RULES,lpresproof_INDUCT,lpresproof_CASES =
new_inductive_definition
`(!cl. cl IN hyps ==> lpresproof hyps [cl]) /\
(!c1 c2 lis p.
lpresproof hyps (CONS c1 lis) /\
(c2 IN hyps \/ MEM c2 lis) /\
p IN c1 /\ ~~p IN c2
==> lpresproof hyps (CONS (resolve p c1 c2) (CONS c1 lis)))`;;
let LPRESPROOF_MONO = prove
(`!hyps hyps' c.
hyps SUBSET hyps' /\ lpresproof hyps c ==> lpresproof hyps' c`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SPEC_TAC(`c:(form->bool)list`,`c:(form->bool)list`) THEN
MATCH_MP_TAC lpresproof_INDUCT THEN
ASM_MESON_TAC[lpresproof_RULES; SUBSET]);;
(* ------------------------------------------------------------------------- *)
(* Resolution where one argument is a tautology. *)
(* ------------------------------------------------------------------------- *)
let RESOLVE_SYM = prove
(`!c1 c2 p. literal p ==> (resolve (~~p) c1 c2 = resolve p c2 c1)`,
SIMP_TAC[resolve; NEGATE_NEGATE; UNION_ACI]);;
let RESOLVE_TAUT_L = prove
(`!c1 c2 p. clause c1 /\ tautologous c1
==> tautologous(resolve p c1 c2) \/ c2 SUBSET (resolve p c1 c2)`,
REWRITE_TAC[tautologous; SUBSET; resolve; IN_DELETE; IN_UNION; clause] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `(p = q) \/ (p = ~~q)` THENL
[FIRST_X_ASSUM(DISJ_CASES_THEN SUBST_ALL_TAC); ALL_TAC] THEN
ASM_MESON_TAC[NEGATE_REFL; NEGATE_NEGATE]);;
let RESOLVE_TAUT_R = prove
(`!c1 c2 p. clause c2 /\ tautologous c2 /\ literal p
==> tautologous(resolve p c1 c2) \/ c1 SUBSET (resolve p c1 c2)`,
REWRITE_TAC[tautologous; SUBSET; resolve; IN_DELETE; IN_UNION; clause] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `(p = q) \/ (p = ~~q)` THENL
[FIRST_X_ASSUM(DISJ_CASES_THEN SUBST_ALL_TAC); ALL_TAC] THEN
ASM_MESON_TAC[NEGATE_REFL; NEGATE_NEGATE]);;
let SUBSET_TAUT = prove
(`!c1 c2. tautologous c1 /\ c1 SUBSET c2 ==> tautologous c2`,
REWRITE_TAC[tautologous; SUBSET] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Auxiliary concept about preserving the branch. *)
(* ------------------------------------------------------------------------- *)
let suffix = new_recursive_definition list_RECURSION
`(suffix lis [] <=> (lis = [])) /\
(suffix lis (CONS s cs) <=> (lis = CONS s cs) \/ suffix lis cs)`;;
let SUFFIX_REFL = prove
(`!lis. suffix lis lis`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[suffix]);;
let SUFFIX_BUTLAST = prove
(`!l1 l2. suffix l1 l2 /\ ~(l1 = []) ==> (LAST l1 :A = LAST l2)`,
GEN_TAC THEN ASM_CASES_TAC `l1:(A)list = []` THEN ASM_REWRITE_TAC[] THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[suffix; LAST] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[LAST] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[suffix]);;
let SUFFIX_TRANS = prove
(`!l1 l2 l3. suffix l1 l2 /\ suffix l2 l3 ==> suffix l1 l3`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[suffix] THEN
ASM_MESON_TAC[suffix]);;
let SUFFIX_MEM = prove
(`!x:A l lis. suffix (CONS x l) lis ==> MEM x lis`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[MEM; suffix; NOT_CONS_NIL; CONS_11] THEN ASM_MESON_TAC[]);;
let SUFFIX_CONS = prove
(`!x l1 l2. suffix l1 l2 ==> suffix l1 (CONS x l2)`,
MESON_TAC[suffix]);;
let SUFFIX_LENGTH = prove
(`!l1 l2. suffix l1 l2 ==> LENGTH l1 <= LENGTH l2`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[suffix; LENGTH; NOT_CONS_NIL; LE_0] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[LENGTH; LE_SUC; LE_REFL] THEN
ASM_MESON_TAC[ARITH_RULE `x <= y ==> x <= SUC y`]);;
let NOT_SUFFIX_TAIL = prove
(`!x l. ~(suffix (CONS x l) l)`,
MESON_TAC[SUFFIX_LENGTH; LENGTH; ARITH_RULE `~(SUC n <= n)`]);;
let SUFFIX_ANTISYM = prove
(`!l1 l2. suffix l1 l2 /\ suffix l2 l1 ==> (l1 = l2)`,
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[suffix; NOT_CONS_NIL; CONS_11] THEN
ASM_MESON_TAC[NOT_SUFFIX_TAIL; SUFFIX_TRANS; SUFFIX_CONS]);;
(* ------------------------------------------------------------------------- *)
(* Main linearization theorem. *)
(* ------------------------------------------------------------------------- *)
let NEGATE_LITERAL = prove
(`!q. literal q ==> literal(~~q)`,
REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[ATOM; NEGATE_ATOM; NEGATE_NEG]);;
let SYMMETRY_LEMMA_1 = prove
(`(!q basm B casm C c.
literal q
==> (P q basm B casm C c = P (~~q) casm C basm B c)) /\
(!q basm B casm C. literal q
==> (Q q basm B casm C = Q (~~q) casm C basm B)) /\
(!q basm B casm C.
Q q basm B casm C
==> literal q ==> !c. c IN basm ==> P q basm B casm C c)
==> !q basm B casm C.
Q q basm B casm C
==> literal q ==> !c. c IN basm UNION casm ==> P q basm B casm C c`,
REWRITE_TAC[IN_UNION] THEN MESON_TAC[NEGATE_LITERAL; NEGATE_NEGATE]);;
let SYMMETRY_LEMMA_2 = prove
(`(!p q basm B casm C main aasm A.
literal q
==> (P p q basm B casm C main aasm A =
P p (~~q) casm C basm B main aasm A)) /\
(!p q basm B casm C main aasm A.
~~p IN B ==> literal q ==> P p q basm B casm C main aasm A)
==> !p q basm B casm C main aasm A.
~~p IN B \/ ~~p IN C ==> literal q
==> P p q basm B casm C main aasm A`,
REWRITE_TAC[IN_UNION] THEN MESON_TAC[NEGATE_LITERAL; NEGATE_NEGATE]);;
let LINEARIZATION = prove
(`!asm cl. ppresproof asm cl
==> !c. c IN asm
==> ?cl' lis. lpresproof asm (CONS cl' lis) /\
cl' SUBSET cl /\
(LAST (CONS cl' lis) = c)`,
SUBGOAL_THEN
`!asm cl. ppresproof asm cl
==> (!c. c IN asm ==> clause c) /\ clause cl /\
(!c. c IN asm
==> ?cl' lis. lpresproof asm (CONS cl' lis) /\
cl' SUBSET cl /\
(LAST (CONS cl' lis) = c)) /\
(!c lis p asm'.
clause c /\
lpresproof asm' (CONS c lis) /\ p IN c /\ ~~p IN cl
==> ?c' lis'. suffix (CONS c lis) (CONS c' lis') /\
lpresproof (asm UNION asm')
(CONS c' lis') /\
c' SUBSET (resolve p c cl))`
(fun th -> SIMP_TAC[th]) THEN
MATCH_MP_TAC ppresproof_INDUCT THEN CONJ_TAC THENL
[X_GEN_TAC `cl:form->bool` THEN DISCH_TAC THEN
ASM_SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN CONJ_TAC THENL
[GEN_TAC THEN DISCH_THEN(K ALL_TAC) THEN
MAP_EVERY EXISTS_TAC [`cl:form->bool`; `[]:(form->bool)list`] THEN
REWRITE_TAC[LAST; SUBSET_REFL] THEN
SIMP_TAC[lpresproof_RULES; IN_INSERT; NOT_IN_EMPTY]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC
[`c:form->bool`; `lis:(form->bool)list`; `p:form`;
`hyp:(form->bool)->bool`] THEN
STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`resolve p c cl`; `CONS (c:form->bool) lis`] THEN
REWRITE_TAC[SUBSET_REFL; suffix; SUFFIX_REFL] THEN
MATCH_MP_TAC(CONJUNCT2(SPEC_ALL lpresproof_RULES)) THEN
ASM_REWRITE_TAC[IN_UNION; IN_INSERT] THEN
ASM_MESON_TAC[IN_UNION; SUBSET; LPRESPROOF_MONO]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC
[`q:form`; `basm:(form->bool)->bool`; `casm:(form->bool)->bool`;
`B:form->bool`; `C:form->bool`] THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
ASM_SIMP_TAC[RESOLVE_CLAUSE] THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[IN_UNION];
ASM_SIMP_TAC[RESOLVE_CLAUSE] THEN
SUBGOAL_THEN `literal q` MP_TAC THENL [ASM_MESON_TAC[clause]; ALL_TAC] THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
MAP_EVERY (fun s -> SPEC_TAC(s,s))
[`C:form->bool`; `casm:(form->bool)->bool`;
`B:form->bool`; `basm:(form->bool)->bool`; `q:form`] THEN
MATCH_MP_TAC SYMMETRY_LEMMA_1 THEN REPEAT CONJ_TAC THENL
[SIMP_TAC[resolve; NEGATE_NEGATE; UNION_ACI];
SIMP_TAC[CONJ_ACI; NEGATE_NEGATE];
ALL_TAC] THEN
REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
DISCH_TAC THEN X_GEN_TAC `c:form->bool` THEN DISCH_TAC THEN
UNDISCH_TAC
`!c. c IN basm
==> (?cl' lis.
lpresproof basm (CONS cl' lis) /\
cl' SUBSET B /\
(LAST (CONS cl' lis) = c))` THEN
DISCH_THEN(MP_TAC o SPEC `c:form->bool`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`B1:form->bool`; `main:(form->bool)list`] THEN
STRIP_TAC THEN ASM_CASES_TAC `q:form IN B1` THENL
[UNDISCH_TAC
`!c lis p asm'.
clause c /\ lpresproof asm' (CONS c lis) /\ p IN c /\ ~~ p IN C
==> (?c' lis'.
suffix (CONS c lis) (CONS c' lis') /\
lpresproof (casm UNION asm') (CONS c' lis') /\
c' SUBSET resolve p c C)` THEN
DISCH_THEN(MP_TAC o SPECL
[`B1:form->bool`; `main:(form->bool)list`; `q:form`;
`basm:(form->bool)->bool`]) THEN ASM_REWRITE_TAC[] THEN
ANTS_TAC THENL [ASM_MESON_TAC[CLAUSE_SUBSET]; ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `D:form->bool` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `final:(form->bool)list` THEN
STRIP_TAC THEN REPEAT CONJ_TAC THENL
[ONCE_REWRITE_TAC[UNION_COMM] THEN ASM_REWRITE_TAC[];
ASM_MESON_TAC[RESOLVE_MONO; SUBSET_TRANS; SUBSET_REFL];
ASM_MESON_TAC[SUFFIX_BUTLAST; NOT_CONS_NIL]];
ALL_TAC] THEN
MAP_EVERY EXISTS_TAC [`B1:form->bool`; `main:(form->bool)list`] THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[ASM_MESON_TAC[LPRESPROOF_MONO; IN_UNION; SUBSET]; ALL_TAC] THEN
UNDISCH_TAC `B1:(form->bool) SUBSET B` THEN
UNDISCH_TAC `~(q:form IN B1)` THEN
REWRITE_TAC[resolve; SUBSET; IN_UNION; IN_DELETE] THEN MESON_TAC[];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`A:form->bool`; `main:(form->bool)list`;
`p:form`; `aasm:(form->bool)->bool`] THEN
STRIP_TAC THEN
SUBGOAL_THEN `~~p IN B \/ ~~p IN C`
(fun th1 ->
SUBGOAL_THEN `literal q`
(fun th2 -> POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
MP_TAC th2 THEN MP_TAC th1)
THENL [ASM_MESON_TAC[clause]; ALL_TAC])
THENL
[UNDISCH_TAC `~~p IN resolve q B C` THEN
REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]; ALL_TAC] THEN
MAP_EVERY (fun s -> SPEC_TAC(s,s))
[`A:form->bool`; `aasm:(form->bool)->bool`; `main:(form->bool)list`;
`C:form->bool`; `casm:(form->bool)->bool`;
`B:form->bool`; `basm:(form->bool)->bool`; `q:form`; `p:form`] THEN
MATCH_MP_TAC SYMMETRY_LEMMA_2 THEN CONJ_TAC THENL
[SIMP_TAC[resolve; NEGATE_NEGATE] THEN
REWRITE_TAC[UNION_ACI] THEN REWRITE_TAC[CONJ_ACI]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC
[`p:form`; `q:form`; `basm:(form->bool)->bool`; `B:form->bool`;
`casm:(form->bool)->bool`; `C:form->bool`; `main:(form->bool)list`;
`aasm:(form->bool)->bool`; `A:form->bool`] THEN
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `p:form = q` THENL
[UNDISCH_THEN `p:form = q` SUBST_ALL_TAC THEN
UNDISCH_TAC
`!c lis p asm'.
clause c /\ lpresproof asm' (CONS c lis) /\ p IN c /\ ~~ p IN C
==> (?c' lis'.
suffix (CONS c lis) (CONS c' lis') /\
lpresproof (casm UNION asm') (CONS c' lis') /\
c' SUBSET resolve p c C)` THEN
DISCH_THEN(MP_TAC o SPECL
[`A:form->bool`; `main:(form->bool)list`; `q:form`;
`aasm:(form->bool)->bool`]) THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `D:form->bool` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `final:(form->bool)list` THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC LPRESPROOF_MONO THEN
EXISTS_TAC `casm:(form->bool)->bool UNION aasm` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; IN_UNION] THEN
GEN_TAC THEN CONV_TAC TAUT;
SUBGOAL_THEN `C SUBSET (resolve q B C)` (fun th ->
ASM_MESON_TAC[SUBSET_TRANS; RESOLVE_MONO; SUBSET_REFL; th]) THEN
UNDISCH_TAC `~~q IN B` THEN
REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN
MESON_TAC[NEGATE_REFL]]; ALL_TAC] THEN
ASM_CASES_TAC `p = ~~q` THENL
[UNDISCH_THEN `p = ~~q` SUBST_ALL_TAC THEN
UNDISCH_TAC
`!c lis p asm'.
clause c /\ lpresproof asm' (CONS c lis) /\ p IN c /\ ~~ p IN B
==> (?c' lis'.
suffix (CONS c lis) (CONS c' lis') /\
lpresproof (basm UNION asm') (CONS c' lis') /\
c' SUBSET resolve p c B)` THEN
DISCH_THEN(MP_TAC o SPECL
[`A:form->bool`; `main:(form->bool)list`; `~~q`;
`aasm:(form->bool)->bool`]) THEN
SUBST_ALL_TAC(MATCH_MP NEGATE_NEGATE (ASSUME `literal q`)) THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `D:form->bool` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `final:(form->bool)list` THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC LPRESPROOF_MONO THEN
EXISTS_TAC `basm:(form->bool)->bool UNION aasm` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; IN_UNION] THEN
GEN_TAC THEN CONV_TAC TAUT;
SUBGOAL_THEN `B SUBSET (resolve q B C)` (fun th ->
ASM_MESON_TAC[SUBSET_TRANS; RESOLVE_MONO; SUBSET_REFL; th]) THEN
SUBGOAL_THEN `q:form IN C` MP_TAC THENL
[ALL_TAC;
REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN
MESON_TAC[NEGATE_REFL]] THEN
UNDISCH_TAC `q IN resolve q B C` THEN
REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]];
ALL_TAC] THEN
UNDISCH_TAC
`!c lis p asm'.
clause c /\ lpresproof asm' (CONS c lis) /\ p IN c /\ ~~ p IN B
==> (?c' lis'.
suffix (CONS c lis) (CONS c' lis') /\
lpresproof (basm UNION asm') (CONS c' lis') /\
c' SUBSET resolve p c B)` THEN
DISCH_THEN(MP_TAC o SPECL
[`A:form->bool`; `main:(form->bool)list`; `p:form`;
`aasm:(form->bool)->bool`]) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`D:form->bool`; `middle:(form->bool)list`] THEN
STRIP_TAC THEN
SUBGOAL_THEN
`?c' lis'.
suffix (CONS D middle) (CONS c' lis') /\
suffix (CONS A main) (CONS c' lis') /\
lpresproof ((basm UNION casm) UNION aasm) (CONS c' lis') /\
c' SUBSET resolve q (resolve p A B) C`
MP_TAC THENL
[ASM_CASES_TAC `q:form IN D` THENL
[UNDISCH_TAC
`!c lis p asm'.
clause c /\ lpresproof asm' (CONS c lis) /\ p IN c /\ ~~ p IN C
==> (?c' lis'.
suffix (CONS c lis) (CONS c' lis') /\
lpresproof (casm UNION asm') (CONS c' lis') /\
c' SUBSET resolve p c C)` THEN
DISCH_THEN(MP_TAC o SPECL
[`D:form->bool`; `middle:(form->bool)list`;
`q:form`; `basm:(form->bool)->bool UNION aasm`]) THEN
ASM_REWRITE_TAC[] THEN
ANTS_TAC THENL
[ASM_MESON_TAC[RESOLVE_CLAUSE; CLAUSE_SUBSET]; ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `E:form->bool` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `final:(form->bool)list` THEN
SIMP_TAC[UNION_ACI] THEN REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[SUFFIX_TRANS]; ALL_TAC] THEN
ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]; ALL_TAC] THEN
MAP_EVERY EXISTS_TAC [`D:form->bool`; `middle:(form->bool)list`] THEN
ASM_REWRITE_TAC[SUFFIX_REFL] THEN CONJ_TAC THENL
[ASM_MESON_TAC[LPRESPROOF_MONO; SUBSET; IN_UNION]; ALL_TAC] THEN
UNDISCH_TAC `D SUBSET resolve p A B` THEN
UNDISCH_TAC `~(q:form IN D)` THEN
REWRITE_TAC[resolve; SUBSET; IN_UNION; IN_DELETE] THEN
MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`E:form->bool`; `final:(form->bool)list`] THEN
STRIP_TAC THEN ASM_CASES_TAC `~~p IN E` THENL
[ALL_TAC;
MAP_EVERY EXISTS_TAC [`E:form->bool`; `final:(form->bool)list`] THEN
ASM_REWRITE_TAC[] THEN
MAP_EVERY UNDISCH_TAC
[`E SUBSET resolve q (resolve p A B) C`;
`~(~~ p IN E)`; `~(p = ~~ q)`; `~(p:form = q)`;
`q:form IN B`; `~~q IN C`; `~~p IN resolve q B C`;
`~~p IN B`] THEN
REWRITE_TAC[resolve; IN_UNION; IN_DELETE; SUBSET] THEN
MESON_TAC[]] THEN
ASM_CASES_TAC `CONS (A:form->bool) main = CONS E final` THENL
[ALL_TAC;
EXISTS_TAC `resolve (~~p) E A` THEN
EXISTS_TAC `CONS (E:form->bool) final` THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[suffix];
MATCH_MP_TAC(CONJUNCT2(SPEC_ALL lpresproof_RULES)) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[DISJ2_TAC THEN
UNDISCH_TAC `suffix (CONS (A:form->bool) main) (CONS E final)` THEN
ASM_REWRITE_TAC[suffix] THEN MESON_TAC[SUFFIX_MEM];
SUBGOAL_THEN `~~(~~p) = p` (fun th -> ASM_REWRITE_TAC[th]) THEN
MATCH_MP_TAC NEGATE_NEGATE THEN ASM_MESON_TAC[clause]];
SUBGOAL_THEN `(~~(~~p) = p) /\ (~~(~~q) = q)` MP_TAC THENL
[ASM_MESON_TAC[NEGATE_NEGATE; clause]; ALL_TAC] THEN
MAP_EVERY UNDISCH_TAC
[`~~ p IN E`;
`E SUBSET resolve q (resolve p A B) C`;
`~(p = ~~ q)`; `~(p:form = q)`; `q:form IN B`;
`~~q IN C`; `p:form IN A`; `~~p IN resolve q B C`;
`~~p IN B`] THEN
REWRITE_TAC[resolve; IN_UNION; IN_DELETE; SUBSET] THEN
MESON_TAC[]]] THEN
UNDISCH_TAC `CONS (A:form->bool) main = CONS E final` THEN
REWRITE_TAC[CONS_11] THEN
DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN
SUBGOAL_THEN `CONS (D:form->bool) middle = CONS A main` MP_TAC THENL
[ASM_MESON_TAC[SUFFIX_ANTISYM]; ALL_TAC] THEN
REWRITE_TAC[CONS_11] THEN DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN
MAP_EVERY EXISTS_TAC [`A:form->bool`; `main:(form->bool)list`] THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `A SUBSET resolve p A B` THEN
UNDISCH_TAC `A SUBSET resolve q (resolve p A B) C` THEN
REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Linear resolution at the first order level. *)
(* ------------------------------------------------------------------------- *)
let lresproof_RULES,lresproof_INDUCT,lresproof_CASES =
new_inductive_definition
`(!cl. cl IN hyps ==> lresproof hyps [cl]) /\
(!c1 c2 lis cl.
lresproof hyps (CONS c1 lis) /\ (c2 IN hyps \/ MEM c2 lis) /\
isaresolvent cl (c1,c2)
==> lresproof hyps (CONS cl (CONS c1 lis)))`;;
(* ------------------------------------------------------------------------- *)
(* Completeness of linear resolution. *)
(* ------------------------------------------------------------------------- *)
let ALL2_BUTLAST = prove
(`!P:(A->A->bool) l1 l2.
~(l1 = []) /\ ALL2 P l1 l2 ==> P (LAST l1) (LAST l2)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[NOT_CONS_NIL] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL2] THEN
REWRITE_TAC[LAST] THEN
ASM_CASES_TAC `t:A list = []` THEN ASM_REWRITE_TAC[] THENL
[SPEC_TAC(`t':A list`,`t':A list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2; NOT_CONS_NIL];
ALL_TAC] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN
UNDISCH_TAC `~(t:A list = [])` THEN
SPEC_TAC(`t:A list`,`t:A list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2; NOT_CONS_NIL]);;
let ALL2_MEM = prove
(`!l1 l2. ALL2 P l1 l2 /\ MEM x l1 ==> ?y. MEM y l2 /\ P x y`,
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL2; MEM] THEN ASM_MESON_TAC[]);;
let LRESPROOF_CLAUSE = prove
(`!hyps. (!c. c IN hyps ==> clause c)
==> !lis. lresproof hyps lis ==> ALL clause lis`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC lresproof_INDUCT THEN
REWRITE_TAC[ALL] THEN ASM_MESON_TAC[ISARESOLVENT_CLAUSE; ALL_MEM]);;
let LINEAR_RESOLUTION_COMPLETE = prove
(`(!cl. cl IN hyps ==> clause cl) /\
~(?M:(term->bool)#(num->term list->term)#(num->term list->bool).
interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\
M satisfies (IMAGE interp hyps))
==> ?lis. lresproof hyps (CONS {} lis) /\
(!p. p IN (LAST (CONS {} lis)) ==> negative p)`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN
DISCH_TAC THEN
SUBGOAL_THEN
`~(psatisfiable
{interp cl |
cl IN {IMAGE(formsubst v) cl | cl,v | cl IN hyps}})`
MP_TAC THENL
[REWRITE_TAC[psatisfiable] THEN
FIRST_X_ASSUM(fun th -> MP_TAC th THEN
MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> ~b`)) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN
REWRITE_TAC[psatisfies] THEN
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM;
RIGHT_AND_EXISTS_THM; IN_IMAGE] THEN
ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE] THEN MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP
(REWRITE_RULE[IMP_CONJ_ALT]
PRESPROOF_REFUTATION_COMPLETE)) THEN
ANTS_TAC THENL
[SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
ASM_SIMP_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN
MP_TAC(SPEC `{IMAGE (formsubst v) cl | cl,v | cl IN hyps}` PPRESPROOF) THEN
ANTS_TAC THENL
[REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN
ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN
DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN
DISCH_THEN(X_CHOOSE_THEN `asm:(form->bool)->bool` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PPRESPROOF_ALLNEGATIVE) THEN
DISCH_THEN(X_CHOOSE_THEN `sos:form->bool` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP LINEARIZATION) THEN
DISCH_THEN(MP_TAC o SPEC `sos:form->bool`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `emptyclause:form->bool` MP_TAC) THEN
REWRITE_TAC[SUBSET_EMPTY] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `qlist:(form->bool)list` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN
`!plis. lpresproof asm plis
==> ?lis. lresproof hyps lis /\ ALL2 (instance_of) plis lis`
MP_TAC THENL
[ALL_TAC;
DISCH_THEN(MP_TAC o SPEC `CONS {} (qlist:(form->bool)list)`) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL2] THEN
MAP_EVERY X_GEN_TAC [`emp:form->bool`; `lis:(form->bool)list`] THEN
DISCH_THEN(K ALL_TAC) THEN STRIP_TAC THEN
SUBGOAL_THEN `emp:form->bool = {}` SUBST_ALL_TAC THENL
[UNDISCH_TAC `{} instance_of emp` THEN
REWRITE_TAC[instance_of; EXTENSION; IN_IMAGE; NOT_IN_EMPTY] THEN
MESON_TAC[]; ALL_TAC] THEN
EXISTS_TAC `lis:(form->bool)list` THEN
ASM_REWRITE_TAC[] THEN
X_GEN_TAC `p:form` THEN
SUBGOAL_THEN `sos instance_of (LAST (CONS {} lis))` MP_TAC THENL
[EXPAND_TAC "sos" THEN MATCH_MP_TAC ALL2_BUTLAST THEN
ASM_REWRITE_TAC[ALL2; NOT_CONS_NIL]; ALL_TAC] THEN
REWRITE_TAC[instance_of] THEN
DISCH_THEN(X_CHOOSE_THEN `jj:num->term` SUBST_ALL_TAC) THEN
DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `formsubst jj p`) THEN
REWRITE_TAC[NEGATIVE_FORMSUBST] THEN DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[]] THEN
SUBGOAL_THEN
`!plis. lpresproof asm plis
==> (!c. MEM c plis ==> clause c) /\
?lis. lresproof hyps lis /\ ALL2 (instance_of) plis lis`
(fun th -> MESON_TAC[th]) THEN
MATCH_MP_TAC lpresproof_INDUCT THEN CONJ_TAC THENL
[X_GEN_TAC `cl:form->bool` THEN DISCH_TAC THEN CONJ_TAC THENL
[SUBGOAL_THEN `clause cl` (fun th -> ASM_MESON_TAC[MEM; th]) THEN
UNDISCH_TAC `asm SUBSET {IMAGE (formsubst v) cl | cl,v | cl IN hyps}` THEN
REWRITE_TAC[SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN
ASM_REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN
ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN
UNDISCH_TAC `asm SUBSET {IMAGE (formsubst v) cl | cl,v | cl IN hyps}` THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`cl0:form->bool`; `jj:num->term`] THEN
STRIP_TAC THEN EXISTS_TAC `[cl0:form->bool]` THEN
ASM_SIMP_TAC[lresproof_RULES; ALL2] THEN
REWRITE_TAC[instance_of] THEN MESON_TAC[]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC
[`A':form->bool`; `B':form->bool`; `lis':(form->bool)list`; `p:form`] THEN
DISCH_THEN(CONJUNCTS_THEN2
(CONJUNCTS_THEN2 ASSUME_TAC
(X_CHOOSE_THEN `alist:(form->bool)list` STRIP_ASSUME_TAC))
(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN
SUBGOAL_THEN `clause A'` ASSUME_TAC THENL
[ASM_MESON_TAC[MEM]; ALL_TAC] THEN
SUBGOAL_THEN `clause B'` ASSUME_TAC THENL
[FIRST_X_ASSUM DISJ_CASES_TAC THENL
[ALL_TAC; ASM_MESON_TAC[MEM]] THEN
UNDISCH_TAC `asm SUBSET {IMAGE (formsubst v) cl | cl,v | cl IN hyps}` THEN
REWRITE_TAC[SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `B':form->bool`) THEN
ASM_REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN
ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN
CONJ_TAC THENL
[GEN_TAC THEN ONCE_REWRITE_TAC[MEM] THEN ASM_MESON_TAC[RESOLVE_CLAUSE];
ALL_TAC] THEN
UNDISCH_TAC `lresproof hyps alist` THEN
UNDISCH_TAC `ALL2 (instance_of) (CONS A' lis') alist` THEN
SPEC_TAC(`alist:(form->bool)list`,`alist:(form->bool)list`) THEN
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL2] THEN
MAP_EVERY X_GEN_TAC [`A:form->bool`; `lis:(form->bool)list`] THEN
DISCH_THEN(K ALL_TAC) THEN STRIP_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `clause A /\ !c. MEM c lis ==> clause c` STRIP_ASSUME_TAC THENL
[REWRITE_TAC[ALL_MEM; GSYM(CONJUNCT2 ALL)] THEN
ASM_MESON_TAC[LRESPROOF_CLAUSE]; ALL_TAC] THEN
SUBGOAL_THEN `?B. B' instance_of B /\ (B IN hyps \/ MEM B lis)` MP_TAC THENL
[FIRST_X_ASSUM DISJ_CASES_TAC THENL
[UNDISCH_TAC `asm SUBSET {IMAGE (formsubst v) cl | cl,v | cl IN hyps}` THEN
REWRITE_TAC[SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `B':form->bool`) THEN
ASM_REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN
REWRITE_TAC[instance_of] THEN MESON_TAC[]; ALL_TAC] THEN
ASM_MESON_TAC[ALL2_MEM]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `B:form->bool` (CONJUNCTS_THEN ASSUME_TAC)) THEN
SUBGOAL_THEN `clause B` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
MP_TAC(SPECL
[`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`;
`A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`]
LIFTING_LEMMA) THEN
ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN
MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN
ANTS_TAC THENL
[ASM_MESON_TAC[FVS_CLAUSE_FINITE; RESPROOF_CLAUSE]; ALL_TAC] THEN
ASM_REWRITE_TAC[renaming] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
[FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN
ANTS_TAC THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; RESPROOF_CLAUSE];
ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[];
UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN
EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN
EXISTS_TAC `termsubst k o (j:num->term)` THEN
SUBGOAL_THEN
`termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))`
MP_TAC THENL
[REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL
[ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM];
SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]];
ALL_TAC] THEN
REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN
ASM_MESON_TAC[RESPROOF_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool`
MP_TAC)) THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN
REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[RESPROOF_CLAUSE; clause; FINITE_SUBSET];
SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN
MESON_TAC[]; ALL_TAC] THEN
ASM_MESON_TAC[RESPROOF_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE];
REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN
ASM_MESON_TAC[RESPROOF_CLAUSE; clause; QFREE_LITERAL; SUBSET;
IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]];
ALL_TAC] THEN
DISCH_TAC THEN
EXISTS_TAC `CONS (IMAGE (formsubst (mgu (A1 UNION {~~ l | l IN B1})))
(A DIFF A1 UNION C DIFF B1))
(CONS A lis)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC (CONJUNCT2(SPEC_ALL lresproof_RULES)) THEN
EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[isaresolvent] THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
MAP_EVERY EXISTS_TAC [`A1:form->bool`; `B1:form->bool`] THEN
ASM_REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN REWRITE_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[ALL2]);;
|