File: msum.ml

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (581 lines) | stat: -rw-r--r-- 23,458 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
(* ========================================================================= *)
(* Sums of matrices over an indexing set.                                    *)
(*                                                                           *)
(* (c) Copyright, Andrea Gabrielli, Marco Maggesi 2016-2017                  *)
(* ========================================================================= *)

needs "Multivariate/vectors.ml";;

let () = prioritize_vector();;
         prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* Matrix norm (vector norm of "flattened" form).                            *)
(* ------------------------------------------------------------------------- *)

overload_interface("norm",`matrix_norm:real^M^N->real`);;

let matrix_norm = new_definition
  `matrix_norm (m:real^M^N) = norm(vectorize m)`;;

(* ------------------------------------------------------------------------- *)
(* Sums over matrices.                                                       *)
(* ------------------------------------------------------------------------- *)

let NEUTRAL_MATRIX_ADD = prove
 (`neutral(+) = mat 0:real^M^N`,
  REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
  REWRITE_TAC[MATRIX_ARITH `x + y = y <=> x = mat 0:real^M^N`;
              MATRIX_ARITH `x + y = x <=> y = mat 0:real^M^N`]);;

let MONOIDAL_MATRIX_ADD = prove
 (`monoidal((+):real^M^N->real^M^N->real^M^N)`,
  REWRITE_TAC[monoidal; NEUTRAL_MATRIX_ADD] THEN
  REPEAT CONJ_TAC THEN MATRIX_ARITH_TAC);;

let msum = new_definition
  `msum s (f:A->real^M^N):real^M^N = (lambda i j. sum s (\x. f x$i$j))`;;

let MSUM_COMPONENT = prove
 (`!s (f:A->real^M^N) i j. msum s f$i$j = sum s (\x. f x$i$j)`,
  REPEAT GEN_TAC THEN C SUBGOAL_THEN (CONJUNCTS_THEN CHOOSE_TAC)
    `(?h. 1 <= h /\ h <= dimindex(:N) /\ !z:real^M^N. z$i = z$h) /\
     (?k. 1 <= k /\ k <= dimindex(:M) /\ !z:real^M. z$j = z$k)` THENL
  [REWRITE_TAC[FINITE_INDEX_INRANGE];
   ASM_SIMP_TAC[msum; LAMBDA_BETA]]);;

let MSUM_ROW = prove
 (`!s f:A->real^M^N i. msum s f$i = vsum s (\x. f x$i)`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; VSUM_COMPONENT]);;

let MSUM_CLAUSES = prove
 (`(!f:A->real^M^N. msum {} f = mat 0) /\
   (!x:A f s. FINITE s
            ==> msum (x INSERT s) f : real^M^N=
                if x IN s then msum s f else f(x) + msum s f)`,
  SIMP_TAC[msum; CART_EQ; LAMBDA_BETA; MATRIX_ADD_COMPONENT; SUM_CLAUSES] THEN
  SIMP_TAC[MAT_0_COMPONENT] THEN REPEAT STRIP_TAC THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA; MATRIX_ADD_COMPONENT]);;

let MSUM = prove
 (`!f:A->real^M^N s. FINITE s ==> msum s f = iterate (+) s f`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[MSUM_CLAUSES; ITERATE_CLAUSES; MONOIDAL_MATRIX_ADD] THEN
  REWRITE_TAC[NEUTRAL_MATRIX_ADD]);;

let MSUM_EQ_0 = prove
 (`!f:A->real^M^N s. (!x. x IN s ==> (f(x) = mat 0)) ==> (msum s f = mat 0)`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MAT_0_COMPONENT] THEN
  SIMP_TAC[SUM_EQ_0]);;

let MSUM_0 = prove
 (`msum s (\x:A. mat 0) = mat 0:real^M^N`,
  SIMP_TAC[MSUM_EQ_0]);;

let MSUM_LMUL = prove
 (`!f:A->real^M^N c s.  msum s (\x. c %% f(x)) = c %% msum s f`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_CMUL_COMPONENT; SUM_LMUL]);;

let MSUM_RMUL = prove
 (`!c:A->real s v:real^M^N. msum s (\x. c x %% v) = (sum s c) %% v`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_CMUL_COMPONENT; SUM_RMUL]);;

let MSUM_ADD = prove
 (`!f g:A->real^M^N s.
     FINITE s ==> (msum s (\x. f x + g x) = msum s f + msum s g)`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
  SIMP_TAC[SUM_ADD]);;

let MSUM_SUB = prove
 (`!f g:A->real^M^N s.
     FINITE s ==> (msum s (\x. f x - g x) = msum s f - msum s g)`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_SUB_COMPONENT] THEN
  SIMP_TAC[SUM_SUB]);;

let MSUM_CONST = prove
 (`!c:real^M^N s. FINITE s ==> (msum s (\n:A. c) = &(CARD s) %% c)`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_CMUL_COMPONENT] THEN
  SIMP_TAC[SUM_CONST]);;

let MSUM_MATRIX_RMUL = prove
 (`!(f:A->real^N^M) (A:real^P^N) s.
        FINITE s ==> msum s (\i. f(i) ** A) = msum s f ** A`,
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[MSUM_CLAUSES; MATRIX_MUL_LZERO; MATRIX_ADD_RDISTRIB]);;

let MSUM_MATRIX_LMUL = prove
 (`!(f:A->real^P^N) (A:real^N^M) s.
        FINITE s ==> msum s (\i. A ** f(i)) = A ** msum s f`,
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[MSUM_CLAUSES; MATRIX_MUL_RZERO; MATRIX_ADD_LDISTRIB]);;

let MSUM_IMAGE = prove
 (`!(f:A->B) (g:B->real^M^N) s. 
        (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
        ==> msum (IMAGE f s) g = msum s (g o f)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN
  REPEAT GEN_TAC THEN
  W(MP_TAC o PART_MATCH (lhand o rand) SUM_IMAGE o lhand o snd) THEN
  ASM_REWRITE_TAC[o_DEF]);;

let MSUM_UNION = prove
 (`!f:A->real^M^N s t.
     FINITE s /\ FINITE t /\ DISJOINT s t
     ==> (msum (s UNION t) f = msum s f + msum t f)`,
  REWRITE_TAC[CART_EQ_FULL; MATRIX_ADD_COMPONENT; MSUM_COMPONENT] THEN
  SIMP_TAC[SUM_UNION]);;

let MSUM_DIFF = prove
 (`!f:A->real^M^N s t. FINITE s /\ t SUBSET s
           ==> (msum (s DIFF t) f = msum s f - msum t f)`,
  REWRITE_TAC[CART_EQ_FULL; MATRIX_SUB_COMPONENT; MSUM_COMPONENT] THEN
  SIMP_TAC[SUM_DIFF]);;

let MSUM_DELETE = prove
 (`!f:A->real^M^N s a.
     FINITE s /\ a IN s
     ==> msum (s DELETE a) f = msum s f - f a`,
  REWRITE_TAC[CART_EQ_FULL; MATRIX_SUB_COMPONENT; MSUM_COMPONENT] THEN
  SIMP_TAC[SUM_DELETE]);;

let MSUM_INCL_EXCL = prove
 (`!s t (f:A->real^M^N).
     FINITE s /\ FINITE t
     ==> msum s f + msum t f = msum (s UNION t) f + msum (s INTER t) f`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
  SIMP_TAC[SUM_INCL_EXCL]);;

let MSUM_NEG = prove
 (`!f:A->real^M^N s. msum s (\x. --f x) = --msum s f`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_NEG_COMPONENT; SUM_NEG]);;

let MSUM_EQ = prove
 (`!f g:A->real^M^N s. (!x. x IN s ==> (f x = g x)) ==> (msum s f = msum s g)`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_EQ]);;

let MSUM_SUPERSET = prove
 (`!f:A->real^M^N u v.
        u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> (f(x) = mat 0))
        ==> (msum v f = msum u f)`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MAT_0_COMPONENT] THEN
  SIMP_TAC[SUM_SUPERSET]);;

let MSUM_SUPPORT_EXPLICIT = prove
 (`!f:A->real^M^N s. msum {x | x IN s /\ ~(f x = mat 0)} f = msum s f`,
  REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MSUM_SUPERSET THEN
  SET_TAC[]);;

let MSUM_SUPPORT = prove
 (`!f s. msum (support (+) f s) f = msum s f`,
  SIMP_TAC[support; NEUTRAL_MATRIX_ADD; MSUM_SUPPORT_EXPLICIT]);;

let MSUM_UNIV = prove
 (`!f:A->real^M^N s.
     support (+) f (:A) SUBSET s ==> msum s f = msum (:A) f`,
  REWRITE_TAC[support; NEUTRAL_MATRIX_ADD] THEN REPEAT STRIP_TAC THEN
  ONCE_REWRITE_TAC[GSYM MSUM_SUPPORT_EXPLICIT] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);;

let MSUM_EQ_SUPERSET = prove
 (`!(f:A->real^M^N) s t.
        FINITE t /\ t SUBSET s /\
        (!x. x IN t ==> (f x = g x)) /\
        (!x. x IN s /\ ~(x IN t) ==> f(x) = mat 0)
        ==> msum s f = msum t g`,
  MESON_TAC[MSUM_SUPERSET; MSUM_EQ]);;

let MSUM_UNION_RZERO = prove
 (`!f:A->real^M^N u v.
        (!x. x IN v /\ ~(x IN u) ==> (f(x) = mat 0))
        ==> (msum (u UNION v) f = msum u f)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC MSUM_SUPERSET THEN ASM SET_TAC[]);;

let MSUM_UNION_LZERO = prove
 (`!f:A->real^M^N u v.
        (!x. x IN u /\ ~(x IN v) ==> (f(x) = mat 0))
        ==> (msum (u UNION v) f = msum v f)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC MSUM_SUPERSET THEN ASM SET_TAC[]);;

let MSUM_RESTRICT = prove
 (`!f:A->real^M^N s. msum s (\x. if x IN s then f(x) else mat 0) = msum s f`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC MSUM_EQ THEN SIMP_TAC[]);;

let MSUM_RESTRICT_SET = prove
 (`!P s f:A->real^M^N. msum {x | x IN s /\ P x} f =
                       msum s (\x. if P x then f x else mat 0)`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MAT_0_COMPONENT;
              COND_COMPONENT] THEN
  SIMP_TAC[SUM_RESTRICT_SET; COND_COMPONENT]);;

let MSUM_CASES = prove
 (`!s P f g. FINITE s
             ==> msum s (\x:A. if P x then (f x):real^M^N else g x) =
                 msum {x | x IN s /\ P x} f + msum {x | x IN s /\ ~P x} g`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT;
              COND_COMPONENT] THEN
  SIMP_TAC[SUM_CASES]);;

let MSUM_SING = prove
 (`!f:A->real^M^N x. msum {x} f = f(x)`,
  SIMP_TAC[MSUM_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; MATRIX_ADD_RID]);;

let VECTORIZE_MSUM = prove
 (`!s f:A->real^M^N. vectorize (msum s f) = vsum s (\x. vectorize (f x))`,
  SIMP_TAC[CART_EQ; VECTORIZE_COMPONENT; DIMINDEX_FINITE_PROD;
           VSUM_COMPONENT; MSUM_COMPONENT]);;

let MSUM_NORM = prove
 (`!s f:A->real^M^N. FINITE s ==> norm(msum s f) <= sum s (\x. norm(f x))`,
  REWRITE_TAC[matrix_norm; VECTORIZE_MSUM] THEN SIMP_TAC[VSUM_NORM]);;

let MSUM_NORM_LE = prove
 (`!s f:A->real^M^N g. FINITE s /\ (!x. x IN s ==> norm(f x) <= g(x))
                       ==> norm(msum s f) <= sum s g`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum s (\x:A. norm(f x:real^M^N))` THEN
  ASM_SIMP_TAC[MSUM_NORM; SUM_LE]);;

let MSUM_NORM_TRIANGLE = prove
 (`!s f:A->real^M^N b. FINITE s /\ sum s (\a. norm(f a)) <= b
                       ==> norm(msum s f) <= b`,
  MESON_TAC[MSUM_NORM; REAL_LE_TRANS]);;

let MSUM_NORM_BOUND = prove
 (`!s f:A->real^M^N b. FINITE s /\ (!x. x IN s ==> norm(f(x)) <= b)
                       ==> norm(msum s f) <= &(CARD s) * b`,
  SIMP_TAC[GSYM SUM_CONST; MSUM_NORM_LE]);;

let MSUM_CLAUSES_NUMSEG = prove
 (`(!m. msum(m..0) f = if m = 0 then f(0) else mat 0:real^M^N) /\
   (!m n. msum(m..SUC n) f = if m <= SUC n then msum(m..n) f + f(SUC n)
                             else msum(m..n) f)`,
  REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN
  COND_CASES_TAC THEN
  ASM_SIMP_TAC[MSUM_SING; MSUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
  REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; MATRIX_ADD_AC]);;

let MSUM_CLAUSES_RIGHT = prove
 (`!f m n. 0 < n /\ m <= n ==> msum(m..n) f = msum(m..n-1) f + (f n):real^M^N`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  SIMP_TAC[LT_REFL; MSUM_CLAUSES_NUMSEG; SUC_SUB1]);;

let MSUM_CMUL_NUMSEG = prove
 (`!f c m n. msum (m..n) (\x. c %% f x) = c %% msum (m..n) f:real^M^N`,
  SIMP_TAC[MSUM_LMUL; FINITE_NUMSEG]);;

let MSUM_EQ_NUMSEG = prove
 (`!f g m n.
         (!x. m <= x /\ x <= n ==> (f x = g x:real^M^N))
         ==> (msum(m .. n) f = msum(m .. n) g)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC MSUM_EQ THEN
  ASM_SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG]);;

let MSUM_IMAGE_GEN = prove
 (`!f:A->B (g:A->real^M^N) s.
        FINITE s
        ==> (msum s g =
             msum (IMAGE f s) (\y. msum {x | x IN s /\ (f(x) = y)} g))`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_IMAGE_GEN]);;

let MSUM_GROUP = prove
 (`!f:A->B (g:A->real^M^N) s t.
        FINITE s /\ IMAGE f s SUBSET t
        ==> msum t (\y. msum {x | x IN s /\ f(x) = y} g) = msum s g`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_GROUP]);;

let MSUM_GROUP_RELATION = prove
 (`!R:A->B->bool (g:A->real^M^N) s t.
         FINITE s /\
         (!x. x IN s ==> ?!y. y IN t /\ R x y)
         ==> msum t (\y. msum {x | x IN s /\ R x y} g) = msum s g`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN
  SIMP_TAC[SUM_GROUP_RELATION]);;

let MSUM_VMUL = prove
 (`!f v:real^M^N s. (sum s f) %% v = msum s (\x:A. f(x) %% v)`,
  REWRITE_TAC[MSUM_RMUL]);;

let MSUM_DELTA = prove
 (`!s a. msum s (\x:A. if x = a then b else mat 0:real^M^N) =
         if a IN s then b else mat 0`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; COND_COMPONENT] THEN
  SIMP_TAC[MAT_0_COMPONENT; SUM_DELTA]);;

let MSUM_ADD_NUMSEG = prove
 (`!f g m n.
     msum(m..n) (\i. f i + g i) = msum(m..n) f + msum(m..n) g:real^M^N`,
  SIMP_TAC[MSUM_ADD; FINITE_NUMSEG]);;

let MSUM_SUB_NUMSEG = prove
 (`!f g m n.
     msum(m..n) (\i. f i - g i) = msum(m..n) f - msum(m..n) g:real^M^N`,
  SIMP_TAC[MSUM_SUB; FINITE_NUMSEG]);;

let MSUM_ADD_SPLIT = prove
 (`!f m n p.
       m <= n + 1
       ==> msum(m..n + p) f = msum(m..n) f + msum(n + 1..n + p) f:real^M^N`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
  SIMP_TAC[SUM_ADD_SPLIT]);;

let MSUM_MSUM_PRODUCT = prove
 (`!s:A->bool t:A->B->bool x.
        FINITE s /\ (!i. i IN s ==> FINITE(t i))
        ==> msum s (\i. msum (t i) (x i)) =
            msum {i,j | i IN s /\ j IN t i} (\(i,j). x i j):real^M^N`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; COND_COMPONENT] THEN
  SIMP_TAC[SUM_SUM_PRODUCT] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]);;

let MSUM_IMAGE_NONZERO = prove
 (`!d:B->real^M^N i:A->B s.
     FINITE s /\
     (!x y. x IN s /\ y IN s /\ ~(x = y) /\ i x = i y ==> d(i x) = mat 0)
     ==> msum (IMAGE i s) d = msum s (d o i):real^M^N`,
  GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[IMAGE_CLAUSES; MSUM_CLAUSES; FINITE_IMAGE] THEN
  MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN
  REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `msum s ((d:B->real^M^N) o (i:A->B)) = msum (IMAGE i s) d`
    SUBST1_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[o_THM] THEN
  REWRITE_TAC[MATRIX_ARITH `a = x + a <=> x = mat 0:real^M^N`] THEN
  ASM_MESON_TAC[IN_IMAGE]);;

let MSUM_UNION_NONZERO = prove
 (`!f:A->real^M^N s t.
     FINITE s /\ FINITE t /\ (!x. x IN s INTER t ==> f(x) = mat 0)
     ==> msum (s UNION t) f = msum s f + msum t f`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT;
              MAT_0_COMPONENT] THEN
  SIMP_TAC[SUM_UNION_NONZERO]);;

let MSUM_UNIONS_NONZERO = prove
 (`!f:A->real^M^N s.
     FINITE s /\ (!t. t IN s ==> FINITE t) /\
     (!t1 t2 x. t1 IN s /\ t2 IN s /\ ~(t1 = t2) /\ x IN t1 /\ x IN t2
                ==> f x = mat 0)
     ==> msum (UNIONS s) f = msum s (\t. msum t f)`,
  GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[UNIONS_0; UNIONS_INSERT; MSUM_CLAUSES; IN_INSERT] THEN
  MAP_EVERY X_GEN_TAC [`t:A->bool`; `s:(A->bool)->bool`] THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ONCE_REWRITE_TAC[IMP_CONJ] THEN ASM_SIMP_TAC[MSUM_CLAUSES] THEN
  ANTS_TAC THENL  [ASM_MESON_TAC[]; DISCH_THEN(SUBST_ALL_TAC o SYM)] THEN
  STRIP_TAC THEN MATCH_MP_TAC MSUM_UNION_NONZERO THEN
  ASM_SIMP_TAC[FINITE_UNIONS; IN_INTER; IN_UNIONS] THEN ASM_MESON_TAC[]);;

let MSUM_CLAUSES_LEFT = prove
 (`!f m n. m <= n ==> msum(m..n) f = f m + msum(m + 1..n) f:real^M^N`,
  SIMP_TAC[msum; CART_EQ; LAMBDA_BETA; MATRIX_ADD_COMPONENT] THEN
  SIMP_TAC[VEC_COMPONENT; SUM_CLAUSES_LEFT]);;

let MSUM_DIFFS = prove
 (`!m n. msum(m..n) (\k. f(k) - f(k + 1)) =
          if m <= n then f(m) - f(n + 1) else mat 0:real^M^N`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[MSUM_CLAUSES_NUMSEG; LE] THEN
  ASM_CASES_TAC `m = SUC n` THEN
  ASM_REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; MATRIX_ADD_LID] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[GSYM ADD1] THEN MATRIX_ARITH_TAC);;

let MSUM_DIFFS_ALT = prove
 (`!m n. msum(m..n) (\k. f(k + 1) - f(k)) =
         if m <= n then f(n + 1) - f(m) else mat 0:real^M^N`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM MATRIX_NEG_SUB] THEN
  SIMP_TAC[MSUM_NEG; MSUM_DIFFS] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[MATRIX_NEG_SUB; MATRIX_NEG_0]);;

let MSUM_DELETE_CASES = prove
 (`!x f:A->real^M^N s.
        FINITE s
        ==> msum(s DELETE x) f = if x IN s then msum s f - f x else msum s f`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[SET_RULE `~(x:A IN s) ==> s DELETE x = s`] THEN
  FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)
   [MATCH_MP (SET_RULE `x:A IN s ==> s = x INSERT (s DELETE x)`) th]) THEN
  ASM_SIMP_TAC[MSUM_CLAUSES; FINITE_DELETE; IN_DELETE] THEN MATRIX_ARITH_TAC);;

let MSUM_EQ_GENERAL = prove
  (`!s:A->bool t:B->bool (f:A->real^M^N) g h.
        (!y. y IN t ==> ?!x. x IN s /\ h x = y) /\
        (!x. x IN s ==> h x IN t /\ g(h x) = f x)
        ==> msum s f = msum t g`,
   SIMP_TAC[msum; CART_EQ; LAMBDA_BETA] THEN
   REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_GENERAL THEN
   EXISTS_TAC `h:A->B` THEN ASM_MESON_TAC[]);;

let MSUM_EQ_GENERAL_INVERSES = prove
 (`!s t (f:A->real^M^N) (g:B->real^M^N) h k.
        (!y. y IN t ==> k y IN s /\ h (k y) = y) /\
        (!x. x IN s ==> h x IN t /\ k (h x) = x /\ g (h x) = f x)
        ==> msum s f = msum t g`,
  SIMP_TAC[msum; CART_EQ; LAMBDA_BETA] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
  MAP_EVERY EXISTS_TAC [`h:A->B`; `k:B->A`] THEN ASM_MESON_TAC[]);;

let MSUM_OFFSET = prove
 (`!p f m n. msum(m + p..n + p) f = msum(m..n) (\i. f (i + p)):real^M^N`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_OFFSET]);;

let MSUM_OFFSET_0 = prove
 (`!f m n. m <= n ==> msum(m..n) f = msum(0..n - m) (\i. f (i + m)):real^M^N`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_OFFSET_0]);;

let MSUM_TRIV_NUMSEG = prove
 (`!f m n. n < m ==> msum(m..n) f = mat 0:real^M^N`,
  SIMP_TAC[GSYM NUMSEG_EMPTY; MSUM_CLAUSES]);;

let MSUM_CONST_NUMSEG = prove
 (`!c m n. msum(m..n) (\n. c) = &((n + 1) - m) %% c:real^M^N`,
  SIMP_TAC[MSUM_CONST; FINITE_NUMSEG; CARD_NUMSEG]);;

let MSUM_SUC = prove
 (`!f m n. msum (SUC n..SUC m) f = msum (n..m) (f o SUC):real^M^N`,
  REPEAT GEN_TAC THEN
  SUBGOAL_THEN `SUC n..SUC m = IMAGE SUC (n..m)` SUBST1_TAC THENL
   [REWRITE_TAC [ADD1; NUMSEG_OFFSET_IMAGE] THEN
    REWRITE_TAC [ONE; ADD_SUC; ADD_0; ETA_AX];
    SIMP_TAC [MSUM_IMAGE; FINITE_NUMSEG; SUC_INJ]]);;

let MSUM_BIJECTION = prove
 (`!f:A->real^M^N p s:A->bool.
                (!x. x IN s ==> p(x) IN s) /\
                (!y. y IN s ==> ?!x. x IN s /\ p(x) = y)
                ==> msum s f = msum s (f o p)`,
  REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
  MATCH_MP_TAC MSUM_EQ_GENERAL THEN EXISTS_TAC `p:A->A` THEN
  ASM_REWRITE_TAC[o_THM]);;

let MSUM_PARTIAL_SUC = prove
 (`!f g:num->real^M^N m n.
        msum (m..n) (\k. f(k) %% (g(k + 1) - g(k))) =
            if m <= n then f(n + 1) %% g(n + 1) - f(m) %% g(m) -
                           msum (m..n) (\k. (f(k + 1) - f(k)) %% g(k + 1))
            else mat 0`,
  GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[MSUM_TRIV_NUMSEG; GSYM NOT_LE] THEN
  ASM_REWRITE_TAC[MSUM_CLAUSES_NUMSEG] THENL
   [COND_CASES_TAC THEN ASM_SIMP_TAC[ARITH] THENL
     [MATRIX_ARITH_TAC; ASM_ARITH_TAC];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE]) THEN
  DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
  ASM_SIMP_TAC[GSYM NOT_LT; MSUM_TRIV_NUMSEG; ARITH_RULE `n < SUC n`] THEN
  ASM_SIMP_TAC[GSYM ADD1; ADD_CLAUSES] THEN MATRIX_ARITH_TAC);;

let MSUM_PARTIAL_PRE = prove
 (`!f g:num->real^M^N m n.
        msum (m..n) (\k. f(k) %% (g(k) - g(k - 1))) =
            if m <= n then f(n + 1) %% g(n) - f(m) %% g(m - 1) -
                           msum (m..n) (\k. (f(k + 1) - f(k)) %% g(k))
            else mat 0`,
  REPEAT GEN_TAC THEN
  MP_TAC(ISPECL [`f:num->real`; `\k. (g:num->real^M^N)(k - 1)`;
                 `m:num`; `n:num`] MSUM_PARTIAL_SUC) THEN
  REWRITE_TAC[ADD_SUB] THEN DISCH_THEN SUBST1_TAC THEN
  COND_CASES_TAC THEN REWRITE_TAC[]);;

let MSUM_COMBINE_L = prove
 (`!f m n p.
        0 < n /\ m <= n /\ n <= p + 1
        ==> msum(m..n - 1) f + msum(n..p) f = msum(m..p) f:real^M^N`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
  SIMP_TAC[SUM_COMBINE_L]);;

let MSUM_COMBINE_R = prove
 (`!f m n p.
        m <= n + 1 /\ n <= p
        ==> msum(m..n) f + msum(n + 1..p) f = msum(m..p) f:real^M^N`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
  SIMP_TAC[SUM_COMBINE_R]);;

let MSUM_INJECTION = prove
 (`!f:A->real^M^N p:A->A s.
     FINITE s /\
     (!x. x IN s ==> p x IN s) /\
     (!x y. x IN s /\ y IN s /\ p x = p y ==> x = y)
     ==> msum s (f o p) = msum s f`,
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SUM_INJECTION) THEN
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; o_DEF] THEN SIMP_TAC[]);;

let MSUM_SWAP = prove
 (`!f:A->B->real^M^N s t.
     FINITE s /\ FINITE t
     ==> msum s (\i. msum t (f i)) = msum t (\j. msum s (\i. f i j))`,
   REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN REPEAT STRIP_TAC THEN
   W(MP_TAC o PART_MATCH (lhs o rand) SUM_SWAP o lhs o snd) THEN
   ASM_REWRITE_TAC[]);;

let MSUM_SWAP_NUMSEG = prove
  (`!a b c d f.
         msum (a..b) (\i. msum (c..d) (f i)) =
         msum (c..d) (\j. msum (a..b) (\i. f i j)):real^M^N`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC MSUM_SWAP THEN REWRITE_TAC[FINITE_NUMSEG]);;

let MSUM_ADD_GEN = prove
 (`!f g:A->real^M^N s.
       FINITE {x | x IN s /\ ~(f x = mat 0)} /\
       FINITE {x | x IN s /\ ~(g x = mat 0)}
       ==> msum s (\x. f x + g x) = msum s f + msum s g`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
  SIMP_TAC[CART_EQ; msum; LAMBDA_BETA; MATRIX_ADD_COMPONENT] THEN
  REPEAT GEN_TAC THEN MATCH_MP_TAC SUM_ADD_GEN THEN
  POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_AND THEN
  CONJ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
  REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[DE_MORGAN_THM] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[MAT_0_COMPONENT]);;

let MSUM_CASES_1 = prove
 (`!s a:A. FINITE s /\ a IN s
           ==> msum s (\x. if x = a then y else f(x)) =
               msum s f + (y - f a):real^M^N`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MSUM_CASES] THEN
  ASM_SIMP_TAC[GSYM DELETE; MSUM_DELETE] THEN
  ASM_SIMP_TAC[SET_RULE `a:A IN s ==> {x | x IN s /\ x = a} = {a}`] THEN
  REWRITE_TAC[MSUM_SING] THEN MATRIX_ARITH_TAC);;

let MSUM_SING_NUMSEG = prove
 (`msum(n..n) f = f n:real^M^N`,
  REWRITE_TAC[NUMSEG_SING; MSUM_SING]);;

let MSUM_1 = prove
 (`msum(1..1) f = f(1):real^M^N`,
  REWRITE_TAC[MSUM_SING_NUMSEG]);;

let MSUM_2 = prove
 (`!t. msum(1..2) t = t(1) + t(2):real^M^N`,
  REWRITE_TAC[num_CONV `2`; MSUM_CLAUSES_NUMSEG] THEN
  REWRITE_TAC[MSUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);;

let MSUM_3 = prove
 (`!t. msum(1..3) t = t(1) + t(2) + t(3):real^M^N`,
  REWRITE_TAC[num_CONV `3`; num_CONV `2`; MSUM_CLAUSES_NUMSEG] THEN
  REWRITE_TAC[MSUM_SING_NUMSEG; ARITH; MATRIX_ADD_ASSOC]);;

let MSUM_4 = prove
 (`!t. msum(1..4) t = t(1) + t(2) + t(3) + t(4):real^M^N`,
  SIMP_TAC[num_CONV `4`; num_CONV `3`; num_CONV `2`; MSUM_CLAUSES_NUMSEG] THEN
  REWRITE_TAC[MSUM_SING_NUMSEG; ARITH; MATRIX_ADD_ASSOC]);;

let MSUM_PAIR = prove
 (`!f:num->real^M^N m n.
        msum(2*m..2*n+1) f = msum(m..n) (\i. f(2*i) + f(2*i+1))`,
  REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT; SUM_PAIR]);;

let MSUM_PAIR_0 = prove
 (`!f:num->real^M^N n. msum(0..2*n+1) f = msum(0..n) (\i. f(2*i) + f(2*i+1))`,
  REPEAT GEN_TAC THEN
  MP_TAC(ISPECL [`f:num->real^M^N`; `0`; `n:num`] MSUM_PAIR) THEN
  ASM_REWRITE_TAC[ARITH]);;

let MSUM_REFLECT = prove
 (`!x m n. msum(m..n) x =
           if n < m then mat 0 else msum(0..n-m) (\i. x(n - i)):real^M^N`,
  REPEAT GEN_TAC THEN SIMP_TAC[MSUM; FINITE_NUMSEG] THEN
  GEN_REWRITE_TAC LAND_CONV [MATCH_MP ITERATE_REFLECT MONOIDAL_MATRIX_ADD] THEN
  REWRITE_TAC[NEUTRAL_MATRIX_ADD]);;