1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
(* ========================================================================= *)
(* Sums of matrices over an indexing set. *)
(* *)
(* (c) Copyright, Andrea Gabrielli, Marco Maggesi 2016-2017 *)
(* ========================================================================= *)
needs "Multivariate/vectors.ml";;
let () = prioritize_vector();;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Matrix norm (vector norm of "flattened" form). *)
(* ------------------------------------------------------------------------- *)
overload_interface("norm",`matrix_norm:real^M^N->real`);;
let matrix_norm = new_definition
`matrix_norm (m:real^M^N) = norm(vectorize m)`;;
(* ------------------------------------------------------------------------- *)
(* Sums over matrices. *)
(* ------------------------------------------------------------------------- *)
let NEUTRAL_MATRIX_ADD = prove
(`neutral(+) = mat 0:real^M^N`,
REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
REWRITE_TAC[MATRIX_ARITH `x + y = y <=> x = mat 0:real^M^N`;
MATRIX_ARITH `x + y = x <=> y = mat 0:real^M^N`]);;
let MONOIDAL_MATRIX_ADD = prove
(`monoidal((+):real^M^N->real^M^N->real^M^N)`,
REWRITE_TAC[monoidal; NEUTRAL_MATRIX_ADD] THEN
REPEAT CONJ_TAC THEN MATRIX_ARITH_TAC);;
let msum = new_definition
`msum s (f:A->real^M^N):real^M^N = (lambda i j. sum s (\x. f x$i$j))`;;
let MSUM_COMPONENT = prove
(`!s (f:A->real^M^N) i j. msum s f$i$j = sum s (\x. f x$i$j)`,
REPEAT GEN_TAC THEN C SUBGOAL_THEN (CONJUNCTS_THEN CHOOSE_TAC)
`(?h. 1 <= h /\ h <= dimindex(:N) /\ !z:real^M^N. z$i = z$h) /\
(?k. 1 <= k /\ k <= dimindex(:M) /\ !z:real^M. z$j = z$k)` THENL
[REWRITE_TAC[FINITE_INDEX_INRANGE];
ASM_SIMP_TAC[msum; LAMBDA_BETA]]);;
let MSUM_ROW = prove
(`!s f:A->real^M^N i. msum s f$i = vsum s (\x. f x$i)`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; VSUM_COMPONENT]);;
let MSUM_CLAUSES = prove
(`(!f:A->real^M^N. msum {} f = mat 0) /\
(!x:A f s. FINITE s
==> msum (x INSERT s) f : real^M^N=
if x IN s then msum s f else f(x) + msum s f)`,
SIMP_TAC[msum; CART_EQ; LAMBDA_BETA; MATRIX_ADD_COMPONENT; SUM_CLAUSES] THEN
SIMP_TAC[MAT_0_COMPONENT] THEN REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA; MATRIX_ADD_COMPONENT]);;
let MSUM = prove
(`!f:A->real^M^N s. FINITE s ==> msum s f = iterate (+) s f`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
ASM_SIMP_TAC[MSUM_CLAUSES; ITERATE_CLAUSES; MONOIDAL_MATRIX_ADD] THEN
REWRITE_TAC[NEUTRAL_MATRIX_ADD]);;
let MSUM_EQ_0 = prove
(`!f:A->real^M^N s. (!x. x IN s ==> (f(x) = mat 0)) ==> (msum s f = mat 0)`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MAT_0_COMPONENT] THEN
SIMP_TAC[SUM_EQ_0]);;
let MSUM_0 = prove
(`msum s (\x:A. mat 0) = mat 0:real^M^N`,
SIMP_TAC[MSUM_EQ_0]);;
let MSUM_LMUL = prove
(`!f:A->real^M^N c s. msum s (\x. c %% f(x)) = c %% msum s f`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_CMUL_COMPONENT; SUM_LMUL]);;
let MSUM_RMUL = prove
(`!c:A->real s v:real^M^N. msum s (\x. c x %% v) = (sum s c) %% v`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_CMUL_COMPONENT; SUM_RMUL]);;
let MSUM_ADD = prove
(`!f g:A->real^M^N s.
FINITE s ==> (msum s (\x. f x + g x) = msum s f + msum s g)`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
SIMP_TAC[SUM_ADD]);;
let MSUM_SUB = prove
(`!f g:A->real^M^N s.
FINITE s ==> (msum s (\x. f x - g x) = msum s f - msum s g)`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_SUB_COMPONENT] THEN
SIMP_TAC[SUM_SUB]);;
let MSUM_CONST = prove
(`!c:real^M^N s. FINITE s ==> (msum s (\n:A. c) = &(CARD s) %% c)`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_CMUL_COMPONENT] THEN
SIMP_TAC[SUM_CONST]);;
let MSUM_MATRIX_RMUL = prove
(`!(f:A->real^N^M) (A:real^P^N) s.
FINITE s ==> msum s (\i. f(i) ** A) = msum s f ** A`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[MSUM_CLAUSES; MATRIX_MUL_LZERO; MATRIX_ADD_RDISTRIB]);;
let MSUM_MATRIX_LMUL = prove
(`!(f:A->real^P^N) (A:real^N^M) s.
FINITE s ==> msum s (\i. A ** f(i)) = A ** msum s f`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[MSUM_CLAUSES; MATRIX_MUL_RZERO; MATRIX_ADD_LDISTRIB]);;
let MSUM_IMAGE = prove
(`!(f:A->B) (g:B->real^M^N) s.
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
==> msum (IMAGE f s) g = msum s (g o f)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN
REPEAT GEN_TAC THEN
W(MP_TAC o PART_MATCH (lhand o rand) SUM_IMAGE o lhand o snd) THEN
ASM_REWRITE_TAC[o_DEF]);;
let MSUM_UNION = prove
(`!f:A->real^M^N s t.
FINITE s /\ FINITE t /\ DISJOINT s t
==> (msum (s UNION t) f = msum s f + msum t f)`,
REWRITE_TAC[CART_EQ_FULL; MATRIX_ADD_COMPONENT; MSUM_COMPONENT] THEN
SIMP_TAC[SUM_UNION]);;
let MSUM_DIFF = prove
(`!f:A->real^M^N s t. FINITE s /\ t SUBSET s
==> (msum (s DIFF t) f = msum s f - msum t f)`,
REWRITE_TAC[CART_EQ_FULL; MATRIX_SUB_COMPONENT; MSUM_COMPONENT] THEN
SIMP_TAC[SUM_DIFF]);;
let MSUM_DELETE = prove
(`!f:A->real^M^N s a.
FINITE s /\ a IN s
==> msum (s DELETE a) f = msum s f - f a`,
REWRITE_TAC[CART_EQ_FULL; MATRIX_SUB_COMPONENT; MSUM_COMPONENT] THEN
SIMP_TAC[SUM_DELETE]);;
let MSUM_INCL_EXCL = prove
(`!s t (f:A->real^M^N).
FINITE s /\ FINITE t
==> msum s f + msum t f = msum (s UNION t) f + msum (s INTER t) f`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
SIMP_TAC[SUM_INCL_EXCL]);;
let MSUM_NEG = prove
(`!f:A->real^M^N s. msum s (\x. --f x) = --msum s f`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_NEG_COMPONENT; SUM_NEG]);;
let MSUM_EQ = prove
(`!f g:A->real^M^N s. (!x. x IN s ==> (f x = g x)) ==> (msum s f = msum s g)`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_EQ]);;
let MSUM_SUPERSET = prove
(`!f:A->real^M^N u v.
u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> (f(x) = mat 0))
==> (msum v f = msum u f)`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MAT_0_COMPONENT] THEN
SIMP_TAC[SUM_SUPERSET]);;
let MSUM_SUPPORT_EXPLICIT = prove
(`!f:A->real^M^N s. msum {x | x IN s /\ ~(f x = mat 0)} f = msum s f`,
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MSUM_SUPERSET THEN
SET_TAC[]);;
let MSUM_SUPPORT = prove
(`!f s. msum (support (+) f s) f = msum s f`,
SIMP_TAC[support; NEUTRAL_MATRIX_ADD; MSUM_SUPPORT_EXPLICIT]);;
let MSUM_UNIV = prove
(`!f:A->real^M^N s.
support (+) f (:A) SUBSET s ==> msum s f = msum (:A) f`,
REWRITE_TAC[support; NEUTRAL_MATRIX_ADD] THEN REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[GSYM MSUM_SUPPORT_EXPLICIT] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);;
let MSUM_EQ_SUPERSET = prove
(`!(f:A->real^M^N) s t.
FINITE t /\ t SUBSET s /\
(!x. x IN t ==> (f x = g x)) /\
(!x. x IN s /\ ~(x IN t) ==> f(x) = mat 0)
==> msum s f = msum t g`,
MESON_TAC[MSUM_SUPERSET; MSUM_EQ]);;
let MSUM_UNION_RZERO = prove
(`!f:A->real^M^N u v.
(!x. x IN v /\ ~(x IN u) ==> (f(x) = mat 0))
==> (msum (u UNION v) f = msum u f)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC MSUM_SUPERSET THEN ASM SET_TAC[]);;
let MSUM_UNION_LZERO = prove
(`!f:A->real^M^N u v.
(!x. x IN u /\ ~(x IN v) ==> (f(x) = mat 0))
==> (msum (u UNION v) f = msum v f)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC MSUM_SUPERSET THEN ASM SET_TAC[]);;
let MSUM_RESTRICT = prove
(`!f:A->real^M^N s. msum s (\x. if x IN s then f(x) else mat 0) = msum s f`,
REPEAT GEN_TAC THEN MATCH_MP_TAC MSUM_EQ THEN SIMP_TAC[]);;
let MSUM_RESTRICT_SET = prove
(`!P s f:A->real^M^N. msum {x | x IN s /\ P x} f =
msum s (\x. if P x then f x else mat 0)`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MAT_0_COMPONENT;
COND_COMPONENT] THEN
SIMP_TAC[SUM_RESTRICT_SET; COND_COMPONENT]);;
let MSUM_CASES = prove
(`!s P f g. FINITE s
==> msum s (\x:A. if P x then (f x):real^M^N else g x) =
msum {x | x IN s /\ P x} f + msum {x | x IN s /\ ~P x} g`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT;
COND_COMPONENT] THEN
SIMP_TAC[SUM_CASES]);;
let MSUM_SING = prove
(`!f:A->real^M^N x. msum {x} f = f(x)`,
SIMP_TAC[MSUM_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; MATRIX_ADD_RID]);;
let VECTORIZE_MSUM = prove
(`!s f:A->real^M^N. vectorize (msum s f) = vsum s (\x. vectorize (f x))`,
SIMP_TAC[CART_EQ; VECTORIZE_COMPONENT; DIMINDEX_FINITE_PROD;
VSUM_COMPONENT; MSUM_COMPONENT]);;
let MSUM_NORM = prove
(`!s f:A->real^M^N. FINITE s ==> norm(msum s f) <= sum s (\x. norm(f x))`,
REWRITE_TAC[matrix_norm; VECTORIZE_MSUM] THEN SIMP_TAC[VSUM_NORM]);;
let MSUM_NORM_LE = prove
(`!s f:A->real^M^N g. FINITE s /\ (!x. x IN s ==> norm(f x) <= g(x))
==> norm(msum s f) <= sum s g`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum s (\x:A. norm(f x:real^M^N))` THEN
ASM_SIMP_TAC[MSUM_NORM; SUM_LE]);;
let MSUM_NORM_TRIANGLE = prove
(`!s f:A->real^M^N b. FINITE s /\ sum s (\a. norm(f a)) <= b
==> norm(msum s f) <= b`,
MESON_TAC[MSUM_NORM; REAL_LE_TRANS]);;
let MSUM_NORM_BOUND = prove
(`!s f:A->real^M^N b. FINITE s /\ (!x. x IN s ==> norm(f(x)) <= b)
==> norm(msum s f) <= &(CARD s) * b`,
SIMP_TAC[GSYM SUM_CONST; MSUM_NORM_LE]);;
let MSUM_CLAUSES_NUMSEG = prove
(`(!m. msum(m..0) f = if m = 0 then f(0) else mat 0:real^M^N) /\
(!m n. msum(m..SUC n) f = if m <= SUC n then msum(m..n) f + f(SUC n)
else msum(m..n) f)`,
REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC[MSUM_SING; MSUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; MATRIX_ADD_AC]);;
let MSUM_CLAUSES_RIGHT = prove
(`!f m n. 0 < n /\ m <= n ==> msum(m..n) f = msum(m..n-1) f + (f n):real^M^N`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
SIMP_TAC[LT_REFL; MSUM_CLAUSES_NUMSEG; SUC_SUB1]);;
let MSUM_CMUL_NUMSEG = prove
(`!f c m n. msum (m..n) (\x. c %% f x) = c %% msum (m..n) f:real^M^N`,
SIMP_TAC[MSUM_LMUL; FINITE_NUMSEG]);;
let MSUM_EQ_NUMSEG = prove
(`!f g m n.
(!x. m <= x /\ x <= n ==> (f x = g x:real^M^N))
==> (msum(m .. n) f = msum(m .. n) g)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC MSUM_EQ THEN
ASM_SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG]);;
let MSUM_IMAGE_GEN = prove
(`!f:A->B (g:A->real^M^N) s.
FINITE s
==> (msum s g =
msum (IMAGE f s) (\y. msum {x | x IN s /\ (f(x) = y)} g))`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_IMAGE_GEN]);;
let MSUM_GROUP = prove
(`!f:A->B (g:A->real^M^N) s t.
FINITE s /\ IMAGE f s SUBSET t
==> msum t (\y. msum {x | x IN s /\ f(x) = y} g) = msum s g`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_GROUP]);;
let MSUM_GROUP_RELATION = prove
(`!R:A->B->bool (g:A->real^M^N) s t.
FINITE s /\
(!x. x IN s ==> ?!y. y IN t /\ R x y)
==> msum t (\y. msum {x | x IN s /\ R x y} g) = msum s g`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN
SIMP_TAC[SUM_GROUP_RELATION]);;
let MSUM_VMUL = prove
(`!f v:real^M^N s. (sum s f) %% v = msum s (\x:A. f(x) %% v)`,
REWRITE_TAC[MSUM_RMUL]);;
let MSUM_DELTA = prove
(`!s a. msum s (\x:A. if x = a then b else mat 0:real^M^N) =
if a IN s then b else mat 0`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; COND_COMPONENT] THEN
SIMP_TAC[MAT_0_COMPONENT; SUM_DELTA]);;
let MSUM_ADD_NUMSEG = prove
(`!f g m n.
msum(m..n) (\i. f i + g i) = msum(m..n) f + msum(m..n) g:real^M^N`,
SIMP_TAC[MSUM_ADD; FINITE_NUMSEG]);;
let MSUM_SUB_NUMSEG = prove
(`!f g m n.
msum(m..n) (\i. f i - g i) = msum(m..n) f - msum(m..n) g:real^M^N`,
SIMP_TAC[MSUM_SUB; FINITE_NUMSEG]);;
let MSUM_ADD_SPLIT = prove
(`!f m n p.
m <= n + 1
==> msum(m..n + p) f = msum(m..n) f + msum(n + 1..n + p) f:real^M^N`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
SIMP_TAC[SUM_ADD_SPLIT]);;
let MSUM_MSUM_PRODUCT = prove
(`!s:A->bool t:A->B->bool x.
FINITE s /\ (!i. i IN s ==> FINITE(t i))
==> msum s (\i. msum (t i) (x i)) =
msum {i,j | i IN s /\ j IN t i} (\(i,j). x i j):real^M^N`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; COND_COMPONENT] THEN
SIMP_TAC[SUM_SUM_PRODUCT] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]);;
let MSUM_IMAGE_NONZERO = prove
(`!d:B->real^M^N i:A->B s.
FINITE s /\
(!x y. x IN s /\ y IN s /\ ~(x = y) /\ i x = i y ==> d(i x) = mat 0)
==> msum (IMAGE i s) d = msum s (d o i):real^M^N`,
GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[IMAGE_CLAUSES; MSUM_CLAUSES; FINITE_IMAGE] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN
REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN `msum s ((d:B->real^M^N) o (i:A->B)) = msum (IMAGE i s) d`
SUBST1_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[o_THM] THEN
REWRITE_TAC[MATRIX_ARITH `a = x + a <=> x = mat 0:real^M^N`] THEN
ASM_MESON_TAC[IN_IMAGE]);;
let MSUM_UNION_NONZERO = prove
(`!f:A->real^M^N s t.
FINITE s /\ FINITE t /\ (!x. x IN s INTER t ==> f(x) = mat 0)
==> msum (s UNION t) f = msum s f + msum t f`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT;
MAT_0_COMPONENT] THEN
SIMP_TAC[SUM_UNION_NONZERO]);;
let MSUM_UNIONS_NONZERO = prove
(`!f:A->real^M^N s.
FINITE s /\ (!t. t IN s ==> FINITE t) /\
(!t1 t2 x. t1 IN s /\ t2 IN s /\ ~(t1 = t2) /\ x IN t1 /\ x IN t2
==> f x = mat 0)
==> msum (UNIONS s) f = msum s (\t. msum t f)`,
GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[UNIONS_0; UNIONS_INSERT; MSUM_CLAUSES; IN_INSERT] THEN
MAP_EVERY X_GEN_TAC [`t:A->bool`; `s:(A->bool)->bool`] THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN ASM_SIMP_TAC[MSUM_CLAUSES] THEN
ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN(SUBST_ALL_TAC o SYM)] THEN
STRIP_TAC THEN MATCH_MP_TAC MSUM_UNION_NONZERO THEN
ASM_SIMP_TAC[FINITE_UNIONS; IN_INTER; IN_UNIONS] THEN ASM_MESON_TAC[]);;
let MSUM_CLAUSES_LEFT = prove
(`!f m n. m <= n ==> msum(m..n) f = f m + msum(m + 1..n) f:real^M^N`,
SIMP_TAC[msum; CART_EQ; LAMBDA_BETA; MATRIX_ADD_COMPONENT] THEN
SIMP_TAC[VEC_COMPONENT; SUM_CLAUSES_LEFT]);;
let MSUM_DIFFS = prove
(`!m n. msum(m..n) (\k. f(k) - f(k + 1)) =
if m <= n then f(m) - f(n + 1) else mat 0:real^M^N`,
GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[MSUM_CLAUSES_NUMSEG; LE] THEN
ASM_CASES_TAC `m = SUC n` THEN
ASM_REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; MATRIX_ADD_LID] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM ADD1] THEN MATRIX_ARITH_TAC);;
let MSUM_DIFFS_ALT = prove
(`!m n. msum(m..n) (\k. f(k + 1) - f(k)) =
if m <= n then f(n + 1) - f(m) else mat 0:real^M^N`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM MATRIX_NEG_SUB] THEN
SIMP_TAC[MSUM_NEG; MSUM_DIFFS] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[MATRIX_NEG_SUB; MATRIX_NEG_0]);;
let MSUM_DELETE_CASES = prove
(`!x f:A->real^M^N s.
FINITE s
==> msum(s DELETE x) f = if x IN s then msum s f - f x else msum s f`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[SET_RULE `~(x:A IN s) ==> s DELETE x = s`] THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)
[MATCH_MP (SET_RULE `x:A IN s ==> s = x INSERT (s DELETE x)`) th]) THEN
ASM_SIMP_TAC[MSUM_CLAUSES; FINITE_DELETE; IN_DELETE] THEN MATRIX_ARITH_TAC);;
let MSUM_EQ_GENERAL = prove
(`!s:A->bool t:B->bool (f:A->real^M^N) g h.
(!y. y IN t ==> ?!x. x IN s /\ h x = y) /\
(!x. x IN s ==> h x IN t /\ g(h x) = f x)
==> msum s f = msum t g`,
SIMP_TAC[msum; CART_EQ; LAMBDA_BETA] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_GENERAL THEN
EXISTS_TAC `h:A->B` THEN ASM_MESON_TAC[]);;
let MSUM_EQ_GENERAL_INVERSES = prove
(`!s t (f:A->real^M^N) (g:B->real^M^N) h k.
(!y. y IN t ==> k y IN s /\ h (k y) = y) /\
(!x. x IN s ==> h x IN t /\ k (h x) = x /\ g (h x) = f x)
==> msum s f = msum t g`,
SIMP_TAC[msum; CART_EQ; LAMBDA_BETA] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
MAP_EVERY EXISTS_TAC [`h:A->B`; `k:B->A`] THEN ASM_MESON_TAC[]);;
let MSUM_OFFSET = prove
(`!p f m n. msum(m + p..n + p) f = msum(m..n) (\i. f (i + p)):real^M^N`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_OFFSET]);;
let MSUM_OFFSET_0 = prove
(`!f m n. m <= n ==> msum(m..n) f = msum(0..n - m) (\i. f (i + m)):real^M^N`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_OFFSET_0]);;
let MSUM_TRIV_NUMSEG = prove
(`!f m n. n < m ==> msum(m..n) f = mat 0:real^M^N`,
SIMP_TAC[GSYM NUMSEG_EMPTY; MSUM_CLAUSES]);;
let MSUM_CONST_NUMSEG = prove
(`!c m n. msum(m..n) (\n. c) = &((n + 1) - m) %% c:real^M^N`,
SIMP_TAC[MSUM_CONST; FINITE_NUMSEG; CARD_NUMSEG]);;
let MSUM_SUC = prove
(`!f m n. msum (SUC n..SUC m) f = msum (n..m) (f o SUC):real^M^N`,
REPEAT GEN_TAC THEN
SUBGOAL_THEN `SUC n..SUC m = IMAGE SUC (n..m)` SUBST1_TAC THENL
[REWRITE_TAC [ADD1; NUMSEG_OFFSET_IMAGE] THEN
REWRITE_TAC [ONE; ADD_SUC; ADD_0; ETA_AX];
SIMP_TAC [MSUM_IMAGE; FINITE_NUMSEG; SUC_INJ]]);;
let MSUM_BIJECTION = prove
(`!f:A->real^M^N p s:A->bool.
(!x. x IN s ==> p(x) IN s) /\
(!y. y IN s ==> ?!x. x IN s /\ p(x) = y)
==> msum s f = msum s (f o p)`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC MSUM_EQ_GENERAL THEN EXISTS_TAC `p:A->A` THEN
ASM_REWRITE_TAC[o_THM]);;
let MSUM_PARTIAL_SUC = prove
(`!f g:num->real^M^N m n.
msum (m..n) (\k. f(k) %% (g(k + 1) - g(k))) =
if m <= n then f(n + 1) %% g(n + 1) - f(m) %% g(m) -
msum (m..n) (\k. (f(k + 1) - f(k)) %% g(k + 1))
else mat 0`,
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[MSUM_TRIV_NUMSEG; GSYM NOT_LE] THEN
ASM_REWRITE_TAC[MSUM_CLAUSES_NUMSEG] THENL
[COND_CASES_TAC THEN ASM_SIMP_TAC[ARITH] THENL
[MATRIX_ARITH_TAC; ASM_ARITH_TAC];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE]) THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
ASM_SIMP_TAC[GSYM NOT_LT; MSUM_TRIV_NUMSEG; ARITH_RULE `n < SUC n`] THEN
ASM_SIMP_TAC[GSYM ADD1; ADD_CLAUSES] THEN MATRIX_ARITH_TAC);;
let MSUM_PARTIAL_PRE = prove
(`!f g:num->real^M^N m n.
msum (m..n) (\k. f(k) %% (g(k) - g(k - 1))) =
if m <= n then f(n + 1) %% g(n) - f(m) %% g(m - 1) -
msum (m..n) (\k. (f(k + 1) - f(k)) %% g(k))
else mat 0`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`f:num->real`; `\k. (g:num->real^M^N)(k - 1)`;
`m:num`; `n:num`] MSUM_PARTIAL_SUC) THEN
REWRITE_TAC[ADD_SUB] THEN DISCH_THEN SUBST1_TAC THEN
COND_CASES_TAC THEN REWRITE_TAC[]);;
let MSUM_COMBINE_L = prove
(`!f m n p.
0 < n /\ m <= n /\ n <= p + 1
==> msum(m..n - 1) f + msum(n..p) f = msum(m..p) f:real^M^N`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
SIMP_TAC[SUM_COMBINE_L]);;
let MSUM_COMBINE_R = prove
(`!f m n p.
m <= n + 1 /\ n <= p
==> msum(m..n) f + msum(n + 1..p) f = msum(m..p) f:real^M^N`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
SIMP_TAC[SUM_COMBINE_R]);;
let MSUM_INJECTION = prove
(`!f:A->real^M^N p:A->A s.
FINITE s /\
(!x. x IN s ==> p x IN s) /\
(!x y. x IN s /\ y IN s /\ p x = p y ==> x = y)
==> msum s (f o p) = msum s f`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SUM_INJECTION) THEN
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; o_DEF] THEN SIMP_TAC[]);;
let MSUM_SWAP = prove
(`!f:A->B->real^M^N s t.
FINITE s /\ FINITE t
==> msum s (\i. msum t (f i)) = msum t (\j. msum s (\i. f i j))`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN REPEAT STRIP_TAC THEN
W(MP_TAC o PART_MATCH (lhs o rand) SUM_SWAP o lhs o snd) THEN
ASM_REWRITE_TAC[]);;
let MSUM_SWAP_NUMSEG = prove
(`!a b c d f.
msum (a..b) (\i. msum (c..d) (f i)) =
msum (c..d) (\j. msum (a..b) (\i. f i j)):real^M^N`,
REPEAT GEN_TAC THEN MATCH_MP_TAC MSUM_SWAP THEN REWRITE_TAC[FINITE_NUMSEG]);;
let MSUM_ADD_GEN = prove
(`!f g:A->real^M^N s.
FINITE {x | x IN s /\ ~(f x = mat 0)} /\
FINITE {x | x IN s /\ ~(g x = mat 0)}
==> msum s (\x. f x + g x) = msum s f + msum s g`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN
SIMP_TAC[CART_EQ; msum; LAMBDA_BETA; MATRIX_ADD_COMPONENT] THEN
REPEAT GEN_TAC THEN MATCH_MP_TAC SUM_ADD_GEN THEN
POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_AND THEN
CONJ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[DE_MORGAN_THM] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[MAT_0_COMPONENT]);;
let MSUM_CASES_1 = prove
(`!s a:A. FINITE s /\ a IN s
==> msum s (\x. if x = a then y else f(x)) =
msum s f + (y - f a):real^M^N`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MSUM_CASES] THEN
ASM_SIMP_TAC[GSYM DELETE; MSUM_DELETE] THEN
ASM_SIMP_TAC[SET_RULE `a:A IN s ==> {x | x IN s /\ x = a} = {a}`] THEN
REWRITE_TAC[MSUM_SING] THEN MATRIX_ARITH_TAC);;
let MSUM_SING_NUMSEG = prove
(`msum(n..n) f = f n:real^M^N`,
REWRITE_TAC[NUMSEG_SING; MSUM_SING]);;
let MSUM_1 = prove
(`msum(1..1) f = f(1):real^M^N`,
REWRITE_TAC[MSUM_SING_NUMSEG]);;
let MSUM_2 = prove
(`!t. msum(1..2) t = t(1) + t(2):real^M^N`,
REWRITE_TAC[num_CONV `2`; MSUM_CLAUSES_NUMSEG] THEN
REWRITE_TAC[MSUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);;
let MSUM_3 = prove
(`!t. msum(1..3) t = t(1) + t(2) + t(3):real^M^N`,
REWRITE_TAC[num_CONV `3`; num_CONV `2`; MSUM_CLAUSES_NUMSEG] THEN
REWRITE_TAC[MSUM_SING_NUMSEG; ARITH; MATRIX_ADD_ASSOC]);;
let MSUM_4 = prove
(`!t. msum(1..4) t = t(1) + t(2) + t(3) + t(4):real^M^N`,
SIMP_TAC[num_CONV `4`; num_CONV `3`; num_CONV `2`; MSUM_CLAUSES_NUMSEG] THEN
REWRITE_TAC[MSUM_SING_NUMSEG; ARITH; MATRIX_ADD_ASSOC]);;
let MSUM_PAIR = prove
(`!f:num->real^M^N m n.
msum(2*m..2*n+1) f = msum(m..n) (\i. f(2*i) + f(2*i+1))`,
REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT; SUM_PAIR]);;
let MSUM_PAIR_0 = prove
(`!f:num->real^M^N n. msum(0..2*n+1) f = msum(0..n) (\i. f(2*i) + f(2*i+1))`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`f:num->real^M^N`; `0`; `n:num`] MSUM_PAIR) THEN
ASM_REWRITE_TAC[ARITH]);;
let MSUM_REFLECT = prove
(`!x m n. msum(m..n) x =
if n < m then mat 0 else msum(0..n-m) (\i. x(n - i)):real^M^N`,
REPEAT GEN_TAC THEN SIMP_TAC[MSUM; FINITE_NUMSEG] THEN
GEN_REWRITE_TAC LAND_CONV [MATCH_MP ITERATE_REFLECT MONOIDAL_MATRIX_ADD] THEN
REWRITE_TAC[NEUTRAL_MATRIX_ADD]);;
|