1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
let assign = new_definition
`Assign (f:S->S) (q:S->bool) = q o f`;;
parse_as_infix(";;",(18,"right"));;
let sequence = new_definition
`(c1:(S->bool)->(S->bool)) ;; (c2:(S->bool)->(S->bool)) = c1 o c2`;;
let if_def = new_definition
`If e (c:(S->bool)->(S->bool)) q = {s | if e s then c q s else q s}`;;
let ite_def = new_definition
`Ite e (c1:(S->bool)->(S->bool)) c2 q =
{s | if e s then c1 q s else c2 q s}`;;
let while_RULES,while_INDUCT,while_CASES = new_inductive_definition
`!q s. If e (c ;; while e c) q s ==> while e c q s`;;
let while_def = new_definition
`While e c q =
{s | !w. (!s:S. (if e(s) then c w s else q s) ==> w s) ==> w s}`;;
let monotonic = new_definition
`monotonic c <=> !q q'. q SUBSET q' ==> (c q) SUBSET (c q')`;;
let MONOTONIC_ASSIGN = prove
(`monotonic (Assign f)`,
SIMP_TAC[monotonic; assign; SUBSET; o_THM; IN]);;
let MONOTONIC_IF = prove
(`monotonic c ==> monotonic (If e c)`,
REWRITE_TAC[monotonic; if_def] THEN SET_TAC[]);;
let MONOTONIC_ITE = prove
(`monotonic c1 /\ monotonic c2 ==> monotonic (Ite e c1 c2)`,
REWRITE_TAC[monotonic; ite_def] THEN SET_TAC[]);;
let MONOTONIC_SEQ = prove
(`monotonic c1 /\ monotonic c2 ==> monotonic (c1 ;; c2)`,
REWRITE_TAC[monotonic; sequence; o_THM] THEN SET_TAC[]);;
let MONOTONIC_WHILE = prove
(`monotonic c ==> monotonic(While e c)`,
REWRITE_TAC[monotonic; while_def] THEN SET_TAC[]);;
let WHILE_THM = prove
(`!e c q:S->bool.
monotonic c
==> (!s. If e (c ;; While e c) q s ==> While e c q s) /\
(!w'. (!s. If e (c ;; (\q. w')) q s ==> w' s)
==> (!a. While e c q a ==> w' a)) /\
(!s. While e c q s <=> If e (c ;; While e c) q s)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
(MP_TAC o GEN_ALL o DISCH_ALL o derive_nonschematic_inductive_relations)
`!s:S. (if e s then c w s else q s) ==> w s` THEN
REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM; IMP_IMP] THEN
DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[FUN_EQ_THM; while_def; IN_ELIM_THM] THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[monotonic] THEN SET_TAC[]);;
let WHILE_FIX = prove
(`!e c. monotonic c ==> (While e c = If e (c ;; While e c))`,
REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[WHILE_THM]);;
let correct = new_definition
`correct p c q <=> p SUBSET (c q)`;;
let CORRECT_PRESTRENGTH = prove
(`!p p' c q. p SUBSET p' /\ correct p' c q ==> correct p c q`,
REWRITE_TAC[correct; SUBSET_TRANS]);;
let CORRECT_POSTWEAK = prove
(`!p c q q'. monotonic c /\ correct p c q' /\ q' SUBSET q ==> correct p c q`,
REWRITE_TAC[correct; monotonic] THEN SET_TAC[]);;
let CORRECT_ASSIGN = prove
(`!p f q. (p SUBSET (q o f)) ==> correct p (Assign f) q`,
REWRITE_TAC[correct; assign]);;
let CORRECT_SEQ = prove
(`!p q r c1 c2.
monotonic c1 /\ correct p c1 r /\ correct r c2 q
==> correct p (c1 ;; c2) q`,
REWRITE_TAC[correct; sequence; monotonic; o_THM] THEN SET_TAC[]);;
let CORRECT_ITE = prove
(`!p e c1 c2 q.
correct (p INTER e) c1 q /\ correct (p INTER (UNIV DIFF e)) c2 q
==> correct p (Ite e c1 c2) q`,
REWRITE_TAC[correct; ite_def] THEN SET_TAC[]);;
let CORRECT_IF = prove
(`!p e c q.
correct (p INTER e) c q /\ p INTER (UNIV DIFF e) SUBSET q
==> correct p (If e c) q`,
REWRITE_TAC[correct; if_def] THEN SET_TAC[]);;
let CORRECT_WHILE = prove
(`!(<<) p c q e invariant.
monotonic c /\
WF(<<) /\
p SUBSET invariant /\
(UNIV DIFF e) INTER invariant SUBSET q /\
(!X:S. correct (invariant INTER e INTER (\s. X = s)) c
(invariant INTER (\s. s << X)))
==> correct p (While e c) q`,
REWRITE_TAC[correct; SUBSET; IN_INTER; IN_UNIV; IN_DIFF; IN] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `!s:S. invariant s ==> While e c q s` MP_TAC THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND]) THEN
X_GEN_TAC `s:S` THEN REPEAT DISCH_TAC THEN
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP WHILE_FIX th]) THEN
REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM] THEN
COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`s:S`; `s:S`]) THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [monotonic]) THEN
REWRITE_TAC[SUBSET; IN; RIGHT_IMP_FORALL_THM] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[INTER; IN_ELIM_THM; IN]);;
let assert_def = new_definition
`assert (p:S->bool) (q:S->bool) = q`;;
let variant_def = new_definition
`variant ((<<):S->S->bool) (q:S->bool) = q`;;
let CORRECT_SEQ_VC = prove
(`!p q r c1 c2.
monotonic c1 /\ correct p c1 r /\ correct r c2 q
==> correct p (c1 ;; assert r ;; c2) q`,
REWRITE_TAC[correct; sequence; monotonic; assert_def; o_THM] THEN SET_TAC[]);;
let CORRECT_WHILE_VC = prove
(`!(<<) p c q e invariant.
monotonic c /\
WF(<<) /\
p SUBSET invariant /\
(UNIV DIFF e) INTER invariant SUBSET q /\
(!X:S. correct (invariant INTER e INTER (\s. X = s)) c
(invariant INTER (\s. s << X)))
==> correct p (While e (assert invariant ;; variant(<<) ;; c)) q`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[sequence; variant_def; assert_def; o_DEF; ETA_AX] THEN
ASM_MESON_TAC[CORRECT_WHILE]);;
let MONOTONIC_ASSERT = prove
(`monotonic (assert p)`,
REWRITE_TAC[assert_def; monotonic]);;
let MONOTONIC_VARIANT = prove
(`monotonic (variant p)`,
REWRITE_TAC[variant_def; monotonic]);;
let MONO_TAC =
REPEAT(MATCH_MP_TAC MONOTONIC_WHILE ORELSE
(MAP_FIRST MATCH_MP_TAC
[MONOTONIC_SEQ; MONOTONIC_IF; MONOTONIC_ITE] THEN CONJ_TAC)) THEN
MAP_FIRST MATCH_ACCEPT_TAC
[MONOTONIC_ASSIGN; MONOTONIC_ASSERT; MONOTONIC_VARIANT];;
let VC_TAC =
FIRST
[MATCH_MP_TAC CORRECT_SEQ_VC THEN CONJ_TAC THENL [MONO_TAC; CONJ_TAC];
MATCH_MP_TAC CORRECT_ITE THEN CONJ_TAC;
MATCH_MP_TAC CORRECT_IF THEN CONJ_TAC;
MATCH_MP_TAC CORRECT_WHILE_VC THEN REPEAT CONJ_TAC THENL
[MONO_TAC; TRY(MATCH_ACCEPT_TAC WF_MEASURE); ALL_TAC; ALL_TAC;
REWRITE_TAC[FORALL_PAIR_THM; MEASURE] THEN REPEAT GEN_TAC];
MATCH_MP_TAC CORRECT_ASSIGN];;
needs "Library/prime.ml";;
(* ------------------------------------------------------------------------- *)
(* x = m, y = n; *)
(* while (!(x == 0 || y == 0)) *)
(* { if (x < y) y = y - x; *)
(* else x = x - y; *)
(* } *)
(* if (x == 0) x = y; *)
(* ------------------------------------------------------------------------- *)
g `correct
(\(m,n,x,y). T)
(Assign (\(m,n,x,y). m,n,m,n) ;; // x,y := m,n
assert (\(m,n,x,y). x = m /\ y = n) ;;
While (\(m,n,x,y). ~(x = 0 \/ y = 0))
(assert (\(m,n,x,y). gcd(x,y) = gcd(m,n)) ;;
variant(MEASURE(\(m,n,x,y). x + y)) ;;
Ite (\(m,n,x,y). x < y)
(Assign (\(m,n,x,y). m,n,x,y - x))
(Assign (\(m,n,x,y). m,n,x - y,y))) ;;
assert (\(m,n,x,y). (x = 0 \/ y = 0) /\ gcd(x,y) = gcd(m,n)) ;;
If (\(m,n,x,y). x = 0) (Assign (\(m,n,x,y). (m,n,y,y))))
(\(m,n,x,y). gcd(m,n) = x)`;;
e(REPEAT VC_TAC);;
b();;
e(REPEAT VC_TAC THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`; `x:num`; `y:num`] THEN
REWRITE_TAC[IN; INTER; UNIV; DIFF; o_DEF; IN_ELIM_THM; PAIR_EQ] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN SIMP_TAC[]);;
e(SIMP_TAC[GCD_SUB; LT_IMP_LE]);;
e ARITH_TAC;;
e(SIMP_TAC[GCD_SUB; NOT_LT] THEN ARITH_TAC);;
e(MESON_TAC[GCD_0]);;
e(MESON_TAC[GCD_0; GCD_SYM]);;
parse_as_infix("refines",(12,"right"));;
let refines = new_definition
`c2 refines c1 <=> !q. c1(q) SUBSET c2(q)`;;
let REFINES_REFL = prove
(`!c. c refines c`,
REWRITE_TAC[refines; SUBSET_REFL]);;
let REFINES_TRANS = prove
(`!c1 c2 c3. c3 refines c2 /\ c2 refines c1 ==> c3 refines c1`,
REWRITE_TAC[refines] THEN MESON_TAC[SUBSET_TRANS]);;
let REFINES_CORRECT = prove
(`correct p c1 q /\ c2 refines c1 ==> correct p c2 q`,
REWRITE_TAC[correct; refines] THEN MESON_TAC[SUBSET_TRANS]);;
let REFINES_WHILE = prove
(`c' refines c ==> While e c' refines While e c`,
REWRITE_TAC[refines; while_def; SUBSET; IN_ELIM_THM; IN] THEN MESON_TAC[]);;
let specification = new_definition
`specification(p,q) r = if q SUBSET r then p else {}`;;
let REFINES_SPECIFICATION = prove
(`c refines specification(p,q) ==> correct p c q`,
REWRITE_TAC[specification; correct; refines] THEN
MESON_TAC[SUBSET_REFL; SUBSET_EMPTY]);;
|