1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
|
(*
File: mk_state_logic.ml
Description: This file defines the state abstracted logical
operators used in unity and some theorems valid for
the combination of these operators.
Author: (c) Copyright 1989-2008 by Flemming Andersen
Date: October 23, 1989
Last Update: December 30, 2007
*)
(* loadt"aux_definitions.ml";; *)
let FALSE_def = new_definition (`(False:'a->bool) = \s:'a. F`);;
let TRUE_def = new_definition (`(True:'a->bool) = \s:'a. T`);;
let NOT_def1 = new_definition (`Not (p:'a->bool) = \s. ~p s`);;
let NOT_def2 = new_definition (`~* (p:'a->bool) = \s. ~p s`);;
let AND_def = new_infix_definition
("/\*", "/\\", `/\* (p:'a->bool) (q:'a->bool) = \s. (p s) /\ (q s)`, OP_FIX);;
let OR_def = new_infix_definition
("\/*", "\/", `\/* (p:'a->bool) (q:'a->bool) = \s. (p s) \/ (q s)`, OP_FIX);;
let FORALL_def = new_binder_definition
(`!* (P:'b->('a->bool)) = (\s. (!x. ((P x)s)))`) "!*";;
let EXISTS_def = new_binder_definition
(`?* (P:'b->('a->bool)) = (\s. (?x. ((P x)s)))`) "?*";;
let CHOICE_def = new_binder_definition
(`@* P = (\s:'a. (@x:'b. ((P x)s)))`) "@*";;
let IMPLIES_def = new_infix_definition
("==>*", "==>", `==>* (p:'a->bool) (q:'a->bool) = \s. (p s) ==> (q s)`, OP_FIX);;
let LESS_def = new_infix_definition
("<*", "<", `<* (p:'a->num) (q:'a->num) = \s. (p s) < (q s)`, OP_FIX);;
let GREATER_def = new_infix_definition
(">*", ">", `>* (p:'a->num) (q:'a->num) = \s. (p s) > (q s)`, OP_FIX);;
let LESS_EQ_def = new_infix_definition
("<=*", "<=", `<=* (p:'a->num) (q:'a->num) = \s. (p s) <= (q s)`, OP_FIX);;
let GREATER_EQ_def = new_infix_definition
(">=*", ">=", `>=* (p:'a->num) (q:'a->num) = \s. (p s) >= (q s)`, OP_FIX);;
let EQ_def = new_infix_definition
("=*", "=", `=* (p:'a->'b) (q:'a->'b) = \s. (p s) = (q s)`, OP_FIX);;
let NEQ_def = new_infix_definition
("<>*", "=", `<>* (p:'a->'b) (q:'a->'b) = \s. ~((p s) = (q s))`, OP_FIX);;
let GE_def = new_infix_definition
("=>*", "<=>", `=>* (p:'a->bool) (r1:'a->'b) (r2:'a->'b) =
\s. if (p s) then r1 s else r2 s`, OP_FIX);;
let PLUS_def = new_infix_definition
("+*", "+", `+* (p:'a->num) (q:'a->num) = \s. (p s) + (q s)`, OP_FIX);;
let SUB_def = new_infix_definition
("-*", "-", `-* (p:'a->num) (q:'a->num) = \s. (p s) - (q s)`, OP_FIX);;
let MUL_def = new_infix_definition
("**", "*", `(**) (p:'a->num) (q:'a->num) = \s. ((p s) * (q s))`, OP_FIX);;
let SUC_def = new_definition
(`Suc (p:'a->num) = \s. SUC (p s)`);;
let PRE_def = new_definition
(`Pre (p:'a->num) = \s. PRE (p s)`);;
let MOD_def = new_infix_definition
("%*", "MOD", `%* (p:'a->num) (q:'a->num) = \s. (p s) MOD (q s)`, OP_FIX);;
let DIV_def = new_infix_definition
("/*", "/", `/* (p:'a->num) (q:'a->num) = \s. (p s) DIV (q s)`, OP_FIX);;
let EXP_def = new_infix_definition
("***", "EXP", `*** (p:'a->num) (q:'a->num) = \s. (p s) EXP (q s)`, OP_FIX);;
(* State dependent index *)
(* Weakness in defining priority: does o have same prio as Ind? *)
let IND_def = new_infix_definition
("Ind", "o", `Ind (a:'a->('b->'c)) (i:'a->'b) = \s. (a s) (i s)`, OP_FIX);;
(* More State dependent operators to be defined ??? *)
(* Be aware that (!i :: i <= m. P i) = (!i. i <= m ==> P i) *)
let FORALL_LE_def = new_definition
(`!<=* (P:num->('a->bool)) m = (\s:'a. (!i. i <= m ==> ((P i)s)))`);;
(* Be aware that ?i :: i <= m. P i == ?i. i <= m /\ P i *)
let EXISTS_LE_def = new_definition
(`?<=* (P:num->('a->bool)) m = (\s:'a. (?i. i <= m /\ ((P i)s)))`);;
let EXISTS_LT_def = new_definition
(`?<* (P:num->('a->bool)) m = (\s:'a. (?i. i < m /\ ((P i)s)))`);;
let AND_LE_N_def = new_recursive_definition
num_RECURSION
(`(!P. /<=\* P 0 = (P:num->('a->bool)) 0) /\
(!P. /<=\* P (SUC i) = ((/<=\* P i) /\* (P (SUC i))))`);;
let OR_LE_N_def = new_recursive_definition
num_RECURSION
(`(!P. \<=/* P 0 = (P:num->('a->bool)) 0) /\
(!P. (\<=/* P (SUC i)) = ((\<=/* P i) \/* (P (SUC i))))`);;
let AND_LT_N_def = new_recursive_definition
num_RECURSION
(`(!P. /<\* P 0 = (False:'a->bool)) /\
(!P. /<\* P (SUC i) = ((/<\* P i) /\* (P i)))`);;
let OR_LT_N_def = new_recursive_definition
num_RECURSION
(`(!P. \</* P 0 = (False:'a->bool)) /\
(!P. \</* P (SUC i) = ((\</* P i) \/* (P i)))`);;
(*-------------------------------------------------------------------------*)
(* Theorems valid in this theory *)
(*-------------------------------------------------------------------------*)
let s = `s:'a`;;
let p = `p:'a->bool`;;
let q = `q:'a->bool`;;
let r = `r:'a->bool`;;
let i = `i:num`;;
let P = `P:num->('a->bool)`;;
let IMPLY_WEAK_lemma1 = prove_thm
("IMPLY_WEAK_lemma1",
(`!p q p' q' (s:'a).
( (((p /\* q') \/* (p' /\* q)) \/* (q /\* q')) s ) ==> ((q \/* q') s)`),
REPEAT(GEN_TAC) THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [(SYM (SPEC_ALL DISJ_ASSOC))] THEN
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC [];
ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []]);;
let IMPLY_WEAK_lemma2 = prove_thm
("IMPLY_WEAK_lemma2",
`!p q p' q' (s:'a).
((((Not p) /\* q') \/* ((Not p') /\* q)) \/* (q /\* q'))s
==>
(q \/* q')s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
BETA_TAC THEN
REWRITE_TAC [GEN_ALL (SYM (SPEC_ALL CONJ_ASSOC));
SYM (SPEC_ALL DISJ_ASSOC);
NOT_CLAUSES;
DE_MORGAN_THM] THEN
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC [];
ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []]);;
let IMPLY_WEAK_lemma3 = prove_thm
("IMPLY_WEAK_lemma3",
`!p q r (s:'a).
((((Not p) /\* r) \/* ((Not q) /\* q)) \/* (q /\* r))s
==>
r s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [(SYM (SPEC_ALL DISJ_ASSOC))] THEN
REPEAT STRIP_TAC THEN
RES_TAC);;
let IMPLY_WEAK_lemma4 = prove_thm
("IMPLY_WEAK_lemma4",
`!p q p' q' r r' (s:'a).
((((Not(p \/* p')) /\* (p \/* r')) \/*
((Not(q \/* q')) /\* (q \/* r))) \/*
((q \/* r) /\* (p \/* r')))s
==>
((p /\* q) \/* r \/* r')s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [SYM (SPEC_ALL DISJ_ASSOC);
GEN_ALL (SYM (SPEC_ALL CONJ_ASSOC));
NOT_CLAUSES;
DE_MORGAN_THM] THEN
REPEAT STRIP_TAC THEN
RES_TAC THEN ASM_REWRITE_TAC []);;
let IMPLY_WEAK_lemma5 = prove_thm
("IMPLY_WEAK_lemma5",
`!p q r (s:'a).
((p /\* r) \/* (((p \/* q) /\* (q \/* r)) \/* r)) s
==>
(q \/* r) s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
RES_TAC THEN ASM_REWRITE_TAC []);;
let IMPLY_WEAK_lemma6 = prove_thm
("IMPLY_WEAK_lemma6",
`!p q b r (s:'a).
((r /\* q) \/* (p /\* b) \/* (b /\* q)) s
==>
((q /\* r) \/* b) s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let IMPLY_WEAK_lemma7 = prove_thm
("IMPLY_WEAK_lemma7",
`!p q b r (s:'a).
(((r /\* q) \/* ((r /\* p) /\* b)) \/* (b /\* q)) s
==>
((q /\* r) \/* b) s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let CONJ_COMM_DISJ_lemma_a = TAC_PROOF
(([],
`!p q r (s:'a).
(r s /\ q s) \/ p s
==>
(q s /\ r s) \/ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_COMM_DISJ_lemma_b = TAC_PROOF
(([],
`!p q r (s:'a).
(q s /\ r s) \/ p s
==>
(r s /\ q s) \/ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_COMM_DISJ_lemma = TAC_PROOF
(([],
`!p q r (s:'a).
(r s /\ q s) \/ p s
<=> (q s /\ r s) \/ p s`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL CONJ_COMM_DISJ_lemma_a)
(SPEC_ALL CONJ_COMM_DISJ_lemma_b)));;
let AND_COMM_OR_lemma = prove_thm
("AND_COMM_OR_lemma",
`!(p:'a->bool) q r. ((r /\* q) \/* p) = ((q /\* r) \/* p)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] CONJ_COMM_DISJ_lemma)));;
let CONJ_DISJ_COMM_lemma_a = TAC_PROOF
(([],
`!p q r (s:'a).
(p s /\ (r s \/ q s))
==>
(p s /\ (q s \/ r s))`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_DISJ_COMM_lemma_b = TAC_PROOF
(([],
`!p q r (s:'a).
(p s /\ (q s \/ r s))
==>
(p s /\ (r s \/ q s))`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_DISJ_COMM_lemma = TAC_PROOF
(([],
`!p q r (s:'a).
(p s /\ (r s \/ q s))
= (p s /\ (q s \/ r s))`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL CONJ_DISJ_COMM_lemma_a)
(SPEC_ALL CONJ_DISJ_COMM_lemma_b)));;
let AND_OR_COMM_lemma = prove_thm
("AND_OR_COMM_lemma",
`!(p:'a->bool) q r.
p /\* (r \/* q)
= p /\* (q \/* r)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] CONJ_DISJ_COMM_lemma)));;
let DISJ_COMM_CONJ_lemma_a = TAC_PROOF
(([],
`!p q r (s:'a).
(r s \/ q s) /\ p s
==>
(q s \/ r s) /\ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_COMM_CONJ_lemma_b = TAC_PROOF
(([],
`!p q r (s:'a).
(q s \/ r s) /\ p s
==>
(r s \/ q s) /\ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_COMM_CONJ_lemma = TAC_PROOF
(([],
`!p q r (s:'a).
(r s \/ q s) /\ p s
<=> (q s \/ r s) /\ p s`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL DISJ_COMM_CONJ_lemma_a)
(SPEC_ALL DISJ_COMM_CONJ_lemma_b)));;
let OR_COMM_AND_lemma = prove_thm
("OR_COMM_AND_lemma",
`!(p:'a->bool) q r.
(r \/* q) /\* p
= (q \/* r) /\* p`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] DISJ_COMM_CONJ_lemma)));;
let DISJ_COMM_DISJ_lemma_a = TAC_PROOF
(([],
`!p q r (s:'a).
(r s \/ q s) \/ p s
==>
(q s \/ r s) \/ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_COMM_DISJ_lemma_b = TAC_PROOF
(([],
`!p q r (s:'a).
(q s \/ r s) \/ p s
==>
(r s \/ q s) \/ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_COMM_DISJ_lemma = TAC_PROOF
(([],
`!(p:'a->bool) q r s. (r s \/ q s) \/ p s <=> (q s \/ r s) \/ p s`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL DISJ_COMM_DISJ_lemma_a)
(SPEC_ALL DISJ_COMM_DISJ_lemma_b)));;
let OR_COMM_OR_lemma = prove_thm
("OR_COMM_OR_lemma",
`!(p:'a->bool) q r. (r \/* q) \/* p = (q \/* r) \/* p`,
REPEAT GEN_TAC THEN
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] DISJ_COMM_DISJ_lemma)));;
let DISJ_DISJ_COMM_lemma_a = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (r s \/ q s) ==> p s \/ (q s \/ r s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_DISJ_COMM_lemma_b = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (q s \/ r s) ==> p s \/ (r s \/ q s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_DISJ_COMM_lemma = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (r s \/ q s) <=> p s \/ (q s \/ r s) `),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL DISJ_DISJ_COMM_lemma_a)
(SPEC_ALL DISJ_DISJ_COMM_lemma_b)));;
let OR_OR_COMM_lemma = prove_thm
("OR_OR_COMM_lemma",
(`!(p:'a->bool) q r. p \/* (r \/* q) = p \/* (q \/* r)`),
REPEAT GEN_TAC THEN
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] DISJ_DISJ_COMM_lemma)));;
let CONJ_COMM_CONJ_lemma_a = TAC_PROOF
(([], `!p q r (s:'a). (r s /\ q s) /\ p s ==> (q s /\ r s) /\ p s`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let CONJ_COMM_CONJ_lemma_b = TAC_PROOF
(([], `!p q r (s:'a). (q s /\ r s) /\ p s ==> (r s /\ q s) /\ p s`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let CONJ_COMM_CONJ_lemma = TAC_PROOF
(([], `!p q r (s:'a). (r s /\ q s) /\ p s <=> (q s /\ r s) /\ p s`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL CONJ_COMM_CONJ_lemma_a)
(SPEC_ALL CONJ_COMM_CONJ_lemma_b)));;
let AND_COMM_AND_lemma = prove_thm
("AND_COMM_AND_lemma",
`!(p:'a->bool) q r. (r /\* q) /\* p = (q /\* r) /\* p`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] CONJ_COMM_CONJ_lemma)));;
let CONJ_CONJ_COMM_lemma_a = TAC_PROOF
(([], `!p q r (s:'a). p s /\ (r s /\ q s) ==> p s /\ (q s /\ r s)`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let CONJ_CONJ_COMM_lemma_b = TAC_PROOF
(([], `!p q r (s:'a). p s /\ (q s /\ r s) ==> p s /\ (r s /\ q s)`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let CONJ_CONJ_COMM_lemma = TAC_PROOF
(([], `!p q r (s:'a). p s /\ (r s /\ q s) <=> p s /\ (q s /\ r s) `),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL CONJ_CONJ_COMM_lemma_a)
(SPEC_ALL CONJ_CONJ_COMM_lemma_b)));;
let AND_AND_COMM_lemma = prove_thm
("AND_AND_COMM_lemma",
`!(p:'a->bool) q r. p /\* (r /\* q) = p /\* (q /\* r)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] CONJ_CONJ_COMM_lemma)));;
let DISJ_CONJ_COMM_lemma_a = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (r s /\ q s) ==> p s \/ (q s /\ r s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_CONJ_COMM_lemma_b = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (q s /\ r s) ==> p s \/ (r s /\ q s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_CONJ_COMM_lemma = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (r s /\ q s) <=> p s \/ (q s /\ r s)`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL DISJ_CONJ_COMM_lemma_a)
(SPEC_ALL DISJ_CONJ_COMM_lemma_b)));;
let OR_AND_COMM_lemma = prove_thm
("OR_AND_COMM_lemma",
`!(p:'a->bool) q r. p \/* (r /\* q) = p \/* (q /\* r)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] DISJ_CONJ_COMM_lemma)));;
let NOT_NOT_lemma = prove_thm
("NOT_NOT_lemma",
`!(p:'a->bool). (Not (Not p)) = p`,
REWRITE_TAC [NOT_def1] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [NOT_CLAUSES; ETA_AX]);;
let DISJ_COMM_lemma = TAC_PROOF
(([], `!p q (s:'a). p s \/ q s <=> q s \/ p s`),
REPEAT STRIP_TAC THEN
STRIP_ASSUME_TAC
(SPECL [`(p (s:'a)):bool`; `(q (s:'a)):bool`] DISJ_SYM));;
let OR_COMM_lemma = prove_thm
("OR_COMM_lemma",
`!(p:'a->bool) q. (p \/* q) = (q \/* p)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC [OR_def] THEN
ASSUME_TAC DISJ_COMM_lemma THEN
STRIP_ASSUME_TAC
(MK_ABS (SPECL [p;q]
(ASSUME (`!(p:'a->bool) q s. p s \/ q s <=> q s \/ p s`)))));;
let OR_OR_lemma = prove_thm
("OR_OR_lemma",
`!p:'a->bool. p \/* p = p`,
GEN_TAC THEN REWRITE_TAC [OR_def; ETA_AX]);;
let DISJ_ASSOC_lemma = TAC_PROOF
(([], `!p q r (s:'a). ((p s \/ q s) \/ r s) <=> (p s \/ (q s \/ r s))`),
REWRITE_TAC [(SYM (SPEC_ALL DISJ_ASSOC))]);;
let OR_ASSOC_lemma = prove_thm
("OR_ASSOC_lemma",
(`!(p:'a->bool) q r. (p \/* q) \/* r = p \/* (q \/* r)`),
REPEAT STRIP_TAC THEN REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
ASSUME_TAC DISJ_ASSOC_lemma THEN
STRIP_ASSUME_TAC
(MK_ABS (SPECL [p;q;r]
(ASSUME (`!p q r (s:'a).
((p s \/ q s) \/ r s) <=> (p s \/ (q s \/ r s))`)))));;
let CONJ_WEAK_lemma = TAC_PROOF
(([], `!p q (s:'a). p s /\ q s ==> q s`),
REPEAT STRIP_TAC THEN RES_TAC);;
let AND_IMPLY_WEAK_lemma = prove_thm
("AND_IMPLY_WEAK_lemma",
`!p q (s:'a). (p /\* q) s ==> q s`,
REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [CONJ_WEAK_lemma]);;
let SYM_CONJ_WEAK_lemma = TAC_PROOF
(([], `!p q (s:'a). p s /\ q s ==> p s`),
REPEAT STRIP_TAC THEN RES_TAC);;
let SYM_AND_IMPLY_WEAK_lemma = prove_thm
("SYM_AND_IMPLY_WEAK_lemma",
`!p q (s:'a). (p /\* q) s ==> p s`,
REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [SYM_CONJ_WEAK_lemma]);;
let OR_IMPLY_WEAK_lemma = prove_thm
("OR_IMPLY_WEAK_lemma",
`!p q (s:'a). p s ==> (p \/* q) s`,
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []);;
let SYM_OR_IMPLY_WEAK_lemma = prove_thm
("SYM_OR_IMPLY_WEAK_lemma",
`!p q (s:'a). p s ==> (q \/* p) s`,
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []);;
let IMPLY_WEAK_AND_lemma = prove_thm
("IMPLY_WEAK_AND_lemma",
`!(p:'a->bool) q r.
(!s. p s ==> q s)
==>
(!s. (p /\* r) s ==> (q /\* r) s)`,
REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THENL
[RES_TAC;
RES_TAC THEN
ASM_REWRITE_TAC []]);;
let IMPLY_WEAK_OR_lemma = prove_thm
("IMPLY_WEAK_OR_lemma",
`!(p:'a->bool) q r.
(!s. p s ==> q s)
==>
(!s. (p \/* r) s ==> (q \/* r) s)`,
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THENL
[RES_TAC THEN
ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []]);;
let AND_AND_lemma = prove_thm
("AND_AND_lemma",
`!p:'a->bool. p /\* p = p`,
REWRITE_TAC [AND_def; ETA_AX]);;
let CONJ_COMM_lemma = TAC_PROOF
(([],
`!p q (s:'a). (p s /\ q s) <=> (q s /\ p s)`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (SPECL [`(p:'a->bool) s`; `(q:'a->bool) s`] CONJ_SYM));;
let AND_COMM_lemma = prove_thm
("AND_COMM_lemma",
(`!(p:'a->bool) q. (p /\* q) = (q /\* p)`),
REWRITE_TAC [AND_def] THEN
REPEAT GEN_TAC THEN
ASSUME_TAC CONJ_COMM_lemma THEN
STRIP_ASSUME_TAC
(MK_ABS (SPECL [p;q]
(ASSUME (`!p q (s:'a). p s /\ q s <=> q s /\ p s`)))));;
let CONJ_ASSOC_lemma = TAC_PROOF
(([],
`!p q r (s:'a). ((p s /\ q s) /\ r s) <=> (p s /\ (q s /\ r s))`),
REWRITE_TAC [GEN_ALL (SYM (SPEC_ALL CONJ_ASSOC))]);;
let AND_ASSOC_lemma = prove_thm
("AND_ASSOC_lemma",
`!(p:'a->bool) q r. (p /\* q) /\* r = p /\* (q /\* r)`,
REPEAT GEN_TAC THEN REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
ASSUME_TAC CONJ_ASSOC_lemma THEN
STRIP_ASSUME_TAC
(MK_ABS (SPECL [p;q;r]
(ASSUME (`!p q r (s:'a).
((p s /\ q s) /\ r s) <=> (p s /\ (q s /\ r s))`)))));;
let NOT_True_lemma = prove_thm
("NOT_True_lemma",
`Not (True:'a->bool) = False`,
REWRITE_TAC [NOT_def1; TRUE_def; FALSE_def; ETA_AX]);;
let NOT_False_lemma = prove_thm
("NOT_False_lemma",
`Not (False:'a->bool) = True`,
REWRITE_TAC [NOT_def1; TRUE_def; FALSE_def; ETA_AX]);;
let AND_True_lemma = prove_thm
("AND_True_lemma",
`!p:'a->bool. p /\* True = p`,
REWRITE_TAC [AND_def; TRUE_def; ETA_AX]);;
let OR_True_lemma = prove_thm
("OR_True_lemma",
`!p:'a->bool. p \/* True = True`,
REWRITE_TAC [OR_def; TRUE_def; ETA_AX]);;
let AND_False_lemma = prove_thm
("AND_False_lemma",
`!p:'a->bool. p /\* False = False`,
REWRITE_TAC [AND_def; FALSE_def; ETA_AX]);;
let OR_False_lemma = prove_thm
("OR_False_lemma",
`!p:'a->bool. p \/* False = p`,
REWRITE_TAC [OR_def; FALSE_def; ETA_AX]);;
let P_OR_NOT_P_lemma = prove_thm
("P_OR_NOT_P_lemma",
`!p:'a->bool. p \/* (Not p) = True`,
REWRITE_TAC [OR_def; NOT_def1; TRUE_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [EXCLUDED_MIDDLE; OR_CLAUSES; NOT_CLAUSES; ETA_AX]);;
let P_AND_NOT_P_lemma = prove_thm
("P_AND_NOT_P_lemma",
`!p:'a->bool. p /\* (Not p) = False`,
REWRITE_TAC [AND_def; NOT_def1; FALSE_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [NOT_AND; AND_CLAUSES; NOT_CLAUSES; ETA_AX]);;
let CONJ_COMPL_DISJ_lemma1 = TAC_PROOF
(([],
`!p q. p /\ ~q \/ p /\ q ==> p`),
REPEAT STRIP_TAC);;
let CONJ_COMPL_DISJ_lemma2 = TAC_PROOF
(([],
`!p q. p ==> p /\ ~q \/ p /\ q`),
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC [] THEN
PURE_ONCE_REWRITE_TAC [DISJ_SYM] THEN
REWRITE_TAC [EXCLUDED_MIDDLE]);;
let CONJ_COMPL_DISJ_lemma = TAC_PROOF
(([],
`!p q. p /\ ~q \/ p /\ q <=> p`),
REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL CONJ_COMPL_DISJ_lemma1)
(SPEC_ALL CONJ_COMPL_DISJ_lemma2)]);;
let AND_COMPL_OR_lemma = prove_thm
("AND_COMPL_OR_lemma",
`!(p:'a->bool) q. ((p /\* (Not q)) \/* (p /\* q)) = p`,
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [CONJ_COMPL_DISJ_lemma; ETA_AX]);;
let DISJ_NOT_CONJ_lemma1 = TAC_PROOF
(([],
`!p q. (p \/ q) /\ ~q ==> p /\ ~q`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [] THEN RES_TAC);;
let DISJ_NOT_CONJ_lemma2 = TAC_PROOF
(([],
`!p q. p /\ ~q ==> (p \/ q) /\ ~q`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [] THEN RES_TAC);;
let DISJ_NOT_CONJ_lemma = TAC_PROOF
(([], `!p q. (p \/ q) /\ ~q <=> p /\ ~q`),
REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL DISJ_NOT_CONJ_lemma1)
(SPEC_ALL DISJ_NOT_CONJ_lemma2)]);;
let OR_NOT_AND_lemma = prove_thm
("OR_NOT_AND_lemma",
`!(p:'a->bool) q. ((p \/* q) /\* (Not q)) = p /\* (Not q)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [DISJ_NOT_CONJ_lemma]);;
let P_CONJ_Q_DISJ_Q_lemma1 = TAC_PROOF
(([], `!(p:'a->bool) q s. (p s /\ q s) \/ q s ==> q s`),
REPEAT STRIP_TAC);;
let P_CONJ_Q_DISJ_Q_lemma2 = TAC_PROOF
(([], `!(p:'a->bool) q s. q s ==> (p s /\ q s) \/ q s`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let P_CONJ_Q_DISJ_Q_lemma = TAC_PROOF
(([], `!(p:'a->bool) q s. (p s /\ q s) \/ q s <=> q s`),
ASM_REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL P_CONJ_Q_DISJ_Q_lemma1)
(SPEC_ALL P_CONJ_Q_DISJ_Q_lemma2)]);;
let P_AND_Q_OR_Q_lemma = prove_thm
("P_AND_Q_OR_Q_lemma",
`!(p:'a->bool) q. (p /\* q) \/* q = q`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [GEN_ALL (MK_ABS (SPECL [p;q] P_CONJ_Q_DISJ_Q_lemma)); ETA_AX]);;
let P_DISJ_Q_CONJ_Q_lemma1 = TAC_PROOF
(([], `!(p:'a->bool) q s. (p s \/ q s) /\ q s ==> q s`),
REPEAT STRIP_TAC);;
let P_DISJ_Q_CONJ_Q_lemma2 = TAC_PROOF
(([], `!(p:'a->bool) q s. q s ==> (p s \/ q s) /\ q s`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let P_DISJ_Q_CONJ_Q_lemma = TAC_PROOF
(([], `!(p:'a->bool) q s. (p s \/ q s) /\ q s <=> q s`),
ASM_REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL P_DISJ_Q_CONJ_Q_lemma1)
(SPEC_ALL P_DISJ_Q_CONJ_Q_lemma2)]);;
let P_OR_Q_AND_Q_lemma = prove_thm
("P_OR_Q_AND_Q_lemma",
`!(p:'a->bool) q. (p \/* q) /\* q = q`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [GEN_ALL (MK_ABS (SPECL [p;q] P_DISJ_Q_CONJ_Q_lemma)); ETA_AX]);;
let NOT_OR_AND_NOT_lemma = prove_thm
("NOT_OR_AND_NOT_lemma",
`!(p:'a->bool) q. Not (p \/* q) = (Not p) /\* (Not q)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [NOT_CLAUSES;
DE_MORGAN_THM]);;
let NOT_AND_OR_NOT_lemma = prove_thm
("NOT_AND_OR_NOT_lemma",
`!(p:'a->bool) q. Not (p /\* q) = (Not p) \/* (Not q)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [NOT_CLAUSES;
DE_MORGAN_THM]);;
let NOT_IMPLY_OR_lemma = prove_thm
("NOT_IMPLY_OR_lemma",
`!(p:'a->bool) q.
(!s. (Not p)s ==> q s)
= (!s. (p \/* q)s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [IMP_DISJ_THM]);;
let IMPLY_OR_lemma = prove_thm
("IMPLY_OR_lemma",
`!(p:'a->bool) q. (!s. p s ==> q s) = (!s. ((Not p) \/* q)s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [IMP_DISJ_THM]);;
let OR_IMPLY_lemma = prove_thm
("OR_IMPLY_lemma",
`!(p:'a->bool) q. (!s. (p \/* q)s) = (!s. (Not p)s ==> q s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [IMP_DISJ_THM; NOT_CLAUSES]);;
let NOT_OR_IMPLY_lemma = prove_thm
("NOT_OR_IMPLY_lemma",
`!(p:'a->bool) q. (!s. ((Not p) \/* q)s) = (!s. p s ==> q s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [IMP_DISJ_THM; NOT_CLAUSES]);;
let DISJ_CONJ_lemma1 = TAC_PROOF
(([],
`!p q r (s:'a).
(p s \/ q s /\ r s)
==>
((p s \/ q s) /\ (p s \/ r s))`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_CONJ_lemma2 = TAC_PROOF
(([], `!(p:'a->bool) q r s.
((p s \/ q s) /\ (p s \/ r s)) ==> (p s \/ q s /\ r s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_CONJ_lemma = TAC_PROOF
(([], `!(p:'a->bool) q r s.
(p s \/ q s /\ r s) <=> ((p s \/ q s) /\ (p s \/ r s))`),
REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL DISJ_CONJ_lemma1)
(SPEC_ALL DISJ_CONJ_lemma2)]);;
let OR_AND_DISTR_lemma = prove_thm
("OR_AND_DISTR_lemma",
`!(p:'a->bool) q r. p \/* (q /\* r) = (p \/* q) /\* (p \/* r)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] DISJ_CONJ_lemma)));;
let CONJ_DISJ_lemma1 = TAC_PROOF
(([], `!(p:'a->bool) q r s.
(p s /\ (q s \/ r s)) ==> (p s /\ q s \/ p s /\ r s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_DISJ_lemma2 = TAC_PROOF
(([], `!(p:'a->bool) q r s.
(p s /\ q s \/ p s /\ r s) ==> (p s /\ (q s \/ r s))`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_DISJ_lemma = TAC_PROOF
(([], `!(p:'a->bool) q r s.
(p s /\ (q s \/ r s)) <=> (p s /\ q s \/ p s /\ r s)`),
REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL CONJ_DISJ_lemma1)
(SPEC_ALL CONJ_DISJ_lemma2)]);;
let AND_OR_DISTR_lemma = prove_thm
("AND_OR_DISTR_lemma",
`!(p:'a->bool) q r. p /\* (q \/* r) = (p /\* q) \/* (p /\* r)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] CONJ_DISJ_lemma)));;
let NOT_IMPLIES_False_lemma = prove_thm
("NOT_IMPLIES_False_lemma",
`!(p:'a->bool). (!s. (Not p)s) ==> (!s. p s = False s)`,
REWRITE_TAC [FALSE_def; NOT_def1] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC []);;
let NOT_P_IMPLIES_P_EQ_False_lemma = prove_thm
("NOT_P_IMPLIES_P_EQ_False_lemma",
`!(p:'a->bool). (!s. (Not p)s) ==> (p = False)`,
REPEAT STRIP_TAC THEN
ASSUME_TAC (MK_ABS (UNDISCH_ALL (SPEC_ALL NOT_IMPLIES_False_lemma))) THEN
UNDISCH_TAC (`(\s:'a. p s) = (\s. False s)`) THEN
REWRITE_TAC [ETA_AX]);;
let NOT_AND_IMPLIES_lemma = prove_thm
("NOT_AND_IMPLIES_lemma",
`!(p:'a->bool) q. (!s. (Not (p /\* q))s) <=> (!s. p s ==> Not q s)`,
REWRITE_TAC [NOT_def1; AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [DE_MORGAN_THM; NOT_CLAUSES; IMP_DISJ_THM]);;
let NOT_AND_IMPLIES_lemma1 = prove_thm
("NOT_AND_IMPLIES_lemma1",
`!(p:'a->bool) q. (!s. (Not (p /\* q))s) ==> (!s. p s ==> Not q s)`,
REWRITE_TAC [NOT_AND_IMPLIES_lemma]);;
let NOT_AND_IMPLIES_lemma2 = prove_thm
("NOT_AND_IMPLIES_lemma2",
`!(p:'a->bool) q. (!s. (Not (p /\* q))s) ==> (!s. q s ==> Not p s)`,
REWRITE_TAC [NOT_AND_IMPLIES_lemma; NOT_def1] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
RES_TAC);;
let CONJ_DISJ_IMPLY_lemma1 = TAC_PROOF
(([], `!(p:'a->bool) q s. p s /\ (p s \/ q s) ==> p s`),
REPEAT STRIP_TAC);;
let CONJ_DISJ_IMPLY_lemma2 = TAC_PROOF
(([], `!(p:'a->bool) q s. p s ==> p s /\ (p s \/ q s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_DISJ_IMPLY_lemma = TAC_PROOF
(([], `!(p:'a->bool) q s. p s /\ (p s \/ q s) <=> p s`),
REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL CONJ_DISJ_IMPLY_lemma1)
(SPEC_ALL CONJ_DISJ_IMPLY_lemma2)]);;
let CONJ_DISJ_ABS_IMPLY_lemma = TAC_PROOF
(([], `!(p:'a->bool) q. (\s. p s /\ (p s \/ q s)) = p`),
REPEAT GEN_TAC THEN
REWRITE_TAC [CONJ_DISJ_IMPLY_lemma; ETA_AX]);;
let AND_OR_EQ_lemma = prove_thm
("AND_OR_EQ_lemma",
`!(p:'a->bool) q. p /\* (p \/* q) = p`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [CONJ_DISJ_ABS_IMPLY_lemma]);;
let AND_OR_EQ_AND_COMM_OR_lemma = prove_thm
("AND_OR_EQ_AND_COMM_OR_lemma",
`!(p:'a->bool) q. p /\* (q \/* p) = p /\* (p \/* q)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_OR_EQ_lemma] THEN
ONCE_REWRITE_TAC [OR_COMM_lemma] THEN
REWRITE_TAC [AND_OR_EQ_lemma]);;
let IMPLY_WEAK_lemma = prove_thm
("IMPLY_WEAK_lemma",
`!(p:'a->bool) q. (!s. p s) ==> (!s. (p \/* q) s)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
ASM_REWRITE_TAC []);;
let IMPLY_WEAK_lemma_b = prove_thm
("IMPLY_WEAK_lemma_b",
`!(p:'a->bool) q s. p s ==> (p \/* q) s`,
REPEAT STRIP_TAC THEN
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
ASM_REWRITE_TAC []);;
let ALL_AND_lemma1 = TAC_PROOF
(([],
`!(P:num->('a->bool)) i s. (!i. P i s) <=> (P i s /\ (!i. P i s))`),
REPEAT STRIP_TAC THEN
EQ_TAC THENL
[
REPEAT STRIP_TAC THENL
[
ASM_REWRITE_TAC []
;
ASM_REWRITE_TAC []
];
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []]);;
let ALL_OR_lemma1 = TAC_PROOF
(([],
`!(P:num->('a->bool)) i s. (?i. P i s) <=> (P i s \/ (?i. P i s))`),
REPEAT GEN_TAC THEN
EQ_TAC THENL
[
REPEAT STRIP_TAC THEN
DISJ2_TAC THEN
EXISTS_TAC (`i':num`) THEN
ASM_REWRITE_TAC []
;
REPEAT STRIP_TAC THENL
[
EXISTS_TAC (`i:num`) THEN
ASM_REWRITE_TAC []
;
EXISTS_TAC (`i:num`) THEN
ASM_REWRITE_TAC []
]
]);;
let ALL_OR_lemma = prove_thm
("ALL_OR_lemma",
`!(P:num->('a->bool)) i. (((?*) P) = ((P i) \/* ((?*) P)))`,
GEN_TAC THEN GEN_TAC THEN
REWRITE_TAC [EXISTS_def; OR_def] THEN
BETA_TAC THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [P;i] ALL_OR_lemma1)));;
let ALL_i_OR_lemma1 = TAC_PROOF
(([],
`!P (s:'a). (?i. \<=/* P i s) = (?i. P i s)`),
REPEAT STRIP_TAC THEN
EQ_TAC THENL
[
STRIP_TAC THEN
UNDISCH_TAC (`\<=/* (P:num->('a->bool)) i s`) THEN
SPEC_TAC (i,i) THEN
INDUCT_TAC THENL
[
REWRITE_TAC [OR_LE_N_def] THEN
DISCH_TAC THEN
EXISTS_TAC (`0`) THEN
ASM_REWRITE_TAC []
;
REWRITE_TAC [OR_LE_N_def; OR_def] THEN
BETA_TAC THEN
REPEAT STRIP_TAC THENL
[
RES_TAC THEN
EXISTS_TAC (`i':num`) THEN
ASM_REWRITE_TAC []
;
EXISTS_TAC (`SUC i`) THEN
ASM_REWRITE_TAC []
]
]
;
STRIP_TAC THEN
UNDISCH_TAC (`(P (i:num) (s:'a)):bool`) THEN
SPEC_TAC (i,i) THEN
INDUCT_TAC THENL
[
DISCH_TAC THEN
EXISTS_TAC (`0`) THEN
ASM_REWRITE_TAC [OR_LE_N_def]
;
DISCH_TAC THEN
EXISTS_TAC (`SUC i`) THEN
REWRITE_TAC [OR_LE_N_def; OR_def] THEN
BETA_TAC THEN
ASM_REWRITE_TAC []
]
]);;
let ALL_i_OR_lemma = prove_thm
("ALL_i_OR_lemma",
(`!P. ((\s:'a. ?i. \<=/* P i s) = ((?*) P))`),
REWRITE_TAC [EXISTS_def] THEN
GEN_TAC THEN
STRIP_ASSUME_TAC (MK_ABS (SPEC P ALL_i_OR_lemma1)));;
|