File: arith.ml

package info (click to toggle)
hol-light 20190729-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,676 kB
  • sloc: ml: 637,078; cpp: 439; makefile: 301; lisp: 286; java: 279; sh: 239; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (1775 lines) | stat: -rw-r--r-- 70,728 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
(* ========================================================================= *)
(* Natural number arithmetic.                                                *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(*                 (c) Copyright, Marco Maggesi 2015                         *)
(*      (c) Copyright, Andrea Gabrielli, Marco Maggesi 2017-2018             *)
(* ========================================================================= *)

needs "recursion.ml";;

(* ------------------------------------------------------------------------- *)
(* Note: all the following proofs are intuitionistic and intensional, except *)
(* for the least number principle num_WOP.                                   *)
(* (And except the arith rewrites at the end; these could be done that way   *)
(* but they use the conditional anyway.) In fact, one could very easily      *)
(* write a "decider" returning P \/ ~P for quantifier-free P.                *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("<",(12,"right"));;
parse_as_infix("<=",(12,"right"));;
parse_as_infix(">",(12,"right"));;
parse_as_infix(">=",(12,"right"));;

parse_as_infix("+",(16,"right"));;
parse_as_infix("-",(18,"left"));;
parse_as_infix("*",(20,"right"));;
parse_as_infix("EXP",(24,"left"));;

parse_as_infix("DIV",(22,"left"));;
parse_as_infix("MOD",(22,"left"));;

(* ------------------------------------------------------------------------- *)
(* The predecessor function.                                                 *)
(* ------------------------------------------------------------------------- *)

let PRE = new_recursive_definition num_RECURSION
 `(PRE 0 = 0) /\
  (!n. PRE (SUC n) = n)`;;

(* ------------------------------------------------------------------------- *)
(* Addition.                                                                 *)
(* ------------------------------------------------------------------------- *)

let ADD = new_recursive_definition num_RECURSION
 `(!n. 0 + n = n) /\
  (!m n. (SUC m) + n = SUC(m + n))`;;

let ADD_0 = prove
 (`!m. m + 0 = m`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);;

let ADD_SUC = prove
 (`!m n. m + (SUC n) = SUC(m + n)`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);;

let ADD_CLAUSES = prove
 (`(!n. 0 + n = n) /\
   (!m. m + 0 = m) /\
   (!m n. (SUC m) + n = SUC(m + n)) /\
   (!m n. m + (SUC n) = SUC(m + n))`,
  REWRITE_TAC[ADD; ADD_0; ADD_SUC]);;

let ADD_SYM = prove
 (`!m n. m + n = n + m`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES]);;

let ADD_ASSOC = prove
 (`!m n p. m + (n + p) = (m + n) + p`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES]);;

let ADD_AC = prove
 (`(m + n = n + m) /\
   ((m + n) + p = m + (n + p)) /\
   (m + (n + p) = n + (m + p))`,
  MESON_TAC[ADD_ASSOC; ADD_SYM]);;

let ADD_EQ_0 = prove
 (`!m n. (m + n = 0) <=> (m = 0) /\ (n = 0)`,
  REPEAT INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; NOT_SUC]);;

let EQ_ADD_LCANCEL = prove
 (`!m n p. (m + n = m + p) <=> (n = p)`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; SUC_INJ]);;

let EQ_ADD_RCANCEL = prove
 (`!m n p. (m + p = n + p) <=> (m = n)`,
  ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_ACCEPT_TAC EQ_ADD_LCANCEL);;

let EQ_ADD_LCANCEL_0 = prove
 (`!m n. (m + n = m) <=> (n = 0)`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; SUC_INJ]);;

let EQ_ADD_RCANCEL_0 = prove
 (`!m n. (m + n = n) <=> (m = 0)`,
  ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_ACCEPT_TAC EQ_ADD_LCANCEL_0);;

(* ------------------------------------------------------------------------- *)
(* Now define "bitwise" binary representation of numerals.                   *)
(* ------------------------------------------------------------------------- *)

let BIT0 = prove
 (`!n. BIT0 n = n + n`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[BIT0_DEF; ADD_CLAUSES]);;

let BIT1 = prove
 (`!n. BIT1 n = SUC(n + n)`,
  REWRITE_TAC[BIT1_DEF; BIT0]);;

let BIT0_THM = prove
 (`!n. NUMERAL (BIT0 n) = NUMERAL n + NUMERAL n`,
  REWRITE_TAC[NUMERAL; BIT0]);;

let BIT1_THM = prove
 (`!n. NUMERAL (BIT1 n) = SUC(NUMERAL n + NUMERAL n)`,
  REWRITE_TAC[NUMERAL; BIT1]);;

(* ------------------------------------------------------------------------- *)
(* Following is handy before num_CONV arrives.                               *)
(* ------------------------------------------------------------------------- *)

let ONE = prove
 (`1 = SUC 0`,
  REWRITE_TAC[BIT1; REWRITE_RULE[NUMERAL] ADD_CLAUSES; NUMERAL]);;

let TWO = prove
 (`2 = SUC 1`,
  REWRITE_TAC[BIT0; BIT1; REWRITE_RULE[NUMERAL] ADD_CLAUSES; NUMERAL]);;

(* ------------------------------------------------------------------------- *)
(* One immediate consequence.                                                *)
(* ------------------------------------------------------------------------- *)

let ADD1 = prove
 (`!m. SUC m = m + 1`,
  REWRITE_TAC[BIT1_THM; ADD_CLAUSES]);;

(* ------------------------------------------------------------------------- *)
(* Multiplication.                                                           *)
(* ------------------------------------------------------------------------- *)

let MULT = new_recursive_definition num_RECURSION
 `(!n. 0 * n = 0) /\
  (!m n. (SUC m) * n = (m * n) + n)`;;

let MULT_0 = prove
 (`!m. m * 0 = 0`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[MULT; ADD_CLAUSES]);;

let MULT_SUC = prove
 (`!m n. m * (SUC n) = m + (m * n)`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[MULT; ADD_CLAUSES; ADD_ASSOC]);;

let MULT_CLAUSES = prove
 (`(!n. 0 * n = 0) /\
   (!m. m * 0 = 0) /\
   (!n. 1 * n = n) /\
   (!m. m * 1 = m) /\
   (!m n. (SUC m) * n = (m * n) + n) /\
   (!m n. m * (SUC n) = m + (m * n))`,
  REWRITE_TAC[BIT1_THM; MULT; MULT_0; MULT_SUC; ADD_CLAUSES]);;

let MULT_SYM = prove
 (`!m n. m * n = n * m`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES; EQT_INTRO(SPEC_ALL ADD_SYM)]);;

let LEFT_ADD_DISTRIB = prove
 (`!m n p. m * (n + p) = (m * n) + (m * p)`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ADD; MULT_CLAUSES; ADD_ASSOC]);;

let RIGHT_ADD_DISTRIB = prove
 (`!m n p. (m + n) * p = (m * p) + (n * p)`,
  ONCE_REWRITE_TAC[MULT_SYM] THEN MATCH_ACCEPT_TAC LEFT_ADD_DISTRIB);;

let MULT_ASSOC = prove
 (`!m n p. m * (n * p) = (m * n) * p`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES; RIGHT_ADD_DISTRIB]);;

let MULT_AC = prove
 (`(m * n = n * m) /\
   ((m * n) * p = m * (n * p)) /\
   (m * (n * p) = n * (m * p))`,
  MESON_TAC[MULT_ASSOC; MULT_SYM]);;

let MULT_EQ_0 = prove
 (`!m n. (m * n = 0) <=> (m = 0) \/ (n = 0)`,
  REPEAT INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; NOT_SUC]);;

let EQ_MULT_LCANCEL = prove
 (`!m n p. (m * n = m * p) <=> (m = 0) \/ (n = p)`,
  INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; NOT_SUC] THEN
  REPEAT INDUCT_TAC THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; GSYM NOT_SUC; NOT_SUC] THEN
  ASM_REWRITE_TAC[SUC_INJ; GSYM ADD_ASSOC; EQ_ADD_LCANCEL]);;

let EQ_MULT_RCANCEL = prove
 (`!m n p. (m * p = n * p) <=> (m = n) \/ (p = 0)`,
  ONCE_REWRITE_TAC[MULT_SYM; DISJ_SYM] THEN MATCH_ACCEPT_TAC EQ_MULT_LCANCEL);;

let MULT_2 = prove
 (`!n. 2 * n = n + n`,
  GEN_TAC THEN REWRITE_TAC[BIT0_THM; MULT_CLAUSES; RIGHT_ADD_DISTRIB]);;

let MULT_EQ_1 = prove
 (`!m n. (m * n = 1) <=> (m = 1) /\ (n = 1)`,
  INDUCT_TAC THEN INDUCT_TAC THEN REWRITE_TAC
    [MULT_CLAUSES; ADD_CLAUSES; BIT0_THM; BIT1_THM; GSYM NOT_SUC] THEN
  REWRITE_TAC[SUC_INJ; ADD_EQ_0; MULT_EQ_0] THEN
  CONV_TAC TAUT);;

(* ------------------------------------------------------------------------- *)
(* Exponentiation.                                                           *)
(* ------------------------------------------------------------------------- *)

let EXP = new_recursive_definition num_RECURSION
 `(!m. m EXP 0 = 1) /\
  (!m n. m EXP (SUC n) = m * (m EXP n))`;;

let EXP_EQ_0 = prove
 (`!m n. (m EXP n = 0) <=> (m = 0) /\ ~(n = 0)`,
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC
    [BIT1_THM; NOT_SUC; NOT_SUC; EXP; MULT_CLAUSES; ADD_CLAUSES; ADD_EQ_0]);;

let EXP_EQ_1 = prove
 (`!x n. x EXP n = 1 <=> x = 1 \/ n = 0`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[EXP; MULT_EQ_1; NOT_SUC] THEN
  CONV_TAC TAUT);;

let EXP_ZERO = prove
 (`!n. 0 EXP n = if n = 0 then 1 else 0`,
  GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[EXP_EQ_0; EXP_EQ_1]);;

let EXP_ADD = prove
 (`!m n p. m EXP (n + p) = (m EXP n) * (m EXP p)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[EXP; ADD_CLAUSES; MULT_CLAUSES; MULT_AC]);;

let EXP_ONE = prove
 (`!n. 1 EXP n = 1`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[EXP; MULT_CLAUSES]);;

let EXP_1 = prove
 (`!n. n EXP 1 = n`,
  REWRITE_TAC[ONE; EXP; MULT_CLAUSES; ADD_CLAUSES]);;

let EXP_2 = prove
 (`!n. n EXP 2 = n * n`,
  REWRITE_TAC[BIT0_THM; BIT1_THM; EXP; EXP_ADD; MULT_CLAUSES; ADD_CLAUSES]);;

let MULT_EXP = prove
 (`!p m n. (m * n) EXP p = m EXP p * n EXP p`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[EXP; MULT_CLAUSES; MULT_AC]);;

let EXP_MULT = prove
 (`!m n p. m EXP (n * p) = (m EXP n) EXP p`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[EXP_ADD; EXP; MULT_CLAUSES] THENL
   [CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
    INDUCT_TAC THEN ASM_REWRITE_TAC[EXP; MULT_CLAUSES];
    REWRITE_TAC[MULT_EXP] THEN MATCH_ACCEPT_TAC MULT_SYM]);;

(* ------------------------------------------------------------------------- *)
(* Define the orderings recursively too.                                     *)
(* ------------------------------------------------------------------------- *)

let LE = new_recursive_definition num_RECURSION
 `(!m. (m <= 0) <=> (m = 0)) /\
  (!m n. (m <= SUC n) <=> (m = SUC n) \/ (m <= n))`;;

let LT = new_recursive_definition num_RECURSION
 `(!m. (m < 0) <=> F) /\
  (!m n. (m < SUC n) <=> (m = n) \/ (m < n))`;;

let GE = new_definition
  `m >= n <=> n <= m`;;

let GT = new_definition
  `m > n <=> n < m`;;

(* ------------------------------------------------------------------------- *)
(* Maximum and minimum of natural numbers.                                   *)
(* ------------------------------------------------------------------------- *)

let MAX = new_definition
  `!m n. MAX m n = if m <= n then n else m`;;

let MIN = new_definition
  `!m n. MIN m n = if m <= n then m else n`;;

(* ------------------------------------------------------------------------- *)
(* Step cases.                                                               *)
(* ------------------------------------------------------------------------- *)

let LE_SUC_LT = prove
 (`!m n. (SUC m <= n) <=> (m < n)`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LE; LT; NOT_SUC; SUC_INJ]);;

let LT_SUC_LE = prove
 (`!m n. (m < SUC n) <=> (m <= n)`,
  GEN_TAC THEN INDUCT_TAC THEN ONCE_REWRITE_TAC[LT; LE] THEN
  ASM_REWRITE_TAC[] THEN REWRITE_TAC[LT]);;

let LE_SUC = prove
 (`!m n. (SUC m <= SUC n) <=> (m <= n)`,
  REWRITE_TAC[LE_SUC_LT; LT_SUC_LE]);;

let LT_SUC = prove
 (`!m n. (SUC m < SUC n) <=> (m < n)`,
  REWRITE_TAC[LT_SUC_LE; LE_SUC_LT]);;

(* ------------------------------------------------------------------------- *)
(* Base cases.                                                               *)
(* ------------------------------------------------------------------------- *)

let LE_0 = prove
 (`!n. 0 <= n`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[LE]);;

let LT_0 = prove
 (`!n. 0 < SUC n`,
  REWRITE_TAC[LT_SUC_LE; LE_0]);;

(* ------------------------------------------------------------------------- *)
(* Reflexivity.                                                              *)
(* ------------------------------------------------------------------------- *)

let LE_REFL = prove
 (`!n. n <= n`,
  INDUCT_TAC THEN REWRITE_TAC[LE]);;

let LT_REFL = prove
 (`!n. ~(n < n)`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[LT_SUC] THEN REWRITE_TAC[LT]);;

let LT_IMP_NE = prove
 (`!m n:num. m < n ==> ~(m = n)`,
  MESON_TAC[LT_REFL]);;

(* ------------------------------------------------------------------------- *)
(* Antisymmetry.                                                             *)
(* ------------------------------------------------------------------------- *)

let LE_ANTISYM = prove
 (`!m n. (m <= n /\ n <= m) <=> (m = n)`,
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC[LE_SUC; SUC_INJ] THEN
  REWRITE_TAC[LE; NOT_SUC; GSYM NOT_SUC]);;

let LT_ANTISYM = prove
 (`!m n. ~(m < n /\ n < m)`,
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC[LT_SUC] THEN REWRITE_TAC[LT]);;

let LET_ANTISYM = prove
 (`!m n. ~(m <= n /\ n < m)`,
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC[LE_SUC; LT_SUC] THEN
  REWRITE_TAC[LE; LT; NOT_SUC]);;

let LTE_ANTISYM = prove
 (`!m n. ~(m < n /\ n <= m)`,
  ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[LET_ANTISYM]);;

(* ------------------------------------------------------------------------- *)
(* Transitivity.                                                             *)
(* ------------------------------------------------------------------------- *)

let LE_TRANS = prove
 (`!m n p. m <= n /\ n <= p ==> m <= p`,
  REPEAT INDUCT_TAC THEN
  ASM_REWRITE_TAC[LE_SUC; LE_0] THEN REWRITE_TAC[LE; NOT_SUC]);;

let LT_TRANS = prove
 (`!m n p. m < n /\ n < p ==> m < p`,
  REPEAT INDUCT_TAC THEN
  ASM_REWRITE_TAC[LT_SUC; LT_0] THEN REWRITE_TAC[LT; NOT_SUC]);;

let LET_TRANS = prove
 (`!m n p. m <= n /\ n < p ==> m < p`,
  REPEAT INDUCT_TAC THEN
  ASM_REWRITE_TAC[LE_SUC; LT_SUC; LT_0] THEN REWRITE_TAC[LT; LE; NOT_SUC]);;

let LTE_TRANS = prove
 (`!m n p. m < n /\ n <= p ==> m < p`,
  REPEAT INDUCT_TAC THEN
  ASM_REWRITE_TAC[LE_SUC; LT_SUC; LT_0] THEN REWRITE_TAC[LT; LE; NOT_SUC]);;

(* ------------------------------------------------------------------------- *)
(* Totality.                                                                 *)
(* ------------------------------------------------------------------------- *)

let LE_CASES = prove
 (`!m n. m <= n \/ n <= m`,
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC[LE_0; LE_SUC]);;

let LT_CASES = prove
 (`!m n. (m < n) \/ (n < m) \/ (m = n)`,
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC[LT_SUC; SUC_INJ] THEN
  REWRITE_TAC[LT; NOT_SUC; GSYM NOT_SUC] THEN
  W(W (curry SPEC_TAC) o hd o frees o snd) THEN
  INDUCT_TAC THEN REWRITE_TAC[LT_0]);;

let LET_CASES = prove
 (`!m n. m <= n \/ n < m`,
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC[LE_SUC_LT; LT_SUC_LE; LE_0]);;

let LTE_CASES = prove
 (`!m n. m < n \/ n <= m`,
  ONCE_REWRITE_TAC[DISJ_SYM] THEN MATCH_ACCEPT_TAC LET_CASES);;

(* ------------------------------------------------------------------------- *)
(* Relationship between orderings.                                           *)
(* ------------------------------------------------------------------------- *)

let LE_LT = prove
 (`!m n. (m <= n) <=> (m < n) \/ (m = n)`,
  REPEAT INDUCT_TAC THEN
  ASM_REWRITE_TAC[LE_SUC; LT_SUC; SUC_INJ; LE_0; LT_0] THEN
  REWRITE_TAC[LE; LT]);;

let LT_LE = prove
 (`!m n. (m < n) <=> (m <= n) /\ ~(m = n)`,
  REWRITE_TAC[LE_LT] THEN REPEAT GEN_TAC THEN EQ_TAC THENL
   [DISCH_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST_ALL_TAC THEN
    POP_ASSUM MP_TAC THEN REWRITE_TAC[LT_REFL];
    DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
    ASM_REWRITE_TAC[]]);;

let NOT_LE = prove
 (`!m n. ~(m <= n) <=> (n < m)`,
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC[LE_SUC; LT_SUC] THEN
  REWRITE_TAC[LE; LT; NOT_SUC; GSYM NOT_SUC; LE_0] THEN
  W(W (curry SPEC_TAC) o hd o frees o snd) THEN
  INDUCT_TAC THEN REWRITE_TAC[LT_0]);;

let NOT_LT = prove
 (`!m n. ~(m < n) <=> n <= m`,
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC[LE_SUC; LT_SUC] THEN
  REWRITE_TAC[LE; LT; NOT_SUC; GSYM NOT_SUC; LE_0] THEN
  W(W (curry SPEC_TAC) o hd o frees o snd) THEN
  INDUCT_TAC THEN REWRITE_TAC[LT_0]);;

let LT_IMP_LE = prove
 (`!m n. m < n ==> m <= n`,
  REWRITE_TAC[LT_LE] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;

let EQ_IMP_LE = prove
 (`!m n. (m = n) ==> m <= n`,
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[LE_REFL]);;

(* ------------------------------------------------------------------------- *)
(* Often useful to shuffle between different versions of "0 < n".            *)
(* ------------------------------------------------------------------------- *)

let LT_NZ = prove
 (`!n. 0 < n <=> ~(n = 0)`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[NOT_SUC; LT; EQ_SYM_EQ] THEN
  CONV_TAC TAUT);;

let LE_1 = prove
 (`(!n. ~(n = 0) ==> 0 < n) /\
   (!n. ~(n = 0) ==> 1 <= n) /\
   (!n. 0 < n ==> ~(n = 0)) /\
   (!n. 0 < n ==> 1 <= n) /\
   (!n. 1 <= n ==> 0 < n) /\
   (!n. 1 <= n ==> ~(n = 0))`,
  REWRITE_TAC[LT_NZ; GSYM NOT_LT; ONE; LT]);;

(* ------------------------------------------------------------------------- *)
(* Relate the orderings to arithmetic operations.                            *)
(* ------------------------------------------------------------------------- *)

let LE_EXISTS = prove
 (`!m n. (m <= n) <=> (?d. n = m + d)`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LE] THENL
   [REWRITE_TAC[CONV_RULE(LAND_CONV SYM_CONV) (SPEC_ALL ADD_EQ_0)] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL];
    EQ_TAC THENL
     [DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL
       [EXISTS_TAC `0` THEN REWRITE_TAC[ADD_CLAUSES];
        DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
        EXISTS_TAC `SUC d` THEN REWRITE_TAC[ADD_CLAUSES]];
      ONCE_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
      INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; SUC_INJ] THEN
      DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[] THEN DISJ2_TAC THEN
      REWRITE_TAC[EQ_ADD_LCANCEL; GSYM EXISTS_REFL]]]);;

let LT_EXISTS = prove
 (`!m n. (m < n) <=> (?d. n = m + SUC d)`,
  GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[LT; ADD_CLAUSES; GSYM NOT_SUC] THEN
  ASM_REWRITE_TAC[SUC_INJ] THEN EQ_TAC THENL
   [DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL
     [EXISTS_TAC `0` THEN REWRITE_TAC[ADD_CLAUSES];
      DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
      EXISTS_TAC `SUC d` THEN REWRITE_TAC[ADD_CLAUSES]];
    ONCE_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; SUC_INJ] THEN
    DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[] THEN DISJ2_TAC THEN
    REWRITE_TAC[SUC_INJ; EQ_ADD_LCANCEL; GSYM EXISTS_REFL]]);;

(* ------------------------------------------------------------------------- *)
(* Interaction with addition.                                                *)
(* ------------------------------------------------------------------------- *)

let LE_ADD = prove
 (`!m n. m <= m + n`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[LE; ADD_CLAUSES; LE_REFL]);;

let LE_ADDR = prove
 (`!m n. n <= m + n`,
  ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_ACCEPT_TAC LE_ADD);;

let LT_ADD = prove
 (`!m n. (m < m + n) <=> (0 < n)`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; LT_SUC]);;

let LT_ADDR = prove
 (`!m n. (n < m + n) <=> (0 < m)`,
  ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_ACCEPT_TAC LT_ADD);;

let LE_ADD_LCANCEL = prove
 (`!m n p. (m + n) <= (m + p) <=> n <= p`,
  REWRITE_TAC[LE_EXISTS; GSYM ADD_ASSOC; EQ_ADD_LCANCEL]);;

let LE_ADD_RCANCEL = prove
 (`!m n p. (m + p) <= (n + p) <=> (m <= n)`,
  ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_ACCEPT_TAC LE_ADD_LCANCEL);;

let LT_ADD_LCANCEL = prove
 (`!m n p. (m + n) < (m + p) <=> n < p`,
  REWRITE_TAC[LT_EXISTS; GSYM ADD_ASSOC; EQ_ADD_LCANCEL; SUC_INJ]);;

let LT_ADD_RCANCEL = prove
 (`!m n p. (m + p) < (n + p) <=> (m < n)`,
  ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_ACCEPT_TAC LT_ADD_LCANCEL);;

let LE_ADD2 = prove
 (`!m n p q. m <= p /\ n <= q ==> m + n <= p + q`,
  REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN
  DISCH_THEN(CONJUNCTS_THEN2
    (X_CHOOSE_TAC `a:num`) (X_CHOOSE_TAC `b:num`)) THEN
  EXISTS_TAC `a + b` THEN ASM_REWRITE_TAC[ADD_AC]);;

let LET_ADD2 = prove
 (`!m n p q. m <= p /\ n < q ==> m + n < p + q`,
  REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS; LT_EXISTS] THEN
  DISCH_THEN(CONJUNCTS_THEN2
    (X_CHOOSE_TAC `a:num`) (X_CHOOSE_TAC `b:num`)) THEN
  EXISTS_TAC `a + b` THEN ASM_REWRITE_TAC[SUC_INJ; ADD_CLAUSES; ADD_AC]);;

let LTE_ADD2 = prove
 (`!m n p q. m < p /\ n <= q ==> m + n < p + q`,
  ONCE_REWRITE_TAC[ADD_SYM; CONJ_SYM] THEN
  MATCH_ACCEPT_TAC LET_ADD2);;

let LT_ADD2 = prove
 (`!m n p q. m < p /\ n < q ==> m + n < p + q`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC LTE_ADD2 THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LT_IMP_LE THEN
  ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* And multiplication.                                                       *)
(* ------------------------------------------------------------------------- *)

let LT_MULT = prove
 (`!m n. (0 < m * n) <=> (0 < m) /\ (0 < n)`,
  REPEAT INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; LT_0]);;

let LE_MULT2 = prove
 (`!m n p q. m <= n /\ p <= q ==> m * p <= n * q`,
  REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN
  DISCH_THEN(CONJUNCTS_THEN2
    (X_CHOOSE_TAC `a:num`) (X_CHOOSE_TAC `b:num`)) THEN
  EXISTS_TAC `a * p + m * b + a * b` THEN
  ASM_REWRITE_TAC[LEFT_ADD_DISTRIB] THEN
  REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; ADD_ASSOC]);;

let LT_LMULT = prove
 (`!m n p. ~(m = 0) /\ n < p ==> m * n < m * p`,
  REPEAT GEN_TAC THEN REWRITE_TAC[LT_LE] THEN STRIP_TAC THEN CONJ_TAC THENL
   [MATCH_MP_TAC LE_MULT2 THEN ASM_REWRITE_TAC[LE_REFL];
    ASM_REWRITE_TAC[EQ_MULT_LCANCEL]]);;

let LE_MULT_LCANCEL = prove
 (`!m n p. (m * n) <= (m * p) <=> (m = 0) \/ n <= p`,
  REPEAT INDUCT_TAC THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; LE_REFL; LE_0; NOT_SUC] THEN
  REWRITE_TAC[LE_SUC] THEN
  REWRITE_TAC[LE; LE_ADD_LCANCEL; GSYM ADD_ASSOC] THEN
  ASM_REWRITE_TAC[GSYM(el 4(CONJUNCTS MULT_CLAUSES)); NOT_SUC]);;

let LE_MULT_RCANCEL = prove
 (`!m n p. (m * p) <= (n * p) <=> (m <= n) \/ (p = 0)`,
  ONCE_REWRITE_TAC[MULT_SYM; DISJ_SYM] THEN
  MATCH_ACCEPT_TAC LE_MULT_LCANCEL);;

let LT_MULT_LCANCEL = prove
 (`!m n p. (m * n) < (m * p) <=> ~(m = 0) /\ n < p`,
  REPEAT INDUCT_TAC THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; LT_REFL; LT_0; NOT_SUC] THEN
  REWRITE_TAC[LT_SUC] THEN
  REWRITE_TAC[LT; LT_ADD_LCANCEL; GSYM ADD_ASSOC] THEN
  ASM_REWRITE_TAC[GSYM(el 4(CONJUNCTS MULT_CLAUSES)); NOT_SUC]);;

let LT_MULT_RCANCEL = prove
 (`!m n p. (m * p) < (n * p) <=> (m < n) /\ ~(p = 0)`,
  ONCE_REWRITE_TAC[MULT_SYM; CONJ_SYM] THEN
  MATCH_ACCEPT_TAC LT_MULT_LCANCEL);;

let LT_MULT2 = prove
 (`!m n p q. m < n /\ p < q ==> m * p < n * q`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC LET_TRANS THEN
  EXISTS_TAC `n * p` THEN
  ASM_SIMP_TAC[LE_MULT_RCANCEL; LT_IMP_LE; LT_MULT_LCANCEL] THEN
  UNDISCH_TAC `m < n` THEN CONV_TAC CONTRAPOS_CONV THEN SIMP_TAC[LT]);;

let LE_SQUARE_REFL = prove
 (`!n. n <= n * n`,
  INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; LE_0; LE_ADDR]);;

let LT_POW2_REFL = prove
 (`!n. n < 2 EXP n`,
  INDUCT_TAC THEN REWRITE_TAC[EXP] THEN REWRITE_TAC[MULT_2; ADD1] THEN
  REWRITE_TAC[ONE; LT] THEN MATCH_MP_TAC LTE_ADD2 THEN
  ASM_REWRITE_TAC[LE_SUC_LT; TWO] THEN
  MESON_TAC[EXP_EQ_0; LE_1; NOT_SUC]);;

(* ------------------------------------------------------------------------- *)
(* Useful "without loss of generality" lemmas.                               *)
(* ------------------------------------------------------------------------- *)

let WLOG_LE = prove
 (`(!m n. P m n <=> P n m) /\ (!m n. m <= n ==> P m n) ==> !m n. P m n`,
  MESON_TAC[LE_CASES]);;

let WLOG_LT = prove
 (`(!m. P m m) /\ (!m n. P m n <=> P n m) /\ (!m n. m < n ==> P m n)
   ==> !m y. P m y`,
  MESON_TAC[LT_CASES]);;

let WLOG_LE_3 = prove
 (`!P. (!x y z. P x y z ==> P y x z /\ P x z y) /\
       (!x y z. x <= y /\ y <= z ==> P x y z)
       ==> !x y z. P x y z`,
  MESON_TAC[LE_CASES]);;

(* ------------------------------------------------------------------------- *)
(* Existence of least and greatest elements of (finite) set.                 *)
(* ------------------------------------------------------------------------- *)

let num_WF = prove
 (`!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n`,
  GEN_TAC THEN MP_TAC(SPEC `\n. !m. m < n ==> P m` num_INDUCTION) THEN
  REWRITE_TAC[LT; BETA_THM] THEN MESON_TAC[LT]);;

let num_WOP = prove
 (`!P. (?n. P n) <=> (?n. P(n) /\ !m. m < n ==> ~P(m))`,
  GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
  CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[NOT_EXISTS_THM] THEN
  DISCH_TAC THEN MATCH_MP_TAC num_WF THEN ASM_MESON_TAC[]);;

let num_MAX = prove
 (`!P. (?x. P x) /\ (?M. !x. P x ==> x <= M) <=>
       ?m. P m /\ (!x. P x ==> x <= m)`,
  GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a:num`) MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC o ONCE_REWRITE_RULE[num_WOP]) THEN
    DISCH_THEN(fun th -> EXISTS_TAC `m:num` THEN MP_TAC th) THEN
    REWRITE_TAC[TAUT `(a /\ b ==> c /\ a) <=> (a /\ b ==> c)`] THEN
    SPEC_TAC(`m:num`,`m:num`) THEN INDUCT_TAC THENL
     [REWRITE_TAC[LE; LT] THEN DISCH_THEN(IMP_RES_THEN SUBST_ALL_TAC) THEN
      POP_ASSUM ACCEPT_TAC;
      DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `m:num`)) THEN
      REWRITE_TAC[LT] THEN CONV_TAC CONTRAPOS_CONV THEN
      DISCH_TAC THEN REWRITE_TAC[] THEN X_GEN_TAC `p:num` THEN
      FIRST_ASSUM(MP_TAC o SPEC `p:num`) THEN REWRITE_TAC[LE] THEN
      ASM_CASES_TAC `p = SUC m` THEN ASM_REWRITE_TAC[]];
    REPEAT STRIP_TAC THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Other variants of induction.                                              *)
(* ------------------------------------------------------------------------- *)

let LE_INDUCT = prove
 (`!P. (!m:num. P m m) /\
       (!m n. m <= n /\ P m n ==> P m (SUC n))
       ==> (!m n. m <= n ==> P m n)`,
   GEN_TAC THEN REWRITE_TAC[IMP_CONJ; MESON[LE_EXISTS]
    `(!m n:num. m <= n ==> R m n) <=> (!m d. R m (m + d))`] THEN
  REPEAT DISCH_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_SIMP_TAC[ADD_CLAUSES]);;

let num_INDUCTION_DOWN = prove
 (`!(P:num->bool) m.
        (!n. m <= n ==> P n) /\
        (!n. n < m /\ P(n + 1) ==> P n)
        ==> !n. P n`,
  REWRITE_TAC[GSYM ADD1] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
  ONCE_REWRITE_TAC[MESON[] `(!x. P x) <=> ~(?x. ~P x)`] THEN
  W(MP_TAC o PART_MATCH (lhand o lhand) num_MAX o rand o snd) THEN
  MATCH_MP_TAC(TAUT `q /\ ~r ==> (p /\ q <=> r) ==> ~p`) THEN
  ONCE_REWRITE_TAC[TAUT `~p ==> q <=> ~q ==> p`] THEN
  REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(~p /\ q) <=> q ==> p`; NOT_LE] THEN
  ASM_MESON_TAC[LTE_CASES; LT; LT_IMP_LE]);;

(* ------------------------------------------------------------------------- *)
(* Oddness and evenness (recursively rather than inductively!)               *)
(* ------------------------------------------------------------------------- *)

let EVEN = new_recursive_definition num_RECURSION
  `(EVEN 0 <=> T) /\
   (!n. EVEN (SUC n) <=> ~(EVEN n))`;;

let ODD = new_recursive_definition num_RECURSION
  `(ODD 0 <=> F) /\
   (!n. ODD (SUC n) <=> ~(ODD n))`;;

let NOT_EVEN = prove
 (`!n. ~(EVEN n) <=> ODD n`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[EVEN; ODD]);;

let NOT_ODD = prove
 (`!n. ~(ODD n) <=> EVEN n`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[EVEN; ODD]);;

let EVEN_OR_ODD = prove
 (`!n. EVEN n \/ ODD n`,
  INDUCT_TAC THEN REWRITE_TAC[EVEN; ODD; NOT_EVEN; NOT_ODD] THEN
  ONCE_REWRITE_TAC[DISJ_SYM] THEN ASM_REWRITE_TAC[]);;

let EVEN_AND_ODD = prove
 (`!n. ~(EVEN n /\ ODD n)`,
  REWRITE_TAC[GSYM NOT_EVEN; ITAUT `~(p /\ ~p)`]);;

let EVEN_ADD = prove
 (`!m n. EVEN(m + n) <=> (EVEN m <=> EVEN n)`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[EVEN; ADD_CLAUSES] THEN
  X_GEN_TAC `p:num` THEN
  DISJ_CASES_THEN MP_TAC (SPEC `n:num` EVEN_OR_ODD) THEN
  DISJ_CASES_THEN MP_TAC (SPEC `p:num` EVEN_OR_ODD) THEN
  REWRITE_TAC[GSYM NOT_EVEN] THEN DISCH_TAC THEN
  ASM_REWRITE_TAC[]);;

let EVEN_MULT = prove
 (`!m n. EVEN(m * n) <=> EVEN(m) \/ EVEN(n)`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES; EVEN_ADD; EVEN] THEN
  X_GEN_TAC `p:num` THEN
  DISJ_CASES_THEN MP_TAC (SPEC `n:num` EVEN_OR_ODD) THEN
  DISJ_CASES_THEN MP_TAC (SPEC `p:num` EVEN_OR_ODD) THEN
  REWRITE_TAC[GSYM NOT_EVEN] THEN DISCH_TAC THEN
  ASM_REWRITE_TAC[]);;

let EVEN_EXP = prove
 (`!m n. EVEN(m EXP n) <=> EVEN(m) /\ ~(n = 0)`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[EVEN; EXP; ONE; EVEN_MULT; NOT_SUC] THEN
  CONV_TAC ITAUT);;

let ODD_ADD = prove
 (`!m n. ODD(m + n) <=> ~(ODD m <=> ODD n)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM NOT_EVEN; EVEN_ADD] THEN
  CONV_TAC ITAUT);;

let ODD_MULT = prove
 (`!m n. ODD(m * n) <=> ODD(m) /\ ODD(n)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM NOT_EVEN; EVEN_MULT] THEN
  CONV_TAC ITAUT);;

let ODD_EXP = prove
 (`!m n. ODD(m EXP n) <=> ODD(m) \/ (n = 0)`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[ODD; EXP; ONE; ODD_MULT; NOT_SUC] THEN
  CONV_TAC ITAUT);;

let EVEN_DOUBLE = prove
 (`!n. EVEN(2 * n)`,
  GEN_TAC THEN REWRITE_TAC[EVEN_MULT] THEN DISJ1_TAC THEN
  PURE_REWRITE_TAC[BIT0_THM; BIT1_THM] THEN REWRITE_TAC[EVEN; EVEN_ADD]);;

let ODD_DOUBLE = prove
 (`!n. ODD(SUC(2 * n))`,
  REWRITE_TAC[ODD] THEN REWRITE_TAC[NOT_ODD; EVEN_DOUBLE]);;

let EVEN_EXISTS_LEMMA = prove
 (`!n. (EVEN n ==> ?m. n = 2 * m) /\
       (~EVEN n ==> ?m. n = SUC(2 * m))`,
  INDUCT_TAC THEN REWRITE_TAC[EVEN] THENL
   [EXISTS_TAC `0` THEN REWRITE_TAC[MULT_CLAUSES];
    POP_ASSUM STRIP_ASSUME_TAC THEN CONJ_TAC THEN
    DISCH_THEN(ANTE_RES_THEN(X_CHOOSE_TAC `m:num`)) THENL
     [EXISTS_TAC `SUC m` THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[MULT_2] THEN REWRITE_TAC[ADD_CLAUSES];
      EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[]]]);;

let EVEN_EXISTS = prove
 (`!n. EVEN n <=> ?m. n = 2 * m`,
  GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
   [MATCH_MP_TAC(CONJUNCT1(SPEC_ALL EVEN_EXISTS_LEMMA)) THEN ASM_REWRITE_TAC[];
    POP_ASSUM(CHOOSE_THEN SUBST1_TAC) THEN REWRITE_TAC[EVEN_DOUBLE]]);;

let ODD_EXISTS = prove
 (`!n. ODD n <=> ?m. n = SUC(2 * m)`,
  GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
   [MATCH_MP_TAC(CONJUNCT2(SPEC_ALL EVEN_EXISTS_LEMMA)) THEN
    ASM_REWRITE_TAC[NOT_EVEN];
    POP_ASSUM(CHOOSE_THEN SUBST1_TAC) THEN REWRITE_TAC[ODD_DOUBLE]]);;

let EVEN_ODD_DECOMPOSITION = prove
 (`!n. (?k m. ODD m /\ (n = 2 EXP k * m)) <=> ~(n = 0)`,
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  DISJ_CASES_TAC(SPEC `n:num` EVEN_OR_ODD) THENL
   [ALL_TAC; ASM_MESON_TAC[ODD; EXP; MULT_CLAUSES]] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]) THEN
  DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
  ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_EQ_0] THENL
   [REWRITE_TAC[MULT_CLAUSES; LT] THEN
    CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
    REWRITE_TAC[EXP_EQ_0; MULT_EQ_0; TWO; NOT_SUC] THEN MESON_TAC[ODD];
    ALL_TAC] THEN
  ANTS_TAC THENL
   [GEN_REWRITE_TAC LAND_CONV [GSYM(el 2 (CONJUNCTS MULT_CLAUSES))] THEN
    ASM_REWRITE_TAC[LT_MULT_RCANCEL; TWO; LT];
    ALL_TAC] THEN
  REWRITE_TAC[TWO; NOT_SUC] THEN REWRITE_TAC[GSYM TWO] THEN
  ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:num` THEN
  DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `SUC k` THEN ASM_REWRITE_TAC[EXP; MULT_ASSOC]);;

(* ------------------------------------------------------------------------- *)
(* Cutoff subtraction, also defined recursively. (Not the HOL88 defn.)       *)
(* ------------------------------------------------------------------------- *)

let SUB = new_recursive_definition num_RECURSION
 `(!m. m - 0 = m) /\
  (!m n. m - (SUC n) = PRE(m - n))`;;

let SUB_0 = prove
 (`!m. (0 - m = 0) /\ (m - 0 = m)`,
  REWRITE_TAC[SUB] THEN INDUCT_TAC THEN ASM_REWRITE_TAC[SUB; PRE]);;

let SUB_PRESUC = prove
 (`!m n. PRE(SUC m - n) = m - n`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[SUB; PRE]);;

let SUB_SUC = prove
 (`!m n. SUC m - SUC n = m - n`,
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC[SUB; PRE; SUB_PRESUC]);;

let SUB_REFL = prove
 (`!n. n - n = 0`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[SUB_SUC; SUB_0]);;

let ADD_SUB = prove
 (`!m n. (m + n) - n = m`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; SUB_SUC; SUB_0]);;

let ADD_SUB2 = prove
 (`!m n. (m + n) - m = n`,
  ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_ACCEPT_TAC ADD_SUB);;

let SUB_EQ_0 = prove
 (`!m n. (m - n = 0) <=> m <= n`,
  REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC[SUB_SUC; LE_SUC; SUB_0] THEN
  REWRITE_TAC[LE; LE_0]);;

let ADD_SUBR2 = prove
 (`!m n. m - (m + n) = 0`,
  REWRITE_TAC[SUB_EQ_0; LE_ADD]);;

let ADD_SUBR = prove
 (`!m n. n - (m + n) = 0`,
  ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_ACCEPT_TAC ADD_SUBR2);;

let SUB_ADD = prove
 (`!m n. n <= m ==> ((m - n) + n = m)`,
  REWRITE_TAC[LE_EXISTS] THEN REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB] THEN
  MATCH_ACCEPT_TAC ADD_SYM);;

let SUB_ADD_LCANCEL = prove
 (`!m n p. (m + n) - (m + p) = n - p`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; SUB_0; SUB_SUC]);;

let SUB_ADD_RCANCEL = prove
 (`!m n p. (m + p) - (n + p) = m - n`,
  ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_ACCEPT_TAC SUB_ADD_LCANCEL);;

let LEFT_SUB_DISTRIB = prove
 (`!m n p. m * (n - p) = m * n - m * p`,
  REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN
  DISJ_CASES_TAC(SPECL [`n:num`; `p:num`] LE_CASES) THENL
   [FIRST_ASSUM(fun th -> REWRITE_TAC[REWRITE_RULE[GSYM SUB_EQ_0] th]) THEN
    ASM_REWRITE_TAC[MULT_CLAUSES; SUB_EQ_0; LE_MULT_LCANCEL];
    POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN
    REWRITE_TAC[LEFT_ADD_DISTRIB] THEN
    REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB]]);;

let RIGHT_SUB_DISTRIB = prove
 (`!m n p. (m - n) * p = m * p - n * p`,
  ONCE_REWRITE_TAC[MULT_SYM] THEN MATCH_ACCEPT_TAC LEFT_SUB_DISTRIB);;

let SUC_SUB1 = prove
 (`!n. SUC n - 1 = n`,
  REWRITE_TAC[ONE; SUB_SUC; SUB_0]);;

let EVEN_SUB = prove
 (`!m n. EVEN(m - n) <=> m <= n \/ (EVEN(m) <=> EVEN(n))`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `m <= n:num` THENL
   [ASM_MESON_TAC[SUB_EQ_0; EVEN]; ALL_TAC] THEN
  DISJ_CASES_TAC(SPECL [`m:num`; `n:num`] LE_CASES) THEN ASM_SIMP_TAC[] THEN
  FIRST_ASSUM(MP_TAC o AP_TERM `EVEN` o MATCH_MP SUB_ADD) THEN
  ASM_MESON_TAC[EVEN_ADD]);;

let ODD_SUB = prove
 (`!m n. ODD(m - n) <=> n < m /\ ~(ODD m <=> ODD n)`,
  REWRITE_TAC[GSYM NOT_EVEN; EVEN_SUB; DE_MORGAN_THM; NOT_LE] THEN
  CONV_TAC TAUT);;

(* ------------------------------------------------------------------------- *)
(* The factorial function.                                                   *)
(* ------------------------------------------------------------------------- *)

let FACT = new_recursive_definition num_RECURSION
  `(FACT 0 = 1) /\
   (!n. FACT (SUC n) = (SUC n) * FACT(n))`;;

let FACT_LT = prove
 (`!n. 0 < FACT n`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[FACT; LT_MULT] THEN
  REWRITE_TAC[ONE; LT_0]);;

let FACT_LE = prove
 (`!n. 1 <= FACT n`,
  REWRITE_TAC[ONE; LE_SUC_LT; FACT_LT]);;

let FACT_NZ = prove
 (`!n. ~(FACT n = 0)`,
  REWRITE_TAC[GSYM LT_NZ; FACT_LT]);;

let FACT_MONO = prove
 (`!m n. m <= n ==> FACT m <= FACT n`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN
  SPEC_TAC(`d:num`,`d:num`) THEN
  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; LE_REFL] THEN
  REWRITE_TAC[FACT] THEN
  MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `FACT(m + d)` THEN
  ASM_REWRITE_TAC[] THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM(el 2 (CONJUNCTS MULT_CLAUSES))] THEN
  REWRITE_TAC[LE_MULT_RCANCEL] THEN
  REWRITE_TAC[ONE; LE_SUC; LE_0]);;

(* ------------------------------------------------------------------------- *)
(* More complicated theorems about exponential.                              *)
(* ------------------------------------------------------------------------- *)

let EXP_LT_0 = prove
 (`!n x. 0 < x EXP n <=> ~(x = 0) \/ (n = 0)`,
  REWRITE_TAC[GSYM NOT_LE; LE; EXP_EQ_0; DE_MORGAN_THM]);;

let LT_EXP = prove
 (`!x m n. x EXP m < x EXP n <=> 2 <= x /\ m < n \/
                                 (x = 0) /\ ~(m = 0) /\ (n = 0)`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `x = 0` THEN ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[GSYM NOT_LT; TWO; ONE; LT] THEN
    SPEC_TAC (`n:num`,`n:num`) THEN INDUCT_TAC THEN
    REWRITE_TAC[EXP; NOT_SUC; MULT_CLAUSES; LT] THEN
    SPEC_TAC (`m:num`,`m:num`) THEN INDUCT_TAC THEN
    REWRITE_TAC[EXP; MULT_CLAUSES; NOT_SUC; LT_REFL; LT] THEN
    REWRITE_TAC[ONE; LT_0]; ALL_TAC] THEN
  EQ_TAC THENL
   [CONV_TAC CONTRAPOS_CONV THEN
    REWRITE_TAC[NOT_LT; DE_MORGAN_THM; NOT_LE] THEN
    REWRITE_TAC[TWO; ONE; LT] THEN
    ASM_REWRITE_TAC[SYM ONE] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[EXP_ONE; LE_REFL] THEN
    FIRST_ASSUM(X_CHOOSE_THEN `d:num` SUBST1_TAC o
      REWRITE_RULE[LE_EXISTS]) THEN
    SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN
    REWRITE_TAC[ADD_CLAUSES; EXP; LE_REFL] THEN
    MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `1 * x EXP (n + d)` THEN
    CONJ_TAC THENL
     [ASM_REWRITE_TAC[MULT_CLAUSES];
      REWRITE_TAC[LE_MULT_RCANCEL] THEN
      DISJ1_TAC THEN UNDISCH_TAC `~(x = 0)` THEN
      CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[NOT_LE] THEN
      REWRITE_TAC[ONE; LT]];
    STRIP_TAC THEN
    FIRST_ASSUM(X_CHOOSE_THEN `d:num` SUBST1_TAC o
      REWRITE_RULE[LT_EXISTS]) THEN
    SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN
    REWRITE_TAC[ADD_CLAUSES; EXP] THENL
     [MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `2 * x EXP m` THEN
      CONJ_TAC THENL
       [ASM_REWRITE_TAC[MULT_2; LT_ADD; EXP_LT_0];
        ASM_REWRITE_TAC[LE_MULT_RCANCEL]];
      MATCH_MP_TAC LTE_TRANS THEN
      EXISTS_TAC `x EXP (m + SUC d)` THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[ADD_CLAUSES; EXP; MULT_ASSOC; LE_MULT_RCANCEL] THEN
      DISJ1_TAC THEN MATCH_MP_TAC LE_TRANS THEN
      EXISTS_TAC `x * 1` THEN CONJ_TAC THENL
       [REWRITE_TAC[MULT_CLAUSES; LE_REFL];
        REWRITE_TAC[LE_MULT_LCANCEL] THEN DISJ2_TAC THEN
        UNDISCH_TAC `~(x = 0)` THEN
        CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[NOT_LE] THEN
        REWRITE_TAC[ONE; LT]]]]);;

let LE_EXP = prove
 (`!x m n. x EXP m <= x EXP n <=>
           if x = 0 then (m = 0) ==> (n = 0)
           else (x = 1) \/ m <= n`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM NOT_LT; LT_EXP; DE_MORGAN_THM] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[TWO; LT; ONE] THEN
  CONV_TAC(EQT_INTRO o TAUT));;

let EQ_EXP = prove
 (`!x m n. x EXP m = x EXP n <=>
           if x = 0 then (m = 0 <=> n = 0)
           else (x = 1) \/ m = n`,
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM LE_ANTISYM; LE_EXP] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[LE_EXP] THEN
  REWRITE_TAC[GSYM LE_ANTISYM] THEN CONV_TAC TAUT);;

let EXP_MONO_LE_IMP = prove
 (`!x y n. x <= y ==> x EXP n <= y EXP n`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  INDUCT_TAC THEN ASM_SIMP_TAC[LE_MULT2; EXP; LE_REFL]);;

let EXP_MONO_LT_IMP = prove
 (`!x y n. x < y /\ ~(n = 0) ==> x EXP n < y EXP n`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; EXP] THEN
  DISCH_TAC THEN MATCH_MP_TAC LET_TRANS THEN EXISTS_TAC `x * y EXP n` THEN
  ASM_SIMP_TAC[LT_IMP_LE; LE_MULT_LCANCEL; LT_MULT_RCANCEL; EXP_MONO_LE_IMP;
               EXP_EQ_0] THEN
  ASM_MESON_TAC[CONJUNCT1 LT]);;

let EXP_MONO_LE = prove
 (`!x y n. x EXP n <= y EXP n <=> x <= y \/ n = 0`,
  REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
  ASM_SIMP_TAC[EXP; LE_REFL; EXP_MONO_LE_IMP] THEN
  ASM_MESON_TAC[NOT_LE; EXP_MONO_LT_IMP]);;

let EXP_MONO_LT = prove
 (`!x y n. x EXP n < y EXP n <=> x < y /\ ~(n = 0)`,
  REWRITE_TAC[GSYM NOT_LE; EXP_MONO_LE; DE_MORGAN_THM]);;

let EXP_MONO_EQ = prove
 (`!x y n. x EXP n = y EXP n <=> x = y \/ n = 0`,
  REWRITE_TAC[GSYM LE_ANTISYM; EXP_MONO_LE] THEN CONV_TAC TAUT);;

(* ------------------------------------------------------------------------- *)
(* Division and modulus, via existence proof of their basic property.        *)
(* ------------------------------------------------------------------------- *)

let DIVMOD_EXIST = prove
 (`!m n. ~(n = 0) ==> ?q r. (m = q * n + r) /\ r < n`,
  REPEAT STRIP_TAC THEN MP_TAC(SPEC `\r. ?q. m = q * n + r` num_WOP) THEN
  BETA_TAC THEN DISCH_THEN(MP_TAC o fst o EQ_IMP_RULE) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  DISCH_THEN(MP_TAC o SPECL [`m:num`; `0`]) THEN
  REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN
  DISCH_THEN(X_CHOOSE_THEN `r:num` MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `q:num`) MP_TAC) THEN
  DISCH_THEN(fun th ->
    MAP_EVERY EXISTS_TAC [`q:num`; `r:num`] THEN MP_TAC th) THEN
  CONV_TAC CONTRAPOS_CONV THEN ASM_REWRITE_TAC[NOT_LT] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC o
    REWRITE_RULE[LE_EXISTS]) THEN
  REWRITE_TAC[NOT_FORALL_THM] THEN EXISTS_TAC `d:num` THEN
  REWRITE_TAC[NOT_IMP; RIGHT_AND_EXISTS_THM] THEN
  EXISTS_TAC `q + 1` THEN REWRITE_TAC[RIGHT_ADD_DISTRIB] THEN
  REWRITE_TAC[MULT_CLAUSES; ADD_ASSOC; LT_ADDR] THEN
  ASM_REWRITE_TAC[GSYM NOT_LE; LE]);;

let DIVMOD_EXIST_0 = prove
 (`!m n. ?q r. if n = 0 then q = 0 /\ r = m
               else m = q * n + r /\ r < n`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_SIMP_TAC[DIVMOD_EXIST; RIGHT_EXISTS_AND_THM; EXISTS_REFL]);;

let DIVISION_0 =  new_specification ["DIV"; "MOD"]
  (REWRITE_RULE[SKOLEM_THM] DIVMOD_EXIST_0);;

let DIVISION = prove
 (`!m n. ~(n = 0) ==> (m = m DIV n * n + m MOD n) /\ m MOD n < n`,
  MESON_TAC[DIVISION_0]);;

let DIV_ZERO = prove
 (`!n. n DIV 0 = 0`,
  MESON_TAC[DIVISION_0]);;

let MOD_ZERO = prove
 (`!n. n MOD 0 = n`,
  MESON_TAC[DIVISION_0]);;

let DIVISION_SIMP = prove
 (`(!m n. m DIV n * n + m MOD n = m) /\
   (!m n. n * m DIV n + m MOD n = m)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_SIMP_TAC[DIV_ZERO; MOD_ZERO; MULT_CLAUSES; ADD_CLAUSES] THEN
  ASM_MESON_TAC[DIVISION; MULT_SYM]);;

let EQ_DIVMOD = prove
 (`!p m n. m DIV p = n DIV p /\ m MOD p = n MOD p <=> m = n`,
  MESON_TAC[DIVISION_SIMP]);;

let MOD_LT_EQ = prove
 (`!m n. m MOD n < n <=> ~(n = 0)`,
  MESON_TAC[DIVISION; LE_1; CONJUNCT1 LT]);;

let MOD_LT_EQ_LT = prove
 (`!m n. m MOD n < n <=> 0 < n`,
  MESON_TAC[DIVISION; LE_1; CONJUNCT1 LT]);;

let DIVMOD_UNIQ_LEMMA = prove
 (`!m n q1 r1 q2 r2. ((m = q1 * n + r1) /\ r1 < n) /\
                     ((m = q2 * n + r2) /\ r2 < n)
                     ==> (q1 = q2) /\ (r1 = r2)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN `r1:num = r2` MP_TAC THENL
   [UNDISCH_TAC `m = q2 * n + r2` THEN
    ASM_REWRITE_TAC[] THEN
    DISJ_CASES_THEN MP_TAC (SPECL [`q1:num`; `q2:num`] LE_CASES) THEN
    DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN
    REWRITE_TAC[RIGHT_ADD_DISTRIB; GSYM ADD_ASSOC; EQ_ADD_LCANCEL] THENL
     [DISCH_TAC THEN UNDISCH_TAC `r1 < n`;
      DISCH_THEN(ASSUME_TAC o SYM) THEN UNDISCH_TAC `r2 < n`] THEN
    ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
    SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN
    REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES;
      GSYM NOT_LE; LE_ADD; GSYM ADD_ASSOC];
    DISCH_THEN SUBST_ALL_TAC THEN REWRITE_TAC[] THEN
    CONV_TAC SYM_CONV THEN
    UNDISCH_TAC `m = q1 * n + r2` THEN
    ASM_REWRITE_TAC[EQ_ADD_RCANCEL; EQ_MULT_RCANCEL] THEN
    REPEAT (UNDISCH_TAC `r2 < n`) THEN
    ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[GSYM NOT_LE; LE_0]]);;

let DIVMOD_UNIQ = prove
 (`!m n q r. (m = q * n + r) /\ r < n ==> (m DIV n = q) /\ (m MOD n = r)`,
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC o GSYM) THEN
  MATCH_MP_TAC DIVMOD_UNIQ_LEMMA THEN
  MAP_EVERY EXISTS_TAC [`m:num`; `n:num`] THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC DIVISION THEN
  DISCH_TAC THEN UNDISCH_TAC `r < n` THEN
  ASM_REWRITE_TAC[GSYM NOT_LE; LE_0]);;

let MOD_UNIQ = prove
 (`!m n q r. (m = q * n + r) /\ r < n ==> (m MOD n = r)`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP DIVMOD_UNIQ th]));;

let DIV_UNIQ = prove
 (`!m n q r. (m = q * n + r) /\ r < n ==> (m DIV n = q)`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP DIVMOD_UNIQ th]));;

let DIV_0,MOD_0 = (CONJ_PAIR o prove)
 (`(!n. 0 DIV n = 0) /\ (!n. 0 MOD n = 0)`,
  REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[DIV_ZERO; MOD_ZERO] THEN
  MATCH_MP_TAC DIVMOD_UNIQ THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; LT_NZ]);;

let DIV_MULT,MOD_MULT = (CONJ_PAIR o prove)
 (`(!m n. ~(m = 0) ==> (m * n) DIV m = n) /\
   (!m n. (m * n) MOD m = 0)`,
  REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN
  ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; MOD_0] THEN
  MATCH_MP_TAC DIVMOD_UNIQ THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; MULT_AC; LT_NZ]);;

let MOD_LT = prove
 (`!m n. m < n ==> m MOD n = m`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC MOD_UNIQ THEN
  EXISTS_TAC `0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES]);;

let MOD_EQ_SELF = prove
 (`!m n. m MOD n = m <=> n = 0 \/ m < n`,
  MESON_TAC[MOD_ZERO; MOD_LT; DIVISION; LE_1]);;

let MOD_CASES = prove
 (`!n p. n < 2 * p ==> n MOD p = if n < p then n else n - p`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[MOD_LT] THEN
  MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `1` THEN
  RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT]) THEN CONJ_TAC THENL
   [REWRITE_TAC[MULT_CLAUSES] THEN ASM_MESON_TAC[SUB_ADD; ADD_SYM];
    ASM_MESON_TAC[LT_ADD_RCANCEL; SUB_ADD; MULT_2; LT_ADD2]]);;

let MOD_ADD_CASES = prove
 (`!m n p.
        m < p /\ n < p
        ==> (m + n) MOD p = if m + n < p then m + n else (m + n) - p`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC MOD_CASES THEN
  REWRITE_TAC[MULT_2] THEN ASM_MESON_TAC[LT_ADD2]);;

let MOD_EQ = prove
 (`!m n p q. m = n + q * p ==> m MOD p = n MOD p`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 0` THENL
   [ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN
    DISCH_THEN SUBST1_TAC THEN REFL_TAC;
    DISCH_THEN SUBST1_TAC THEN
    MATCH_MP_TAC MOD_UNIQ THEN
    EXISTS_TAC `q + n DIV p` THEN
    POP_ASSUM(MP_TAC o MATCH_MP DIVISION) THEN
    DISCH_THEN(STRIP_ASSUME_TAC o GSYM o SPEC `n:num`) THEN
    ASM_REWRITE_TAC[RIGHT_ADD_DISTRIB; GSYM ADD_ASSOC] THEN
    MATCH_ACCEPT_TAC ADD_SYM]);;

let DIV_LE = prove
 (`!m n. m DIV n <= m`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[DIV_ZERO; LE_0] THEN
  FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [MATCH_MP DIVISION th]) THEN
  UNDISCH_TAC `~(n = 0)` THEN SPEC_TAC(`n:num`,`n:num`) THEN
  INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; GSYM ADD_ASSOC; LE_ADD]);;

let DIV_MUL_LE = prove
 (`!m n. n * (m DIV n) <= m`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; LE_0] THEN
  POP_ASSUM(MP_TAC o SPEC `m:num` o MATCH_MP DIVISION) THEN
  DISCH_THEN(fun th -> GEN_REWRITE_TAC RAND_CONV [CONJUNCT1 th]) THEN
  REWRITE_TAC[LE_ADD; MULT_AC]);;

let MOD_LE_TWICE = prove
 (`!m n. 0 < m /\ m <= n ==> 2 * n MOD m <= n`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `2 * m <= n` THENL
   [TRANS_TAC LE_TRANS `2 * m` THEN
    ASM_SIMP_TAC[LE_MULT_LCANCEL; DIVISION; LT_IMP_LE; LE_1];
    RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE])] THEN
  TRANS_TAC LE_TRANS `m + n MOD m` THEN
  ASM_SIMP_TAC[MULT_2; LE_ADD_RCANCEL; DIVISION; LT_IMP_LE; LE_1] THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN
  SUBGOAL_THEN `n MOD m = n - m`
   (fun th -> ASM_SIMP_TAC[LE_REFL; SUB_ADD; th]) THEN
  MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `1` THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_SIMP_TAC[MULT_CLAUSES; SUB_ADD] THEN
  ONCE_REWRITE_TAC[MESON[LT_ADD_RCANCEL]
   `n - m:num < m <=> (n - m) + m < m + m`] THEN
  ASM_SIMP_TAC[GSYM MULT_2; SUB_ADD]);;

let DIV_1,MOD_1 = (CONJ_PAIR o prove)
 (`(!n. n DIV 1 = n) /\ (!n. n MOD 1 = 0)`,
  SIMP_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC DIVMOD_UNIQ THEN
  REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN REWRITE_TAC[ONE; LT]);;

let DIV_LT = prove
 (`!m n. m < n ==> m DIV n = 0`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `m:num` THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES]);;

let MOD_MOD = prove
 (`!m n p. (m MOD (n * p)) MOD n = m MOD n`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[MOD_ZERO; MULT_CLAUSES] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[MOD_ZERO; MULT_CLAUSES] THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_EQ THEN
  EXISTS_TAC `m DIV (n * p) * p` THEN
  MP_TAC(SPECL [`m:num`; `n * p:num`] DIVISION) THEN
  ASM_REWRITE_TAC[MULT_EQ_0; MULT_AC; ADD_AC] THEN
  DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]));;

let MOD_MOD_REFL = prove
 (`!m n. (m MOD n) MOD n = m MOD n`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[MOD_ZERO] THEN
  MP_TAC(SPECL [`m:num`; `n:num`; `1`] MOD_MOD) THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; MULT_EQ_0] THEN
  REWRITE_TAC[ONE; NOT_SUC]);;

let MOD_MOD_LE = prove
 (`!m n p. ~(n = 0) /\ n <= p ==> (m MOD n) MOD p = m MOD n`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC MOD_LT THEN
  ASM_MESON_TAC[DIVISION; LTE_TRANS]);;

let DIV_MULT2 = prove
 (`!m n p. ~(m = 0) ==> ((m * n) DIV (m * p) = n DIV p)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = 0` THEN
  ASM_REWRITE_TAC[DIV_ZERO; MULT_CLAUSES] THEN
  MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `m * (n MOD p)` THEN
  ASM_SIMP_TAC[LT_MULT_LCANCEL; DIVISION] THEN
  ONCE_REWRITE_TAC[AC MULT_AC `a * b * c:num = b * a * c`] THEN
  REWRITE_TAC[GSYM LEFT_ADD_DISTRIB; EQ_MULT_LCANCEL] THEN
  ASM_SIMP_TAC[GSYM DIVISION]);;

let MOD_MULT2 = prove
 (`!m n p. (m * n) MOD (m * p) = m * n MOD p`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = 0` THEN
  ASM_REWRITE_TAC[MOD_ZERO; MULT_CLAUSES] THEN ASM_CASES_TAC `m = 0` THEN
  ASM_REWRITE_TAC[MOD_ZERO; MULT_CLAUSES] THEN
  MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `n DIV p` THEN
  ASM_SIMP_TAC[LT_MULT_LCANCEL; DIVISION] THEN
  ONCE_REWRITE_TAC[AC MULT_AC `a * b * c:num = b * a * c`] THEN
  REWRITE_TAC[GSYM LEFT_ADD_DISTRIB; EQ_MULT_LCANCEL] THEN
  ASM_SIMP_TAC[GSYM DIVISION]);;

let MOD_EXISTS = prove
 (`!m n. (?q. m = n * q) <=> if n = 0 then (m = 0) else (m MOD n = 0)`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
  EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[MOD_MULT] THEN
  EXISTS_TAC `m DIV n` THEN
  SUBGOAL_THEN `m = (m DIV n) * n + m MOD n`
   (fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THENL
   [ASM_MESON_TAC[DIVISION]; ASM_REWRITE_TAC[ADD_CLAUSES; MULT_AC]]);;

let LE_RDIV_EQ = prove
 (`!a b n. ~(a = 0) ==> (n <= b DIV a <=> a * n <= b)`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL
   [MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `a * (b DIV a)` THEN
    ASM_REWRITE_TAC[DIV_MUL_LE; LE_MULT_LCANCEL];
    SUBGOAL_THEN `a * n < a * (b DIV a + 1)` MP_TAC THENL
     [MATCH_MP_TAC LET_TRANS THEN EXISTS_TAC `(b DIV a) * a + b MOD a` THEN
      CONJ_TAC THENL [ASM_MESON_TAC[DIVISION]; ALL_TAC] THEN
      SIMP_TAC[LEFT_ADD_DISTRIB; MULT_SYM; MULT_CLAUSES; LT_ADD_LCANCEL] THEN
      ASM_MESON_TAC[DIVISION];
      ASM_REWRITE_TAC[LT_MULT_LCANCEL; GSYM ADD1; LT_SUC_LE]]]);;

let RDIV_LT_EQ = prove
 (`!a b n. ~(a = 0) ==> (b DIV a < n <=> b < a * n)`,
  SIMP_TAC[GSYM NOT_LE; LE_RDIV_EQ]);;

let LE_LDIV_EQ = prove
 (`!a b n. ~(a = 0) ==> (b DIV a <= n <=> b < a * (n + 1))`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM NOT_LT] THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM LE_SUC_LT] THEN
  ASM_SIMP_TAC[LE_RDIV_EQ] THEN REWRITE_TAC[NOT_LT; NOT_LE; ADD1]);;

let LDIV_LT_EQ = prove
 (`!a b n. ~(a = 0) ==> (n < b DIV a <=> a * (n + 1) <= b)`,
  SIMP_TAC[GSYM NOT_LE; LE_LDIV_EQ]);;

let LE_LDIV = prove
 (`!a b n. ~(a = 0) /\ b <= a * n ==> b DIV a <= n`,
  SIMP_TAC[LE_LDIV_EQ; LEFT_ADD_DISTRIB; MULT_CLAUSES] THEN
  MESON_TAC[LT_ADD; LT_NZ; LET_TRANS]);;

let DIV_MONO = prove
 (`!m n p. m <= n ==> m DIV p <= n DIV p`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = 0` THEN
  ASM_REWRITE_TAC[DIV_ZERO; LE_REFL] THEN
  MATCH_MP_TAC(MESON[LE_REFL] `(!k:num. k <= a ==> k <= b) ==> a <= b`) THEN
  ASM_SIMP_TAC[LE_RDIV_EQ] THEN ASM_MESON_TAC[LE_TRANS]);;

let DIV_MONO_LT = prove
 (`!m n p. ~(p = 0) /\ m + p <= n ==> m DIV p < n DIV p`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[ADD1; LE_SUC_LT; LE_REFL]
   `(!k:num. k <= a ==> k + 1 <= b) ==> a < b`) THEN
  ASM_SIMP_TAC[LE_RDIV_EQ; LEFT_ADD_DISTRIB; MULT_CLAUSES] THEN
  ASM_MESON_TAC[LE_REFL; LE_TRANS; LE_ADD2; ADD_SYM]);;

let DIV_EQ_0 = prove
 (`!m n. ~(n = 0) ==> ((m DIV n = 0) <=> m < n)`,
  REPEAT(STRIP_TAC ORELSE EQ_TAC) THENL
   [FIRST_ASSUM(SUBST1_TAC o CONJUNCT1 o SPEC `m:num` o MATCH_MP DIVISION) THEN
    ASM_SIMP_TAC[MULT_CLAUSES; ADD_CLAUSES; DIVISION];
    MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `m:num` THEN
    ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES]]);;

let MOD_EQ_0 = prove
 (`!m n. (m MOD n = 0) <=> ?q. m = q * n`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; MOD_ZERO] THEN
  REPEAT(STRIP_TAC ORELSE EQ_TAC) THENL
   [FIRST_ASSUM(SUBST1_TAC o CONJUNCT1 o SPEC `m:num` o MATCH_MP DIVISION) THEN
    ASM_SIMP_TAC[MULT_CLAUSES; ADD_CLAUSES; DIVISION] THEN MESON_TAC[];
    MATCH_MP_TAC MOD_UNIQ THEN ASM_SIMP_TAC[ADD_CLAUSES; MULT_AC] THEN
    ASM_MESON_TAC[NOT_LE; CONJUNCT1 LE]]);;

let MOD_REFL = prove
 (`!n. n MOD n = 0`,
  SIMP_TAC[MOD_EQ_0] THEN MESON_TAC[MULT_CLAUSES]);;

let EVEN_MOD = prove
 (`!n. EVEN(n) <=> n MOD 2 = 0`,
  REWRITE_TAC[EVEN_EXISTS; MOD_EQ_0] THEN MESON_TAC[MULT_SYM]);;

let ODD_MOD = prove
 (`!n. ODD(n) <=> n MOD 2 = 1`,
  GEN_TAC THEN REWRITE_TAC[GSYM NOT_EVEN; EVEN_MOD] THEN
  SUBGOAL_THEN `n MOD 2 < 2` MP_TAC THENL
   [SIMP_TAC[DIVISION; TWO; NOT_SUC]; ALL_TAC] THEN
  SPEC_TAC(`n MOD 2`,`n:num`) THEN
  REWRITE_TAC[TWO; ONE; LT] THEN MESON_TAC[NOT_SUC]);;

let MOD_2_CASES = prove
 (`!n. n MOD 2 = if EVEN n then 0 else 1`,
  MESON_TAC[EVEN_MOD; ODD_MOD; NOT_ODD]);;

let MOD_MULT_RMOD = prove
 (`!m n p. (m * (p MOD n)) MOD n = (m * p) MOD n`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[MOD_ZERO] THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_EQ THEN EXISTS_TAC `m * p DIV n` THEN
  REWRITE_TAC[GSYM MULT_ASSOC; GSYM LEFT_ADD_DISTRIB] THEN
  REWRITE_TAC[EQ_MULT_LCANCEL] THEN DISJ2_TAC THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_SIMP_TAC[DIVISION]);;

let MOD_MULT_LMOD = prove
 (`!m n p. ((m MOD n) * p) MOD n = (m * p) MOD n`,
  ONCE_REWRITE_TAC[MULT_SYM] THEN SIMP_TAC[MOD_MULT_RMOD]);;

let MOD_MULT_MOD2 = prove
 (`!m n p. ((m MOD n) * (p MOD n)) MOD n = (m * p) MOD n`,
  SIMP_TAC[MOD_MULT_RMOD; MOD_MULT_LMOD]);;

let MOD_EXP_MOD = prove
 (`!m n p. ((m MOD n) EXP p) MOD n = (m EXP p) MOD n`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[MOD_ZERO] THEN SPEC_TAC(`p:num`,`p:num`) THEN
  INDUCT_TAC THEN ASM_REWRITE_TAC[EXP] THEN ASM_SIMP_TAC[MOD_MULT_LMOD] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `(m * ((m MOD n) EXP p) MOD n) MOD n` THEN CONJ_TAC THENL
   [ALL_TAC; ASM_REWRITE_TAC[]] THEN
  ASM_SIMP_TAC[MOD_MULT_RMOD]);;

let MOD_MULT_ADD = prove
 (`(!m n p. (m * n + p) MOD n = p MOD n) /\
   (!m n p. (n * m + p) MOD n = p MOD n) /\
   (!m n p. (p + m * n) MOD n = p MOD n) /\
   (!m n p. (p + n * m) MOD n = p MOD n)`,
  MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN
  CONJ_TAC THENL [SIMP_TAC[MULT_AC; ADD_AC]; REPEAT GEN_TAC] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN
  MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `m + p DIV n` THEN
  ASM_SIMP_TAC[RIGHT_ADD_DISTRIB; GSYM ADD_ASSOC; EQ_ADD_LCANCEL; DIVISION]);;

let DIV_MULT_ADD = prove
 (`(!a b n. ~(n = 0) ==> (a * n + b) DIV n = a + b DIV n) /\
   (!a b n. ~(n = 0) ==> (n * a + b) DIV n = a + b DIV n) /\
   (!a b n. ~(n = 0) ==> (b + a * n) DIV n = b DIV n + a) /\
   (!a b n. ~(n = 0) ==> (b + n * a) DIV n = b DIV n + a)`,
  MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN
  CONJ_TAC THENL [SIMP_TAC[MULT_AC; ADD_AC]; REPEAT STRIP_TAC] THEN
  MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `b MOD n` THEN
  REWRITE_TAC[RIGHT_ADD_DISTRIB; GSYM ADD_ASSOC] THEN
  ASM_MESON_TAC[DIVISION]);;

let MOD_ADD_MOD = prove
 (`!a b n. (a MOD n + b MOD n) MOD n = (a + b) MOD n`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[MOD_ZERO] THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_EQ THEN
  EXISTS_TAC `a DIV n + b DIV n` THEN REWRITE_TAC[RIGHT_ADD_DISTRIB] THEN
  ONCE_REWRITE_TAC[AC ADD_AC `(a + b) + (c + d) = (c + a) + (d + b)`] THEN
  BINOP_TAC THEN ASM_SIMP_TAC[DIVISION]);;

let DIV_ADD_MOD = prove
 (`!a b n. ~(n = 0)
           ==> (((a + b) MOD n = a MOD n + b MOD n) <=>
                ((a + b) DIV n = a DIV n + b DIV n))`,
  REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVISION) THEN
  DISCH_THEN(fun th -> MAP_EVERY (MP_TAC o CONJUNCT1 o C SPEC th)
    [`a + b:num`; `a:num`; `b:num`]) THEN
  DISCH_THEN(fun th1 -> DISCH_THEN(fun th2 ->
    MP_TAC(MK_COMB(AP_TERM `(+)` th2,th1)))) THEN
  DISCH_THEN(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV) [th]) THEN
  ONCE_REWRITE_TAC[AC ADD_AC `(a + b) + c + d = (a + c) + (b + d)`] THEN
  REWRITE_TAC[GSYM RIGHT_ADD_DISTRIB] THEN
  DISCH_THEN(fun th -> EQ_TAC THEN DISCH_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[EQ_ADD_RCANCEL; EQ_ADD_LCANCEL; EQ_MULT_RCANCEL] THEN
  REWRITE_TAC[EQ_SYM_EQ]);;

let DIV_REFL = prove
 (`!n. ~(n = 0) ==> (n DIV n = 1)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC DIV_UNIQ THEN
  EXISTS_TAC `0` THEN REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN
  POP_ASSUM MP_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN
  INDUCT_TAC THEN REWRITE_TAC[LT_0]);;

let MOD_LE = prove
 (`!m n. m MOD n <= m`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[MOD_ZERO; LE_REFL] THEN FIRST_ASSUM
  (fun th -> GEN_REWRITE_TAC RAND_CONV
   [MATCH_MP DIVISION th]) THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[LE_ADD]);;

let DIV_MONO2 = prove
 (`!m n p. ~(p = 0) /\ p <= m ==> n DIV m <= n DIV p`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[LE_RDIV_EQ] THEN
  MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `m * n DIV m` THEN
  ASM_REWRITE_TAC[LE_MULT_RCANCEL] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
  MP_TAC(SPECL [`n:num`; `m:num`] DIVISION) THEN ASM_MESON_TAC[LE_ADD; LE]);;

let DIV_LE_EXCLUSION = prove
 (`!a b c d. ~(b = 0) /\ b * c < (a + 1) * d ==> c DIV d <= a DIV b`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `d = 0` THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; LT] THEN STRIP_TAC THEN
  MATCH_MP_TAC(MESON[LE_REFL] `(!k:num. k <= a ==> k <= b) ==> a <= b`) THEN
  X_GEN_TAC `k:num` THEN
  SUBGOAL_THEN `b * d * k <= b * c ==> (b * k) * d < (a + 1) * d` MP_TAC THENL
   [ASM_MESON_TAC[LET_TRANS; MULT_AC]; ALL_TAC] THEN
  MATCH_MP_TAC MONO_IMP THEN
  ASM_SIMP_TAC[LE_MULT_LCANCEL; LT_MULT_RCANCEL; LE_RDIV_EQ] THEN
  REWRITE_TAC[GSYM ADD1; LT_SUC_LE]);;

let DIV_EQ_EXCLUSION = prove
 (`!a b c d.
        b * c < (a + 1) * d /\ a * d < (c + 1) * b ==> (a DIV b = c DIV d)`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `b = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; LT] THEN
  ASM_CASES_TAC `d = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; LT] THEN
  ASM_MESON_TAC[MULT_SYM; LE_ANTISYM; DIV_LE_EXCLUSION]);;

let MULT_DIV_LE = prove
 (`!m n p. m * (n DIV p) <= (m * n) DIV p`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN
  ASM_REWRITE_TAC[LE_REFL; DIV_ZERO; MULT_CLAUSES] THEN
  ASM_SIMP_TAC[LE_RDIV_EQ] THEN
  FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP DIVISION) THEN
  DISCH_THEN(fun th ->
    GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [CONJUNCT1 th]) THEN
  REWRITE_TAC[LEFT_ADD_DISTRIB] THEN REWRITE_TAC[MULT_AC; LE_ADD]);;

let DIV_DIV = prove
 (`!m n p. (m DIV n) DIV p = m DIV (n * p)`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; DIV_ZERO] THEN
  ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[DIV_0; MULT_CLAUSES; DIV_ZERO] THEN
  REWRITE_TAC[MULT_EQ_0; DE_MORGAN_THM] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(MESON[LE_ANTISYM] `(!k. k <= m <=> k <= n) ==> m = n`) THEN
  ASM_SIMP_TAC[LE_RDIV_EQ; MULT_EQ_0; MULT_ASSOC]);;

let DIV_MOD = prove
 (`!m n p. (m DIV n) MOD p = (m MOD (n * p)) DIV n`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[MOD_ZERO; MULT_CLAUSES] THEN
  ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[MOD_0; MULT_CLAUSES; DIV_ZERO] THEN
  MATCH_MP_TAC(MESON[LE_ANTISYM] `(!k. k <= m <=> k <= n) ==> m = n`) THEN
  X_GEN_TAC `k:num` THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `k + p * ((m DIV n) DIV p) <= (m DIV n)` THEN CONJ_TAC THENL
   [MP_TAC(SPECL [`m DIV n`; `p:num`] DIVISION) THEN ASM_REWRITE_TAC[];
    MP_TAC(SPECL [`m:num`; `n * p:num`] DIVISION) THEN
    ASM_SIMP_TAC[LE_RDIV_EQ; MULT_EQ_0; DIV_DIV; LEFT_ADD_DISTRIB]] THEN
  REWRITE_TAC[MULT_AC] THEN MESON_TAC[ADD_SYM; MULT_SYM; LE_ADD_RCANCEL]);;

let MOD_MULT_MOD = prove
 (`!m n p. m MOD (n * p) = n * (m DIV n) MOD p + m MOD n`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; MOD_ZERO; ADD_CLAUSES] THEN
  ASM_CASES_TAC `p = 0` THENL
   [ASM_REWRITE_TAC[MULT_CLAUSES; MOD_ZERO] THEN
    ASM_METIS_TAC[DIVISION; MULT_SYM];
    ALL_TAC] THEN
  MATCH_MP_TAC(MESON[EQ_ADD_LCANCEL] `(?a. a + x = a + y) ==> x = y`) THEN
  EXISTS_TAC `m DIV n DIV p * n * p` THEN
  REWRITE_TAC[DIVISION_SIMP; DIV_DIV] THEN
  REWRITE_TAC[AC MULT_AC `d * n * p = n * (d * p)`] THEN
  REWRITE_TAC[GSYM LEFT_ADD_DISTRIB; ADD_ASSOC; GSYM DIV_DIV] THEN
  REWRITE_TAC[DIVISION_SIMP]);;

let MOD_MOD_EXP_MIN = prove
 (`!x p m n. x MOD (p EXP m) MOD (p EXP n) = x MOD (p EXP (MIN m n))`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = 0` THENL
   [ASM_REWRITE_TAC[EXP_ZERO; MIN] THEN ASM_CASES_TAC `m = 0` THEN
    ASM_REWRITE_TAC[MOD_ZERO; MOD_1; MOD_0; LE_0] THEN
    ASM_CASES_TAC `m:num <= n` THEN ASM_REWRITE_TAC[] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LE];
    REWRITE_TAC[MIN]] THEN
   ASM_CASES_TAC `m:num <= n` THEN ASM_REWRITE_TAC[] THENL
   [FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
    MATCH_MP_TAC MOD_LT THEN MATCH_MP_TAC LTE_TRANS THEN
    EXISTS_TAC `p EXP m` THEN
    ASM_SIMP_TAC[DIVISION; EXP_EQ_0; LE_EXP; LE_ADD];
    SUBGOAL_THEN `?d. m = n + d` (CHOOSE_THEN SUBST1_TAC) THENL
     [ASM_MESON_TAC[LE_CASES; LE_EXISTS];
      ASM_SIMP_TAC[EXP_ADD; MOD_MOD; MULT_EQ_0; EXP_EQ_0]]]);;

let DIV_EXP,MOD_EXP = (CONJ_PAIR o prove)
 (`(!m n p. ~(m = 0)
            ==> (m EXP n) DIV (m EXP p) =
                if p <= n then m EXP (n - p)
                else if m = 1 then 1 else 0) /\
   (!m n p. ~(m = 0)
            ==> (m EXP n) MOD (m EXP p) =
                if p <= n \/ m = 1 then 0 else m EXP n)`,
  REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN
  ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC DIVMOD_UNIQ THEN
  ASM_CASES_TAC `p:num <= n` THEN
  ASM_SIMP_TAC[GSYM EXP_ADD; EXP_LT_0; SUB_ADD; ADD_CLAUSES] THEN
  ASM_CASES_TAC `m = 1` THEN
  ASM_REWRITE_TAC[EXP_ONE; ADD_CLAUSES; MULT_CLAUSES; LT_EXP] THEN
  REWRITE_TAC[LT; GSYM NOT_LT; ONE; TWO] THEN
  ASM_REWRITE_TAC[SYM ONE; GSYM NOT_LE]);;

(* ------------------------------------------------------------------------- *)
(* Theorems for eliminating cutoff subtraction, predecessor, DIV and MOD.    *)
(* We have versions that introduce universal or existential quantifiers.     *)
(* ------------------------------------------------------------------------- *)

let PRE_ELIM_THM = prove
 (`P(PRE n) <=> !m. n = SUC m \/ m = 0 /\ n = 0 ==> P m`,
  SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
  REWRITE_TAC[NOT_SUC; SUC_INJ; PRE] THEN MESON_TAC[]);;

let PRE_ELIM_THM' = prove
 (`P(PRE n) <=> ?m. (n = SUC m \/ m = 0 /\ n = 0) /\ P m`,
  MP_TAC(INST [`\x:num. ~P x`,`P:num->bool`] PRE_ELIM_THM) THEN MESON_TAC[]);;

let SUB_ELIM_THM = prove
 (`P(a - b) <=> !d. a = b + d \/ a < b /\ d = 0 ==> P d`,
  DISJ_CASES_TAC(SPECL [`a:num`; `b:num`] LTE_CASES) THENL
   [ASM_MESON_TAC[NOT_LT; SUB_EQ_0; LT_IMP_LE; LE_ADD]; ALL_TAC] THEN
  FIRST_ASSUM(X_CHOOSE_THEN `e:num` SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN
  SIMP_TAC[ADD_SUB2; GSYM NOT_LE; LE_ADD; EQ_ADD_LCANCEL] THEN MESON_TAC[]);;

let SUB_ELIM_THM' = prove
 (`P(a - b) <=> ?d. (a = b + d \/ a < b /\ d = 0) /\ P d`,
  MP_TAC(INST [`\x:num. ~P x`,`P:num->bool`] SUB_ELIM_THM) THEN MESON_TAC[]);;

let DIVMOD_ELIM_THM = prove
 (`P (m DIV n) (m MOD n) <=>
        !q r. n = 0 /\ q = 0 /\ r = m \/ m = q * n + r /\ r < n ==> P q r`,
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THENL
   [ASM_MESON_TAC[DIVISION_0; LT];
    FIRST_ASSUM(MP_TAC o MATCH_MP DIVISION) THEN MESON_TAC[DIVMOD_UNIQ]]);;

let DIVMOD_ELIM_THM' = prove
 (`P (m DIV n) (m MOD n) <=>
        ?q r. (n = 0 /\ q = 0 /\ r = m \/ m = q * n + r /\ r < n) /\ P q r`,
  MP_TAC(INST [`\x:num y:num. ~P x y`,`P:num->num->bool`] DIVMOD_ELIM_THM) THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Crude but useful conversion for cancelling down equations.                *)
(* ------------------------------------------------------------------------- *)

let NUM_CANCEL_CONV =
  let rec minter i l1' l2' l1 l2 =
    if l1 = [] then (i,l1',l2'@l2)
    else if l2 = [] then (i,l1@l1',l2') else
    let h1 = hd l1 and h2 = hd l2 in
    if h1 = h2 then minter (h1::i) l1' l2' (tl l1) (tl l2)
    else if h1 < h2 then minter i (h1::l1') l2' (tl l1) l2
    else minter i l1' (h2::l2') l1 (tl l2) in
  let add_tm = `(+)` and eq_tm = `(=) :num->num->bool` in
  let EQ_ADD_LCANCEL_0' =
    GEN_REWRITE_RULE (funpow 2 BINDER_CONV o LAND_CONV) [EQ_SYM_EQ]
      EQ_ADD_LCANCEL_0 in
  let AC_RULE = AC ADD_AC in
  fun tm ->
    let l,r = dest_eq tm in
    let lats = sort (<=) (binops `(+)` l)
    and rats = sort (<=) (binops `(+)` r) in
    let i,lats',rats' = minter [] [] [] lats rats in
    let l' = list_mk_binop add_tm (i @ lats')
    and r' = list_mk_binop add_tm (i @ rats') in
    let lth = AC_RULE (mk_eq(l,l'))
    and rth = AC_RULE (mk_eq(r,r')) in
    let eth = MK_COMB(AP_TERM eq_tm lth,rth) in
    GEN_REWRITE_RULE (RAND_CONV o REPEATC)
      [EQ_ADD_LCANCEL; EQ_ADD_LCANCEL_0; EQ_ADD_LCANCEL_0'] eth;;

(* ------------------------------------------------------------------------- *)
(* This is handy for easing MATCH_MP on inequalities.                        *)
(* ------------------------------------------------------------------------- *)

let LE_IMP =
  let pth = PURE_ONCE_REWRITE_RULE[IMP_CONJ] LE_TRANS in
  fun th -> GEN_ALL(MATCH_MP pth (SPEC_ALL th));;

(* ------------------------------------------------------------------------- *)
(* Binder for "the minimal n such that".                                     *)
(* ------------------------------------------------------------------------- *)

parse_as_binder "minimal";;

let minimal = new_definition
  `(minimal) (P:num->bool) = @n. P n /\ !m. m < n ==> ~(P m)`;;

let MINIMAL = prove
 (`!P. (?n. P n) <=> P((minimal) P) /\ (!m. m < (minimal) P ==> ~(P m))`,
  GEN_TAC THEN REWRITE_TAC[minimal] THEN CONV_TAC(RAND_CONV SELECT_CONV) THEN
  REWRITE_TAC[GSYM num_WOP]);;

(* ------------------------------------------------------------------------- *)
(* A common lemma for transitive relations.                                  *)
(* ------------------------------------------------------------------------- *)

let TRANSITIVE_STEPWISE_LT_EQ = prove
 (`!R. (!x y z. R x y /\ R y z ==> R x z)
         ==> ((!m n. m < n ==> R m n) <=> (!n. R n (SUC n)))`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[LT] THEN
  DISCH_TAC THEN SIMP_TAC[LT_EXISTS; LEFT_IMP_EXISTS_THM] THEN
  GEN_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL; ADD_CLAUSES] THEN
  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES] THEN ASM_MESON_TAC[]);;

let TRANSITIVE_STEPWISE_LT = prove
 (`!R. (!x y z. R x y /\ R y z ==> R x z) /\ (!n. R n (SUC n))
       ==> !m n. m < n ==> R m n`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT
   `(a ==> (c <=> b)) ==> a /\ b ==> c`) THEN
  MATCH_ACCEPT_TAC TRANSITIVE_STEPWISE_LT_EQ);;

let TRANSITIVE_STEPWISE_LE_EQ = prove
 (`!R. (!x. R x x) /\ (!x y z. R x y /\ R y z ==> R x z)
       ==> ((!m n. m <= n ==> R m n) <=> (!n. R n (SUC n)))`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[LE; LE_REFL] THEN

  DISCH_TAC THEN SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM] THEN
  GEN_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL; ADD_CLAUSES] THEN
  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES] THEN ASM_MESON_TAC[]);;

let TRANSITIVE_STEPWISE_LE = prove
 (`!R. (!x. R x x) /\ (!x y z. R x y /\ R y z ==> R x z) /\
       (!n. R n (SUC n))
       ==> !m n. m <= n ==> R m n`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT
   `(a /\ a' ==> (c <=> b)) ==> a /\ a' /\ b ==> c`) THEN
  MATCH_ACCEPT_TAC TRANSITIVE_STEPWISE_LE_EQ);;

(* ------------------------------------------------------------------------- *)
(* A couple of forms of Dependent Choice.                                    *)
(* ------------------------------------------------------------------------- *)

let DEPENDENT_CHOICE_FIXED = prove
 (`!P R a:A.
        P 0 a /\ (!n x. P n x ==> ?y. P (SUC n) y /\ R n x y)
        ==> ?f. f 0 = a /\ (!n. P n (f n)) /\ (!n. R n (f n) (f(SUC n)))`,
  REPEAT STRIP_TAC THEN
  (MP_TAC o prove_recursive_functions_exist num_RECURSION)
    `f 0 = (a:A) /\ (!n. f(SUC n) = @y. P (SUC n) y /\ R n (f n) y)` THEN
  MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV
   [MESON[num_CASES] `(!n. P n) <=> P 0 /\ !n. P(SUC n)`] THEN
  ASM_REWRITE_TAC[AND_FORALL_THM] THEN INDUCT_TAC THEN ASM_MESON_TAC[]);;

let DEPENDENT_CHOICE = prove
 (`!P R:num->A->A->bool.
        (?a. P 0 a) /\ (!n x. P n x ==> ?y. P (SUC n) y /\ R n x y)
        ==> ?f. (!n. P n (f n)) /\ (!n. R n (f n) (f(SUC n)))`,
  MESON_TAC[DEPENDENT_CHOICE_FIXED]);;

(* ------------------------------------------------------------------------- *)
(* Conversion that elimimates every occurrence of `NUMERAL`, `BIT0`,         *)
(* `BIT1`, `_0` that is not part of a well-formed numeral.                   *)
(* ------------------------------------------------------------------------- *)

let BITS_ELIM_CONV : conv =
  let NUMERAL_pth = prove(`m = n <=> NUMERAL m = n`,REWRITE_TAC[NUMERAL])
  and ZERO_pth = GSYM (REWRITE_CONV[NUMERAL] `0`)
  and BIT0_pth,BIT1_pth = CONJ_PAIR
   (prove(`(m = n <=> BIT0 m = 2 * n) /\
           (m = n <=> BIT1 m = 2 * n + 1)`,
    CONJ_TAC THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [BIT0; BIT1] THEN
    REWRITE_TAC[ADD1; EQ_ADD_RCANCEL; GSYM MULT_2] THEN
    REWRITE_TAC[EQ_MULT_LCANCEL] THEN
    REWRITE_TAC[TWO; NOT_SUC]))
  and mvar,nvar = `m:num`,`n:num` in
  let rec BITS_ELIM_CONV : conv =
    fun tm -> match tm with
      Const("_0",_) -> ZERO_pth
    | Var _ | Const _ -> REFL tm
    | Comb(Const("NUMERAL",_),mtm) ->
        if is_numeral tm then REFL tm else
        let th = BITS_ELIM_CONV mtm in
        EQ_MP (INST[mtm,mvar;rand(concl th),nvar] NUMERAL_pth) th
    | Comb(Const("BIT0",_),mtm) ->
        let th = BITS_ELIM_CONV mtm in
        EQ_MP (INST [mtm,mvar;rand(concl th),nvar] BIT0_pth) th
    | Comb(Const("BIT1",_),mtm) ->
        let th = BITS_ELIM_CONV mtm in
        EQ_MP (INST [mtm,mvar;rand(concl th),nvar] BIT1_pth) th
    | Comb _ -> COMB_CONV BITS_ELIM_CONV tm
    | Abs _ -> ABS_CONV BITS_ELIM_CONV tm in
  BITS_ELIM_CONV;;