File: misc.ml

package info (click to toggle)
hol-light 20230128-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 45,636 kB
  • sloc: ml: 688,681; cpp: 439; makefile: 302; lisp: 286; java: 279; sh: 251; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (226 lines) | stat: -rw-r--r-- 10,807 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
(* ========================================================================= *)
(* A few extras to support proofs around elliptic curves.                    *)
(* ========================================================================= *)

needs "Library/pocklington.ml";;
needs "Library/primitive.ml";;
needs "Library/grouptheory.ml";;
needs "Library/ringtheory.ml";;

(* ------------------------------------------------------------------------- *)
(* Bounds on size of any curve of the form y^2 = f(x) over finite field.     *)
(* ------------------------------------------------------------------------- *)

let FINITE_QUADRATIC_CURVE = prove
 (`!(r:A ring) h.
        integral_domain r /\ FINITE(ring_carrier r)
        ==> FINITE {x,y | x IN ring_carrier r /\ y IN ring_carrier r /\
                          ring_pow r y 2 = h x} /\
            CARD {x,y | x IN ring_carrier r /\ y IN ring_carrier r /\
                        ring_pow r y 2 = h x}
            <= 2 * CARD(ring_carrier r)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
  MATCH_MP_TAC FINITE_CARD_LE_SUBSET THEN
  EXISTS_TAC
   `UNIONS {{x,y | y | y IN ring_carrier r /\ ring_pow r y 2 = h x} |x|
            (x:A) IN ring_carrier r}` THEN
  CONJ_TAC THENL
   [REWRITE_TAC[UNIONS_GSPEC; SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
    SET_TAC[];
    MATCH_MP_TAC FINITE_CARD_LE_UNIONS THEN ASM_REWRITE_TAC[LE_REFL]] THEN
  X_GEN_TAC `x:A` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
  MATCH_MP_TAC FINITE_CARD_LE_IMAGE THEN
  ONCE_REWRITE_TAC[TAUT `p /\ q <=> p /\ ~(p ==> ~q)`] THEN
  REWRITE_TAC[ARITH_RULE `~(n <= 2) <=> 3 <= n`; CHOOSE_SUBSET_EQ] THEN
  ASM_SIMP_TAC[FINITE_RESTRICT] THEN
  CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN
  DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC)) THEN
  FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN
  MP_TAC(INTEGRAL_DOMAIN_RULE
   `!x y:A. integral_domain r
    ==> (ring_pow r x 2 = ring_pow r y 2 <=> x = y \/ x = ring_neg r y)`) THEN
  ASM_REWRITE_TAC[IN_ELIM_THM] THEN ASM METIS_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Try to dispose of ring characteristic side-conditions. This in general    *)
(* requires external factorization tools for "multifactor" on large numbers. *)
(* ------------------------------------------------------------------------- *)

let NOT_RING_CHAR_DIVIDES_TAC =
  let bops = list_mk_binop `( * ):num->num->num`
  and patcheck = can (term_match [] `~(ring_char r divides NUMERAL n)`) in
  W(fun (asl,w) ->
        if not (patcheck w) then failwith "NOT_RING_CHAR_DIVIDES_TAC" else
        let n = dest_numeral(rand(rand w)) in
        let ns = multifactor n in
        let ntm = bops(map mk_numeral ns) in
        SUBST1_TAC(SYM(NUM_REDUCE_CONV ntm))) THEN
  ASM_SIMP_TAC[RING_CHAR_DIVIDES_MUL];;

(* ------------------------------------------------------------------------- *)
(* Ad-hoc rewrites for equality versus divisibility of characteristic.       *)
(* ------------------------------------------------------------------------- *)

let FIELD_CHAR_NOT2 = prove
 (`!(f:A ring) P.
        field f /\ ~(ring_char f = 2) /\ P <=>
        field f /\ ~(ring_char f divides 2) /\ P`,
  MESON_TAC[RING_CHAR_DIVIDES_PRIME; PRIME_2]);;

let FIELD_CHAR_NOT3 = prove
 (`!(f:A ring) P.
        field f /\ ~(ring_char f = 3) /\ P <=>
        field f /\ ~(ring_char f divides 3) /\ P`,
  MESON_TAC[RING_CHAR_DIVIDES_PRIME; PRIME_CONV `prime 3`]);;

let FIELD_CHAR_NOT23 = prove
 (`!(f:A ring) P.
        field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ P <=>
        field f /\ ~(ring_char f divides 2) /\ ~(ring_char f divides 3) /\ P`,
  MESON_TAC[RING_CHAR_DIVIDES_PRIME; PRIME_2; PRIME_CONV `prime 3`]);;

(* ------------------------------------------------------------------------- *)
(* An ad-hoc way of confirming the size of a group to be n when there is a   *)
(* crude bound of < 3 * n and we also know there are no points of order 2.   *)
(* ------------------------------------------------------------------------- *)

let CAUCHY_GROUP_THEOREM_2 = prove
 (`!G:A group.
        FINITE(group_carrier G) /\ EVEN(CARD(group_carrier G))
        ==> ?x. x IN group_carrier G /\ group_element_order G x = 2`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC CAUCHY_GROUP_THEOREM THEN
  ASM_REWRITE_TAC[PRIME_2; DIVIDES_2]);;

let GROUP_ADHOC_ORDER_UNIQUE_LEMMA = prove
 (`!G (a:A) p.
      FINITE(group_carrier G) /\ CARD(group_carrier G) < 3 * p /\
      (!x. x IN group_carrier G /\ group_inv G x = x ==> x = group_id G) /\
      a IN group_carrier G /\ group_element_order G a = p
      ==> (group_carrier G) HAS_SIZE p`,
  SIMP_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN MP_TAC
   (SPECL [`G:A group`; `a:A`] GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER) THEN
  ASM_REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN
  ASM_CASES_TAC `d = 0` THEN
  ASM_SIMP_TAC[CARD_EQ_0; MULT_CLAUSES; GROUP_CARRIER_NONEMPTY] THEN
  ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
  ASM_CASES_TAC `d = 2` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THENL
   [MP_TAC(ISPEC `G:A group` CAUCHY_GROUP_THEOREM_2) THEN
    ASM_REWRITE_TAC[EVEN_MULT; ARITH; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `x:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_2_ALT] THEN ASM_MESON_TAC[];
    UNDISCH_TAC `CARD(group_carrier(G:A group)) < 3 * p` THEN
    MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN ASM_REWRITE_TAC[NOT_LT] THEN
    GEN_REWRITE_TAC RAND_CONV [MULT_SYM] THEN
    ASM_REWRITE_TAC[LE_MULT_RCANCEL] THEN ASM_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Use some symmetry to ease algebraic reduction of associativity            *)
(* ------------------------------------------------------------------------- *)

let SYMMETRY_LEMMA = prove
 (`!P eq add.
     (!x y. P x /\ P y /\ eq x y ==> eq y x) /\
     (!x y. P x /\ P y ==> P(add x y)) /\
     (!x y. P x /\ P y ==> add x y = add y x) /\
     (!x y z. P x /\ P y /\ P z /\ (eq x y \/ eq (add x y) z)
              ==> add x (add y z) = add (add x y) z) /\
     (!x y z. P x /\ P y /\ P z /\
              ~(eq x y) /\ ~(eq y z) /\ ~(eq x z) /\
              ~(eq (add x y) z) /\ ~(eq (add y z) x)
              ==> add x (add y z) = add (add x y) z)
     ==> !x y z:A. P x /\ P y /\ P z ==> add x (add y z) = add (add x y) z`,
  REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `(eq:A->A->bool) x y` THEN ASM_SIMP_TAC[] THEN
  ASM_CASES_TAC `(eq:A->A->bool) y z` THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  ASM_CASES_TAC `(eq:A->A->bool) x z` THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  ASM_CASES_TAC `(eq:A->A->bool) ((add:A->A->A) x y) z` THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  ASM_CASES_TAC `(eq:A->A->bool) ((add:A->A->A) y z) x` THEN
  ASM_MESON_TAC[]);;

let ASSOCIATIVITY_LEMMA = prove
(`!P add neg (id:A).
        P id /\
        (!x. P x ==> P(neg x)) /\
        (!x y. P x /\ P y ==> P(add x y)) /\
        (!x. P x ==> add id x = x) /\
        (!x. P x ==> add (neg x) x = id) /\
        (!x y. P x /\ P y ==> add x y = add y x) /\
        (!x. P x ==> neg(neg x) = x) /\
        (!x y. P x /\ P y ==> neg(add x y) = add (neg x) (neg y)) /\
        (!x y. P x /\ P y ==> add x (add x y) = add (add x x) y) /\
        (!x y. P x /\ P y ==> add (neg x) (add x y) = y) /\
        (!x y z u v.
            P x /\ P y /\ P z /\ P u /\ P v
            ==> ~(x = id) /\ ~(y = id) /\ ~(z = id) /\
                ~(u = id) /\ ~(v = id) /\
                ~(y = x \/ y = neg x) /\
                ~(z = y \/ z = neg y) /\
                ~(z = x \/ z = neg x) /\
                ~(z = u \/ z = neg u) /\
                ~(x = v \/ x = neg v)
                ==> add x y = u /\ add y z = v
                    ==> add x v = add u z)
     ==> !x y z. P x /\ P y /\ P z ==> add x (add y z) = add (add x y) z`,
  ONCE_REWRITE_TAC[TAUT
   `p ==> q ==> r /\ s ==> t <=> r ==> s ==> p /\ q ==> t`] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM1] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MATCH_MP_TAC SYMMETRY_LEMMA THEN
  EXISTS_TAC `\x y. y:A = x \/ y = neg x` THEN
  REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
   [ASM_MESON_TAC[];
    ASM_MESON_TAC[];
    ASM_MESON_TAC[];
    ALL_TAC;
    MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN STRIP_TAC THEN
    ASM_CASES_TAC `x:A = id` THENL
     [ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    ASM_CASES_TAC `y:A = id` THENL
     [ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    ASM_CASES_TAC `z:A = id` THENL
     [ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]] THEN
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
  REPEAT CONJ_TAC THENL
   [ASM_MESON_TAC[];
    ASM_MESON_TAC[];
    ALL_TAC;
    TRANS_TAC EQ_TRANS `id:A` THEN
    CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
    TRANS_TAC EQ_TRANS `(add:A->A->A) x (neg x)` THEN
    CONJ_TAC THENL [AP_TERM_TAC; ASM_MESON_TAC[]] THEN
    ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]] THEN
  TRANS_TAC EQ_TRANS
   `add (x:A) (add (neg x) (add (add x y) (add x y)))` THEN
  CONJ_TAC THENL [AP_TERM_TAC; ASM_MESON_TAC[]] THEN
  TRANS_TAC EQ_TRANS `add (add (neg x) (add x y)) (add x y):A` THEN
  CONJ_TAC THENL [ASM_SIMP_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `!x y:A. P x /\ P y ==> add y (add x x) = add (add y x) x`
   (fun th -> ASM_SIMP_TAC[th]) THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Formulate existence of roots in finite field as power residue over N.     *)
(* This is intuitively completely trivial but fiddly in the fine details,    *)
(* especially since we don't actually assume n is prime and so it's a field. *)
(* ------------------------------------------------------------------------- *)

let INTEGER_MOD_RING_ROOT_EXISTS = prove
 (`!n a k. (?b. b IN ring_carrier (integer_mod_ring n) /\
                ring_pow (integer_mod_ring n) b k = &a) <=>
           (n = 0 \/ a < n) /\
           (?b. (b EXP k == a) (mod n))`,
  REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_REM; GSYM INT_OF_NUM_POW] THEN
  REWRITE_TAC[INT_EXISTS_POS] THEN REPEAT GEN_TAC THEN
  ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[INTEGER_MOD_RING_CLAUSES; LE_1] THENL
   [REWRITE_TAC[IN_UNIV; INT_REM_0; INT_CONG_MOD_0] THEN
    EQ_TAC THENL [DISCH_THEN(X_CHOOSE_TAC `b:int`); MESON_TAC[]] THEN
    EXISTS_TAC `abs b:int` THEN
    ASM_REWRITE_TAC[INT_ABS_POS; GSYM INT_ABS_POW; INT_ABS_NUM];
    REWRITE_TAC[IN_ELIM_THM; GSYM CONJ_ASSOC] THEN
    REWRITE_TAC[GSYM INT_EXISTS_POS; INT_OF_NUM_CLAUSES; INT_OF_NUM_REM] THEN
    REWRITE_TAC[GSYM num_congruent; CONG] THEN
    ASM_MESON_TAC[MOD_LT; MOD_EXP_MOD; MOD_LT_EQ]]);;