1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
(* ========================================================================= *)
(* Miscellanea *)
(* *)
(* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Theorem-tacticals. *)
(* ------------------------------------------------------------------------- *)
let THEN_GTCL (ttcl1:thm_tactical) (ttcl2:thm_tactical) : thm_tactical =
fun ttac th -> ttcl1 ttac th THEN ttcl2 ttac th;;
let ORELSE_GTCL (ttcl1:thm_tactical) (ttcl2:thm_tactical) : thm_tactical =
fun ttac th -> ttcl1 ttac th ORELSE ttcl2 ttac th;;
(* GiĆ definita nella standard library. *)
let rec REPEAT_GTCL (ttcl:thm_tactical) : thm_tactical = fun ttac th g ->
try ttcl (REPEAT_GTCL ttcl ttac) th g with Failure _ -> ttac th g;;
let LABEL_ASM_CASES_TAC s tm =
ASM_CASES_TAC tm THEN POP_ASSUM (LABEL_TAC s);;
(* ------------------------------------------------------------------------- *)
(* Monadic bind for lists. *)
(* ------------------------------------------------------------------------- *)
let FLATMAP = new_recursive_definition list_RECURSION
`(!f:A->B list. FLATMAP f [] = []) /\
(!f:A->B list h t. FLATMAP f (CONS h t) = APPEND (f h) (FLATMAP f t))`;;
let MEM_FLATMAP = prove
(`!x f:A->B list l. MEM x (FLATMAP f l) <=> ?y. MEM y l /\ MEM x (f y)`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[FLATMAP; MEM; MEM_APPEND] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Subtraction of lists: returns the first list without the elements *)
(* occurring in the second list. *)
(* ------------------------------------------------------------------------- *)
let LISTDIFF = new_definition
`LISTDIFF l m = FILTER (\x:A. ~MEM x m) l`;;
let MEM_LISTDIFF = prove
(`!x:A l m. MEM x (LISTDIFF l m) <=> MEM x l /\ ~MEM x m`,
REWRITE_TAC[LISTDIFF; MEM_FILTER] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Sublist relation. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("SUBLIST",get_infix_status "SUBSET");;
let SUBLIST = new_definition
`l SUBLIST m <=> (!x:A. MEM x l ==> MEM x m)`;;
let NIL_NOT_MEM = prove
(`!l:A list. l = [] <=> !x. ~(MEM x l)`,
GEN_TAC THEN STRUCT_CASES_TAC (SPEC `l:A list` list_CASES) THEN
REWRITE_TAC[MEM; NOT_CONS_NIL] THEN MESON_TAC[]);;
let SUBLIST_NIL = prove
(`!l:A list. l SUBLIST [] <=> l = []`,
REWRITE_TAC[SUBLIST; MEM; NIL_NOT_MEM]);;
let NIL_SUBLIST = prove
(`!l:A list. [] SUBLIST l`,
REWRITE_TAC[SUBLIST; MEM]);;
let SUBLIST_REFL = prove
(`!l:A list. l SUBLIST l`,
REWRITE_TAC[SUBLIST]);;
let CONS_SUBLIST = prove
(`!h:A t l. CONS h t SUBLIST l <=> MEM h l /\ t SUBLIST l`,
REWRITE_TAC[SUBLIST; MEM] THEN MESON_TAC[]);;
let SUBLIST_TRANS = prove
(`!l m n. l SUBLIST m /\ m SUBLIST n ==> l SUBLIST n`,
REWRITE_TAC[SUBLIST] THEN MESON_TAC[]);;
let LISTDIFF_SUBLIST = prove
(`!l m:A list. LISTDIFF m l SUBLIST m`,
REWRITE_TAC[SUBLIST; MEM_LISTDIFF] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Lists without duplicates. *)
(* ------------------------------------------------------------------------- *)
let NOREPETITION = new_definition
`NOREPETITION l <=> PAIRWISE (\x y:A. ~(x = y)) l`;;
let NOREPETITION_CLAUSES = prove
(`NOREPETITION [] /\
(!h:A t. NOREPETITION (CONS h t) <=> ~MEM h t /\ NOREPETITION t)`,
REWRITE_TAC[NOREPETITION; PAIRWISE; GSYM ALL_MEM] THEN MESON_TAC[]);;
let NOREPETITION_LIST_OF_SET = prove
(`!s:A->bool. FINITE s ==> NOREPETITION (list_of_set s)`,
INTRO_TAC "!s; s" THEN
REWRITE_TAC[NOREPETITION; GSYM HAS_SIZE_SET_OF_LIST] THEN
ASM_SIMP_TAC[SET_OF_LIST_OF_SET; LENGTH_LIST_OF_SET] THEN
ASM_REWRITE_TAC[GSYM FINITE_HAS_SIZE]);;
let EXISTS_NOREPETITION = prove
(`!l:A list. ?m. NOREPETITION m /\ l SUBLIST m /\ m SUBLIST l`,
GEN_TAC THEN EXISTS_TAC `list_of_set (set_of_list l):A list` THEN
SIMP_TAC[NOREPETITION_LIST_OF_SET; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[SUBLIST] THEN
SIMP_TAC[MEM_LIST_OF_SET; FINITE_SET_OF_LIST; IN_SET_OF_LIST]);;
let NOREPETION_FILTER = prove
(`!P l:A list. NOREPETITION l ==> NOREPETITION (FILTER P l)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[NOREPETITION_CLAUSES; FILTER; COND_ELIM_THM; MEM_FILTER]);;
(* ------------------------------------------------------------------------- *)
(* Further general results about lists: *)
(* size of the set of lists with bounded length. *)
(* ------------------------------------------------------------------------- *)
let DELETE_HAS_SIZE = prove
(`!s a:A n. s DELETE a HAS_SIZE n <=>
a IN s /\ s HAS_SIZE SUC n \/
~(a IN s) /\ s HAS_SIZE n`,
REPEAT GEN_TAC THEN REWRITE_TAC[HAS_SIZE; FINITE_DELETE] THEN
ASM_CASES_TAC `FINITE (s:A->bool)` THEN ASM_SIMP_TAC[CARD_DELETE] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `~(CARD (s:A->bool) = 0)`
(fun th -> MP_TAC th THEN ARITH_TAC) THEN
ASM_SIMP_TAC[CARD_EQ_0] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY]);;
let HAS_SIZE_LENGTH_EQ = prove
(`!s m n.
s HAS_SIZE m
==> {l | LENGTH l = n /\ !x:A. MEM x l ==> x IN s} HAS_SIZE m EXP n`,
FIX_TAC "s m" THEN INDUCT_TAC THEN INTRO_TAC "s" THENL
[SUBGOAL_THEN `m EXP 0 = SUC 0` (fun th -> REWRITE_TAC[th]) THENL
[REWRITE_TAC[EXP; ONE]; ALL_TAC] THEN
REWRITE_TAC[HAS_SIZE_CLAUSES] THEN
MAP_EVERY EXISTS_TAC [`[]:A list`; `{}:A list->bool`] THEN
REWRITE_TAC[NOT_IN_EMPTY; LENGTH_EQ_NIL] THEN
REWRITE_TAC[EXTENSION; IN_SING; IN_ELIM_THM] THEN MESON_TAC[MEM];
ALL_TAC] THEN
SUBGOAL_THEN `m EXP SUC n = m * m EXP n` SUBST1_TAC THENL
[REWRITE_TAC[EXP]; ALL_TAC] THEN
SUBGOAL_THEN
`{l | LENGTH l = SUC n /\ (!x:A. MEM x l ==> x IN s)} =
IMAGE (UNCURRY CONS)
(s CROSS {l | LENGTH l = n /\ (!x. MEM x l ==> x IN s)})`
SUBST1_TAC THENL
[REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET;
FORALL_IN_GSPEC; FORALL_IN_IMAGE] THEN
CONJ_TAC THENL
[GEN_TAC THEN STRUCT_CASES_TAC (ISPEC `l:A list` (cases "list")) THEN
REWRITE_TAC[LENGTH; NOT_SUC; SUC_INJ; MEM] THEN
REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; UNCURRY_DEF; injectivity "list";
IN_CROSS; IN_ELIM_THM] THEN
MESON_TAC[];
ALL_TAC] THEN
REWRITE_TAC[FORALL_IN_CROSS; IMP_CONJ; RIGHT_FORALL_IMP_THM;
FORALL_IN_GSPEC] THEN
REWRITE_TAC[IN_ELIM_THM; UNCURRY_DEF; LENGTH; SUC_INJ; MEM] THEN
MESON_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
[SIMP_TAC[FORALL_PAIR_THM; UNCURRY_DEF; CONS_11; PAIR_EQ];
ASM_SIMP_TAC[HAS_SIZE_CROSS]]);;
let FINITE_LENGTH_EQ = prove
(`!s n. FINITE s ==> FINITE {l | LENGTH l = n /\ !x:A. MEM x l ==> x IN s}`,
MESON_TAC[HAS_SIZE; HAS_SIZE_LENGTH_EQ]);;
let FINITE_LENGTH_LE = prove
(`!s n. FINITE s ==> FINITE {l | LENGTH l <= n /\ !x:A. MEM x l ==> x IN s}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC
`UNIONS (IMAGE (\k. {l | LENGTH l = k /\ !x:A. MEM x l ==> x IN s})
(0..n))` THEN
CONJ_TAC THENL
[REWRITE_TAC[FINITE_UNIONS; FORALL_IN_IMAGE] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG; FINITE_LENGTH_EQ];
REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_UNIONS; EXISTS_IN_IMAGE] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IN_NUMSEG; IN_ELIM_THM; LE_0] THEN
ASM_MESON_TAC[]]);;
let LENGTH_NOREPETITION = prove
(`!n l s. s HAS_SIZE n /\ (!x:A. MEM x l ==> x IN s) /\ NOREPETITION l
==> LENGTH l <= n`,
INDUCT_TAC THENL
[REWRITE_TAC[HAS_SIZE_CLAUSES; LE; LENGTH_EQ_NIL] THEN
MESON_TAC[NIL_NOT_MEM; NOT_IN_EMPTY];
ALL_TAC] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; LE_0] THEN
POP_ASSUM (K ALL_TAC) THEN GEN_TAC THEN
REWRITE_TAC[MEM; NOREPETITION_CLAUSES; LE_SUC] THEN STRIP_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `s DELETE h:A` THEN
ASM_SIMP_TAC[DELETE_HAS_SIZE; IN_DELETE] THEN ASM_MESON_TAC[]);;
let FINITE_NOREPETITION = prove
(`!s n. FINITE s ==> FINITE {l | NOREPETITION l /\ !x:A. MEM x l ==> x IN s}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{l | LENGTH l <= CARD s /\ !x:A. MEM x l ==> x IN s}` THEN
CONJ_TAC THENL [ASM_SIMP_TAC[FINITE_LENGTH_LE]; ALL_TAC] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
ASM_MESON_TAC[LENGTH_NOREPETITION; FINITE_HAS_SIZE]);;
(* ------------------------------------------------------------------------- *)
(* Cardinality of the types of characters and lists. *)
(* ------------------------------------------------------------------------- *)
let FINITE_CHAR = prove
(`FINITE (:char)`,
C SUBGOAL_THEN SUBST1_TAC
`(:char) =
IMAGE (\(b0,b1,b2,b3,b4,b5,b6,b7). ASCII b0 b1 b2 b3 b4 b5 b6 b7)
UNIV` THENL
[REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN X_GEN_TAC `c:char` THEN
DESTRUCT_TAC "@b0 b1 b2 b3 b4 b5 b6 b7. c"
(SPEC `c:char` (cases "char")) THEN
EXISTS_TAC
`b0:bool,b1:bool,b2:bool,b3:bool,b4:bool,b5:bool,b6:bool,b7:bool` THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC FINITE_IMAGE THEN
REWRITE_TAC[GSYM CROSS_UNIV; FINITE_CROSS_EQ; FINITE_BOOL]);;
let HAS_SIZE_CHAR = prove
(`(:char) HAS_SIZE 256`,
C SUBGOAL_THEN SUBST1_TAC
`(:char) =
IMAGE (\(b0,b1,b2,b3,b4,b5,b6,b7). ASCII b0 b1 b2 b3 b4 b5 b6 b7)
UNIV` THENL
[REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN X_GEN_TAC `c:char` THEN
DESTRUCT_TAC "@b0 b1 b2 b3 b4 b5 b6 b7. c"
(SPEC `c:char` (cases "char")) THEN
EXISTS_TAC
`b0:bool,b1:bool,b2:bool,b3:bool,b4:bool,b5:bool,b6:bool,b7:bool` THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
[REWRITE_TAC[IN_UNIV; FORALL_PAIR_THM; injectivity "char"; PAIR_EQ];
ALL_TAC] THEN
REWRITE_TAC[GSYM (NUM_REDUCE_CONV `2*2*2*2*2*2*2*2`); GSYM CROSS_UNIV] THEN
MESON_TAC[HAS_SIZE_CROSS; HAS_SIZE_BOOL]);;
let FINITE_CHAR = prove
(`FINITE (:char)`,
MESON_TAC[HAS_SIZE_CHAR; HAS_SIZE]);;
let COUNTABLE_CHAR = prove
(`COUNTABLE (:char)`,
SIMP_TAC[FINITE_CHAR; FINITE_IMP_COUNTABLE]);;
let COUNTABLE_STRING = prove
(`COUNTABLE (:string)`,
SIMP_TAC[COUNTABLE_CHAR; COUNTABLE_LIST]);;
|