File: AP_TERM.doc

package info (click to toggle)
hol-light 20230128-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,636 kB
  • sloc: ml: 688,681; cpp: 439; makefile: 302; lisp: 286; java: 279; sh: 251; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (36 lines) | stat: -rw-r--r-- 673 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
\DOC AP_TERM

\TYPE {AP_TERM : term -> thm -> thm}

\SYNOPSIS
Applies a function to both sides of an equational theorem.

\KEYWORDS
rule.

\DESCRIBE
When applied to a term {f} and a theorem {A |- x = y}, the
inference rule {AP_TERM} returns the theorem {A |- f x = f y}.
{
      A |- x = y
   ----------------  AP_TERM `f`
    A |- f x = f y
}

\FAILURE
Fails unless the theorem is equational and the supplied term is a function
whose domain type is the same as the type of both sides of the equation.

\EXAMPLE
{
  # NUM_ADD_CONV `2 + 2`;;
  val it : thm = |- 2 + 2 = 4

  # AP_TERM `(+) 1` it;;
  val it : thm = |- 1 + 2 + 2 = 1 + 4
}

\SEEALSO
AP_THM, MK_COMB.

\ENDDOC