1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
|
\DOC ETA_CONV
\TYPE {ETA_CONV : term -> thm}
\SYNOPSIS
Performs a toplevel eta-conversion.
\KEYWORDS
conversion, extentionality.
\DESCRIBE
{ETA_CONV} maps an eta-redex {`\x. t x`}, where {x} does not occur free in {t},
to the theorem {|- (\x. t x) = t}.
\FAILURE
Fails if the input term is not an eta-redex.
\EXAMPLE
{
# ETA_CONV `\n. SUC n`;;
val it : thm = |- (\n. SUC n) = SUC
# ETA_CONV `\n. 1 + n`;;
val it : thm = |- (\n. 1 + n) = (+) 1
# ETA_CONV `\n. n + 1`;;
Exception: Failure "ETA_CONV".
}
\COMMENTS
The same basic effect can be achieved by rewriting with {ETA_AX}. The theorem
{ETA_AX} is one of HOL Light's three mathematical axioms.
\ENDDOC
|