1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
\DOC PRENEX_CONV
\TYPE {PRENEX_CONV : conv}
\SYNOPSIS
Puts a term already in NNF into prenex form.
\DESCRIBE
When applied to a term already in negation normal form (see {NNF_CONV}, for
example), the conversion {PRENEX_CONV} proves it equal to an equivalent in
prenex form, with all quantifiers at the top level and a propositional body.
\FAILURE
Never fails; even on non-Boolean terms it will just produce a reflexive
theorem.
\EXAMPLE
{
# PRENEX_CONV `(!x. ?y. P x y) \/ (?u. !v. ?w. Q u v w)`;;
Warning: inventing type variables
val it : thm =
|- (!x. ?y. P x y) \/ (?u. !v. ?w. Q u v w) <=>
(!x. ?y u. !v. ?w. P x y \/ Q u v w)
}
\SEEALSO
CNF_CONV, DNF_CONV, NNFC_CONV, NNF_CONV, SKOLEM_CONV, WEAK_CNF_CONV,
WEAK_DNF_CONV.
\ENDDOC
|