File: PRENEX_CONV.doc

package info (click to toggle)
hol-light 20230128-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,636 kB
  • sloc: ml: 688,681; cpp: 439; makefile: 302; lisp: 286; java: 279; sh: 251; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (30 lines) | stat: -rw-r--r-- 758 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
\DOC PRENEX_CONV

\TYPE {PRENEX_CONV : conv}

\SYNOPSIS
Puts a term already in NNF into prenex form.

\DESCRIBE
When applied to a term already in negation normal form (see {NNF_CONV}, for
example), the conversion {PRENEX_CONV} proves it equal to an equivalent in
prenex form, with all quantifiers at the top level and a propositional body.

\FAILURE
Never fails; even on non-Boolean terms it will just produce a reflexive
theorem.

\EXAMPLE
{
  # PRENEX_CONV `(!x. ?y. P x y) \/ (?u. !v. ?w. Q u v w)`;;
  Warning: inventing type variables
  val it : thm =
    |- (!x. ?y. P x y) \/ (?u. !v. ?w. Q u v w) <=>
       (!x. ?y u. !v. ?w. P x y \/ Q u v w)
}

\SEEALSO
CNF_CONV, DNF_CONV, NNFC_CONV, NNF_CONV, SKOLEM_CONV, WEAK_CNF_CONV,
WEAK_DNF_CONV.

\ENDDOC