File: SYM.doc

package info (click to toggle)
hol-light 20230128-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,636 kB
  • sloc: ml: 688,681; cpp: 439; makefile: 302; lisp: 286; java: 279; sh: 251; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (40 lines) | stat: -rw-r--r-- 737 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
\DOC SYM

\TYPE {SYM : thm -> thm}

\SYNOPSIS
Swaps left-hand and right-hand sides of an equation.

\KEYWORDS
rule, symmetry, equality.

\DESCRIBE
When applied to a theorem {A |- t1 = t2}, the inference rule {SYM} returns
{A |- t2 = t1}.
{
    A |- t1 = t2
   --------------  SYM
    A |- t2 = t1
}

\FAILURE
Fails unless the theorem is equational.

\EXAMPLE
{
  # NUM_REDUCE_CONV `12 * 12`;;
  val it : thm = |- 12 * 12 = 144

  # SYM it;;
  val it : thm = |- 144 = 12 * 12
}

\COMMENTS
The {SYM} rule requires the input theorem to be a simple equation, without
additional structure such as outer universal quantifiers. To reverse equality
signs deeper inside theorems, you may use {GSYM} instead.

\SEEALSO
GSYM, REFL, TRANS.

\ENDDOC