File: let_CONV.doc

package info (click to toggle)
hol-light 20230128-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,636 kB
  • sloc: ml: 688,681; cpp: 439; makefile: 302; lisp: 286; java: 279; sh: 251; yacc: 108; perl: 78; ansic: 57; sed: 39; python: 13
file content (68 lines) | stat: -rw-r--r-- 2,001 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
\DOC let_CONV

\TYPE {let_CONV : term -> thm}

\SYNOPSIS
Evaluates {let}-terms in the HOL logic.

\KEYWORDS
conversion.

\DESCRIBE
The conversion {let_CONV} implements evaluation of object-language {let}-terms.
When applied to a {let}-term of the form:
{
   let v1 = t1 and ... and vn = tn in t
}
\noindent where {v1}, ..., {vn} are variables, {let_CONV} proves and returns
the theorem:
{
   |- (let v1 = t1 and ... and vn = tn in t) = t[t1,...,tn/v1,...,vn]
}
\noindent where {t[t1,...,tn/v1,...,vn]} denotes the result of substituting
{ti} for {v1} in parallel in {t}, with automatic renaming of bound variables
to prevent free variable capture.

{let_CONV} also works on {let}-terms that bind terms built up from applications
of inductive type constructors. For example, if {<tup>} is an
arbitrarily-nested tuple of distinct variables {v1}, ..., {vn} and {<val>} is a
structurally similar tuple of values, that is {<val>} equals
{<tup>[t1,...,tn/v1,...,vn]} for some terms {t1}, ..., {tn}, then:
{
   let_CONV `let <tup> = <val> in t`
}
\noindent returns
{
  |- (let <tup> = <val> in t) = t[t1,...,tn/v1,...,vn]
}
\noindent That is, the term {ti} is substituted for the corresponding variable
{vi} in {t}.  This form of {let}-reduction also works with simultaneous binding
of tuples using {and}.

\FAILURE
{let_CONV tm} fails if {tm} is not a reducible {let}-term of one of the forms
specified above.

\EXAMPLE
A simple example of the use of {let_CONV} to eliminate a single local variable
is the following:
{
  # let_CONV `let x = 1 in x+y`;;
  val it : thm = |- (let x = 1 in x + y) = 1 + y
}
\noindent and an example showing a tupled binding is:
{
  # let_CONV `let (x,y) = (1,2) in x+y`;;
  val it : thm = |- (let x,y = 1,2 in x + y) = 1 + 2
}
\noindent Simultaneous introduction of two bindings
is illustrated by:
{
  # let_CONV `let x = 1 and y = 2 in x + y + z`;;
  val it : thm = |- (let x = 1 and y = 2 in x + y + z) = 1 + 2 + z
}

\SEEALSO
BETA_CONV, GEN_BETA_CONV, SUBLET_CONV.

\ENDDOC