1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
|
(* ========================================================================= *)
(* Implicational conversions, implicational rewriting and target rewriting. *)
(* *)
(* (c) Copyright, Vincent Aravantinos, 2012-2013 *)
(* Analysis and Design of Dependable Systems *)
(* fortiss GmbH, Munich, Germany *)
(* *)
(* Formerly: Hardware Verification Group, *)
(* Concordia University *)
(* *)
(* Contact: <vincent.aravantinos@fortiss.org> *)
(* *)
(* Distributed under the same license as HOL Light. *)
(* ========================================================================= *)
needs "quot.ml";;
let IMP_REWRITE_TAC,TARGET_REWRITE_TAC,HINT_EXISTS_TAC,
SEQ_IMP_REWRITE_TAC,CASE_REWRITE_TAC =
let I = fun x -> x in
(* Same as [UNDISCH] but also returns the undischarged term *)
let UNDISCH_TERM th =
let p = (fst o dest_imp o concl) th in
p,UNDISCH th in
(* Same as [UNDISCH_ALL] but also returns the undischarged terms *)
let rec UNDISCH_TERMS th =
try
let t,th' = UNDISCH_TERM th in
let ts,th'' = UNDISCH_TERMS th' in
t::ts,th''
with Failure _ -> [],th in
(* Comblies the function [f] to the conclusion of an implicational theorem. *)
let MAP_CONCLUSION f th =
let p,th = UNDISCH_TERM th in
DISCH p (f th) in
let strip_conj = binops `(/\)` in
(* For a list [f1;...;fk], returns the first [fi x] that succeeds. *)
let rec tryfind_fun fs x =
match fs with
|[] -> failwith "tryfind_fun"
|f::fs' -> try f x with Failure _ -> tryfind_fun fs' x in
(* Same as [mapfilter] but also provides the rank of the iteration as an
* argument to [f]. *)
let mapfilteri f =
let rec self i = function
|[] -> []
|h::t ->
let rest = self (i+1) t in
try f i h :: rest with Failure _ -> rest
in
self 0 in
let list_of_option = function None -> [] | Some x -> [x] in
let try_list f x = try f x with Failure _ -> [] in
(* A few constants. *)
let A_ = `A:bool` and B_ = `B:bool` and C_ = `C:bool` and D_ = `D:bool` in
let T_ = `T:bool` in
(* For a term t, builds `t ==> t` *)
let IMP_REFL =
let lem = TAUT `A ==> A` in
fun t -> INST [t,A_] lem in
(* Conversion version of [variant]:
* Given variables [v1;...;vk] to avoid and a term [t],
* returns [|- t = t'] where [t'] is the same as [t] without any use of the
* variables [v1;...;vk].
*)
let VARIANT_CONV av t =
let vs = variables t in
let mapping = filter (fun (x,y) -> x <> y) (zip vs (variants av vs)) in
DEPTH_CONV (fun u -> ALPHA_CONV (assoc (bndvar u) mapping) u) t in
(* Rule version of [VARIANT_CONV] *)
let VARIANT_RULE = CONV_RULE o VARIANT_CONV in
(* Discharges the first hypothesis of a theorem. *)
let DISCH_HD th = DISCH (hd (hyp th)) th in
(* Rule version of [REWR_CONV] *)
let REWR_RULE = CONV_RULE o REWR_CONV in
(* Given a list [A1;...;Ak] and a theorem [th],
* returns [|- A1 /\ ... /\ Ak ==> th].
*)
let DISCH_IMP_IMP =
let f = function
|[] -> I
|t::ts -> rev_itlist (fun t -> REWR_RULE IMP_IMP o DISCH t) ts o DISCH t
in
f o rev in
(* Given a term [A /\ B] and a theorem [th], returns [|- A ==> B ==> th]. *)
let rec DISCH_CONJ t th =
try
let t1,t2 = dest_conj t in
REWR_RULE IMP_IMP (DISCH_CONJ t1 (DISCH_CONJ t2 th))
with Failure _ -> DISCH t th in
(* Specializes all the universally quantified variables of a theorem,
* and returns both the theorem and the list of variables.
*)
let rec SPEC_VARS th =
try
let v,th' = SPEC_VAR th in
let vs,th'' = SPEC_VARS th' in
v::vs,th''
with Failure _ -> [],th in
(* Comblies the function [f] to the body of a universally quantified theorem. *)
let MAP_FORALL_BODY f th =
let vs,th = SPEC_VARS th in
GENL vs (f th) in
(* Given a theorem of the form [!xyz. P ==> !uvw. C] and a function [f],
* return [!xyz. P ==> !uvw. f C].
*)
let GEN_MAP_CONCLUSION = MAP_FORALL_BODY o MAP_CONCLUSION o MAP_FORALL_BODY in
(* Turn a theorem of the form [x ==> y /\ z] into [(x==>y) /\ (x==>z)].
* Also deals with universal quantifications if necessary
* (e.g., [x ==> !v. y /\ z] will be turned into
* [(x ==> !v. y) /\ (x ==> !v. z)])
*
* possible improvement: apply the rewrite more locally
*)
let IMPLY_AND =
let IMPLY_AND_RDISTRIB = TAUT `(x ==> y /\ z) <=> (x==>y) /\(x==>z)` in
PURE_REWRITE_RULE [GSYM AND_FORALL_THM;IMP_IMP;
RIGHT_IMP_FORALL_THM;IMPLY_AND_RDISTRIB;GSYM CONJ_ASSOC] in
(* Returns the two operands of a binary combination.
* Contrary to [dest_binary], does not check what is the operator.
*)
let dest_binary_blind = function
|Comb(Comb(_,l),r) -> l,r
|_ -> failwith "dest_binary_blind" in
let spec_all = repeat (snd o dest_forall) in
let thm_lt (th1:thm) th2 = th1 < th2 in
(* GMATCH_MP (U1 |- !x1...xn. H1 /\ ... /\ Hk ==> C) (U2 |- P)
* = (U1 u U2 |- !y1...ym. G1' /\ ... /\ Gl' ==> C')
* where:
* - P matches some Hi
* - C' is the result of applying the matching substitution to C
* - Gj' is the result of applying the matching substitution to Hj
* - G1',...,Gl' is the list corresponding to H1,...,Hk but without Hi
* - y1...ym are the variables among x1,...,xn that are not instantiated
*
* possible improvement: make a specific conversion,
* define a MATCH_MP that also returns the instantiated variables *)
let GMATCH_MP =
let swap = CONV_RULE (REWR_CONV (TAUT `(p==>q==>r) <=> (q==>p==>r)`)) in
fun th1 ->
let vs,th1' = SPEC_VARS th1 in
let hs,th1'' = UNDISCH_TERMS (PURE_REWRITE_RULE [IMP_CONJ] th1') in
fun th2 ->
let f h hs =
let th1''' = DISCH h th1'' in
let th1'''' =
try swap (DISCH_IMP_IMP hs th1''') with Failure _ -> th1'''
in
MATCH_MP (GENL vs th1'''') th2
in
let rec loop acc = function
|[] -> []
|h::hs ->
(try [f h (acc @ hs)] with Failure _ -> []) @ loop (h::acc) hs
in
loop [] hs in
let GMATCH_MPS ths1 ths2 =
let insert (y:thm) = function
|[] -> [y]
|x::_ as xs when equals_thm x y -> xs
|x::xs when thm_lt x y -> x :: insert y xs
|_::_ as xs -> y::xs
in
let inserts ys = itlist insert ys in
match ths1 with
|[] -> []
|th1::ths1' ->
let rec self acc th1 ths1 = function
|[] -> (match ths1 with [] -> acc | th::ths1' -> self acc th ths1' ths2)
|th2::ths2' -> self (inserts (GMATCH_MP th1 th2) acc) th1 ths1 ths2'
in
self [] th1 ths1' ths2 in
let MP_CLOSURE ths1 ths2 =
let ths1 = filter (is_imp o spec_all o concl) ths1 in
let rec self ths2 = function
|[] -> []
|_::_ as ths1 ->
let ths1'' = GMATCH_MPS ths1 ths2 in
self ths2 ths1'' @ ths1''
in
self ths2 ths1 in
(* Set of terms. Implemented as ordered lists. *)
let module Tset =
struct
type t = term list
let cmp (x:term) y = Pervasives.compare x y
let lt (x:term) y = Pervasives.compare x y < 0
let lift f = List.sort cmp o f
let of_list = lift I
let insert ts t =
let rec self = function
|[] -> [t]
|x::xs when lt x t -> x::self xs
|x::_ as xs when x = t -> xs
|xs -> t::xs
in
if t = T_ then ts else self ts
let remove ts t =
let rec self = function
|[] -> []
|x::xs when lt x t -> x::self xs
|x::xs when x = t -> xs
|_::_ as xs -> xs
in
self ts
let strip_conj =
let rec self acc t =
try
let t1,t2 = dest_conj t in
self (self acc t1) t2
with Failure _ -> insert acc t
in
self []
let rec union l1 l2 =
match l1 with
|[] -> l2
|h1::t1 ->
match l2 with
|[] -> l1
|h2::t2 when lt h1 h2 -> h1::union t1 l2
|h2::t2 when h1 = h2 -> h1::union t1 t2
|h2::t2 -> h2::union l1 t2
let rec mem x = function
|x'::xs when x' = x -> true
|x'::xs when lt x' x -> mem x xs
|_ -> false
let subtract l1 l2 = filter (fun x -> not (mem x l2)) l1
let empty = []
let flat_revmap f =
let rec self acc = function
|[] -> acc
|x::xs -> self (union (f x) acc) xs
in
self []
let flat_map f = flat_revmap f o rev
let rec frees acc = function
|Var _ as t -> insert acc t
|Const _ -> acc
|Abs(v,b) -> remove (frees acc b) v
|Comb(u,v) -> frees (frees acc u) v
let freesl ts = itlist (C frees) ts empty
let frees = frees empty
end in
let module Type_annoted_term =
struct
type t =
|Var_ of string * hol_type
|Const_ of string * hol_type * term
|Comb_ of t * t * hol_type
|Abs_ of t * t * hol_type
let type_of = function
|Var_(_,ty) -> ty
|Const_(_,ty,_) -> ty
|Comb_(_,_,ty) -> ty
|Abs_(_,_,ty) -> ty
let rec of_term = function
|Var(s,ty) -> Var_(s,ty)
|Const(s,ty) as t -> Const_(s,ty,t)
|Comb(u,v) ->
let u' = of_term u and v' = of_term v in
Comb_(u',v',snd (dest_fun_ty (type_of u')))
|Abs(x,b) ->
let x' = of_term x and b' = of_term b in
Abs_(x',b',mk_fun_ty (type_of x') (type_of b'))
let rec equal t1 t2 =
match t1,t2 with
|Var_(s1,ty1),Var_(s2,ty2)
|Const_(s1,ty1,_),Const_(s2,ty2,_) -> s1 = s2 && ty1 = ty2
|Comb_(u1,v1,_),Comb_(u2,v2,_) -> equal u1 u2 && equal v1 v2
|Abs_(v1,b1,_),Abs_(v2,b2,_) -> equal v1 v2 && equal b1 b2
|_ -> false
let rec to_term = function
|Var_(s,ty) -> mk_var(s,ty)
|Const_(_,_,t) -> t
|Comb_(u,v,_) -> mk_comb(to_term u,to_term v)
|Abs_(v,b,_) -> mk_abs(to_term v,to_term b)
let dummy = Var_("",aty)
let rec find_term p t =
if p t then t else
match t with
|Abs_(_,b,_) -> find_term p b
|Comb_(u,v,_) -> try find_term p u with Failure _ -> find_term p v
|_ -> failwith "Annot.find_term"
end in
let module Annot = Type_annoted_term in
(* ------------------------------------------------------------------------- *)
(* First-order matching of terms. *)
(* *)
(* Same note as in [drule.ml]: *)
(* in the event of spillover patterns, this may return false results; *)
(* but there's usually an implicit check outside that the match worked *)
(* anyway. A test could be put in (see if any "env" variables are left in *)
(* the term after abstracting out the pattern instances) but it'd be slower. *)
(* ------------------------------------------------------------------------- *)
let fo_term_match lcs p t =
let fail () = failwith "fo_term_match" in
let rec self bnds (tenv,tyenv as env) p t =
match p,t with
|Comb(p1,p2),Annot.Comb_(t1,t2,_) -> self bnds (self bnds env p1 t1) p2 t2
|Abs(v,p),Annot.Abs_(v',t,_) ->
let tyenv' = type_match (type_of v) (Annot.type_of v') tyenv in
self ((v',v)::bnds) (tenv,tyenv') p t
|Const(n,ty),Annot.Const_(n',ty',_) ->
if n <> n' then fail ()
else
let tyenv' = type_match ty ty' tyenv in
tenv,tyenv'
|Var(n,ty) as v,t ->
(* Is [v] bound? *)
(try if Annot.equal t (rev_assoc v bnds) then env else fail ()
(* No *)
with Failure _ ->
if mem v lcs
then
match t with
|Annot.Var_(n',ty') when n' = n && ty' = ty -> env
|_ -> fail ()
else
let tyenv' = type_match ty (Annot.type_of t) tyenv in
let t' = try Some (rev_assoc v tenv) with Failure _ -> None in
match t' with
|Some t' -> if t = t' then tenv,tyenv' else fail ()
|None -> (t,v)::tenv,tyenv')
|_ -> fail ()
in
let tenv,tyenv = self [] ([],[]) p (Annot.of_term t) in
let inst = inst tyenv in
List.rev_map (fun t,v -> Annot.to_term t,inst v) tenv,tyenv in
let GEN_PART_MATCH_ALL =
let rec match_bvs t1 t2 acc =
try let v1,b1 = dest_abs t1
and v2,b2 = dest_abs t2 in
let n1 = fst(dest_var v1) and n2 = fst(dest_var v2) in
let newacc = if n1 = n2 then acc else insert (n1,n2) acc in
match_bvs b1 b2 newacc
with Failure _ -> try
let l1,r1 = dest_comb t1
and l2,r2 = dest_comb t2 in
match_bvs l1 l2 (match_bvs r1 r2 acc)
with Failure _ -> acc
in
fun partfn th ->
let sth = SPEC_ALL th in
let bod = concl sth in
let pbod = partfn bod in
let lcs = intersect (frees (concl th)) (freesl(hyp th)) in
let fvs = subtract (subtract (frees bod) (frees pbod)) lcs in
fun tm ->
let bvms = match_bvs tm pbod [] in
let abod = deep_alpha bvms bod in
let ath = EQ_MP (ALPHA bod abod) sth in
let insts,tyinsts = fo_term_match lcs (partfn abod) tm in
let eth = INSTANTIATE_ALL ([],insts,tyinsts) (GENL fvs ath) in
let fth = itlist (fun v th -> snd(SPEC_VAR th)) fvs eth in
let tm' = partfn (concl fth) in
if Pervasives.compare tm' tm = 0 then fth else
try SUBS[ALPHA tm' tm] fth
with Failure _ -> failwith "PART_MATCH: Sanity check failure" in
let module Fo_nets =
struct
type term_label =
|Vnet of int
|Lcnet of string * int
|Cnet of string * int
|Lnet of int
type 'a t = Netnode of (term_label * 'a t) list * 'a list
let empty_net = Netnode([],[])
let enter =
let label_to_store lcs t =
let op,args = strip_comb t in
let nargs = length args in
match op with
|Const(n,_) -> Cnet(n,nargs),args
|Abs(v,b) ->
let b' = if mem v lcs then vsubst [genvar(type_of v),v] b else b in
Lnet nargs,b'::args
|Var(n,_) when mem op lcs -> Lcnet(n,nargs),args
|Var(_,_) -> Vnet nargs,args
|_ -> assert false
in
let rec net_update lcs elem (Netnode(edges,tips)) = function
|[] -> Netnode(edges,elem::tips)
|t::rts ->
let label,nts = label_to_store lcs t in
let child,others =
try (snd F_F I) (remove (fun (x,y) -> x = label) edges)
with Failure _ -> empty_net,edges in
let new_child = net_update lcs elem child (nts@rts) in
Netnode ((label,new_child)::others,tips)
in
fun lcs (t,elem) net -> net_update lcs elem net [t]
let lookup =
let label_for_lookup t =
let op,args = strip_comb t in
let nargs = length args in
match op with
|Const(n,_) -> Cnet(n,nargs),args
|Abs(_,b) -> Lnet nargs,b::args
|Var(n,_) -> Lcnet(n,nargs),args
|Comb _ -> assert false
in
let rec follow (Netnode(edges,tips)) = function
|[] -> tips
|t::rts ->
let label,nts = label_for_lookup t in
let collection =
try follow (assoc label edges) (nts@rts) with Failure _ -> []
in
let rec support = function
|[] -> [0,rts]
|t::ts ->
let ((k,nts')::res') as res = support ts in
(k+1,(t::nts'))::res
in
let follows =
let f (k,nts) =
try follow (assoc (Vnet k) edges) nts with Failure _ -> []
in
map f (support nts)
in
collection @ flat follows
in
fun t net -> follow net [t]
let rec filter p (Netnode(edges,tips)) =
Netnode(
List.map (fun l,n -> l,filter p n) edges,
List.filter p tips)
end in
let module Variance =
struct
type t = Co | Contra
let neg = function Co -> Contra | Contra -> Co
end in
(*****************************************************************************)
(* IMPLICATIONAL RULES *)
(* i.e., rules to build propositions based on implications rather than *)
(* equivalence. *)
(*****************************************************************************)
let module Impconv =
struct
let MKIMP_common lem th1 th2 =
let a,b = dest_imp (concl th1) and c,d = dest_imp (concl th2) in
MP (INST [a,A_;b,B_;c,C_;d,D_] lem) (CONJ th1 th2)
(* Similar to [MK_CONJ] but theorems should be implicational instead of
* equational, i.e., conjoin both sides of two implicational theorems.
*
* More precisely: given two theorems [A ==> B] and [C ==> D],
* returns [A /\ C ==> B /\ D].
*)
let MKIMP_CONJ = MKIMP_common MONO_AND
(* Similar to [MK_DISJ] but theorems should be implicational instead of
* equational, i.e., disjoin both sides of two implicational theorems.
*
* More precisely: given two theorems [A ==> B] and [C ==> D],
* returns [A \/ C ==> B \/ D].
*)
let MKIMP_DISJ = MKIMP_common MONO_OR
let MKIMP_IFF =
let lem =
TAUT `((A ==> B) ==> (C ==> D)) /\ ((B ==> A) ==> (D ==> C)) ==> (A <=> B)
==> (C <=> D)`
in
fun th1 th2 ->
let ab,cd = dest_imp (concl th1) in
let a,b = dest_imp ab and c,d = dest_imp cd in
MP (INST [a,A_;b,B_;c,C_;d,D_] lem) (CONJ th1 th2)
(* th1 = (A ==> B) ==> C1
* th2 = (B ==> A) ==> C2
* output = (A <=> B) ==> (C1 /\ C2)
*)
let MKIMP_CONTRA_IFF =
let lem =
TAUT `((A ==> B) ==> C) /\ ((B ==> A) ==> D) ==> (A <=> B) ==> C /\ D`
in
fun th1 th2 ->
let ab,c = dest_imp (concl th1) and _,d = dest_imp (concl th2) in
let a,b = dest_imp ab in
MP (INST [a,A_;b,B_;c,C_;d,D_] lem) (CONJ th1 th2)
let MKIMPL_CONTRA_IFF =
let lem = TAUT `((A ==> B) ==> C) ==> (A <=> B) ==> C /\ (B ==> A)` in
fun th ->
let ab,c = dest_imp (concl th) in
let a,b = dest_imp ab in
MP (INST [a,A_;b,B_;c,C_] lem) th
let MKIMPR_CONTRA_IFF =
let lem =
TAUT `((B ==> A) ==> D) ==> (A <=> B) ==> (A ==> B) /\ D`
in
fun th ->
let ba,d = dest_imp (concl th) in
let b,a = dest_imp ba in
MP (INST [a,A_;b,B_;d,D_] lem) th
let MKIMP_CO_IFF =
let lem =
TAUT `(C ==> A ==> B) /\ (D ==> B ==> A) ==> C /\ D ==> (A <=> B)`
in
fun th1 th2 ->
let c,ab = dest_imp (concl th1) and d,_ = dest_imp (concl th2) in
let a,b = dest_imp ab in
MP (INST [a,A_;b,B_;c,C_;d,D_] lem) (CONJ th1 th2)
let MKIMPL_CO_IFF =
let lem =
TAUT `(C ==> A ==> B) ==> C /\ (B ==> A) ==> (A <=> B)`
in
fun th ->
let c,ab = dest_imp (concl th) in
let a,b = dest_imp ab in
MP (INST [a,A_;b,B_;c,C_] lem) th
let MKIMPR_CO_IFF =
let lem = TAUT `(D ==> B ==> A) ==> (A ==> B) /\ D ==> (A <=> B)` in
fun th ->
let d,ba = dest_imp (concl th) in
let b,a = dest_imp ba in
MP (INST [a,A_;b,B_;d,D_] lem) th
(* Given two theorems [A ==> B] and [C ==> D],
* returns [(B ==> C) ==> (A ==> D)].
*)
let MKIMP_IMP th1 th2 =
let b,a = dest_imp (concl th1) and c,d = dest_imp (concl th2) in
MP (INST [a,A_;b,B_;c,C_;d,D_] MONO_IMP) (CONJ th1 th2)
let MKIMPL_common lem =
let lem' = REWRITE_RULE[] (INST [C_,D_] lem) in
fun th t ->
let a,b = dest_imp (concl th) in
MP (INST [a,A_;b,B_;t,C_] lem') th
(* Given a theorem [A ==> B] and a term [C],
* returns [A /\ C ==> B /\ C].
*)
let MKIMPL_CONJ = MKIMPL_common MONO_AND
(* Given a theorem [A ==> B] and a term [C],
* returns [A \/ C ==> B \/ C].
*)
let MKIMPL_DISJ = MKIMPL_common MONO_OR
(* Given a theorem [A ==> B] and a term [C],
* returns [(B ==> C) ==> (A ==> C)].
*)
let MKIMPL_IMP =
let MONO_IMP' = REWRITE_RULE[] (INST [C_,D_] MONO_IMP) in
fun th t ->
let b,a = dest_imp (concl th) in
MP (INST [a,A_;b,B_;t,C_] MONO_IMP') th
let MKIMPR_common lem =
let lem' = REWRITE_RULE[] (INST [A_,B_] lem) in
fun t th ->
let c,d = dest_imp (concl th) in
MP (INST [c,C_;d,D_;t,A_] lem') th
(* Given a term [A] and a theorem [B ==> C],
* returns [A /\ B ==> A /\ C].
*)
let MKIMPR_CONJ = MKIMPR_common MONO_AND
(* Given a term [A] and a theorem [B ==> C],
* returns [A \/ B ==> A \/ C].
*)
let MKIMPR_DISJ = MKIMPR_common MONO_OR
(* Given a term [A] and a theorem [B ==> C],
* returns [(A ==> B) ==> (A ==> C)].
*)
let MKIMPR_IMP = MKIMPR_common MONO_IMP
(* Given a theorem [A ==> B], returns [~B ==> ~A]. *)
let MKIMP_NOT th =
let b,a = dest_imp (concl th) in
MP (INST [a,A_;b,B_] MONO_NOT) th
let MKIMP_QUANT lem x th =
let x_ty = type_of x and p,q = dest_imp (concl th) in
let p' = mk_abs(x,p) and q' = mk_abs(x,q) in
let P = mk_var("P",mk_fun_ty x_ty bool_ty) in
let Q = mk_var("Q",mk_fun_ty x_ty bool_ty) in
let lem = INST [p',P;q',Q] (INST_TYPE [x_ty,aty] lem) in
let c = ONCE_DEPTH_CONV (ALPHA_CONV x) THENC ONCE_DEPTH_CONV BETA_CONV in
MP (CONV_RULE c lem) (GEN x th)
(* Given a variable [x] and a theorem [A ==> B],
* returns [(!x. A) ==> (!x. B)]. *)
let MKIMP_FORALL = MKIMP_QUANT MONO_FORALL
(* Given a variable [x] and a theorem [A ==> B],
* returns [(?x. A) ==> (?x. B)]. *)
let MKIMP_EXISTS = MKIMP_QUANT MONO_EXISTS
(* Given two theorems [A ==> B] and [B ==> C ==> D],
* returns [(B ==> C) ==> (A ==> D)],
* i.e., similar to [MKIMP_IMP] but allows to remove the context [B]
* since it is a consequence of [A].
*)
let MKIMP_IMP_CONTRA_CTXT =
let lem = TAUT `(B==>A) /\ (A==>B==>C==>D) ==> (A==>C) ==> (B==>D)` in
fun th1 th2 ->
let a,bcd = dest_imp (concl th2) in
let b,cd = dest_imp bcd in
let c,d = dest_imp cd in
MP (INST [a,A_;b,B_;c,C_;d,D_] lem) (CONJ th1 th2)
let MKIMP_IMP_CO_CTXT =
let lem = TAUT `(A==>B) /\ (A==>B==>D==>C) ==> (B==>D) ==> (A==>C)` in
fun th1 th2 ->
let a,bdc = dest_imp (concl th2) in
let b,dc = dest_imp bdc in
let d,c = dest_imp dc in
MP (INST [a,A_;b,B_;c,C_;d,D_] lem) (CONJ th1 th2)
(* Given a theorem [B ==> C ==> D], returns [(B ==> C) ==> (B ==> D)],
* i.e., similar to [MKIMP_IMP] but allows to remove the context [B]
* since it is a consequence of [A].
*)
let MKIMPR_IMP_CTXT =
let lem = TAUT `(A==>C==>D) ==> (A==>C) ==> (A==>D)` in
fun th ->
let a,cd = dest_imp (concl th) in
let c,d = dest_imp cd in
MP (INST [c,C_;d,D_;a,A_] lem) th
(* Given two theorems [A ==> B] and [A ==> B ==> C ==> D],
* returns [(A /\ C) ==> (B /\ D)],
* i.e., similar to [MKIMP_CONJ] but allows to remove the contexts [A] and [B].
*)
let MKIMP_CONJ_CONTRA_CTXT =
let lem = TAUT `(C==>A==>B) /\ (A==>B==>C==>D) ==> (A/\C==>B/\D)` in
fun th1 th2 ->
let a,bcd = dest_imp (concl th2) in
let b,cd = dest_imp bcd in
let c,d = dest_imp cd in
MP (INST [a,A_;b,B_;c,C_;d,D_] lem) (CONJ th1 th2)
let MKIMPL_CONJ_CONTRA_CTXT =
let lem = TAUT `(C==>A==>B) ==> (A/\C==>B/\C)` in
fun th ->
let c,ab = dest_imp (concl th) in
let a,b = dest_imp ab in
MP (INST [a,A_;b,B_;c,C_] lem) th
let MKIMPR_CONJ_CONTRA_CTXT =
let lem = TAUT `(A==>C==>D) ==> (A/\C==>A/\D)` in
fun th ->
let a,cd = dest_imp (concl th) in
let c,d = dest_imp cd in
MP (INST [a,A_;c,C_;d,D_] lem) th
let MKIMP_CONJ_CO_CTXT =
let lem = TAUT `(B==>A) /\ (B==>D==>C) ==> (B/\D==>A/\C)` in
fun th1 th2 ->
let b,a = dest_imp (concl th1) in
let d,c = dest_imp (snd (dest_imp (concl th2))) in
MP (INST [a,A_;b,B_;c,C_;d,D_] lem) (CONJ th1 th2)
let MKIMPL_CONJ_CO_CTXT =
let lem = TAUT `(B==>A) ==> (B/\C==>A/\C)` in
fun th ->
let b,a = dest_imp (concl th) in
fun c -> MP (INST [a,A_;b,B_;c,C_] lem) th
let MKIMPL_CONJ_CO2_CTXT =
let lem = TAUT `(C==>B==>A) ==> (B/\C==>A/\C)` in
fun th ->
let c,ba = dest_imp (concl th) in
let b,a = dest_imp ba in
MP (INST [a,A_;b,B_;c,C_] lem) th
let MKIMPR_CONJ_CO_CTXT = MKIMPR_CONJ_CONTRA_CTXT
(*****************************************************************************)
(* IMPLICATIONAL CONVERSIONS *)
(*****************************************************************************)
open Variance
(* An implicational conversion maps a term t to a theorem of the form:
* t' ==> t if covariant
* t ==> t' if contravariant
*)
type imp_conv = Variance.t -> term -> thm
(* Trivial embedding of conversions into implicational conversions. *)
let imp_conv_of_conv:conv->imp_conv =
fun c v t ->
let th1,th2 = EQ_IMP_RULE (c t) in
match v with Co -> th2 | Contra -> th1
(* Retrieves the outcome of an implicational conversion, i.e., t'. *)
let imp_conv_outcome th v =
let t1,t2 = dest_binary_blind (concl th) in
match v with Co -> t1 | Contra -> t2
(* [ALL_IMPCONV _ t] returns `t==>t` *)
let ALL_IMPCONV:imp_conv = fun _ -> IMP_REFL
(* The implicational conversion which always fails. *)
let NO_IMPCONV:imp_conv = fun _ _ -> failwith "NO_IMPCONV"
let bind_impconv (c:imp_conv) v th =
let t1,t2 = dest_imp (concl th) in
match v with
|Co -> IMP_TRANS (c v t1) th
|Contra -> IMP_TRANS th (c v t2)
let THEN_IMPCONV (c1:imp_conv) c2 v t = bind_impconv c2 v (c1 v t)
(*****************************************************************************)
(* SOME USEFUL IMPLICATIONAL CONVERSIONS *)
(*****************************************************************************)
(* Given a theorem [p ==> c], returns the implicational conversion which:
* - in the covariant case, matches the input term [t] against [c] and returns
* [s(p) ==> t], where [s] is the matching substitution
* - in the contravariant case, matches the input term [t] against [p] and returns
* [t ==> s(c)], where [s] is the matching substitution
*)
let MATCH_MP_IMPCONV:thm->imp_conv =
fun th -> function
|Co -> GEN_PART_MATCH rand th
|Contra -> GEN_PART_MATCH lhand th
(*****************************************************************************)
(* INTERFACE *)
(*****************************************************************************)
(* From an implicational conversion builds a rule, i.e., a function which
* takes a theorem and returns a new theorem.
*)
let IMPCONV_RULE:imp_conv->thm->thm =
fun c th ->
let t = concl th in
MATCH_MP (c Contra t) th
(* From an implicational conversion builds a tactic. *)
let IMPCONV_TAC:imp_conv->tactic =
fun cnv (_,c as g) ->
(MATCH_MP_TAC (cnv Co c) THEN TRY (ACCEPT_TAC TRUTH)) g
(*****************************************************************************)
(* CONTEXT HANDLING *)
(*****************************************************************************)
(* [term list] = terms to add to the context *)
type 'a with_context =
With_context of 'a * (Tset.t -> 'a with_context) * (term -> 'a with_context)
let apply (With_context(c,_,_)) = c
(* Maybe avoid the augment if the input list is empty? *)
let augment (With_context(_,a,_)) = a
let diminish (With_context(_,_,d)) = d
let apply_with_context c ctx v t =
DISCH_CONJ ctx (apply (augment c (Tset.strip_conj ctx)) v t)
let imp_conv_of_ctx_imp_conv = (apply:imp_conv with_context -> imp_conv)
(* Consider two implicational conversions ic1, ic2.
* Suppose [ic1 Co A] returns [B ==> A], and [ic2 Co C] returns [D ==> C],
* then [CONJ_IMPCONV ic1 ic2 Co (A /\ C)] returns [B /\ D ==> A /\ C].
* Suppose [ic1 Contra A] returns [A ==> B], and [ic2 Contra C] returns
* [C ==> D], then [CONJ_IMPCONV ic1 ic2 Contra (A /\ B)]
* returns [A /\ B ==> C /\ D].
*
* Additionally takes the context into account, i.e., if [ic2 Co C] returns
* [A |- D ==> C],
* then [CONJ_IMPCONV ic1 ic2 Co (A /\ B)] returns [|- C /\ D ==> A /\ B]
* (i.e., [A] does not appear in the hypotheses).
*)
let rec CONJ_CTXIMPCONV (c:imp_conv with_context) =
With_context(
((fun v t ->
let t1,t2 = dest_conj t in
match v with
|Co ->
(try
let th1 = apply c Co t1 in
try
let t1' = imp_conv_outcome th1 Co in
MKIMP_CONJ_CO_CTXT th1 (apply_with_context c t1' Co t2)
with Failure _ -> MKIMPL_CONJ_CO_CTXT th1 t2
with Failure _ -> MKIMPR_CONJ_CO_CTXT (apply_with_context c t1 Co t2))
|Contra ->
try
(* note: we remove t1 in case it appears in t2, since otherwise,
* t1 removes t2 and t2 removes t1
*)
let t2s = Tset.remove (Tset.strip_conj t2) t1 in
let th1 = apply (augment c t2s) Contra t1 in
try
let t1' = imp_conv_outcome th1 Contra in
let t1s = Tset.strip_conj t1 and t1s' = Tset.strip_conj t1' in
let t1s'' = Tset.union t1s t1s' in
let th2 = apply (augment c t1s'') Contra t2 in
let th2' = DISCH_CONJ t1 (DISCH_CONJ t1' th2) in
MKIMP_CONJ_CONTRA_CTXT (DISCH_CONJ t2 th1) th2'
with Failure _ -> MKIMPL_CONJ_CONTRA_CTXT (DISCH_CONJ t2 th1)
with Failure _ ->
MKIMPR_CONJ_CONTRA_CTXT (apply_with_context c t1 Contra t2))
:imp_conv),
CONJ_CTXIMPCONV o augment c,
CONJ_CTXIMPCONV o diminish c)
(* Consider two implicational conversions ic1, ic2.
* Suppose [ic1 Co A] returns [B ==> A], and [ic2 Co C] returns [D ==> C],
* then [DISJ_IMPCONV ic1 ic2 Co (A \/ C)] returns [B \/ D ==> A \/ C].
* Suppose [ic1 Contra A] returns [A ==> B], and [ic2 Contra C] returns
* [C ==> D], then [DISJ_IMPCONV ic1 ic2 Contra (A \/ B)]
* returns [A \/ B ==> C \/ D].
*)
let rec DISJ_CTXIMPCONV (c:imp_conv with_context) =
With_context(
((fun v t ->
let t1,t2 = dest_disj t in
try
let th1 = apply c v t1 in
try MKIMP_DISJ th1 (apply c v t2) with Failure _ -> MKIMPL_DISJ th1 t2
with Failure _ -> MKIMPR_DISJ t1 (apply c v t2)):imp_conv),
DISJ_CTXIMPCONV o augment c,
DISJ_CTXIMPCONV o diminish c)
(* Consider two implicational conversions ic1, ic2.
* Suppose [ic1 Contra A] returns [A ==> B], and [ic2 Co C] returns [D ==> C],
* then [IMP_IMPCONV ic1 ic2 Co (A ==> C)] returns [(B ==> D) ==> (A ==> C)].
* Suppose [ic1 Co A] returns [B ==> A], and [ic2 Contra C] returns
* [C ==> D], then [IMP_IMPCONV ic1 ic2 Contra (A ==> C)]
* returns [(A ==> C) ==> (B ==> D)].
*
* Additionally takes the context into account, i.e., if [ic2 Co C] returns
* [B |- D ==> C], then [IMP_IMPCONV ic1 ic2 Co (A ==> C)] returns
* [|- (B ==> D) ==> (A ==> C)] (i.e., [B] does not appear in the hypotheses).
*)
let rec IMP_CTXIMPCONV (c:imp_conv with_context) =
With_context(
((fun v t ->
let t1,t2 = dest_imp t in
try
let v' = Variance.neg v in
let th1 = apply c v' t1 in
let t1' = imp_conv_outcome th1 v' in
let t1s = Tset.union (Tset.strip_conj t1) (Tset.strip_conj t1') in
let c' = augment c t1s in
let mk =
match v with Co -> MKIMP_IMP_CO_CTXT | Contra -> MKIMP_IMP_CONTRA_CTXT
in
try mk th1 (DISCH_CONJ t1 (DISCH_CONJ t1' (apply c' v t2)))
with Failure _ -> MKIMPL_IMP th1 t2
with Failure _ -> MKIMPR_IMP_CTXT (apply_with_context c t1 v t2)
):imp_conv),
IMP_CTXIMPCONV o augment c,
IMP_CTXIMPCONV o diminish c)
let rec IFF_CTXIMPCONV (c:imp_conv with_context) =
With_context(
((fun v t ->
let t1,t2 = dest_iff t in
let lr,l,r =
match v with
|Co -> MKIMP_CO_IFF,MKIMPL_CO_IFF,MKIMPR_CO_IFF
|Contra -> MKIMP_CONTRA_IFF,MKIMPL_CONTRA_IFF,MKIMPR_CONTRA_IFF
in
(try
let th1 = apply c v (mk_imp (t1,t2)) in
try
let th2 = apply c v (mk_imp (t2,t1)) in
(try MKIMP_IFF th1 th2 with Failure _ -> lr th1 th2)
with Failure _ -> l th1
with Failure _ -> r (apply c v (mk_imp (t2,t1))))):imp_conv),
IFF_CTXIMPCONV o augment c,
IFF_CTXIMPCONV o diminish c)
(* Consider an implicational conversion ic.
* Suppose [ic Contra A] returns [A ==> B]
* then [NOT_IMPCONV ic Co ~A] returns [~B ==> ~A].
* Suppose [ic Co A] returns [B ==> A]
* then [NOT_IMPCONV ic Contra ~A] returns [~A ==> ~B].
*)
let rec NOT_CTXIMPCONV (c:imp_conv with_context) =
With_context(
((fun v t -> MKIMP_NOT (apply c (Variance.neg v) (dest_neg t))):imp_conv),
NOT_CTXIMPCONV o augment c,
NOT_CTXIMPCONV o diminish c)
let rec QUANT_CTXIMPCONV mkimp sel (c:imp_conv with_context) =
With_context(
((fun v t ->
let x,b = sel t in
let c' = diminish c x in
mkimp x (apply c' v b)):imp_conv),
QUANT_CTXIMPCONV mkimp sel o augment c,
QUANT_CTXIMPCONV mkimp sel o diminish c)
(* Consider an implicational conversion ic.
* Suppose [ic Co A] returns [B ==> A]
* then [FORALL_IMPCONV ic Co (!x.A)] returns [(!x.B) ==> (!x.A)].
* Suppose [ic Contra A] returns [A ==> B]
* then [FORALL_IMPCONV ic Contra (!x.A)] returns [(!x.A) ==> (!x.B)].
*)
let FORALL_CTXIMPCONV = QUANT_CTXIMPCONV MKIMP_FORALL dest_forall
(* Consider an implicational conversion ic.
* Suppose [ic Co A] returns [B ==> A]
* then [EXISTS_IMPCONV ic Co (?x.A)] returns [(?x.B) ==> (?x.A)].
* Suppose [ic Contra A] returns [A ==> B]
* then [EXISTS_IMPCONV ic Contra (?x.A)] returns [(?x.A) ==> (?x.B)].
*)
let EXISTS_CTXIMPCONV = QUANT_CTXIMPCONV MKIMP_EXISTS dest_exists
(* Applies an implicational conversion on the subformula(s) of the input term*)
let rec SUB_CTXIMPCONV =
let iff_ty = `:bool->bool->bool` in
fun c ->
With_context(
((fun v t ->
let n,ty = dest_const (fst (strip_comb t)) in
apply
((match n with
|"==>" -> IMP_CTXIMPCONV
|"/\\" -> CONJ_CTXIMPCONV
|"\\/" -> DISJ_CTXIMPCONV
|"=" when ty = iff_ty -> IFF_CTXIMPCONV
|"!" -> FORALL_CTXIMPCONV
|"?" -> EXISTS_CTXIMPCONV
|"~" -> NOT_CTXIMPCONV
|_ -> failwith "SUB_CTXIMPCONV") c)
v t):imp_conv),
SUB_CTXIMPCONV o augment c,
SUB_CTXIMPCONV o diminish c)
(* Takes a theorem which results of an implicational conversion and applies
* another implicational conversion on the outcome.
*)
let bind_ctximpconv (c:imp_conv with_context) v th =
let t1,t2 = dest_imp (concl th) in
match v with
|Co -> IMP_TRANS (apply c v t1) th
|Contra -> IMP_TRANS th (apply c v t2)
let rec BIND_CTXIMPCONV (c:imp_conv with_context) =
With_context(
((fun v th -> bind_ctximpconv c v th),
BIND_CTXIMPCONV o augment c,
BIND_CTXIMPCONV o diminish c))
(* Sequential combinator. *)
let rec THEN_CTXIMPCONV (c1:imp_conv with_context) (c2:imp_conv with_context) =
With_context(
((fun v t -> bind_ctximpconv c2 v (apply c1 v t)):imp_conv),
(fun x -> THEN_CTXIMPCONV (augment c1 x) (augment c2 x)),
(fun x -> THEN_CTXIMPCONV (diminish c1 x) (diminish c2 x)))
(* Try combinator *)
let rec TRY_CTXIMPCONV (c:imp_conv with_context) =
With_context(
((fun v t ->
try apply c v t
with Failure _ | Unchanged -> ALL_IMPCONV v t):imp_conv),
TRY_CTXIMPCONV o augment c,
TRY_CTXIMPCONV o diminish c)
(* Applies the first of two implicational conversions that succeeds. *)
let rec ORELSE_CTXIMPCONV
(c1:imp_conv with_context) (c2:imp_conv with_context) =
With_context(
((fun v t -> try apply c1 v t with Failure _ -> apply c2 v t):imp_conv),
(fun x -> ORELSE_CTXIMPCONV (augment c1 x) (augment c2 x)),
(fun x -> ORELSE_CTXIMPCONV (diminish c1 x) (diminish c2 x)))
(* Makes an implicational conversion fail if applying it leaves a term
* unchanged.
*)
let rec CHANGED_CTXIMPCONV (c:imp_conv with_context) =
With_context(
((fun v t ->
let th = apply c v t in
let l,r = dest_imp (concl th) in
if aconv l r then failwith "CHANGED_CTXIMPCONV" else th):imp_conv),
CHANGED_CTXIMPCONV o augment c,
CHANGED_CTXIMPCONV o diminish c)
let rec UNCHANGED_OF_FAIL_CTXIMPCONV (c:imp_conv with_context) =
With_context(
((fun v t -> try apply c v t with Failure _ -> raise Unchanged
):imp_conv),
UNCHANGED_OF_FAIL_CTXIMPCONV o augment c,
UNCHANGED_OF_FAIL_CTXIMPCONV o diminish c)
let rec REPEAT_UNCHANGED_CTXIMPCONV =
let rec map_all f xs x =
match xs with
|[] -> []
|y::ys -> f y x :: map_all f ys x
in
fun (cs:imp_conv with_context list) ->
With_context(
((fun v t ->
let rec loop changed acc = function
|[] when changed -> loop false acc cs
|[] -> acc
|c::cs' ->
try
let acc' = bind_ctximpconv c v acc in
loop true acc' cs'
with Unchanged -> loop changed acc cs'
in
loop false (IMP_REFL t) cs):imp_conv),
REPEAT_UNCHANGED_CTXIMPCONV o map_all augment cs,
REPEAT_UNCHANGED_CTXIMPCONV o map_all diminish cs)
type atomic = Atomic | Non_atomic
let DEPTH_CTXIMPCONV =
let bind c na v th =
let t1,t2 = dest_imp (concl th) in
match v with
|Co -> IMP_TRANS (apply c na v t1) th
|Contra -> IMP_TRANS th (apply c na v t2)
in
let rec self (c:(atomic->imp_conv) with_context) =
With_context(
(fun v t ->
try
let th1 = apply (SUB_CTXIMPCONV (self c)) v t in
(try bind c Non_atomic v th1 with Failure _ -> th1)
with
| Failure "SUB_CTXIMPCONV" ->
let th1 = apply c Atomic v t in
(try bind_ctximpconv (self c) v th1 with Failure _ -> th1)
| Failure _ -> apply c Non_atomic v t),
self o augment c,
self o diminish c)
in
UNCHANGED_OF_FAIL_CTXIMPCONV o self
let TOP_DEPTH_CTXIMPCONV =
let rec self (c:imp_conv with_context) =
With_context(
(fun v t ->
try
let th = apply c v t in
try bind_ctximpconv (self c) v th with Failure _ -> th
with Failure _ -> apply (SUB_CTXIMPCONV (self c)) v t),
self o augment c,
self o diminish c)
in
UNCHANGED_OF_FAIL_CTXIMPCONV o self
let ONCE_DEPTH_CTXIMPCONV =
let rec self (c:(atomic->imp_conv) with_context) =
With_context(
(fun v t ->
try apply (SUB_CTXIMPCONV (self c)) v t
with
| Failure "SUB_CTXIMPCONV" -> apply c Atomic v t
| Failure _ -> apply c Non_atomic v t),
self o augment c,
self o diminish c)
in
UNCHANGED_OF_FAIL_CTXIMPCONV o self
let CTXIMPCONV_RULE (c:imp_conv with_context) th =
MATCH_MP (apply c Contra (concl th)) th
let CTXIMPCONV_TAC (cnv:imp_conv with_context) : tactic =
fun (asms,c as g) ->
let cnv' = augment cnv (map (concl o snd) asms) in
(MATCH_MP_TAC (apply cnv' Co c) THEN TRY (ACCEPT_TAC TRUTH)) g
(*****************************************************************************)
(* REWRITE IMPLICATIONAL CONVERSION *)
(*****************************************************************************)
(* Given a theorem [H1,...,Hn |- P ==> l = r],
* returns the variables that occur in [P] and [r] but not in the rest.
* Basically represents the variables that are introduced by the implicational
* rewrite (similar status as variables occurring in the r.h.s. of a rewrite
* but not in the l.h.s.).
*)
let indep_vars th =
let hs,c = dest_thm (SPEC_ALL th) in
let p,c = dest_imp c in
let all_vars = union (frees p) (frees (rhs c)) in
let dep_vars = union (frees (lhs c)) (freesl hs) in
subtract all_vars dep_vars
(* Given a list of variables to avoid [v1,...,vk], a theorem of the form
* [hs |- !x1...xn. p ==> !y1...ym. l = r], and a term [t], matches [t] with
* [l], yielding the substitution [s], and returns the theorem
* [s(hs) |- !z1...zp. s(p) ==> s(l) = s(r)] where [z1], ..., [zp] are the
* variables among [x1], ..., [xn], [y1], ..., [ym] that are not instantiated
* by [s], and renamed so as to avoid [v1], ..., [vk].
*)
let GEN_IMPREWR_CONV avs =
let sel = lhs o snd o strip_forall o snd o dest_imp in
let pmatch = GEN_PART_MATCH_ALL sel in
fun th ->
let pmatch' = pmatch th in
fun t ->
let th' = pmatch' t in
VARIANT_RULE avs (GENL (indep_vars th') th')
(* A conversion which returns not only a theorem but also a list of terms
* which is a sublist of the theorem hypotheses, and a list of terms which
* are the variables newly introduced by the conversion.
*
* See [IMPREWR_CONV] for an example.
*)
type annot_conv = term -> thm * term option * term list
(* Takes a list of variables to avoid [av], a theorem [th] of the form
* [h1,..,hk |- !x1...xn. p ==> !y1...ym. l = r], and a term [t]
* and returns a conversion with hypotheses defined as follows:
* for a term [t], if [t] matches [l] with substitution [s], then return
* the theorem [h1,...,hk,s(p) |- t = s(r)] and the the list containing only
* [s(p)].
*
* The purpose of the conversion with hypothesis is to be able to distinguish
* which hypothesis comes from the input theorem and which is added by the
* conversion itself.
*)
let IMPREWR_CONV:Tset.t->thm->annot_conv =
fun avs th ->
let f t = SPEC_VARS (GEN_IMPREWR_CONV avs th t) in
fun t ->
let vs,uh = f t in
let u = fst (dest_imp (concl uh)) in
UNDISCH uh,Some u,Tset.of_list vs
let REWR_ANNOTCONV avs th t =
let th' = PART_MATCH lhs th t in
let _,t' = dest_binary_blind (concl th') in
let new_vars = Tset.frees t' in
let old_vars = Tset.union (Tset.frees t) (Tset.freesl (hyp th')) in
th',None,Tset.subtract new_vars old_vars
let ORDER_ANNOTCONV cnv t =
let th,_,_ as res = cnv t in
let l,r = dest_binary_blind (concl th) in
if term_order l r then res else failwith "ORDER_ANNOTCONV"
(* Takes a theorem, a net of conversions with hypotheses (which also take
* variables to avoid), and adds to the net the conversion corresponding to
* the theorem.
*
* Special cases:
* - usual term rewriting is handled with [REWR_CONV] instead of introducing
* a fake premise. Might be useful though to introduce a fake premise since
* the conversion would benefit from a better handling of variables occurring
* in the r.h.s. but not in the l.h.s.
* - a theorem of the form [p ==> c] where [c] is not equational is turned into
* [p ==> c = T]
* - a theorem of the form [p ==> ~c] is turned into [p ==> c = F]
*)
let pat_cnv_of_thm th : (term * (term list->annot_conv)) =
let th = SPEC_ALL th in
let lconsts = freesl (hyp th) and c = concl th in
match c with
|Comb(Comb(Const("=",_),l),r) as t ->
let matches = C (can o term_match lconsts) in
if free_in l r || (matches l r && matches r l)
then t,C REWR_ANNOTCONV (MAP_FORALL_BODY EQT_INTRO th)
else l,C REWR_ANNOTCONV th
|Comb(Comb(Const("==>",_),p),c) as t ->
let matches = C (can o fo_term_match lconsts) in
let imprewr_concl f = C IMPREWR_CONV (GEN_MAP_CONCLUSION f th) in
(match c with
|Comb(Comb(Const("=",_),l),r) ->
if free_in l r || (matches l r && matches r l) || is_var l
then
if matches p c
then t, C REWR_ANNOTCONV (EQT_INTRO th)
else c, imprewr_concl EQT_INTRO
else l, C IMPREWR_CONV th
|Comb(Const("~",_),l) -> l, imprewr_concl EQF_INTRO
|l -> l, imprewr_concl EQT_INTRO)
|Comb(Const("~",_),l) -> l, C REWR_ANNOTCONV (EQF_INTRO th)
|Const("T",bool_ty) -> failwith "pat_cnv_of_thm"
|l -> l, C REWR_ANNOTCONV (EQT_INTRO th)
let impconv_net_of_thm th =
try
let p,c = pat_cnv_of_thm th in
let vs = Tset.freesl (hyp th) in
Fo_nets.enter vs (p,(c,vs,th))
with Failure _ -> I
let patterns_of_thm = fst o pat_cnv_of_thm
(* Apply a conversion net to the term at the top level, taking
* avoided variables as parameter too.
*)
let REWRITES_IMPCONV
(net:((term list -> annot_conv) * Tset.t * thm) Fo_nets.t) avs t =
tryfind (fun c,_,_ -> c avs t) (Fo_nets.lookup t net)
let extra_basic_rewrites =
itlist (mk_rewrites false) [NOT_FORALL_THM;NOT_IMP] []
let IMPREWR_CTXCONV :thm list -> (atomic->annot_conv) with_context =
let rec top_depth c avs t =
let rec (++) c1 c2 avs t =
match c1 avs t with
|_,Some _,_ as c1t -> c1t
|th1,None,vs1 as c1t ->
(try
let th2,ho2,vs2 = c2 (Tset.union vs1 avs) (rand (concl th1)) in
TRANS th1 th2, ho2, Tset.union vs1 vs2
with Failure _ -> c1t)
and (+) c1 c2 avs t = try (c1 ++ c2) avs t with Failure _ -> c2 avs t
and COMB_QCONV c avs l r =
try
match c avs l with
|th,(Some _ as ho),vs -> AP_THM th r,ho,vs
|th1,None,vs1 ->
(try
let th2,ho2,vs2 = c (Tset.union vs1 avs) r in
MK_COMB (th1,th2), ho2, Tset.union vs1 vs2
with Failure _ -> AP_THM th1 r,None,vs1)
with Failure _ ->
let th2,ho2,vs2 = c avs r in
AP_TERM l th2,ho2,vs2
in
let SUB_QCONV c avs t =
match t with
|Comb(l,r) -> COMB_QCONV c avs l r
|Abs(v,_) ->
let ho = ref None and vs = ref [] in
let c' t =
let th,ho',vs' = c (Tset.insert avs v) t in
ho := ho'; vs := vs'; th
in
let res = ABS_CONV c' t in
res,!ho,!vs
|_ -> failwith "SUB_QCONV"
in
let rec (!) c avs t = (c ++ !c) avs t in
(!c + (SUB_QCONV (top_depth c) ++ top_depth c)) avs t
in
let bigger_net() =
itlist (net_of_thm false) extra_basic_rewrites (basic_net()) in
let basic_cnv t = REWRITES_CONV (bigger_net ()) t,None,[] in
let rec self net ths =
let avs = Tset.flat_revmap (Tset.freesl o hyp) ths in
let cnv avs t =
try REWRITES_IMPCONV net avs t with Failure _ -> basic_cnv t
in
With_context(
(fun a t ->
let f = match a with Atomic -> top_depth | Non_atomic -> I in
f cnv (Tset.union (Tset.frees t) avs) t),
(fun ts ->
let ths' = map ASSUME ts in
(*let ths'' = ths' @ GMATCH_MPS ths ths' in*)
let ths'' = MP_CLOSURE ths' ths' @ ths' @ MP_CLOSURE ths ths' in
self (itlist impconv_net_of_thm ths'' net) (ths'' @ ths)),
(fun v ->
let ths = ref [] in
let f (_,vs,th) =
if not (Tset.mem v vs) then (ths := th :: !ths; true) else false
in
let net' = Fo_nets.filter f net in
self net' !ths))
in
fun ths -> self (itlist impconv_net_of_thm ths Fo_nets.empty_net) ths
(*****************************************************************************)
(* SOME USEFUL IMPLICATIONAL CONVERSIONS *)
(*****************************************************************************)
(* Takes a conversion with hypotheses (with context) and makes an
* implicational conversion out of it.
* Basically turns a rewrite with hypotheses into an implicational rewrite
* withouth hypotheses.
* Adds existential quantifications for variables introduced by the rewrite.
*)
let rec REWR_IMPCONV_OF_CONV =
let IMP_SYM = REWR_RULE (TAUT `A==>B==>C <=> B==>A==>C`) in
let IMP_EXIST = GSYM LEFT_IMP_EXISTS_THM in
let TRY_GEN v th = try GEN v th with Failure _ -> th in
fun (c:(atomic -> annot_conv) with_context) ->
With_context(
((fun a v t ->
let th,ho,new_vars = apply c a t in
let th1,th2 = EQ_IMP_RULE th in
let res =
match v with
|Co ->
let p,th2' = UNDISCH_TERM th2 in
let rec exists_intro = function
|[] -> DISCH_IMP_IMP (p::list_of_option ho) th2'
|v::vs ->
let th = exists_intro vs in
try REWR_RULE IMP_EXIST (GEN v th) with Failure _ -> th
in
exists_intro new_vars
|Contra ->
let th1' =
match ho with None -> th1 | Some h -> IMP_SYM (DISCH h th1)
in
match new_vars with
|[] -> th1'
|_::_ -> MAP_CONCLUSION (itlist TRY_GEN new_vars) th1'
in
let t1,t2 = dest_imp (concl res) in
if t1 = t2 then raise Unchanged else res):atomic->imp_conv),
REWR_IMPCONV_OF_CONV o augment c,
REWR_IMPCONV_OF_CONV o diminish c)
(* Applies the implicational rewrite, with context simplifications. *)
let REWRITE_CTXIMPCONV =
DEPTH_CTXIMPCONV o REWR_IMPCONV_OF_CONV o IMPREWR_CTXCONV
(*****************************************************************************)
(* INTERFACE *)
(*****************************************************************************)
(* Preprocessor. For now takes a theorem of the form [p ==> c1 /\ ... /\ ck]
* and returns the list of theorems [p ==> c1], ..., [p ==> ck].
*)
let preprocess = CONJUNCTS o IMPLY_AND
(* Tactic for implicational rewrite. *)
let IMP_REWRITE_TAC ths =
CTXIMPCONV_TAC (REWRITE_CTXIMPCONV (flat (map preprocess ths)))
let SEQ_IMP_REWRITE_TAC ths =
let cnv =
match ths with
|[] -> REWRITE_CTXIMPCONV [TRUTH]
|[th] -> REWRITE_CTXIMPCONV (preprocess th)
|_::_ ->
let fcnv = REWRITE_CTXIMPCONV o preprocess in
REPEAT_UNCHANGED_CTXIMPCONV (map fcnv ths)
in
CTXIMPCONV_TAC cnv
(* Tactic for implicational rewrite with assumptions. *)
let ASM_IMP_REWRITE_TAC = ASM IMP_REWRITE_TAC
(* Cases-like conversion for implicational theorems, i.e., for a theorem of
* the form:
* [h1,..,hk |- !x1...xn. p ==> !y1...ym. l = r], and a term [t],
* return [(p ==> t') /\ (~p ==> t)], where [t'] is the result of rewriting
* [t] by [l=r].
*)
let rec CASE_REWR_IMPCONV_OF_CONV =
let MP_TAUT th = MATCH_MP (TAUT th) in
let MP_LEM1 = MP_TAUT `(~P ==> Q = R) ==> (Q <=> (~P ==> R) /\ (P ==> Q))` in
let MP_LEM2 = MP_TAUT `(P ==> Q = R) ==> (Q <=> (P ==> R) /\ (~P ==> Q))` in
fun (c:(atomic -> annot_conv) with_context) ->
With_context(
(fun a v t ->
match apply c a t with
|_,None,_ -> failwith "CASE_REWR_IMPCONV_OF_CONV"
|th,Some h,_ ->
let th' = DISCH h th in
let th'' = try MP_LEM1 th' with Failure _ -> MP_LEM2 th' in
imp_conv_of_conv (REWR_CONV th'') v t),
CASE_REWR_IMPCONV_OF_CONV o augment c,
CASE_REWR_IMPCONV_OF_CONV o diminish c)
let CASE_REWRITE_CTXIMPCONV =
ONCE_DEPTH_CTXIMPCONV o CASE_REWR_IMPCONV_OF_CONV o IMPREWR_CTXCONV
(* Tactic version of it. *)
let CASE_REWRITE_TAC = CTXIMPCONV_TAC o CASE_REWRITE_CTXIMPCONV o preprocess
(*****************************************************************************)
(* IMPLICATIONAL CONVERSIONS WITH MULTIPLE RESULTS *)
(*****************************************************************************)
(* Multiple implicational conversion. *)
type imp_mconv = Variance.t -> term -> thm list
let mapply_with_context c ctx v t =
map (DISCH_CONJ ctx) (apply (augment c (Tset.strip_conj ctx)) v t)
(* Consider two multiple implicational conversions ic1, ic2.
* Suppose [ic1 Co A] returns a list [B1 ==> A; ...; Bk ==> A],
* and [ic2 Co C] returns [D1 ==> C; ...; Dn ==> C],
* then [CONJ_IMPMCONV ic1 ic2 Co (A /\ C)] returns
* [B1 /\ C ==> A /\ C; ...; Bk /\ C ==> A /\ C; A /\ D1 ==> A /\ C; ...; Dn
* ==> A /\ C].
*
* And similarly for the contravariant case.
*)
let rec CONJ_CTXIMPMCONV (c:imp_mconv with_context)
: imp_mconv with_context =
With_context(
(fun v t ->
let t1,t2 = dest_conj t in
let left,right =
match v with
|Co -> MKIMPL_CONJ_CO2_CTXT,MKIMPR_CONJ_CO_CTXT
|Contra -> MKIMPL_CONJ_CONTRA_CTXT,MKIMPR_CONJ_CONTRA_CTXT
in
let th1s = map left (mapply_with_context c t2 v t1) in
let th2s = map right (mapply_with_context c t1 v t2) in
th1s @ th2s),
CONJ_CTXIMPMCONV o augment c,
CONJ_CTXIMPMCONV o diminish c)
(* Consider two multiple implicational conversions ic1, ic2.
* Suppose [ic1 Co A] returns a list [B1 ==> A; ...; Bk ==> A],
* and [ic2 Co C] returns [D1 ==> C; ...; Dn ==> C],
* then [DISJ_IMPMCONV ic1 ic2 Co (A \/ C)] returns
* [B1 \/ C ==> A \/ C; ...; Bk \/ C ==> A \/ C; A \/ D1 ==> A \/ C; ...; Dn
* ==> A \/ C].
*
* And similarly for the contravariant case.
*)
let rec DISJ_CTXIMPMCONV (c:imp_mconv with_context)
: imp_mconv with_context =
With_context(
(fun v t ->
let t1,t2 = dest_disj t in
let th1s = map (C MKIMPL_DISJ t2) (apply c v t1) in
let th2s = map (MKIMPR_DISJ t1) (apply c v t2) in
th1s @ th2s),
DISJ_CTXIMPMCONV o augment c,
DISJ_CTXIMPMCONV o diminish c)
(* Consider two multiple implicational conversions ic1, ic2.
* Suppose [ic1 Contra A] returns a list [A ==> B1; ...; A ==> Bk],
* and [ic2 Co C] returns [D1 ==> C; ...; Dn ==> C],
* then [DISJ_IMPMCONV ic1 ic2 Co (A \/ C)] returns
* [(B1 ==> C) ==> (A ==> C); ...; (Bk ==> C) ==> (A ==> C); (A ==> D1) ==> (A
* ==> C); ...; (A ==> Dn) ==> (A ==> C)].
*
* And similarly for the contravariant case.
*)
let rec IMP_CTXIMPMCONV (c:imp_mconv with_context)
: imp_mconv with_context =
With_context(
(fun v t ->
let t1,t2 = dest_imp t in
let th1s = map (C MKIMPL_IMP t2) (apply c (Variance.neg v) t1) in
let th2s = map MKIMPR_IMP_CTXT (mapply_with_context c t1 v t2) in
th1s @ th2s),
CONJ_CTXIMPMCONV o augment c,
CONJ_CTXIMPMCONV o diminish c)
let rec IFF_CTXIMPCONV (c:imp_mconv with_context) =
With_context(
((fun v t ->
let t1,t2 = dest_iff t in
let left,right =
match v with
|Co -> MKIMPL_CO_IFF,MKIMPR_CO_IFF
|Contra -> MKIMPL_CONTRA_IFF,MKIMPR_CONTRA_IFF
in
let th1s = map left (apply c v (mk_imp(t1,t2))) in
let th2s = map right (apply c v (mk_imp(t2,t1))) in
th1s @ th2s):imp_mconv),
IFF_CTXIMPCONV o augment c,
IFF_CTXIMPCONV o diminish c)
(* Consider one multiple implicational conversion ic.
* Suppose [ic Contra A] returns a list [A ==> B1; ...; A ==> Bk],
* then [NOT_IMPMCONV ic Co ~A] returns [~B1 ==> ~A; ...; ~Bk ==> ~A].
*
* And similarly for the contravariant case.
*)
let rec NOT_CTXIMPMCONV (c:imp_mconv with_context) : imp_mconv with_context =
With_context(
(fun v t ->
map MKIMP_NOT (try_list (apply c (Variance.neg v)) (dest_neg t))),
NOT_CTXIMPMCONV o augment c,
NOT_CTXIMPMCONV o diminish c)
let rec QUANT_CTXIMPMCONV mkimp sel (c:imp_mconv with_context)
: imp_mconv with_context =
With_context(
(fun v t ->
let x,b = sel t in
let c' = diminish c x in
map (mkimp x) (try_list (apply c' v) b)),
QUANT_CTXIMPMCONV mkimp sel o augment c,
QUANT_CTXIMPMCONV mkimp sel o diminish c)
(* Consider one multiple implicational conversion ic.
* Suppose [ic Co A] returns a list [B1 ==> A; ...; Bk ==> A],
* then [FORALL_IMPMCONV ic Co (!x.A)] returns [(!x.B1) ==> (!x.A); ...;
* (!x.Bk) ==> (!x.A)].
*
* And similarly for the contravariant case.
*)
let FORALL_CTXIMPMCONV = QUANT_CTXIMPMCONV MKIMP_FORALL dest_forall
(* Consider one multiple implicational conversion ic.
* Suppose [ic Co A] returns a list [B1 ==> A; ...; Bk ==> A],
* then [EXISTS_IMPMCONV ic Co (?x.A)] returns [(?x.B1) ==> (?x.A); ...;
* (?x.Bk) ==> (?x.A)].
*
* And similarly for the contravariant case.
*)
let EXISTS_CTXIMPMCONV = QUANT_CTXIMPMCONV MKIMP_EXISTS dest_exists
(* Applies a multiple implicational conversion on the subformula(s) of the
* input term
*)
let rec SUB_CTXIMPMCONV =
let iff_ty = `:bool->bool->bool` in
fun c ->
With_context(
((fun v t ->
let n,ty = dest_const (fst (strip_comb t)) in
apply
((match n with
|"==>" -> IMP_CTXIMPMCONV
|"/\\" -> CONJ_CTXIMPMCONV
|"\\/" -> DISJ_CTXIMPMCONV
|"!" -> FORALL_CTXIMPMCONV
|"?" -> EXISTS_CTXIMPMCONV
|"~" -> NOT_CTXIMPMCONV
|"=" when ty = iff_ty -> IFF_CTXIMPCONV
|_ -> failwith "SUB_CTXIMPMCONV") c) v t):imp_mconv),
SUB_CTXIMPMCONV o augment c,
SUB_CTXIMPMCONV o diminish c)
(* Applies a multiple implicational conversion once to the first suitable sub-term(s)
* encountered in bottom-up order.
*)
let rec DEPTH_CTXIMPMCONV (c : (atomic->imp_mconv) with_context) =
With_context(
(fun v t ->
try
let ths = apply (SUB_CTXIMPMCONV (DEPTH_CTXIMPMCONV c)) v t in
apply c Non_atomic v t @ ths
with Failure "SUB_CTXIMPMCONV" ->
(apply c Atomic v t)),
DEPTH_CTXIMPMCONV o augment c,
DEPTH_CTXIMPMCONV o diminish c)
(*****************************************************************************)
(* REWRITE IMPLICATIONAL CONVERSIONS *)
(*****************************************************************************)
(* Multiple implicational conversion with hypotheses. *)
type annot_mconv = term -> (thm * term option * term list) list
(* Takes a theorem, a net of conversions with hypotheses (which also take
* variables to avoid), and adds to the net the conversion corresponding to
* the theorem.
*
* Special cases:
* - usual term rewriting is handled with [REWR_CONV] instead of introducing
* a fake premise. Might be useful though to introduce a fake premise since
* the conversion would benefit from a better handling of variables occurring
* in the r.h.s. but not in the l.h.s.
* - a theorem of the form [p ==> c] where [c] is not equational is turned into
* [p ==> c = T]
* - a theorem of the form [p ==> ~c] is turned into [p ==> c = F]
*)
let target_pat_cnv_of_thm th : (term * (term list->annot_conv)) =
let th = SPEC_ALL th in
match concl th with
|Comb(Comb(Const("=",_),l),_) -> l,C REWR_ANNOTCONV th
|Comb(Comb(Const("==>",_),_),c) ->
let pat,th' =
match c with
|Comb(Comb(Const("=",_),l),_) -> l, th
|Comb(Const("~",_),l) -> l, GEN_MAP_CONCLUSION EQF_INTRO th
|l -> c, GEN_MAP_CONCLUSION EQT_INTRO th
in
pat, C IMPREWR_CONV th'
|Comb(Const("~",_),l) -> l, C REWR_ANNOTCONV (EQF_INTRO th)
|Const("T",bool_ty) -> failwith "target_pat_cnv_of_thm"
|l -> l, C REWR_ANNOTCONV (EQT_INTRO th)
let target_impconv_net_of_thm th =
try
let p,c = target_pat_cnv_of_thm th in
let vs = Tset.freesl (hyp th) in
Fo_nets.enter vs (p,(c,vs,th))
with Failure _ -> I
let target_patterns_of_thm = fst o target_pat_cnv_of_thm
(* Multiple conversion which returns all the possible rewrites (on one subterm
* only) by one theorem.
*)
let DEEP_IMP_REWR_MCONV:thm list->(atomic->annot_mconv) with_context =
let map_fst f (x,y,z) = f x,y,z in
let COMB_MCONV c l r =
map (map_fst (C AP_THM r)) (c l) @ map (map_fst (AP_TERM l)) (c r)
and ABS_MCONV c v b =
let ths = c b in
try map (map_fst (ABS v)) ths
with Failure _ ->
let gv = genvar(type_of v) in
let f (gth,ho,vs) =
let gtm = concl gth in
let l,r = dest_eq gtm in
let v' = variant (frees gtm) v in
let l' = alpha v' l and r' = alpha v' r in
EQ_MP (ALPHA gtm (mk_eq(l',r'))) gth,ho,vs
in
let b' = vsubst[gv,v] b in
map f (map (map_fst (ABS gv)) (c b'))
in
let SUB_MCONV c = function
|Comb(l,r) -> COMB_MCONV c l r
|Abs(v,b) -> ABS_MCONV c v b
|Const _ | Var _ -> []
in
let rec top_depth c t = SUB_MCONV (top_depth c) t @ c t in
let REWRITES_IMPCONV (net:((term list -> annot_conv) * Tset.t * thm) Fo_nets.t) avs t =
mapfilter (fun c,_,_ -> c avs t) (Fo_nets.lookup t net)
in
let rec self net ths =
let avs = Tset.flat_revmap (Tset.freesl o hyp) ths in
With_context(
(fun a t ->
let avs' = Tset.union (Tset.frees t) avs in
let cnv t = REWRITES_IMPCONV net avs' t in
let f =
match a with
|Atomic -> top_depth
|Non_atomic -> (fun cnv avs -> cnv avs)
in
f cnv t),
(fun _ -> self net ths),
(fun v ->
let ths = ref [] in
let f (_,vs,th) =
if not (Tset.mem v vs) then (ths := th :: !ths; true) else false
in
let net' = Fo_nets.filter f net in
self net' !ths))
in
fun ths ->
self (itlist target_impconv_net_of_thm ths Fo_nets.empty_net) ths
(* Takes a multiple conversion with hypotheses (which also takes a context as
* parameter) and makes a multiple implicational conversion out of it.
*
* Basically extends [GENERAL_REWRITE_IMPCONV] to the multiple conversion
* case.
*)
let rec REWR_IMPMCONV_OF_MCONV =
let IMP_SYM = REWR_RULE (TAUT `A==>B==>C <=> B==>A==>C`) in
let IMP_EXIST = GSYM LEFT_IMP_EXISTS_THM in
let TRY_GEN v th = try GEN v th with Failure _ -> th in
fun (c:(atomic -> annot_mconv) with_context) ->
With_context(
((fun a v t ->
let f (th,ho,new_vars) =
let th1,th2 = EQ_IMP_RULE th in
match v with
|Co ->
let p,th2' = UNDISCH_TERM th2 in
let rec exists_intro = function
|[] -> DISCH_IMP_IMP (p::list_of_option ho) th2'
|v::vs ->
let th = exists_intro vs in
try REWR_RULE IMP_EXIST (GEN v th) with Failure _ -> th
in
exists_intro new_vars
|Contra ->
let th1' =
match ho with None -> th1 | Some h -> IMP_SYM (DISCH h th1)
in
match new_vars with
|[] -> th1'
|_::_ -> MAP_CONCLUSION (itlist TRY_GEN new_vars) th1'
in
map f (apply c a t)):atomic->imp_mconv),
REWR_IMPMCONV_OF_MCONV o augment c,
REWR_IMPMCONV_OF_MCONV o diminish c)
(*****************************************************************************)
(* TARGET REWRITING *)
(*****************************************************************************)
let EXISTS_CTXIMPCONV:imp_conv with_context =
let EXISTSs i p =
let codom,dom = unzip i in
let f i ps = vsubst [i] (snd (dest_exists (hd ps))) :: ps in
let h::ps = rev_itlist f i [list_mk_exists(dom,p)] in
rev_itlist EXISTS (zip ps (rev codom)) (ASSUME h)
in
let LEFT_FORALL_IMP = REWR_RULE LEFT_FORALL_IMP_THM in
let rec self ts =
With_context
((fun v t ->
match v,t with
|Co,Comb(Const("?",_),_) ->
let vs,b = strip_exists t in
let bs = strip_conj b in
let hmatch (n,b) =
match partition (C mem vs) (variables b) with
|[],_ -> failwith "EXISTS_CTXIMPCONV"
|_::_ as lvs,lcs ->
fun h ->
match term_match lcs b h with
|_,i,j when filter (uncurry (<>)) j = [] ->
(if i = [] then zip lvs lvs else i),n
|_ -> failwith "EXISTS_CTXIMPCONV"
in
let s,n = tryfind_fun (mapfilteri (curry (tryfind o hmatch)) bs) ts in
let th = EXISTSs (map (fun v -> rev_assocd v s v,v) vs) b in
let th' = DISCH_HD th in
let h = fst (dest_imp (concl th')) in
(match strip_conj h with
|[] -> assert false
|[h] -> DISCH T_ th
|_::_ as hs ->
let hs1,h'::hs2 = chop_list n hs in
let hs_th = CONJ_ACI_RULE (mk_eq(h,list_mk_conj (h'::(hs1@hs2)))) in
let th1 = CONV_RULE (LAND_CONV (REWR_CONV hs_th)) th' in
let th2 = UNDISCH (CONV_RULE (REWR_CONV IMP_CONJ) th1) in
let vs' = subtract vs (map snd s) in
let f v th = try LEFT_FORALL_IMP (GEN v th) with Failure _ -> th in
itlist f vs' th2)
|_ -> failwith "EXISTS_CTXIMPCONV"),
(fun ts' -> self (Tset.union ts' ts)),
(fun _ -> self ts))
in
self []
(* Takes a theorem which results of an implicational conversion and applies a
* multiple implicational conversion on the outcome.
*)
let bind_impmconv (c:imp_mconv) v th =
let t1,t2 = dest_imp (concl th) in
match v with
|Co -> map (C IMP_TRANS th) (c v t1)
|Contra -> map (IMP_TRANS th) (c v t2)
(* Target rewrite implicational conversion:
* [TARGET_REWRITE_IMPCONV sths ts] is an implicational conversion which
* applies all the possible implicational rewrites on the input term until
* one of the resulting terms matches one of the terms in [ts].
*
* Note that we allow several target terms and not just one. See
* TARGET_REWRITE_TAC for a justification.
*)
let TARGET_REWRITE_IMPCONV : thm list -> term list -> imp_conv =
let PRE = apply (TRY_CTXIMPCONV (REWRITE_CTXIMPCONV [])) in
let POST = TRY_CTXIMPCONV (TOP_DEPTH_CTXIMPCONV EXISTS_CTXIMPCONV) in
fun sths ->
let one_step_sths v uh =
let pre v th = try bind_impconv PRE v th with Unchanged -> th in
let post v = bind_ctximpconv POST v in
let f =
DEPTH_CTXIMPMCONV o REWR_IMPMCONV_OF_MCONV o DEEP_IMP_REWR_MCONV
in
map (post v) (bind_impmconv (apply (f sths)) v (pre v uh))
in
let flat l = uniq (itlist (merge thm_lt) l []) in
fun ts v t ->
let rec self ths =
let pool = flat (map (mergesort thm_lt o one_step_sths v) ths) in
let sel th = imp_conv_outcome th v in
let is_one_sol g = (can o find_term o can o fo_term_match []) g o sel in
let is_sol th = tryfind is_one_sol ts th in
try bind_ctximpconv POST v (find is_sol pool)
with _ ->
match pool with
|[] -> failwith "TARGET_REWRITE_IMPCONV: no path found"
|_::_ -> self (map (bind_ctximpconv POST v) pool)
in
self [IMP_REFL t]
(* Tactic version of it.
*
* Since the target theorem is preprocessed, it can yield several theorems.
* Therefore, there is not just one possible target pattern but several.
*)
let TARGET_REWRITE_TAC sths th =
let sths' = flat (map preprocess sths) in
let ths = preprocess th and (+) = THEN_IMPCONV in
IMPCONV_TAC
(TARGET_REWRITE_IMPCONV sths' (map patterns_of_thm ths)
+ imp_conv_of_ctx_imp_conv (REWRITE_CTXIMPCONV ths))
let HINT_EXISTS_TAC = CTXIMPCONV_TAC (TOP_DEPTH_CTXIMPCONV EXISTS_CTXIMPCONV)
end in
Impconv.IMP_REWRITE_TAC,
Impconv.TARGET_REWRITE_TAC,
Impconv.HINT_EXISTS_TAC,
Impconv.SEQ_IMP_REWRITE_TAC,
Impconv.CASE_REWRITE_TAC;;
|