1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
\chapter{Pre-proved Theorems}
\input{theorems-intro}
\section{The type definition}
\THEOREM FINITE\_SET\_DEF finite\_sets
|- (!x. ~x IN {}) /\
(!x y s. x IN (y INSERT s) = (x = y) \/ x IN s) /\
(!x s. x INSERT (x INSERT s) = x INSERT s) /\
(!x y s. x INSERT (y INSERT s) = y INSERT (x INSERT s)) /\
(!P. P{} /\ (!s. P s ==> (!e. P(e INSERT s))) ==> (!s. P s))
\ENDTHEOREM
\THEOREM IS\_SET\_REP finite\_sets
|- IS_SET_REP(\x. F) /\
(!s. IS_SET_REP s ==> (!x. IS_SET_REP(\y. (y = x) \/ s y))) /\
(!P.
P(\x. F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y))) ==>
(!s. IS_SET_REP s ==> P s))
\ENDTHEOREM
\THEOREM set\_TY\_DEF finite\_sets
|- ?rep. TYPE_DEFINITION IS_SET_REP rep
\ENDTHEOREM
\section{Basic properties of {\tt EMPTY}, {\tt INSERT}, and {\tt IN}}
\THEOREM ABSORPTION finite\_sets
|- !x s. x IN s = (x INSERT s = s)
\ENDTHEOREM
\THEOREM COMPONENT finite\_sets
|- !x s. x IN (x INSERT s)
\ENDTHEOREM
\THEOREM DECOMPOSITION finite\_sets
|- !s x. x IN s = (?t. (s = x INSERT t) /\ ~x IN t)
\ENDTHEOREM
\THEOREM EXTENSION finite\_sets
|- !s t. (s = t) = (!x. x IN s = x IN t)
\ENDTHEOREM
\THEOREM INSERT\_COMM finite\_sets
|- !x y s. x INSERT (y INSERT s) = y INSERT (x INSERT s)
\ENDTHEOREM
\THEOREM INSERT\_INSERT finite\_sets
|- !x s. x INSERT (x INSERT s) = x INSERT s
\ENDTHEOREM
\THEOREM IN\_INSERT finite\_sets
|- !x y s. x IN (y INSERT s) = (x = y) \/ x IN s
\ENDTHEOREM
\THEOREM MEMBER\_NOT\_EMPTY finite\_sets
|- !s. (?x. x IN s) = ~(s = {})
\ENDTHEOREM
\THEOREM NOT\_EMPTY\_INSERT finite\_sets
|- !x s. ~({} = x INSERT s)
\ENDTHEOREM
\THEOREM NOT\_EQUAL\_SETS finite\_sets
|- !s t. ~(s = t) = (?x. x IN t = ~x IN s)
\ENDTHEOREM
\THEOREM NOT\_INSERT\_EMPTY finite\_sets
|- !x s. ~(x INSERT s = {})
\ENDTHEOREM
\THEOREM NOT\_IN\_EMPTY finite\_sets
|- !x. ~x IN {}
\ENDTHEOREM
\THEOREM NUM\_SET\_WOP finite\_sets
|- !s. (?n. n IN s) = (?n. n IN s /\ (!m. m IN s ==> n <= m))
\ENDTHEOREM
\THEOREM SET\_CASES finite\_sets
|- !s. (s = {}) \/ (?x t. (s = x INSERT t) /\ ~x IN t)
\ENDTHEOREM
\THEOREM SET\_INDUCT finite\_sets
|- !P.
P{} /\ (!s. P s ==> (!e. ~e IN s ==> P(e INSERT s))) ==> (!s. P s)
\ENDTHEOREM
\THEOREM SET\_MINIMUM finite\_sets
|- !s M. (?x. x IN s) = (?x. x IN s /\ (!y. y IN s ==> (M x) <= (M y)))
\ENDTHEOREM
\section{Set inclusion}
\THEOREM EMPTY\_SUBSET finite\_sets
|- !s. {} SUBSET s
\ENDTHEOREM
\THEOREM INSERT\_SUBSET finite\_sets
|- !x s t. (x INSERT s) SUBSET t = x IN t /\ s SUBSET t
\ENDTHEOREM
\THEOREM NOT\_PSUBSET\_EMPTY finite\_sets
|- !s. ~s PSUBSET {}
\ENDTHEOREM
\THEOREM PSUBSET\_DEF finite\_sets
|- !s t. s PSUBSET t = s SUBSET t /\ ~(s = t)
\ENDTHEOREM
\THEOREM PSUBSET\_INSERT\_SUBSET finite\_sets
|- !s t. s PSUBSET t = (?x. ~x IN s /\ (x INSERT s) SUBSET t)
\ENDTHEOREM
\THEOREM PSUBSET\_IRREFL finite\_sets
|- !s. ~s PSUBSET s
\ENDTHEOREM
\THEOREM PSUBSET\_MEMBER finite\_sets
|- !s t. s PSUBSET t = s SUBSET t /\ (?y. y IN t /\ ~y IN s)
\ENDTHEOREM
\THEOREM PSUBSET\_TRANS finite\_sets
|- !s t u. s PSUBSET t /\ t PSUBSET u ==> s PSUBSET u
\ENDTHEOREM
\THEOREM SUBSET\_ANTISYM finite\_sets
|- !s t. s SUBSET t /\ t SUBSET s ==> (s = t)
\ENDTHEOREM
\THEOREM SUBSET\_DEF finite\_sets
|- !s t. s SUBSET t = (!x. x IN s ==> x IN t)
\ENDTHEOREM
\THEOREM SUBSET\_EMPTY finite\_sets
|- !s. s SUBSET {} = (s = {})
\ENDTHEOREM
\THEOREM SUBSET\_INSERT finite\_sets
|- !x s. ~x IN s ==> (!t. s SUBSET (x INSERT t) = s SUBSET t)
\ENDTHEOREM
\THEOREM SUBSET\_REFL finite\_sets
|- !s. s SUBSET s
\ENDTHEOREM
\THEOREM SUBSET\_TRANS finite\_sets
|- !s t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u
\ENDTHEOREM
\section{Intersection and union}
\THEOREM DELETE\_INTER finite\_sets
|- !s t x. (s DELETE x) INTER t = (s INTER t) DELETE x
\ENDTHEOREM
\THEOREM EMPTY\_UNION finite\_sets
|- !s t. (s UNION t = {}) = (s = {}) /\ (t = {})
\ENDTHEOREM
\THEOREM INSERT\_INTER finite\_sets
|- !x s t.
(x INSERT s) INTER t = (x IN t => x INSERT (s INTER t) | s INTER t)
\ENDTHEOREM
\THEOREM INSERT\_UNION finite\_sets
|- !x s t.
(x INSERT s) UNION t = (x IN t => s UNION t | x INSERT (s UNION t))
\ENDTHEOREM
\THEOREM INSERT\_UNION\_EQ finite\_sets
|- !x s t. (x INSERT s) UNION t = x INSERT (s UNION t)
\ENDTHEOREM
\THEOREM INTER\_ASSOC finite\_sets
|- !s t u. (s INTER t) INTER u = s INTER (t INTER u)
\ENDTHEOREM
\THEOREM INTER\_COMM finite\_sets
|- !s t. s INTER t = t INTER s
\ENDTHEOREM
\THEOREM INTER\_EMPTY finite\_sets
|- (!s. {} INTER s = {}) /\ (!s. s INTER {} = {})
\ENDTHEOREM
\THEOREM INTER\_IDEMPOT finite\_sets
|- !s. s INTER s = s
\ENDTHEOREM
\THEOREM INTER\_OVER\_UNION finite\_sets
|- !s t u. s UNION (t INTER u) = (s UNION t) INTER (s UNION u)
\ENDTHEOREM
\THEOREM INTER\_SUBSET finite\_sets
|- (!s t. (s INTER t) SUBSET s) /\ (!s t. (t INTER s) SUBSET s)
\ENDTHEOREM
\THEOREM IN\_INTER finite\_sets
|- !s t x. x IN (s INTER t) = x IN s /\ x IN t
\ENDTHEOREM
\THEOREM IN\_UNION finite\_sets
|- !s t x. x IN (s UNION t) = x IN s \/ x IN t
\ENDTHEOREM
\THEOREM SUBSET\_INTER\_ABSORPTION finite\_sets
|- !s t. s SUBSET t = (s INTER t = s)
\ENDTHEOREM
\THEOREM SUBSET\_UNION finite\_sets
|- (!s t. s SUBSET (s UNION t)) /\ (!s t. s SUBSET (t UNION s))
\ENDTHEOREM
\THEOREM SUBSET\_UNION\_ABSORPTION finite\_sets
|- !s t. s SUBSET t = (s UNION t = t)
\ENDTHEOREM
\THEOREM UNION\_ASSOC finite\_sets
|- !s t u. (s UNION t) UNION u = s UNION (t UNION u)
\ENDTHEOREM
\THEOREM UNION\_COMM finite\_sets
|- !s t. s UNION t = t UNION s
\ENDTHEOREM
\THEOREM UNION\_EMPTY finite\_sets
|- (!s. {} UNION s = s) /\ (!s. s UNION {} = s)
\ENDTHEOREM
\THEOREM UNION\_IDEMPOT finite\_sets
|- !s. s UNION s = s
\ENDTHEOREM
\THEOREM UNION\_OVER\_INTER finite\_sets
|- !s t u. s INTER (t UNION u) = (s INTER t) UNION (s INTER u)
\ENDTHEOREM
\section{Set difference}
\THEOREM DIFF\_DIFF finite\_sets
|- !s t. (s DIFF t) DIFF t = s DIFF t
\ENDTHEOREM
\THEOREM DIFF\_EMPTY finite\_sets
|- !s. s DIFF {} = s
\ENDTHEOREM
\THEOREM DIFF\_EQ\_EMPTY finite\_sets
|- !s. s DIFF s = {}
\ENDTHEOREM
\THEOREM EMPTY\_DIFF finite\_sets
|- !s. {} DIFF s = {}
\ENDTHEOREM
\THEOREM IN\_DIFF finite\_sets
|- !s t x. x IN (s DIFF t) = x IN s /\ ~x IN t
\ENDTHEOREM
\section{Deletion of an element}
\THEOREM DELETE\_COMM finite\_sets
|- !x y s. (s DELETE x) DELETE y = (s DELETE y) DELETE x
\ENDTHEOREM
\THEOREM DELETE\_DEF finite\_sets
|- !s x. s DELETE x = s DIFF {x}
\ENDTHEOREM
\THEOREM DELETE\_DELETE finite\_sets
|- !x s. (s DELETE x) DELETE x = s DELETE x
\ENDTHEOREM
\THEOREM DELETE\_INSERT finite\_sets
|- !x y s.
(x INSERT s) DELETE y =
((x = y) => s DELETE y | x INSERT (s DELETE y))
\ENDTHEOREM
\THEOREM DELETE\_NON\_ELEMENT finite\_sets
|- !x s. ~x IN s = (s DELETE x = s)
\ENDTHEOREM
\THEOREM DELETE\_SUBSET finite\_sets
|- !x s. (s DELETE x) SUBSET s
\ENDTHEOREM
\THEOREM DIFF\_INSERT finite\_sets
|- !s t x. s DIFF (x INSERT t) = (s DELETE x) DIFF t
\ENDTHEOREM
\THEOREM EMPTY\_DELETE finite\_sets
|- !x. {} DELETE x = {}
\ENDTHEOREM
\THEOREM INSERT\_DELETE finite\_sets
|- !x s. x IN s ==> (x INSERT (s DELETE x) = s)
\ENDTHEOREM
\THEOREM IN\_DELETE finite\_sets
|- !s x y. x IN (s DELETE y) = x IN s /\ ~(x = y)
\ENDTHEOREM
\THEOREM IN\_DELETE\_EQ finite\_sets
|- !s x x'.
(x IN s = x' IN s) = (x IN (s DELETE x') = x' IN (s DELETE x))
\ENDTHEOREM
\THEOREM SUBSET\_DELETE finite\_sets
|- !x s t. s SUBSET (t DELETE x) = ~x IN s /\ s SUBSET t
\ENDTHEOREM
\THEOREM SUBSET\_INSERT\_DELETE finite\_sets
|- !x s t. s SUBSET (x INSERT t) = (s DELETE x) SUBSET t
\ENDTHEOREM
\section{Disjoint sets}
\THEOREM DISJOINT\_DEF finite\_sets
|- !s t. DISJOINT s t = (s INTER t = {})
\ENDTHEOREM
\THEOREM DISJOINT\_DELETE\_SYM finite\_sets
|- !s t x. DISJOINT(s DELETE x)t = DISJOINT(t DELETE x)s
\ENDTHEOREM
\THEOREM DISJOINT\_EMPTY finite\_sets
|- !s. DISJOINT {} s /\ DISJOINT s {}
\ENDTHEOREM
\THEOREM DISJOINT\_EMPTY\_REFL finite\_sets
|- !s. (s = {}) = DISJOINT s s
\ENDTHEOREM
\THEOREM DISJOINT\_INSERT finite\_sets
|- !x s t. DISJOINT(x INSERT s)t = DISJOINT s t /\ ~x IN t
\ENDTHEOREM
\THEOREM DISJOINT\_SYM finite\_sets
|- !s t. DISJOINT s t = DISJOINT t s
\ENDTHEOREM
\THEOREM DISJOINT\_UNION finite\_sets
|- !s t u. DISJOINT(s UNION t)u = DISJOINT s u /\ DISJOINT t u
\ENDTHEOREM
\THEOREM IN\_DISJOINT finite\_sets
|- !s t. DISJOINT s t = ~(?x. x IN s /\ x IN t)
\ENDTHEOREM
\section{The {\tt CHOICE} and {\tt REST} functions}
\THEOREM CHOICE\_DEF finite\_sets
|- !s. ~(s = {}) ==> (CHOICE s) IN s
\ENDTHEOREM
\THEOREM CHOICE\_INSERT\_REST finite\_sets
|- !s. ~(s = {}) ==> ((CHOICE s) INSERT (REST s) = s)
\ENDTHEOREM
\THEOREM CHOICE\_NOT\_IN\_REST finite\_sets
|- !s. ~(CHOICE s) IN (REST s)
\ENDTHEOREM
\THEOREM CHOICE\_SING finite\_sets
|- !x. CHOICE{x} = x
\ENDTHEOREM
\THEOREM REST\_DEF finite\_sets
|- !s. REST s = s DELETE (CHOICE s)
\ENDTHEOREM
\THEOREM REST\_PSUBSET finite\_sets
|- !s. ~(s = {}) ==> (REST s) PSUBSET s
\ENDTHEOREM
\THEOREM REST\_SING finite\_sets
|- !x. REST{x} = {}
\ENDTHEOREM
\THEOREM REST\_SUBSET finite\_sets
|- !s. (REST s) SUBSET s
\ENDTHEOREM
\THEOREM SING\_IFF\_EMPTY\_REST finite\_sets
|- !s. SING s = ~(s = {}) /\ (REST s = {})
\ENDTHEOREM
\section{Image of a function on a set}
\THEOREM IMAGE\_COMPOSE finite\_sets
|- !f g s. IMAGE(f o g)s = IMAGE f(IMAGE g s)
\ENDTHEOREM
\THEOREM IMAGE\_DELETE finite\_sets
|- !f x s. ~x IN s ==> (IMAGE f(s DELETE x) = IMAGE f s)
\ENDTHEOREM
\THEOREM IMAGE\_EMPTY finite\_sets
|- !f. IMAGE f{} = {}
\ENDTHEOREM
\THEOREM IMAGE\_EQ\_EMPTY finite\_sets
|- !s f. (IMAGE f s = {}) = (s = {})
\ENDTHEOREM
\THEOREM IMAGE\_ID finite\_sets
|- !s. IMAGE(\x. x)s = s
\ENDTHEOREM
\THEOREM IMAGE\_IN finite\_sets
|- !x s. x IN s ==> (!f. (f x) IN (IMAGE f s))
\ENDTHEOREM
\THEOREM IMAGE\_INSERT finite\_sets
|- !f x s. IMAGE f(x INSERT s) = (f x) INSERT (IMAGE f s)
\ENDTHEOREM
\THEOREM IMAGE\_INTER finite\_sets
|- !f s t. (IMAGE f(s INTER t)) SUBSET ((IMAGE f s) INTER (IMAGE f t))
\ENDTHEOREM
\THEOREM IMAGE\_SUBSET finite\_sets
|- !s t. s SUBSET t ==> (!f. (IMAGE f s) SUBSET (IMAGE f t))
\ENDTHEOREM
\THEOREM IMAGE\_UNION finite\_sets
|- !f s t. IMAGE f(s UNION t) = (IMAGE f s) UNION (IMAGE f t)
\ENDTHEOREM
\THEOREM IN\_IMAGE finite\_sets
|- !f s y. y IN (IMAGE f s) = (?x. (y = f x) /\ x IN s)
\ENDTHEOREM
\section{Mappings between sets}
\THEOREM BIJ\_COMPOSE finite\_sets
|- !f g s t u. BIJ f s t /\ BIJ g t u ==> BIJ(g o f)s u
\ENDTHEOREM
\THEOREM BIJ\_DEF finite\_sets
|- !f s t. BIJ f s t = INJ f s t /\ SURJ f s t
\ENDTHEOREM
\THEOREM BIJ\_EMPTY finite\_sets
|- !f. (!s. BIJ f{}s = (s = {})) /\ (!s. BIJ f s{} = (s = {}))
\ENDTHEOREM
\THEOREM BIJ\_ID finite\_sets
|- !s. BIJ(\x. x)s s
\ENDTHEOREM
\THEOREM IMAGE\_SURJ finite\_sets
|- !f s t. SURJ f s t = (IMAGE f s = t)
\ENDTHEOREM
\THEOREM INJ\_COMPOSE finite\_sets
|- !f g s t u. INJ f s t /\ INJ g t u ==> INJ(g o f)s u
\ENDTHEOREM
\THEOREM INJ\_DEF finite\_sets
|- !f s t.
INJ f s t =
(!x. x IN s ==> (f x) IN t) /\
(!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y))
\ENDTHEOREM
\THEOREM INJ\_EMPTY finite\_sets
|- !f. (!s. INJ f{}s) /\ (!s. INJ f s{} = (s = {}))
\ENDTHEOREM
\THEOREM INJ\_ID finite\_sets
|- !s. INJ(\x. x)s s
\ENDTHEOREM
\THEOREM LINV\_DEF finite\_sets
|- !f s t. INJ f s t ==> (!x. x IN s ==> (LINV f s(f x) = x))
\ENDTHEOREM
\THEOREM RINV\_DEF finite\_sets
|- !f s t. SURJ f s t ==> (!x. x IN t ==> (f(RINV f s x) = x))
\ENDTHEOREM
\THEOREM SURJ\_COMPOSE finite\_sets
|- !f g s t u. SURJ f s t /\ SURJ g t u ==> SURJ(g o f)s u
\ENDTHEOREM
\THEOREM SURJ\_DEF finite\_sets
|- !f s t.
SURJ f s t =
(!x. x IN s ==> (f x) IN t) /\
(!x. x IN t ==> (?y. y IN s /\ (f y = x)))
\ENDTHEOREM
\THEOREM SURJ\_EMPTY finite\_sets
|- !f. (!s. SURJ f{}s = (s = {})) /\ (!s. SURJ f s{} = (s = {}))
\ENDTHEOREM
\THEOREM SURJ\_ID finite\_sets
|- !s. SURJ(\x. x)s s
\ENDTHEOREM
\section{Singleton sets}
\THEOREM DELETE\_EQ\_SING finite\_sets
|- !s x. x IN s ==> ((s DELETE x = {}) = (s = {x}))
\ENDTHEOREM
\THEOREM DISJOINT\_SING\_EMPTY finite\_sets
|- !x. DISJOINT{x}{}
\ENDTHEOREM
\THEOREM EQUAL\_SING finite\_sets
|- !x y. ({x} = {y}) = (x = y)
\ENDTHEOREM
\THEOREM INSERT\_SING\_UNION finite\_sets
|- !s x. x INSERT s = {x} UNION s
\ENDTHEOREM
\THEOREM IN\_SING finite\_sets
|- !x y. x IN {y} = (x = y)
\ENDTHEOREM
\THEOREM NOT\_EMPTY\_SING finite\_sets
|- !x. ~({} = {x})
\ENDTHEOREM
\THEOREM NOT\_SING\_EMPTY finite\_sets
|- !x. ~({x} = {})
\ENDTHEOREM
\THEOREM SING finite\_sets
|- !x. SING{x}
\ENDTHEOREM
\THEOREM SING\_DEF finite\_sets
|- !s. SING s = (?x. s = {x})
\ENDTHEOREM
\THEOREM SING\_DELETE finite\_sets
|- !x. {x} DELETE x = {}
\ENDTHEOREM
\section{Cardinality of sets}
\THEOREM CARD\_DEF finite\_sets
|- (CARD{} = 0) /\
(!s x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s)))
\ENDTHEOREM
\THEOREM CARD\_DELETE finite\_sets
|- !s x. CARD(s DELETE x) = (x IN s => (CARD s) - 1 | CARD s)
\ENDTHEOREM
\THEOREM CARD\_DIFF finite\_sets
|- !t s. CARD(s DIFF t) = (CARD s) - (CARD(s INTER t))
\ENDTHEOREM
\THEOREM CARD\_EMPTY finite\_sets
|- CARD{} = 0
\ENDTHEOREM
\THEOREM CARD\_EQ\_0 finite\_sets
|- !s. (CARD s = 0) = (s = {})
\ENDTHEOREM
\THEOREM CARD\_INSERT finite\_sets
|- !s x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s))
\ENDTHEOREM
\THEOREM CARD\_INTER\_LESS\_EQ finite\_sets
|- !s t. (CARD(s INTER t)) <= (CARD s)
\ENDTHEOREM
\THEOREM CARD\_PSUBSET finite\_sets
|- !s t. t PSUBSET s ==> (CARD t) < (CARD s)
\ENDTHEOREM
\THEOREM CARD\_SING finite\_sets
|- !x. CARD{x} = 1
\ENDTHEOREM
\THEOREM CARD\_SUBSET finite\_sets
|- !s t. t SUBSET s ==> (CARD t) <= (CARD s)
\ENDTHEOREM
\THEOREM CARD\_UNION finite\_sets
|- !s t. (CARD(s UNION t)) + (CARD(s INTER t)) = (CARD s) + (CARD t)
\ENDTHEOREM
\THEOREM LESS\_CARD\_DIFF finite\_sets
|- !t s. (CARD t) < (CARD s) ==> 0 < (CARD(s DIFF t))
\ENDTHEOREM
\THEOREM SING\_IFF\_CARD1 finite\_sets
|- !s. SING s = (CARD s = 1)
\ENDTHEOREM
|