File: mk_finite_sets.ml

package info (click to toggle)
hol88 2.02.19940316-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 63,052 kB
  • ctags: 19,365
  • sloc: ml: 199,939; ansic: 9,300; sh: 7,118; makefile: 6,076; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (1794 lines) | stat: -rw-r--r-- 65,942 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
% ===================================================================== %
% LIBRARY: finite_sets (prior to version 1.12 called "sets")		%
% FILE:    mk_sets.ml							%
%									%
% DESCRIPTION: Defines a new type for finite sets and proves properties %
% of sets.  The theory is a formalization of the theory of sets 	%
% presented in chapter 10 of Manna and Waldingers "The Logical Basis of %
% Computer Programming, VOL 1."						%
%									% 
% AUTHORS: Phil Windley, Philippe Leveilley				%
% DATE:    12 May, 1989							%
%									%
% REVISED: Tom Melham (extensively revised and extended)		%
% DATE:    February 1992						%
% ===================================================================== %

% --------------------------------------------------------------------- %
% Create the new theory.						%
% --------------------------------------------------------------------- %
new_theory `finite_sets`;;

% ===================================================================== %
% Type definition.							%
%									%
% The representing type is *->bool.  The representation of the empty 	%
% set is the abstraction \x.F. The insertion operation is represented 	%
% by \x s. (\e. e = x \/ s e), which gives the representation of the 	%
% set obtained by adding the element x to the set s.			%
% ===================================================================== %

% --------------------------------------------------------------------- %
% A predicate s:*->bool represents a finite set iff it is in the 	%
% intersection of all classes of such predicates that contain the 	%
% representation of empty and are closed under the representation of 	%
% insert operation.  Hence s:*->bool is finite if it can be obtained 	%
% by applying a finite sequence of insert operations to the empty set.	%
% The following proofs derive the existence of a predicate IS_SET_REP   %
% that expresses this definition.					%
% --------------------------------------------------------------------- %

% --------------------------------------------------------------------- %
% Abbreviation for IS_SET_REP.						%
% --------------------------------------------------------------------- %

let IS_SET_REP =
    "\s:*->bool.
     !P. P (\x.F) /\ (!t. P t ==> !x. P(\y. (y=x) \/ t y)) ==> P s";;

% --------------------------------------------------------------------- %
% The predicate \x.F represents the empty set (IS_SET_REP holds of it). %
% --------------------------------------------------------------------- %

let IS_SET_REP_EMPTY =
    TAC_PROOF
    (([], "^IS_SET_REP (\x:*.F)"),
     CONV_TAC BETA_CONV THEN REPEAT STRIP_TAC);;


% --------------------------------------------------------------------- %
% Set representations are closed under the insertion function.		%
% --------------------------------------------------------------------- %

let INSERTION_PRESERVES_IS_SET_REP =
    TAC_PROOF
    (([], "!s:*->bool. ^IS_SET_REP s ==> !x. ^IS_SET_REP (\y.(y=x) \/ s y)"),
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC THEN RES_TAC THEN
     RES_THEN MATCH_ACCEPT_TAC);;

% --------------------------------------------------------------------- %    
% IS_SET_REP is true of the smallest such class of sets.		%
% --------------------------------------------------------------------- %

let REP_INDUCT =
    TAC_PROOF
    (([], "!P. (P(\x:*.F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y)))) ==>
               !s:*->bool. ^IS_SET_REP s ==> P s"),
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC THEN RES_TAC);;

% --------------------------------------------------------------------- %
% IS_SET_REP is precisely the predicate with these three properties.    %
% --------------------------------------------------------------------- %

let IS_SET_REP_EXISTS =
    TAC_PROOF
    (([], "?IS_SET_REP:(*->bool)->bool.
            (IS_SET_REP \x.F) /\
            (!s. IS_SET_REP s ==> !x. IS_SET_REP (\y.(y=x) \/ s y)) /\
            (!P. (P(\x:*.F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y)))) ==>
                 !s:*->bool. IS_SET_REP s ==> P s)"),
     EXISTS_TAC IS_SET_REP THEN
     REPEAT CONJ_TAC THENL
     [ACCEPT_TAC IS_SET_REP_EMPTY;
      ACCEPT_TAC INSERTION_PRESERVES_IS_SET_REP;
      ACCEPT_TAC REP_INDUCT]);;

% --------------------------------------------------------------------- %
% Define IS_SET_REP to be this predicate.				%
% --------------------------------------------------------------------- %

let IS_SET_REP =
    new_specification `IS_SET_REP`
       [`constant`,`IS_SET_REP`] IS_SET_REP_EXISTS;;
   
% --------------------------------------------------------------------- %
% A slightly stronger induction theorem.				%
% --------------------------------------------------------------------- %

let STRONG_SET_REP_INDUCT =
    TAC_PROOF
    (([], "!P:(*->bool)->bool.
             (P(\x:*. F) /\
             (!t. IS_SET_REP t ==> P t ==> (!x. P(\y. (y = x) \/ t y)))) ==>
               (!s. IS_SET_REP s ==> P s)"),
     let [th1;th2;th3] = CONJUNCTS IS_SET_REP in
     GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN
     let th4 = BETA_RULE (SPEC "\s:*->bool. IS_SET_REP s /\ P s" th3) in
     let th5 = CONJUNCT2 (UNDISCH (SPEC "s:*->bool" (UNDISCH th4))) in
     let th6 = DISCH "IS_SET_REP (s:*->bool)" th5 in
     MATCH_MP_TAC (DISCH_ALL th6) THEN CONJ_TAC THENL
     [ASM_REWRITE_TAC [th1];
      REPEAT STRIP_TAC THENL
      [IMP_RES_TAC th2; RES_TAC] THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;

% --------------------------------------------------------------------- %
% Theorem stating that the representing type is non empty.		%
% --------------------------------------------------------------------- %

let EXISTENCE_THM =
    TAC_PROOF
    (([], "?(s:*->bool) . IS_SET_REP s"),
     EXISTS_TAC "\x:*.F" THEN
     REWRITE_TAC [IS_SET_REP]);;

% --------------------------------------------------------------------- %
% Now, make the type definition.					%
% --------------------------------------------------------------------- %

let set_TY_DEF = 
    new_type_definition
    (`set`,"IS_SET_REP:(*->bool)->bool", EXISTENCE_THM);;

% ========================================================================== %
% Abstract characterization of the type (*)set.  This consists of three      %
% constants EMPTY, IN, and INSERT which satisfy:			     %
%									     %
%  NOT_IN_EMPTY    |- !x. ~(IN x EMPTY))                                     %
%  IN_INSERT       |- !x y s. IN x (INSERT y s) = ((x=y) \/ IN x s)          %
%  INSERT_INSERT   |- !x s. INSERT x (INSERT x s) = INSERT x s		     %
%  INSERT_COMM     |- !x y s. INSERT x (INSERT y s) = INSERT y (INSERT x s)  %
%  SET_INDUCT      |- !P:(*)set->bool.					     %
%                       (P EMPTY /\ !s. P s ==> !e. P(INSERT e s))	     %
%                       ==> !s. P s					     %
% ========================================================================== %

let EXISTENCE_LEMMA =
    TAC_PROOF
    (([], "?EMPTY:(*)set.
           ?INSERT:*->(*)set->(*)set.
           ?IN:*->(*)set->bool.
             (!x. ~(IN x EMPTY)) /\
             (!x y s. IN x (INSERT y s) = ((x=y) \/ IN x s)) /\ 
             (!x s. INSERT x (INSERT x s) = INSERT x s) /\
             (!x y s. INSERT x (INSERT y s) = INSERT y (INSERT x s)) /\
             (!P:(*)set->bool.
              (P EMPTY /\ !s. P s ==> !e. P(INSERT e s)) ==> !s. P s)"),
     let thm = MATCH_MP ABS_REP_THM set_TY_DEF in
     STRIP_ASSUME_TAC thm THEN
     EXISTS_TAC "abs (\x:*.F) :(*)set" THEN
     EXISTS_TAC "\x:*. \s:(*)set. abs (\y. (y=x) \/ (rep s y)):(*)set" THEN
     EXISTS_TAC "\x:*. \s:(*)set. (rep s:*->bool) x" THEN
     CONV_TAC (DEPTH_CONV BETA_CONV) THEN
     let [th1;th2;th3] = CONJUNCTS IS_SET_REP in
     REPEAT (CONJ_TAC ORELSE GEN_TAC) THENL
     [ASSUME_TAC th1 THEN RES_THEN SUBST1_TAC THEN
      CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN REPEAT STRIP_TAC;
      let th4 = SYM(BETA_CONV "(\y':*. (y' = y) \/ rep (s:(*)set) y') x") in
      SUBST1_TAC th4 THEN AP_THM_TAC THEN
      FIRST_ASSUM (\th. REWRITE_TAC [SYM (SPEC "r:*->bool" th)]) THEN
      MATCH_MP_TAC th2 THEN ASM_REWRITE_TAC [];
      FIRST_ASSUM (\th.
       let th4 = SPEC "rep (s:(*)set):*->bool" th in
       let as1 = ASSUME "!a:(*)set.abs(rep a:*->bool) = a" in
       let th5 = SPEC "x:*" (MATCH_MP th2 (REWRITE_RULE [as1] th4)) in
       ASSUME_TAC th5 THEN RES_THEN SUBST1_TAC THEN
       CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
       REWRITE_TAC [DISJ_ASSOC]);
      FIRST_ASSUM (\th.
       let th4 = SPEC "rep (s:(*)set):*->bool" th in
       let as1 = ASSUME "!a:(*)set.abs(rep a:*->bool) = a" in
       let th5 = MATCH_MP th2 (REWRITE_RULE [as1] th4) in
       ASSUME_TAC (SPEC "x:*" th5) THEN ASSUME_TAC (SPEC "y:*" th5) THEN
       RES_THEN SUBST1_TAC THEN
       CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
       PURE_ONCE_REWRITE_TAC [DISJ_ASSOC] THEN
       let disj = ISPEC "x:* = y" DISJ_SYM in
       CONV_TAC (RAND_CONV (ONCE_DEPTH_CONV (REWR_CONV disj))) THEN
       REFL_TAC);
      REPEAT STRIP_TAC THEN
      let th4 = STRONG_SET_REP_INDUCT in
      let th5 = BETA_RULE (SPEC "\r:*->bool. P(abs r:(*)set):bool" th4) in
      let th6 = SPEC "rep (s:(*)set):*->bool" (UNDISCH th5) in
      MP_TAC (DISCH_ALL th6) THEN ASM_REWRITE_TAC [] THEN
      DISCH_THEN MATCH_MP_TAC THEN GEN_TAC THEN
      DISCH_THEN (SUBST1_TAC o SYM) THEN
      ASM_REWRITE_TAC []]);;

% --------------------------------------------------------------------- %
% Now, define EMPTY, IN and INSERT.					%
% --------------------------------------------------------------------- %

let FINITE_SET_DEF = 
    new_specification `FINITE_SET_DEF`
    [`constant`,`EMPTY`;`infix`,`INSERT`;`infix`,`IN`]
    EXISTENCE_LEMMA;;    
    
% --------------------------------------------------------------------- %
% Set up the {x1,...,xn} notation.					%
% --------------------------------------------------------------------- %
define_finite_set_syntax(`EMPTY`,`INSERT`);;

% --------------------------------------------------------------------- %
% Save the first four conjuncts of FINITE_SET_DEF under separate names. %
% --------------------------------------------------------------------- %

let [NOT_IN_EMPTY;IN_INSERT;INSERT_INSERT;INSERT_COMM;_] =
    CONJUNCTS FINITE_SET_DEF;;

save_thm(`NOT_IN_EMPTY`,NOT_IN_EMPTY);;
save_thm(`IN_INSERT`,IN_INSERT);;
save_thm(`INSERT_INSERT`,INSERT_INSERT);;
save_thm(`INSERT_COMM`,INSERT_COMM);;

% ===================================================================== %
% Basic theorems needed to prove EXTENSION.				%
% ===================================================================== %

let COMPONENT =
    prove_thm
    (`COMPONENT`,
     "!x:*.!s. x IN (x INSERT s)",
     REWRITE_TAC [IN_INSERT]);;

let NOT_EMPTY_INSERT =
    prove_thm
    (`NOT_EMPTY_INSERT`,
     "!x:*. !s. ~({} = x INSERT s)",
     REPEAT GEN_TAC THEN
     DISCH_THEN (MP_TAC o (AP_TERM "IN (x:*)")) THEN
     REWRITE_TAC [IN_INSERT;NOT_IN_EMPTY]);;

let NOT_INSERT_EMPTY =
    save_thm
    (`NOT_INSERT_EMPTY`,
     CONV_RULE (ONCE_DEPTH_CONV SYM_CONV) NOT_EMPTY_INSERT);;

let lemma =
    TAC_PROOF
    (([], "!x:*. !s. x IN s ==> (x INSERT s = s)"),
     let ind = el 5 (CONJUNCTS FINITE_SET_DEF) in
     GEN_TAC THEN INDUCT_THEN ind ASSUME_TAC THENL
     [REWRITE_TAC [NOT_IN_EMPTY];
      PURE_ONCE_REWRITE_TAC [IN_INSERT] THEN
      REPEAT STRIP_TAC THENL
      [ASM_REWRITE_TAC [INSERT_INSERT];
       PURE_ONCE_REWRITE_TAC [INSERT_COMM] THEN
       RES_THEN SUBST1_TAC THEN REFL_TAC]]);;

let ABSORPTION =
    prove_thm
    (`ABSORPTION`,
     "!x:*. !s. x IN s = (x INSERT s = s)",
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [MATCH_ACCEPT_TAC lemma;
      DISCH_THEN (SUBST1_TAC o SYM) THEN
      MATCH_ACCEPT_TAC COMPONENT]);;

% ===================================================================== %
% Finite set induction: strong form.					%
% ===================================================================== %

let SET_INDUCT = 
    prove_thm
    (`SET_INDUCT`,
     "!P:(*)set->bool.
      (P EMPTY /\ !s. P s ==> !e. ~(e IN s) ==> P(INSERT e s)) ==> !s. P s",
     let ind = el 5 (CONJUNCTS FINITE_SET_DEF) in
     REPEAT STRIP_TAC THEN MATCH_MP_TAC ind THEN
     REPEAT STRIP_TAC THENL
     [FIRST_ASSUM ACCEPT_TAC;
      ASM_CASES_TAC "(e:*) IN s" THENL
      [IMP_RES_THEN SUBST1_TAC ABSORPTION THEN
       FIRST_ASSUM ACCEPT_TAC;
       RES_TAC]]);;

% --------------------------------------------------------------------- %
% Load the set induction tactic in... uncompiled.			%
% --------------------------------------------------------------------- %

loadt `set_ind.ml`;;

% ===================================================================== %
% Axiom of extension.							%
% ===================================================================== %

% --------------------------------------------------------------------- %
% First, prove DECOMPOSITION.						%
% --------------------------------------------------------------------- %

let DECOMPOSITION =
    prove_thm
    (`DECOMPOSITION`,
     "!s:(*)set. !x. x IN s = ?t. (s = x INSERT t) /\ ~x IN t",
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [MAP_EVERY (SPEC_TAC o (\x.(x,x))) ["x:*";"s:(*)set"] THEN
      SET_INDUCT_TAC THENL
      [REWRITE_TAC [NOT_IN_EMPTY];
       PURE_ONCE_REWRITE_TAC [IN_INSERT] THEN
       REPEAT STRIP_TAC THENL
       [EXISTS_TAC "s:(*)set" THEN ASM_REWRITE_TAC [];
        RES_TAC THEN EXISTS_TAC "(e:*) INSERT t" THEN
        FIRST_ASSUM SUBST1_TAC THEN CONJ_TAC THENL
        [MATCH_ACCEPT_TAC INSERT_COMM;
         ASM_REWRITE_TAC [IN_INSERT] THEN
         DISCH_THEN SUBST_ALL_TAC THEN RES_TAC]]];
      STRIP_TAC THEN ASM_REWRITE_TAC [IN_INSERT]]);;


% --------------------------------------------------------------------- %
% And prove MEMBER_NOT_EMPTY						%
% --------------------------------------------------------------------- %

let MEMBER_NOT_EMPTY = 
    prove_thm
    (`MEMBER_NOT_EMPTY`,
     "!s:(*)set. (?x. x IN s) = ~(s = {})",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [NOT_IN_EMPTY];
      REWRITE_TAC [NOT_INSERT_EMPTY;IN_INSERT] THEN
      EXISTS_TAC "e:*" THEN REWRITE_TAC []]);;

% --------------------------------------------------------------------- %
% Now, the axiom of EXTENSION.						%
% --------------------------------------------------------------------- %

let lemma =
    TAC_PROOF
    (([], "!s t. (!x:*. x IN s = x IN t) ==> (s = t)"),
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [NOT_IN_EMPTY] THEN
      CONV_TAC (ONCE_DEPTH_CONV FORALL_NOT_CONV) THEN
      REWRITE_TAC [MEMBER_NOT_EMPTY] THEN
      GEN_TAC THEN DISCH_THEN (ACCEPT_TAC o SYM);
      REPEAT STRIP_TAC THEN
      ASSUME_TAC (SPECL ["e:*";"s:(*)set"] COMPONENT) THEN
      RES_TAC THEN IMP_RES_TAC DECOMPOSITION THEN
      SUBST_ALL_TAC (ASSUME "t = (e:*) INSERT t'") THEN
      AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
      GEN_TAC THEN
      FIRST_ASSUM (\th.
       let eqn = REWRITE_RULE [IN_INSERT] (SPEC "x:*" th) in
       ASSUME_TAC (GEN_ALL eqn)) THEN
      EQ_TAC THEN STRIP_TAC THEN RES_TAC THEN
      SUBST_ALL_TAC (ASSUME "x:* = e") THEN RES_TAC]);;

let EXTENSION =
    prove_thm
    (`EXTENSION`,
     "!s t. (s=t) = (!x:*. x IN s = x IN t)",
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [DISCH_THEN SUBST1_TAC THEN GEN_TAC THEN REFL_TAC;
      MATCH_ACCEPT_TAC lemma]);;

let NOT_EQUAL_SETS = 
    prove_thm
    (`NOT_EQUAL_SETS`,
     "!s:(*)set. !t. ~(s = t) = ?x. x IN t = ~x IN s",
     PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     REPEAT STRIP_TAC THEN EQ_TAC THENL
     [DISCH_THEN (STRIP_THM_THEN MP_TAC) THEN
      ASM_CASES_TAC "(x:*) IN s" THEN ASM_REWRITE_TAC [] THEN
      REPEAT STRIP_TAC THEN EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[];
      STRIP_TAC THEN EXISTS_TAC "x:*" THEN 
      ASM_CASES_TAC "(x:*) IN s" THEN ASM_REWRITE_TAC []]);;


% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %

let NUM_SET_WOP =
    prove_thm
    (`NUM_SET_WOP`,
     "!s. (?n. n IN s) = ?n. n IN s /\ (!m. m IN s ==> n <= m)",
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [let th = BETA_RULE (ISPEC "\n:num. n IN s" WOP) in
      IMP_RES_THEN (X_CHOOSE_THEN "N:num" STRIP_ASSUME_TAC) th THEN
      EXISTS_TAC "N:num" THEN CONJ_TAC THENL
      [FIRST_ASSUM ACCEPT_TAC;
       GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN
       ASM_REWRITE_TAC [GSYM NOT_LESS]];
      EXISTS_TAC "n:num" THEN FIRST_ASSUM ACCEPT_TAC]);;


% --------------------------------------------------------------------- %
% Cases theorem for EMPTY and INSERT.					%
% --------------------------------------------------------------------- %

let SET_CASES = 
    prove_thm
    (`SET_CASES`,
     "!s:(*)set. (s = {}) \/ ?x:*. ?t. ((s = x INSERT t) /\ ~x IN t)",
     SET_INDUCT_TAC THENL
     [DISJ1_TAC THEN REFL_TAC;
      DISJ2_TAC THEN
      MAP_EVERY EXISTS_TAC ["e:*";"s:(*)set"] THEN
      ASM_REWRITE_TAC []]);;

% ===================================================================== %
% Set inclusion.							%
% ===================================================================== %

let SUBSET_DEF = new_infix_definition
    (`SUBSET_DEF`, "SUBSET s t =  !x:*. x IN s ==> x IN t");;

let SUBSET_TRANS = prove_thm
    (`SUBSET_TRANS`,
     "!(s:(*)set) t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u",
     REWRITE_TAC [SUBSET_DEF] THEN
     REPEAT STRIP_TAC THEN
     REPEAT (FIRST_ASSUM MATCH_MP_TAC) THEN
     FIRST_ASSUM ACCEPT_TAC);;

let SUBSET_REFL = prove_thm
    (`SUBSET_REFL`,
     "!(s:(*)set). s SUBSET s",
     REWRITE_TAC[SUBSET_DEF]);;

let SUBSET_ANTISYM = prove_thm
    (`SUBSET_ANTISYM`,
     "!(s:(*)set) t. (s SUBSET t) /\ (t SUBSET s) ==> (s = t)",
     REWRITE_TAC [SUBSET_DEF; EXTENSION] THEN
     REPEAT STRIP_TAC THEN
     EQ_TAC THEN 
     FIRST_ASSUM MATCH_ACCEPT_TAC);;

let EMPTY_SUBSET = 
    prove_thm
    (`EMPTY_SUBSET`,
     "!s:(*)set. EMPTY SUBSET s",
     REWRITE_TAC [SUBSET_DEF;NOT_IN_EMPTY]);;

let SUBSET_EMPTY = 
    prove_thm
    (`SUBSET_EMPTY`,
     "!s:(*)set. s SUBSET EMPTY = (s = EMPTY)",
     PURE_REWRITE_TAC [SUBSET_DEF;NOT_IN_EMPTY] THEN
     REWRITE_TAC [EXTENSION;NOT_IN_EMPTY]);;

let INSERT_SUBSET = 
    prove_thm
    (`INSERT_SUBSET`,
     "!x:*. !s t. (x INSERT s) SUBSET t = (x IN t /\ s SUBSET t)",
     REWRITE_TAC [IN_INSERT;SUBSET_DEF] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL 
     [FIRST_ASSUM MATCH_MP_TAC THEN DISJ1_TAC THEN REFL_TAC;
      FIRST_ASSUM MATCH_MP_TAC THEN DISJ2_TAC THEN FIRST_ASSUM ACCEPT_TAC;
      ASM_REWRITE_TAC [];
      RES_TAC]);;

let SUBSET_INSERT = 
    prove_thm
    (`SUBSET_INSERT`,
     "!x:*. !s. ~(x IN s) ==> !t. s SUBSET (x INSERT t) = s SUBSET t",
     PURE_REWRITE_TAC [SUBSET_DEF;IN_INSERT] THEN
     REPEAT STRIP_TAC THEN EQ_TAC THENL
     [REPEAT STRIP_TAC THEN
      let tac th g = SUBST_ALL_TAC th g ? STRIP_ASSUME_TAC th g in
      RES_THEN (STRIP_THM_THEN tac) THEN RES_TAC;
      REPEAT STRIP_TAC THEN DISJ2_TAC THEN
      FIRST_ASSUM MATCH_MP_TAC THEN
      FIRST_ASSUM ACCEPT_TAC]);;

% ===================================================================== %
% Proper subset.							%
% ===================================================================== %

let PSUBSET_DEF = 
    new_infix_definition
    (`PSUBSET_DEF`, "PSUBSET (s:(*)set) t = (s SUBSET t /\ ~(s = t))");;

let PSUBSET_TRANS =
    prove_thm
    (`PSUBSET_TRANS`,
     "!s:(*)set. !t u. (s PSUBSET t /\ t PSUBSET u) ==> (s PSUBSET u)",
     PURE_ONCE_REWRITE_TAC [PSUBSET_DEF] THEN
     REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
     [IMP_RES_TAC SUBSET_TRANS;
      DISCH_THEN SUBST_ALL_TAC THEN 
      IMP_RES_TAC SUBSET_ANTISYM THEN
      RES_TAC]);;

let PSUBSET_IRREFL = 
    prove_thm
    (`PSUBSET_IRREFL`,
     "!s:(*)set. ~(s PSUBSET s)",
     REWRITE_TAC [PSUBSET_DEF;SUBSET_REFL]);;

let NOT_PSUBSET_EMPTY = 
    prove_thm
    (`NOT_PSUBSET_EMPTY`,
     "!s:(*)set. ~(s PSUBSET EMPTY)",
     REWRITE_TAC [PSUBSET_DEF;SUBSET_EMPTY;NOT_AND]);;

let PSUBSET_INSERT_SUBSET = 
    prove_thm
    (`PSUBSET_INSERT_SUBSET`,
     "!s t. s PSUBSET t = ?x:*. ~(x IN s) /\ (x INSERT s) SUBSET t",
     PURE_REWRITE_TAC [PSUBSET_DEF;NOT_EQUAL_SETS] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [ASM_CASES_TAC "(x:*) IN s" THENL
      [ASM_CASES_TAC "(x:*) IN t" THENL
       [RES_TAC; IMP_RES_TAC SUBSET_DEF THEN RES_TAC];
       EXISTS_TAC "x:*" THEN RES_TAC THEN
       ASM_REWRITE_TAC [INSERT_SUBSET]];
      IMP_RES_TAC INSERT_SUBSET;
      IMP_RES_TAC INSERT_SUBSET THEN
      EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[]]);;


let lemma = 
    TAC_PROOF(([], "~(a:bool = b) = (b = ~a)"),
    BOOL_CASES_TAC "b:bool" THEN REWRITE_TAC[]);;    

let PSUBSET_MEMBER = 
    prove_thm
    (`PSUBSET_MEMBER`,
     "!s:(*)set. !t. s PSUBSET t = (s SUBSET t /\ ?y. y IN t /\ ~y IN s)",
     REPEAT GEN_TAC THEN PURE_ONCE_REWRITE_TAC [PSUBSET_DEF] THEN
     PURE_ONCE_REWRITE_TAC [EXTENSION;SUBSET_DEF] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     PURE_ONCE_REWRITE_TAC [lemma] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [RES_TAC;
      EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [] THEN
      ASM_CASES_TAC "(x:*) IN s" THENL
       [RES_TAC THEN RES_TAC;FIRST_ASSUM ACCEPT_TAC];
      RES_TAC;
      EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[]]);;

% ===================================================================== %
% Union.								%
% ===================================================================== %

let UNION_EXISTS =
    TAC_PROOF
    (([], "!s t. ?u. !x:*. x IN u = x IN s \/ x IN t"),
     SET_INDUCT_TAC THEN GEN_TAC THENL
     [EXISTS_TAC "t:(*)set" THEN
      REWRITE_TAC [NOT_IN_EMPTY];
      FIRST_ASSUM (STRIP_ASSUME_TAC o SPEC "t:(*)set") THEN
      EXISTS_TAC "(e:*) INSERT u" THEN
      ASM_REWRITE_TAC [IN_INSERT;DISJ_ASSOC]]);;

let IN_UNION =
    let th1 = CONV_RULE SKOLEM_CONV UNION_EXISTS in
    new_specification `IN_UNION` [`infix`,`UNION`] th1;;

let UNION_ASSOC =
    prove_thm
    (`UNION_ASSOC`,
     "!(s:(*)set) t u. (s UNION t) UNION u = s UNION (t UNION u)",
     REWRITE_TAC [EXTENSION; IN_UNION] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
     ASM_REWRITE_TAC[]);;

let UNION_IDEMPOT =
    prove_thm
    (`UNION_IDEMPOT`,
     "!(s:(*)set). s UNION s = s",
     REWRITE_TAC[EXTENSION; IN_UNION]);;

let UNION_COMM =
    prove_thm
    (`UNION_COMM`,
     "!(s:(*)set) t. s UNION t = t UNION s",
     REWRITE_TAC[EXTENSION; IN_UNION] THEN
     REPEAT GEN_TAC THEN MATCH_ACCEPT_TAC DISJ_SYM);;

let SUBSET_UNION = 
    prove_thm
    (`SUBSET_UNION`,
     "(!s:(*)set. !t. s SUBSET (s UNION t)) /\ 
      (!s:(*)set. !t. s SUBSET (t UNION s))",
     PURE_REWRITE_TAC [SUBSET_DEF;IN_UNION] THEN
     REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;

let SUBSET_UNION_ABSORPTION = 
    prove_thm
    (`SUBSET_UNION_ABSORPTION`,
     "!s:(*)set. !t. s SUBSET t = (s UNION t = t)",
     REWRITE_TAC [SUBSET_DEF;EXTENSION;IN_UNION] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [RES_TAC;ASM_REWRITE_TAC[];RES_TAC]);;

let UNION_EMPTY = 
    prove_thm
    (`UNION_EMPTY`,
     "(!s:(*)set. EMPTY UNION s = s) /\
      (!s:(*)set. s UNION EMPTY = s)",
     REWRITE_TAC [IN_UNION;EXTENSION;NOT_IN_EMPTY]);;

let EMPTY_UNION = 
    prove_thm
    (`EMPTY_UNION`,
     "!s:(*)set. !t. (s UNION t = EMPTY) = ((s = EMPTY) /\ (t = EMPTY))",
     REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_UNION;DE_MORGAN_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN RES_TAC);;

let INSERT_UNION = 
    prove_thm
    (`INSERT_UNION`,
     "!x:*. !s t. 
      (x INSERT s) UNION t = (x IN t => s UNION t | x INSERT (s UNION t))",
     REPEAT GEN_TAC THEN COND_CASES_TAC THEN
     ASM_REWRITE_TAC [EXTENSION;IN_UNION;IN_INSERT] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC []);;

let INSERT_UNION_EQ = 
    prove_thm
    (`INSERT_UNION_EQ`,
     "!x:*. !s t. (x INSERT s) UNION t = x INSERT (s UNION t)",
     REPEAT GEN_TAC THEN 
     REWRITE_TAC [EXTENSION;IN_UNION;IN_INSERT;DISJ_ASSOC]);;


% ===================================================================== %
% Intersection.								%
% ===================================================================== %

let INTER_EXISTS =
    TAC_PROOF
    (([], "!s t. ?i. !x:*. x IN i = x IN s /\ x IN t"),
     SET_INDUCT_TAC THEN GEN_TAC THENL
     [EXISTS_TAC "{}:(*)set" THEN
      REWRITE_TAC [NOT_IN_EMPTY];
      FIRST_ASSUM (STRIP_ASSUME_TAC o SPEC "t:(*)set") THEN
      ASM_CASES_TAC "(e:*) IN t" THENL
      [EXISTS_TAC "(e:*) INSERT i" THEN GEN_TAC THEN
       ASM_CASES_TAC "x:* = e" THEN
       ASM_REWRITE_TAC [IN_INSERT];
       EXISTS_TAC "i:(*)set" THEN GEN_TAC THEN
       ASM_CASES_TAC "x:* = e" THEN
       ASM_REWRITE_TAC [IN_INSERT]]]);;

let IN_INTER =
    let th1 = CONV_RULE SKOLEM_CONV INTER_EXISTS in
    new_specification `IN_INTER` [`infix`,`INTER`] th1;;

let INTER_ASSOC = prove_thm
    (`INTER_ASSOC`,
     "!(s:(*)set) t u. (s INTER t) INTER u = s INTER (t INTER u)",
     REWRITE_TAC [EXTENSION; IN_INTER; CONJ_ASSOC]);;

let INTER_IDEMPOT = prove_thm
    (`INTER_IDEMPOT`,
     "!(s:(*)set). s INTER s = s",
     REWRITE_TAC[EXTENSION; IN_INTER]);;

let INTER_COMM = prove_thm
    (`INTER_COMM`,
     "!(s:(*)set) t. s INTER t = t INTER s",
     REWRITE_TAC[EXTENSION; IN_INTER] THEN
     REPEAT GEN_TAC THEN
     MATCH_ACCEPT_TAC CONJ_SYM);;

let INTER_SUBSET = 
    prove_thm
    (`INTER_SUBSET`,
     "(!s:(*)set. !t. (s INTER t) SUBSET s) /\ 
      (!s:(*)set. !t. (t INTER s) SUBSET s)",
     PURE_REWRITE_TAC [SUBSET_DEF;IN_INTER] THEN
     REPEAT STRIP_TAC);;

let SUBSET_INTER_ABSORPTION = 
    prove_thm
    (`SUBSET_INTER_ABSORPTION`,
     "!s:(*)set. !t. s SUBSET t = (s INTER t = s)",
     REWRITE_TAC [SUBSET_DEF;EXTENSION;IN_INTER] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [FIRST_ASSUM ACCEPT_TAC; RES_TAC; RES_TAC]);;

let INTER_EMPTY = 
    prove_thm
    (`INTER_EMPTY`,
     "(!s:(*)set. EMPTY INTER s = EMPTY) /\
      (!s:(*)set. s INTER EMPTY = EMPTY)",
     REWRITE_TAC [IN_INTER;EXTENSION;NOT_IN_EMPTY]);;

let INSERT_INTER = 
    prove_thm
    (`INSERT_INTER`,
     "!x:*. !s t. 
      (x INSERT s) INTER t = (x IN t => x INSERT (s INTER t) | s INTER t)",
     REPEAT GEN_TAC THEN COND_CASES_TAC THEN 
     ASM_REWRITE_TAC [EXTENSION;IN_INTER;IN_INSERT] THEN
     GEN_TAC THEN EQ_TAC THENL
     [STRIP_TAC THEN ASM_REWRITE_TAC [];
      STRIP_TAC THEN ASM_REWRITE_TAC [];
      PURE_ONCE_REWRITE_TAC [CONJ_SYM] THEN
      DISCH_THEN (CONJUNCTS_THEN MP_TAC) THEN
      STRIP_TAC THEN ASM_REWRITE_TAC [];
      STRIP_TAC THEN ASM_REWRITE_TAC []]);;


% ===================================================================== %
% Distributivity							%
% ===================================================================== %

let UNION_OVER_INTER = prove_thm
   (`UNION_OVER_INTER`,
    "!s:(*)set. !t u. 
      s INTER (t UNION u) = (s INTER t) UNION (s INTER u)",
    REWRITE_TAC [EXTENSION;IN_INTER;IN_UNION] THEN
    REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN 
    ASM_REWRITE_TAC[]);;

let INTER_OVER_UNION = prove_thm
   (`INTER_OVER_UNION`,
    "!s:(*)set. !t u. 
      s UNION (t INTER u) = (s UNION t) INTER (s UNION u)",
    REWRITE_TAC [EXTENSION;IN_INTER;IN_UNION] THEN
    REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN 
    ASM_REWRITE_TAC[]);;


% ===================================================================== %
% Disjoint sets.							%
% ===================================================================== %

let DISJOINT_DEF = 
    new_definition 
    (`DISJOINT_DEF`, "DISJOINT (s:(*)set) t = ((s INTER t) = EMPTY)");;

let IN_DISJOINT = 
    prove_thm
    (`IN_DISJOINT`,
     "!s:(*)set. !t. DISJOINT s t = ~(?x. x IN s /\ x IN t)",
     REWRITE_TAC [DISJOINT_DEF;EXTENSION;IN_INTER;NOT_IN_EMPTY] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
     REPEAT GEN_TAC THEN REFL_TAC);;

let DISJOINT_SYM = 
    prove_thm
    (`DISJOINT_SYM`,
     "!s:(*)set. !t. DISJOINT s t = DISJOINT t s",
     PURE_ONCE_REWRITE_TAC [DISJOINT_DEF] THEN REPEAT GEN_TAC THEN 
     SUBST1_TAC (SPECL ["s:(*)set";"t:(*)set"] INTER_COMM) THEN REFL_TAC);;

% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let DISJOINT_EMPTY =
    prove_thm
    (`DISJOINT_EMPTY`,
     "!s:(*)set. DISJOINT EMPTY s /\ DISJOINT s EMPTY",
     REWRITE_TAC [DISJOINT_DEF;INTER_EMPTY]);;

let DISJOINT_EMPTY_REFL = 
    prove_thm
    (`DISJOINT_EMPTY_REFL`,
     "!s:(*)set. (s = EMPTY) = (DISJOINT s s)",
     REWRITE_TAC [DISJOINT_DEF;INTER_IDEMPOT]);;

% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let DISJOINT_INSERT =
    prove_thm
    (`DISJOINT_INSERT`,
     "!(x:*) s t. DISJOINT (x INSERT s) t = (DISJOINT s t) /\ ~(x IN t)",
     REWRITE_TAC [IN_DISJOINT;IN_INSERT] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
     REWRITE_TAC [DE_MORGAN_THM] THEN
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [(let v = genvar ":*" in let GTAC = X_GEN_TAC v in
       DISCH_THEN (\th. CONJ_TAC THENL [GTAC;ALL_TAC] THEN MP_TAC th) THENL
       [DISCH_THEN (STRIP_ASSUME_TAC o SPEC v) THEN ASM_REWRITE_TAC [];
        DISCH_THEN (MP_TAC o SPEC "x:*") THEN REWRITE_TAC[]]);
      REPEAT STRIP_TAC THEN ASM_CASES_TAC "x':* = x" THENL
      [ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]]]);;


% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let DISJOINT_UNION =
    prove_thm
    (`DISJOINT_UNION`,
     "!s:(*)set. !t u. DISJOINT (s UNION t) u = DISJOINT s u /\ DISJOINT t u",
     REWRITE_TAC [IN_DISJOINT;IN_UNION] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
     CONV_TAC (ONCE_DEPTH_CONV AND_FORALL_CONV) THEN
     REWRITE_TAC [DE_MORGAN_THM;RIGHT_AND_OVER_OR] THEN
     REPEAT GEN_TAC THEN EQ_TAC THEN
     DISCH_THEN (\th. GEN_TAC THEN STRIP_ASSUME_TAC (SPEC "x:*" th)) THEN
     ASM_REWRITE_TAC []);;

% ===================================================================== %
% Set difference							%
% ===================================================================== %

let DIFF_EXISTS =
    TAC_PROOF
    (([], "!s t. ?d. !x:*. x IN d = x IN s /\ ~x IN t"),
     SET_INDUCT_TAC THEN GEN_TAC THENL
     [EXISTS_TAC "{}:(*)set" THEN
      REWRITE_TAC [NOT_IN_EMPTY];
      FIRST_ASSUM (STRIP_ASSUME_TAC o SPEC "t:(*)set") THEN
      ASM_CASES_TAC "(e:*) IN t" THENL
      [EXISTS_TAC "d:(*)set" THEN GEN_TAC THEN
       ASM_CASES_TAC "x:* = e" THEN
       ASM_REWRITE_TAC [IN_INSERT];
       EXISTS_TAC "e INSERT (d:(*)set)" THEN GEN_TAC THEN
       ASM_CASES_TAC "x:* = e" THEN
       ASM_REWRITE_TAC [IN_INSERT]]]);;

let IN_DIFF =
    let th1 = CONV_RULE SKOLEM_CONV DIFF_EXISTS in
    new_specification `IN_DIFF` [`infix`,`DIFF`] th1;;

let DIFF_EMPTY = 
    prove_thm
    (`DIFF_EMPTY`,
     "!s:(*)set. s DIFF EMPTY = s",
     GEN_TAC THEN
     REWRITE_TAC [NOT_IN_EMPTY;IN_DIFF;EXTENSION]);;

let EMPTY_DIFF = 
    prove_thm
    (`EMPTY_DIFF`,
     "!s:(*)set. EMPTY DIFF s = EMPTY",
     GEN_TAC THEN
     REWRITE_TAC [NOT_IN_EMPTY;IN_DIFF;EXTENSION]);;

let DIFF_DIFF = 
    prove_thm
    (`DIFF_DIFF`,
     "!s:(*)set. !t. (s DIFF t) DIFF t = s DIFF t",
     REWRITE_TAC [EXTENSION;IN_DIFF;SYM(SPEC_ALL CONJ_ASSOC)]);;

let DIFF_EQ_EMPTY = 
    prove_thm
    (`DIFF_EQ_EMPTY`,
     "!s:(*)set. s DIFF s = EMPTY",
     REWRITE_TAC [EXTENSION;IN_DIFF;NOT_IN_EMPTY;DE_MORGAN_THM] THEN
     PURE_ONCE_REWRITE_TAC [DISJ_SYM] THEN
     REWRITE_TAC [EXCLUDED_MIDDLE]);;


% ===================================================================== %
% Removal of an element							%
% ===================================================================== %

let DELETE_DEF = 
    new_infix_definition
    (`DELETE_DEF`, "DELETE s (x:*) = s DIFF {x}");;

let IN_DELETE = 
    prove_thm
    (`IN_DELETE`,
     "!s. !x:*. !y. x IN (s DELETE y) = (x IN s /\ ~(x = y))",
     PURE_ONCE_REWRITE_TAC [DELETE_DEF] THEN
     REWRITE_TAC [IN_DIFF;IN_INSERT;NOT_IN_EMPTY]);;

let DELETE_NON_ELEMENT = 
    prove_thm
    (`DELETE_NON_ELEMENT`,
     "!x:*. !s. ~x IN s = ((s DELETE x) = s)",
     PURE_REWRITE_TAC [EXTENSION;IN_DELETE] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [FIRST_ASSUM ACCEPT_TAC;
      FIRST_ASSUM (\th g. SUBST_ALL_TAC th g ? NO_TAC g) THEN RES_TAC;
      RES_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REFL_TAC]);;

let IN_DELETE_EQ = 
    prove_thm
    (`IN_DELETE_EQ`,
     "!s x. !x':*. 
      (x IN s = x' IN s) = (x IN (s DELETE x') = x' IN (s DELETE x))",
     REPEAT GEN_TAC THEN ASM_CASES_TAC "x:* = x'" THENL
     [ASM_REWRITE_TAC [];
      FIRST_ASSUM (ASSUME_TAC o NOT_EQ_SYM) THEN
      ASM_REWRITE_TAC [IN_DELETE]]);;
     
let EMPTY_DELETE = 
    prove_thm
    (`EMPTY_DELETE`,
     "!x:*. EMPTY DELETE x = EMPTY",
     REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_DELETE]);;

let DELETE_DELETE = 
    prove_thm
    (`DELETE_DELETE`,
     "!x:*. !s. (s DELETE x) DELETE x = s DELETE x",
     REWRITE_TAC [EXTENSION;IN_DELETE;SYM(SPEC_ALL CONJ_ASSOC)]);;

let DELETE_COMM = 
    prove_thm
    (`DELETE_COMM`,
     "!x:*. !y. !s. (s DELETE x) DELETE y = (s DELETE y) DELETE x",
     PURE_REWRITE_TAC [EXTENSION;IN_DELETE;CONJ_ASSOC] THEN
     REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
     REPEAT CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC);;

let DELETE_SUBSET = 
    prove_thm
    (`DELETE_SUBSET`,
     "!x:*. !s. (s DELETE x) SUBSET s",
     PURE_REWRITE_TAC [SUBSET_DEF;IN_DELETE] THEN
     REPEAT STRIP_TAC);;

let SUBSET_DELETE = 
    prove_thm
    (`SUBSET_DELETE`,
     "!x:*. !s t. s SUBSET (t DELETE x) = (~(x IN s) /\ (s SUBSET t))",
     REWRITE_TAC [SUBSET_DEF;IN_DELETE;EXTENSION] THEN
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [REPEAT STRIP_TAC THENL
      [ASSUME_TAC (REFL "x:*") THEN RES_TAC; RES_TAC];
      REPEAT STRIP_TAC THENL
      [RES_TAC; FIRST_ASSUM (\th g. SUBST_ALL_TAC th g) THEN RES_TAC]]);;

let SUBSET_INSERT_DELETE = 
    prove_thm
    (`SUBSET_INSERT_DELETE`,
     "!x:*. !s t. s SUBSET (x INSERT t) = ((s DELETE x) SUBSET t)",
     REPEAT GEN_TAC THEN 
     REWRITE_TAC [SUBSET_DEF;IN_INSERT;IN_DELETE] THEN
     EQ_TAC THEN REPEAT STRIP_TAC THENL
     [RES_TAC THEN RES_TAC;
      ASM_CASES_TAC "x':* = x" THEN
      ASM_REWRITE_TAC[] THEN RES_TAC]);;

let DIFF_INSERT = 
    prove_thm
    (`DIFF_INSERT`,
     "!s t. !x:*. s DIFF (x INSERT t) = (s DELETE x) DIFF t",
     PURE_REWRITE_TAC [EXTENSION;IN_DIFF;IN_INSERT;IN_DELETE] THEN
     REWRITE_TAC [DE_MORGAN_THM;CONJ_ASSOC]);;

let DELETE_INSERT = 
    prove_thm
    (`DELETE_INSERT`,
     "!x:*. !y s. 
      (x INSERT s) DELETE y = ((x=y) => s DELETE y | x INSERT (s DELETE y))",
     REWRITE_TAC [EXTENSION;IN_DELETE;IN_INSERT] THEN
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [DISCH_THEN (STRIP_THM_THEN MP_TAC) THEN DISCH_TAC THEN
      let tac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
      DISCH_THEN (STRIP_THM_THEN tac) THENL
      [ASM_REWRITE_TAC [IN_INSERT];
       COND_CASES_TAC THEN ASM_REWRITE_TAC [IN_DELETE;IN_INSERT]];
      COND_CASES_TAC THEN ASM_REWRITE_TAC [IN_DELETE;IN_INSERT] THENL
      [STRIP_TAC THEN ASM_REWRITE_TAC []; 
       STRIP_TAC THEN ASM_REWRITE_TAC []]]);;

let INSERT_DELETE = 
    prove_thm
    (`INSERT_DELETE`,
     "!x:*. !s. x IN s ==> (x INSERT (s DELETE x) = s)",
     PURE_REWRITE_TAC [EXTENSION;IN_INSERT;IN_DELETE] THEN
     REPEAT GEN_TAC THEN DISCH_THEN (\th. GEN_TAC THEN MP_TAC th) THEN
     ASM_CASES_TAC "x':* = x" THEN ASM_REWRITE_TAC[]);;

% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let DELETE_INTER =
    prove_thm
    (`DELETE_INTER`,
     "!s t. !x:*. (s DELETE x) INTER t = (s INTER t) DELETE x",
     PURE_ONCE_REWRITE_TAC [EXTENSION] THEN REPEAT GEN_TAC THEN
     REWRITE_TAC [IN_INTER;IN_DELETE] THEN
     EQ_TAC THEN REPEAT STRIP_TAC THEN
     FIRST [FIRST_ASSUM ACCEPT_TAC;RES_TAC]);;


% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let DISJOINT_DELETE_SYM =
    prove_thm
    (`DISJOINT_DELETE_SYM`,
     "!s t. !x:*. DISJOINT (s DELETE x) t = DISJOINT (t DELETE x) s",
     REWRITE_TAC [DISJOINT_DEF;EXTENSION;NOT_IN_EMPTY] THEN
     REWRITE_TAC [IN_INTER;IN_DELETE;DE_MORGAN_THM] THEN
     REPEAT GEN_TAC THEN EQ_TAC THEN
     let X = "X:*" in
     DISCH_THEN (\th. X_GEN_TAC X THEN STRIP_ASSUME_TAC (SPEC X th)) THEN
     ASM_REWRITE_TAC []);;


% ===================================================================== %
% Choice								%
% ===================================================================== %

let CHOICE_EXISTS = 
    TAC_PROOF
    (([], "?CHOICE. !s:(*)set. ~(s = EMPTY) ==> (CHOICE s) IN s"),
     REWRITE_TAC [EXTENSION;NOT_IN_EMPTY] THEN
     EXISTS_TAC "\s. @x:*. x IN s" THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     CONV_TAC (ONCE_DEPTH_CONV SELECT_CONV) THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     REWRITE_TAC []);;

let CHOICE_DEF = 
    new_specification `CHOICE_DEF` [`constant`,`CHOICE`] CHOICE_EXISTS;;
     

% ===================================================================== %
% The REST of a set after removing a chosen element.			%
% ===================================================================== %

let REST_DEF = 
    new_definition
    (`REST_DEF`, "REST (s:(*)set) = s DELETE (CHOICE s)");;

let CHOICE_NOT_IN_REST = 
    prove_thm
    (`CHOICE_NOT_IN_REST`,
     "!s:(*)set. ~(CHOICE s) IN (REST s)",
     REWRITE_TAC [IN_DELETE;REST_DEF]);;

let CHOICE_INSERT_REST =
    prove_thm
    (`CHOICE_INSERT_REST`,
     "!s:(*)set. ~(s = EMPTY) ==> (((CHOICE s) INSERT (REST s)) = s)",
     REPEAT GEN_TAC THEN STRIP_TAC THEN
     REWRITE_TAC [EXTENSION;IN_INSERT;REST_DEF;IN_DELETE] THEN
     GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL
     [IMP_RES_TAC CHOICE_DEF THEN ASM_REWRITE_TAC [];
      ASM_REWRITE_TAC [EXCLUDED_MIDDLE]]);;

let REST_SUBSET = 
    prove_thm
    (`REST_SUBSET`,
     "!s:(*)set. (REST s) SUBSET s",
     REWRITE_TAC [SUBSET_DEF;REST_DEF;IN_DELETE] THEN REPEAT STRIP_TAC);;

let lemma = 
    TAC_PROOF(([], "(P /\ Q = P) = (P ==> Q)"),
    	      BOOL_CASES_TAC "P:bool" THEN REWRITE_TAC[]);;

let REST_PSUBSET = 
    prove_thm
    (`REST_PSUBSET`,
     "!s:(*)set. ~(s = EMPTY) ==> (REST s) PSUBSET s",
     REWRITE_TAC [PSUBSET_DEF;REST_SUBSET] THEN
     GEN_TAC THEN STRIP_TAC THEN
     REWRITE_TAC [EXTENSION;REST_DEF;IN_DELETE] THEN
     CONV_TAC NOT_FORALL_CONV THEN
     REWRITE_TAC [DE_MORGAN_THM;lemma;NOT_IMP] THEN
     EXISTS_TAC "CHOICE (s:(*)set)" THEN
     IMP_RES_TAC CHOICE_DEF THEN
     ASM_REWRITE_TAC []);;

% ===================================================================== %
% Singleton set.							%
% ===================================================================== %

let SING_DEF = 
    new_definition
    (`SING_DEF`, "SING s = ?x:*. s = {x}");;

let SING = 
    prove_thm
    (`SING`,
     "!x:*. SING {x}",
     PURE_ONCE_REWRITE_TAC [SING_DEF] THEN
     GEN_TAC THEN EXISTS_TAC "x:*" THEN REFL_TAC);;

let IN_SING = 
    prove_thm
    (`IN_SING`,
     "!x y. x IN {y:*} = (x = y)",
     REWRITE_TAC [IN_INSERT;NOT_IN_EMPTY]);;

let NOT_SING_EMPTY = 
    prove_thm
    (`NOT_SING_EMPTY`,
     "!x:*. ~({x} = EMPTY)",
     REWRITE_TAC [EXTENSION;IN_SING;NOT_IN_EMPTY] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     GEN_TAC THEN EXISTS_TAC "x:*" THEN REWRITE_TAC[]);;

let NOT_EMPTY_SING = 
    prove_thm
    (`NOT_EMPTY_SING`,
     "!x:*. ~(EMPTY = {x})",
     REWRITE_TAC [EXTENSION;IN_SING;NOT_IN_EMPTY] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     GEN_TAC THEN EXISTS_TAC "x:*" THEN REWRITE_TAC[]);;

let EQUAL_SING = 
    prove_thm
    (`EQUAL_SING`,
     "!x:*. !y. ({x} = {y}) = (x = y)",
     REWRITE_TAC [EXTENSION;IN_SING] THEN
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [DISCH_THEN (\th. REWRITE_TAC [SYM(SPEC_ALL th)]);
      DISCH_THEN SUBST1_TAC THEN GEN_TAC THEN REFL_TAC]);;

let DISJOINT_SING_EMPTY = 
    prove_thm
    (`DISJOINT_SING_EMPTY`,
     "!x:*. DISJOINT {x} EMPTY",
     REWRITE_TAC [DISJOINT_DEF;INTER_EMPTY]);;

let INSERT_SING_UNION = 
    prove_thm
    (`INSERT_SING_UNION`,
     "!s. !x:*. x INSERT s = {x} UNION s",
     REWRITE_TAC [EXTENSION;IN_INSERT;IN_UNION;NOT_IN_EMPTY]);;

let SING_DELETE = 
    prove_thm
    (`SING_DELETE`,
    "!x:*. {x} DELETE x = EMPTY",
    REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_DELETE;IN_INSERT] THEN
    PURE_ONCE_REWRITE_TAC [CONJ_SYM] THEN
    REWRITE_TAC [DE_MORGAN_THM;EXCLUDED_MIDDLE]);;

let DELETE_EQ_SING = 
    prove_thm
    (`DELETE_EQ_SING`,
     "!s. !x:*. (x IN s) ==> ((s DELETE x = EMPTY) = (s = {x}))",
     PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
     REWRITE_TAC [NOT_IN_EMPTY;DE_MORGAN_THM;IN_INSERT;IN_DELETE] THEN
     REPEAT STRIP_TAC THEN EQ_TAC THENL
     [DISCH_TAC THEN GEN_TAC THEN
      FIRST_ASSUM (\th g. STRIP_ASSUME_TAC (SPEC "x':*" th) g) THEN
      ASM_REWRITE_TAC [] THEN DISCH_THEN SUBST_ALL_TAC THEN RES_TAC;
      let th = PURE_ONCE_REWRITE_RULE [DISJ_SYM] EXCLUDED_MIDDLE in
      DISCH_TAC THEN GEN_TAC THEN ASM_REWRITE_TAC [th]]);;

let CHOICE_SING = 
    prove_thm
    (`CHOICE_SING`,
     "!x:*. CHOICE {x} = x",
     GEN_TAC THEN 
     MP_TAC (MATCH_MP CHOICE_DEF (SPEC "x:*" NOT_SING_EMPTY)) THEN
     REWRITE_TAC [IN_SING]);;

let REST_SING = 
    prove_thm
    (`REST_SING`,
     "!x:*. REST {x} = EMPTY",
     REWRITE_TAC [CHOICE_SING;REST_DEF;SING_DELETE]);;

let SING_IFF_EMPTY_REST = 
    prove_thm
    (`SING_IFF_EMPTY_REST`,
     "!s:(*)set. SING s = ~(s = EMPTY) /\ (REST s = EMPTY)",
     PURE_ONCE_REWRITE_TAC [SING_DEF] THEN
     GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL
     [ASM_REWRITE_TAC [REST_SING] THEN
      REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_INSERT] THEN
      CONV_TAC NOT_FORALL_CONV THEN
      EXISTS_TAC "x:*" THEN REWRITE_TAC [];
      EXISTS_TAC "CHOICE s:*" THEN
      IMP_RES_THEN (SUBST1_TAC o SYM) CHOICE_INSERT_REST THEN
      ASM_REWRITE_TAC [EXTENSION;IN_SING;CHOICE_SING]]);;

% ===================================================================== %
% The image of a function on a set.					%
% ===================================================================== %

let IMAGE_EXISTS =
    TAC_PROOF
    (([], "!f:*->**. !s:(*)set. ?t. !y. y IN t = ?x. (y = f x) /\ x IN s"),
     GEN_TAC THEN SET_INDUCT_TAC THENL
     [EXISTS_TAC "{}:(**)set" THEN REWRITE_TAC [NOT_IN_EMPTY];
      FIRST_ASSUM (CHOOSE_THEN STRIP_ASSUME_TAC) THEN
      EXISTS_TAC "(f (e:*):**) INSERT t" THEN
      ASM_REWRITE_TAC [IN_INSERT] THEN GEN_TAC THEN
      EQ_TAC THEN REPEAT STRIP_TAC THENL
      [EXISTS_TAC "e:*" THEN ASM_REWRITE_TAC [];
       EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [];
       ASM_REWRITE_TAC [];
       DISJ2_TAC THEN EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC []]]);;

let IN_IMAGE =
    let th1 = CONV_RULE SKOLEM_CONV IMAGE_EXISTS in
    new_specification `IN_IMAGE` [`constant`,`IMAGE`] th1;;

let IMAGE_IN = 
    prove_thm
    (`IMAGE_IN`,
     "!x s. (x IN s) ==> !(f:*->**). f x IN (IMAGE f s)",
     PURE_ONCE_REWRITE_TAC [IN_IMAGE] THEN
     REPEAT STRIP_TAC THEN 
     EXISTS_TAC "x:*" THEN
     CONJ_TAC THENL [REFL_TAC; FIRST_ASSUM ACCEPT_TAC]);;

let IMAGE_EMPTY =
     prove_thm
     (`IMAGE_EMPTY`,
      "!f:*->**. IMAGE f EMPTY = EMPTY",
      REWRITE_TAC[EXTENSION;IN_IMAGE;NOT_IN_EMPTY]);;

let IMAGE_ID = 
    prove_thm
    (`IMAGE_ID`,
     "!s:* set. IMAGE (\x:*.x) s = s",
     REWRITE_TAC [EXTENSION;IN_IMAGE] THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [ALL_TAC;EXISTS_TAC "x:*"] THEN
     ASM_REWRITE_TAC []);;

let IMAGE_COMPOSE = 
    prove_thm
    (`IMAGE_COMPOSE`,
     "!f:**->***. !g:*->**. !s. IMAGE (f o g) s = IMAGE f (IMAGE g s)",
     PURE_REWRITE_TAC [EXTENSION;IN_IMAGE;o_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [EXISTS_TAC "g (x':*):**" THEN
      CONJ_TAC THENL [ALL_TAC;EXISTS_TAC "x':*"] THEN
      ASM_REWRITE_TAC [];
      EXISTS_TAC "x'':*" THEN ASM_REWRITE_TAC[]]);;

let IMAGE_INSERT =
    prove_thm
    (`IMAGE_INSERT`,
     "!(f:*->**) x s. IMAGE f (x INSERT s) = f x INSERT (IMAGE f s)",
     PURE_REWRITE_TAC [EXTENSION;IN_INSERT;IN_IMAGE] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [ALL_TAC;DISJ2_TAC THEN EXISTS_TAC "x'':*";
      EXISTS_TAC "x:*";EXISTS_TAC "x'':*"] THEN
     ASM_REWRITE_TAC[]);;

let IMAGE_EQ_EMPTY =
    prove_thm
    (`IMAGE_EQ_EMPTY`,
     "!s. !f:*->**. ((IMAGE f s) = EMPTY) = (s = EMPTY)",
     GEN_TAC THEN
     STRIP_ASSUME_TAC (SPEC "s:(*)set" SET_CASES) THEN
     ASM_REWRITE_TAC [IMAGE_EMPTY;IMAGE_INSERT;NOT_INSERT_EMPTY]);;

let IMAGE_DELETE =
    prove_thm
    (`IMAGE_DELETE`,
     "!(f:*->**) x s. ~(x IN s) ==> (IMAGE f (s DELETE x) = (IMAGE f s))",
     REPEAT GEN_TAC THEN STRIP_TAC THEN
     PURE_REWRITE_TAC [EXTENSION;IN_DELETE;IN_IMAGE] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
     EXISTS_TAC "x'':*" THEN ASM_REWRITE_TAC [] THEN
     DISCH_THEN SUBST_ALL_TAC THEN RES_TAC);;

let IMAGE_UNION =
    prove_thm
    (`IMAGE_UNION`,
     "!(f:*->**) s t. IMAGE f (s UNION t) = (IMAGE f s) UNION (IMAGE f t)",
     PURE_REWRITE_TAC [EXTENSION;IN_UNION;IN_IMAGE] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [DISJ1_TAC;DISJ2_TAC;ALL_TAC;ALL_TAC] THEN
     EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []);;

let IMAGE_SUBSET = 
    prove_thm
    (`IMAGE_SUBSET`,
     "!s t. (s SUBSET t) ==> !f:*->**. (IMAGE f s) SUBSET (IMAGE f t)",
     PURE_REWRITE_TAC [SUBSET_DEF;IN_IMAGE] THEN
     REPEAT STRIP_TAC THEN RES_TAC THEN
     EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []);;

let IMAGE_INTER =
    prove_thm
    (`IMAGE_INTER`,
     "!(f:*->**) s t. IMAGE f (s INTER t) SUBSET (IMAGE f s INTER IMAGE f t)",
     REPEAT GEN_TAC THEN
     REWRITE_TAC [SUBSET_DEF;IN_IMAGE;IN_INTER] THEN
     REPEAT STRIP_TAC THEN
     EXISTS_TAC "x':*" THEN
     CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC);;

let lemma =
    TAC_PROOF
    (([], "!s x. x IN s ==>  !f:*->**. (f x) IN (IMAGE f s)"),
     REPEAT STRIP_TAC THEN PURE_ONCE_REWRITE_TAC [IN_IMAGE] THEN
     EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[]);;

let SET_MINIMUM = 
    prove_thm
    (`SET_MINIMUM`,
     "!s:(*)set. !M.
      (?x. x IN s) = ?x. x IN s /\ !y. y IN s ==> M x <= M y",
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [IMP_RES_THEN (ASSUME_TAC o ISPEC "M:*->num") lemma THEN
      let rule = REWRITE_RULE [IN_IMAGE] in
      IMP_RES_THEN (STRIP_ASSUME_TAC o rule) NUM_SET_WOP THEN
      EXISTS_TAC "x':*" THEN CONJ_TAC THENL
      [FIRST_ASSUM ACCEPT_TAC;
       FIRST_ASSUM (SUBST_ALL_TAC o SYM) THEN
       REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
       EXISTS_TAC "y:*" THEN CONJ_TAC THENL
       [REFL_TAC; FIRST_ASSUM ACCEPT_TAC]];
      EXISTS_TAC "x:*" THEN FIRST_ASSUM ACCEPT_TAC]);;

% ===================================================================== %
% Injective functions on a set.						%
% ===================================================================== %

let INJ_DEF =
    new_definition
    (`INJ_DEF`,
     "INJ (f:*->**) s t =
          (!x. x IN s ==> (f x) IN t) /\ 
          (!x y. (x IN s /\ y IN s) ==> (f x = f y) ==> (x = y))");;

let INJ_ID =
    prove_thm
    (`INJ_ID`,
     "!s. INJ (\x:*.x) s s",
     PURE_ONCE_REWRITE_TAC [INJ_DEF] THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC);;
     
let INJ_COMPOSE = 
    prove_thm
    (`INJ_COMPOSE`,
     "!f:*->**. !g:**->***.
      !s t u. (INJ f s t  /\ INJ g t u) ==> INJ (g o f) s u",
     PURE_REWRITE_TAC [INJ_DEF;o_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [FIRST_ASSUM MATCH_MP_TAC THEN RES_TAC;
      RES_TAC THEN RES_TAC]);;

let INJ_EMPTY =
    prove_thm
    (`INJ_EMPTY`,
     "!f:*->**. (!s. INJ f {} s) /\ (!s. INJ f s {} = (s = {}))",
     REWRITE_TAC [INJ_DEF;NOT_IN_EMPTY;EXTENSION] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN RES_TAC);;


% ===================================================================== %
% Surjective functions on a set.					%
% ===================================================================== %

let SURJ_DEF =
    new_definition
    (`SURJ_DEF`,
     "SURJ (f:*->**) s t =
           (!x. x IN s ==> (f x) IN t) /\ 
           (!x. (x IN t) ==> ?y. y IN s /\ (f y = x))");;

let SURJ_ID =
    prove_thm
    (`SURJ_ID`,
     "!s. SURJ (\x:*.x) s s",
     PURE_ONCE_REWRITE_TAC [SURJ_DEF] THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC THEN
     EXISTS_TAC "x':*" THEN
     ASM_REWRITE_TAC []);;

let SURJ_COMPOSE = 
    prove_thm
    (`SURJ_COMPOSE`,
     "!f:*->**. !g:**->***.
      !s t u. (SURJ f s t  /\ SURJ g t u) ==> SURJ (g o f) s u",
     PURE_REWRITE_TAC [SURJ_DEF;o_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [FIRST_ASSUM MATCH_MP_TAC THEN RES_TAC;
      RES_TAC THEN RES_TAC THEN
      EXISTS_TAC "y'':*" THEN
      ASM_REWRITE_TAC []]);;

let SURJ_EMPTY =
    prove_thm
    (`SURJ_EMPTY`,
     "!f:*->**. (!s. SURJ f {} s = (s = {})) /\ (!s. SURJ f s {} = (s = {}))",
     REWRITE_TAC [SURJ_DEF;NOT_IN_EMPTY;EXTENSION]);;

let IMAGE_SURJ =
    prove_thm
    (`IMAGE_SURJ`,
     "!f:*->**. !s t. SURJ f s t = ((IMAGE f s) = t)",
     PURE_REWRITE_TAC [SURJ_DEF;EXTENSION;IN_IMAGE] THEN
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
      [RES_TAC THEN ASM_REWRITE_TAC [];
       MAP_EVERY PURE_ONCE_REWRITE_TAC [[CONJ_SYM];[EQ_SYM_EQ]] THEN
       FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC];
      DISCH_THEN (ASSUME_TAC o CONV_RULE (ONCE_DEPTH_CONV SYM_CONV)) THEN
      ASM_REWRITE_TAC [] THEN REPEAT STRIP_TAC THENL
      [EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [];
       EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []]]);;

% ===================================================================== %
% Bijective functions on a set.						%
% ===================================================================== %

let BIJ_DEF =
    new_definition
    (`BIJ_DEF`,
     "BIJ (f:*->**) s t = INJ f s t /\ SURJ f s t");;

let BIJ_ID =
    prove_thm
    (`BIJ_ID`,
     "!s. BIJ (\x:*.x) s s",
     REWRITE_TAC [BIJ_DEF;INJ_ID;SURJ_ID]);;

let BIJ_EMPTY =
    prove_thm
    (`BIJ_EMPTY`,
     "!f:*->**. (!s. BIJ f {} s = (s = {})) /\ (!s. BIJ f s {} = (s = {}))",
     REWRITE_TAC [BIJ_DEF;INJ_EMPTY;SURJ_EMPTY]);;

let BIJ_COMPOSE = 
    prove_thm
    (`BIJ_COMPOSE`,
     "!f:*->**. !g:**->***.
      !s t u. (BIJ f s t  /\ BIJ g t u) ==> BIJ (g o f) s u",
     PURE_REWRITE_TAC [BIJ_DEF] THEN
     REPEAT STRIP_TAC THENL
     [IMP_RES_TAC INJ_COMPOSE;IMP_RES_TAC SURJ_COMPOSE]);;

% ===================================================================== %
% Left and right inverses.						%
% ===================================================================== %

let lemma1 =
    TAC_PROOF
    (([], "!f:*->**. !s.
           (!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)) =
           (!y. y IN s ==> !x.((x IN s /\ (f x = f y))=(y IN s /\ (x = y))))"),
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
     RES_TAC THEN ASM_REWRITE_TAC []);;

let lemma2 =
    TAC_PROOF
    (([],
      "!f:*->**. !s. ?g. !t. INJ f s t ==> !x:*. x IN s ==> (g(f x) = x)"),
     REPEAT GEN_TAC THEN PURE_REWRITE_TAC [INJ_DEF;lemma1] THEN
     EXISTS_TAC "\y:**. @x:*. x IN s /\ (f x = y)" THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC THEN (RES_THEN \th. REWRITE_TAC [th]) THEN
     ASM_REWRITE_TAC [] THEN CONV_TAC SELECT_CONV THEN
     EXISTS_TAC "x:*" THEN REFL_TAC);;

% --------------------------------------------------------------------- %
% LINV_DEF:								%
%   |- !f s t. INJ f s t ==> (!x. x IN s ==> (LINV f s(f x) = x))	%
% --------------------------------------------------------------------- %

let LINV_DEF =
    let th1 = CONV_RULE (ONCE_DEPTH_CONV RIGHT_IMP_EXISTS_CONV) lemma2 in
    let th2 = CONV_RULE SKOLEM_CONV th1 in
        new_specification `LINV_DEF` [`constant`,`LINV`] th2;;

let lemma3 = 
    TAC_PROOF
    (([],
      "!f:*->**. !s. ?g. !t. SURJ f s t ==> !x:**. x IN t ==> (f(g x) = x)"),
     REPEAT GEN_TAC THEN PURE_REWRITE_TAC [SURJ_DEF] THEN    
     EXISTS_TAC "\y:**. @x:*. x IN s /\ (f x = y)" THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC THEN
     (\(A,g).
       let tm = mk_conj("^(rand(lhs g)) IN s",g) in
       SUBGOAL_THEN tm (\th. ACCEPT_TAC(CONJUNCT2 th))(A,g)) THEN
     CONV_TAC SELECT_CONV THEN
     FIRST_ASSUM MATCH_MP_TAC THEN
     FIRST_ASSUM ACCEPT_TAC);;
     
% --------------------------------------------------------------------- %
% RINV_DEF:								%
%   |- !f s t. SURJ f s t ==> (!x. x IN t ==> (f(RINV f s x) = x))      %
% --------------------------------------------------------------------- %

let RINV_DEF =
    let th1 = CONV_RULE (ONCE_DEPTH_CONV RIGHT_IMP_EXISTS_CONV) lemma3 in
    let th2 = CONV_RULE SKOLEM_CONV th1 in
        new_specification `RINV_DEF` [`constant`,`RINV`] th2;;

% ===================================================================== %
% Cardinality 								%
% ===================================================================== %

% --------------------------------------------------------------------- %
% card_rel_def: defining equations for a relation "R s n", which means  %
% that the finite s has cardinality n.					%
% --------------------------------------------------------------------- %

let card_rel_def = 
    "(!s. R s 0 = (s = EMPTY)) /\
     (!s n. R s (SUC n) = ?x:*. x IN s /\ R (s DELETE x) n)";;

% --------------------------------------------------------------------- %
% Prove that such a relation exists.					%
% --------------------------------------------------------------------- %

let CARD_REL_EXISTS =  prove_rec_fn_exists num_Axiom card_rel_def;;

% --------------------------------------------------------------------- %
% Now, prove that it doesn't matter which element we delete		%
% Proof modified for Version 12 IMP_RES_THEN		 [TFM 91.01.23]	%
% --------------------------------------------------------------------- %

let CARD_REL_DEL_LEMMA = 
    TAC_PROOF
    ((conjuncts card_rel_def,
      "!n:num.!s.!x:*. 
       x IN s ==> R (s DELETE x) n  ==> !y:*. y IN s ==> R (s DELETE y) n"),
     INDUCT_TAC THENL
     [REPEAT GEN_TAC THEN DISCH_TAC THEN
      IMP_RES_TAC DELETE_EQ_SING THEN ASM_REWRITE_TAC [] THEN 
      DISCH_THEN SUBST1_TAC THEN REWRITE_TAC [IN_SING] THEN
      GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC [SING_DELETE];
      ASM_REWRITE_TAC [] THEN REPEAT STRIP_TAC THEN
      let th = (SPEC "y:* = x'" EXCLUDED_MIDDLE) in
      DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC th THENL
      [MP_TAC (SPECL ["s:(*)set";"x:*";"x':*"] IN_DELETE_EQ) THEN
       ASM_REWRITE_TAC [] THEN DISCH_TAC THEN
       PURE_ONCE_REWRITE_TAC [DELETE_COMM] THEN
       EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[];
       let th = (SPEC "x:* = y" EXCLUDED_MIDDLE) in
       DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC th THENL
       [EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC [];
        EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [IN_DELETE] THEN
        RES_THEN (TRY o IMP_RES_THEN ASSUME_TAC) THEN
        PURE_ONCE_REWRITE_TAC [DELETE_COMM] THEN
	FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC [IN_DELETE] THEN
	CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN FIRST_ASSUM ACCEPT_TAC]]]);;


% --------------------------------------------------------------------- %
% So "R s" specifies a unique number.					%
% --------------------------------------------------------------------- %

let CARD_REL_UNIQUE = 
    TAC_PROOF
    ((conjuncts card_rel_def,
      "!n:num. !s:(*)set. R s n ==> (!m. R s m ==> (n = m))"),
     INDUCT_TAC THEN ASM_REWRITE_TAC [] THENL
     [GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN
      CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THENL
      [STRIP_TAC THEN REFL_TAC; ASM_REWRITE_TAC[NOT_SUC;NOT_IN_EMPTY]];
      GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THENL
      [ASM_REWRITE_TAC [NOT_SUC;SYM(SPEC_ALL MEMBER_NOT_EMPTY)] THEN
       EXISTS_TAC "x:*" THEN FIRST_ASSUM ACCEPT_TAC;
       ASM_REWRITE_TAC [INV_SUC_EQ] THEN STRIP_TAC THEN 
       IMP_RES_TAC CARD_REL_DEL_LEMMA THEN RES_TAC]]);;

% --------------------------------------------------------------------- %
% Now, ?n. R s n if s is finite.					%
% --------------------------------------------------------------------- %

let CARD_REL_EXISTS_LEMMA = 
    TAC_PROOF
    ((conjuncts card_rel_def, "!s:(*)set. ?n:num. R s n"),
     SET_INDUCT_TAC THENL
     [EXISTS_TAC "0" THEN ASM_REWRITE_TAC[];
      FIRST_ASSUM (\th g. CHOOSE_THEN ASSUME_TAC th g) THEN
      EXISTS_TAC "SUC n" THEN ASM_REWRITE_TAC [] THEN
      EXISTS_TAC "e:*" THEN IMP_RES_TAC DELETE_NON_ELEMENT THEN
      ASM_REWRITE_TAC [DELETE_INSERT;IN_INSERT]]);;     

% --------------------------------------------------------------------- %
% So (@n. R s n) = m iff R s m        (\s.@n.R s n defines a function)	%
% Proof modified for Version 12 IMP_RES_THEN		 [TFM 91.01.23]	%
% --------------------------------------------------------------------- %

let CARD_REL_THM = 
    TAC_PROOF
    ((conjuncts card_rel_def, 
     "!m s.((@n:num. R (s:(*)set) n) = m) = R s m"),
     REPEAT STRIP_TAC THEN 
     STRIP_ASSUME_TAC (SPEC "s:(*)set" CARD_REL_EXISTS_LEMMA) THEN 
     EQ_TAC THENL
     [DISCH_THEN (SUBST1_TAC o SYM) THEN CONV_TAC SELECT_CONV THEN
      EXISTS_TAC "n:num" THEN FIRST_ASSUM MATCH_ACCEPT_TAC;
      STRIP_TAC THEN
      IMP_RES_THEN ASSUME_TAC CARD_REL_UNIQUE THEN
      CONV_TAC SYM_CONV THEN
      FIRST_ASSUM MATCH_MP_TAC THEN
      CONV_TAC SELECT_CONV THEN
      EXISTS_TAC "n:num" THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;

% --------------------------------------------------------------------- %
% Now, prove the existence of the required cardinality function.	%
% --------------------------------------------------------------------- %

let CARD_EXISTS = 
    TAC_PROOF
    (([]," ?CARD.
           (CARD EMPTY = 0) /\ 
           (!s. !x:*. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s)))"),
     STRIP_ASSUME_TAC CARD_REL_EXISTS THEN
     EXISTS_TAC "\s:(*)set. @n:num. R s n" THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN CONJ_TAC THENL
     [ASM_REWRITE_TAC [CARD_REL_THM];
      REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
      [IMP_RES_THEN SUBST1_TAC ABSORPTION THEN REFL_TAC;
       ASM_REWRITE_TAC [CARD_REL_THM] THEN
       EXISTS_TAC "x:*" THEN
       IMP_RES_TAC DELETE_NON_ELEMENT THEN
       ASM_REWRITE_TAC [IN_INSERT;DELETE_INSERT] THEN
       CONV_TAC SELECT_CONV THEN
       MATCH_ACCEPT_TAC CARD_REL_EXISTS_LEMMA]]);;

% --------------------------------------------------------------------- %
% Finally, introduce the CARD function via a constant specification.	%
% --------------------------------------------------------------------- %

let CARD_DEF = 
    new_specification `CARD_DEF` [`constant`,`CARD`] CARD_EXISTS;;

% --------------------------------------------------------------------- %
% Various cardinality results.						%
% --------------------------------------------------------------------- %

let CARD_EMPTY = save_thm(`CARD_EMPTY`,CONJUNCT1 CARD_DEF);;

let CARD_INSERT = save_thm(`CARD_INSERT`,CONJUNCT2 CARD_DEF);;

let CARD_EQ_0 = 
    prove_thm
    (`CARD_EQ_0`,
     "!s:(*)set. (CARD s = 0) = (s = EMPTY)",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [CARD_EMPTY];
      ASM_REWRITE_TAC [CARD_INSERT;NOT_INSERT_EMPTY;NOT_SUC]]);;
      
let CARD_DELETE = 
    prove_thm
    (`CARD_DELETE`,
     "!s. !x:*. CARD(s DELETE x) = (x IN s => (CARD s) - 1 | CARD s)",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [EMPTY_DELETE;NOT_IN_EMPTY];
      PURE_REWRITE_TAC [DELETE_INSERT;IN_INSERT] THEN
      REPEAT GEN_TAC THEN ASM_CASES_TAC "x:* = e" THENL
      [ASM_REWRITE_TAC [SUC_SUB1;CARD_DEF];
       SUBST1_TAC (SPECL ["e:*";"x:*"] EQ_SYM_EQ) THEN
       ASM_REWRITE_TAC [CARD_DEF;IN_DELETE;SUC_SUB1] THEN
       COND_CASES_TAC THEN ASM_REWRITE_TAC [] THEN
       STRIP_ASSUME_TAC (SPEC "CARD(s:(*)set)" num_CASES) THENL
       [(let tac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
	 REPEAT_GTCL IMP_RES_THEN tac CARD_EQ_0 THEN
	 IMP_RES_TAC NOT_IN_EMPTY);
	 ASM_REWRITE_TAC [SUC_SUB1]]]]);;


let lemma1 = 
    TAC_PROOF
    (([], "!n m. (SUC n <= SUC m) = (n <= m)"),
     REWRITE_TAC [LESS_OR_EQ;INV_SUC_EQ;LESS_MONO_EQ]);;

let lemma2 = 
    TAC_PROOF
    (([], "!n m. (n <= SUC m) = (n <= m \/ (n = SUC m))"),
     REWRITE_TAC [LESS_OR_EQ;LESS_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC[]);;

let CARD_INTER_LESS_EQ = 
    prove_thm
    (`CARD_INTER_LESS_EQ`,
     "!s:(*)set. !t. CARD (s INTER t) <= CARD s",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [CARD_DEF;INTER_EMPTY;LESS_EQ_REFL];
      PURE_ONCE_REWRITE_TAC [INSERT_INTER] THEN
      GEN_TAC THEN COND_CASES_TAC THENL
      [ASM_REWRITE_TAC [CARD_DEF;IN_INTER;lemma1];
       ASM_REWRITE_TAC [CARD_DEF;lemma2]]]);;

let CARD_UNION = 
    prove_thm
    (`CARD_UNION`,
     "!s:(*)set. !t. 
       (CARD (s UNION t) + CARD (s INTER t) = CARD s + CARD t)",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [UNION_EMPTY;INTER_EMPTY;CARD_DEF;ADD_CLAUSES];
      REPEAT STRIP_TAC THEN REWRITE_TAC [INSERT_UNION;INSERT_INTER] THEN 
      ASM_CASES_TAC "(e:*) IN t" THENL
      [ASM_REWRITE_TAC [IN_INTER;ADD_CLAUSES;CARD_DEF];
       ASM_REWRITE_TAC [CARD_DEF;ADD_CLAUSES; INV_SUC_EQ; IN_UNION]]]);;

let lemma = 
    TAC_PROOF
    (([], "!n m. (n <= SUC m) = (n <= m \/ (n = SUC m))"),
     REWRITE_TAC [LESS_OR_EQ;LESS_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC[]);;

let CARD_SUBSET = 
    prove_thm
    (`CARD_SUBSET`,
     "!s:(*)set. !t. t SUBSET s ==> (CARD t <= CARD s)",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [SUBSET_EMPTY;CARD_EMPTY] THEN
      GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
      REWRITE_TAC [CARD_DEF;LESS_EQ_REFL];
      ASM_REWRITE_TAC [CARD_INSERT;SUBSET_INSERT_DELETE] THEN
      REPEAT STRIP_TAC THEN RES_THEN MP_TAC THEN
      ASM_REWRITE_TAC [CARD_DELETE] THEN COND_CASES_TAC THENL
      [(let th = SPEC "CARD (t:(*)set)" num_CASES in
        REPEAT_TCL STRIP_THM_THEN SUBST_ALL_TAC th) THENL
	[REWRITE_TAC [LESS_OR_EQ;LESS_0];
         REWRITE_TAC [SUC_SUB1;LESS_OR_EQ;LESS_MONO_EQ;INV_SUC_EQ]];
       STRIP_TAC THEN ASM_REWRITE_TAC [lemma]]]);;

let CARD_PSUBSET = 
    prove_thm
    (`CARD_PSUBSET`,
     "!s:(*)set. !t. t PSUBSET s ==> (CARD t < CARD s)",
     REPEAT STRIP_TAC THEN IMP_RES_TAC PSUBSET_DEF THEN
     IMP_RES_THEN MP_TAC CARD_SUBSET THEN
     PURE_ONCE_REWRITE_TAC [LESS_OR_EQ] THEN 
     DISCH_THEN (STRIP_THM_THEN (\th g. ACCEPT_TAC th g ? MP_TAC th g)) THEN
     IMP_RES_THEN STRIP_ASSUME_TAC PSUBSET_INSERT_SUBSET THEN
     IMP_RES_THEN MP_TAC CARD_SUBSET THEN
     IMP_RES_TAC INSERT_SUBSET THEN 
     ASM_REWRITE_TAC [CARD_INSERT;LESS_EQ] THEN
     REPEAT STRIP_TAC THEN FIRST_ASSUM ACCEPT_TAC);;

let CARD_SING = 
    prove_thm
    (`CARD_SING`,
     "!x:*. CARD {x} = 1",
     CONV_TAC (ONCE_DEPTH_CONV num_CONV) THEN
     REWRITE_TAC [CARD_EMPTY;CARD_INSERT;NOT_IN_EMPTY]);;

let SING_IFF_CARD1 = 
    prove_thm
    (`SING_IFF_CARD1`,
     "!s:(*)set. (SING s) = (CARD s = 1)",
     REWRITE_TAC [SING_DEF;num_CONV "1"] THEN 
     GEN_TAC THEN EQ_TAC THENL
     [DISCH_THEN (CHOOSE_THEN SUBST1_TAC) THEN
      REWRITE_TAC [CARD_SING;num_CONV "1"];
      STRIP_ASSUME_TAC (SPEC "s:(*)set" SET_CASES) THENL
      [ASM_REWRITE_TAC [CARD_EMPTY;NOT_EQ_SYM(SPEC_ALL NOT_SUC)];
       FIRST_ASSUM SUBST1_TAC THEN
       ASM_REWRITE_TAC [CARD_INSERT;INV_SUC_EQ;CARD_EQ_0] THEN
       DISCH_TAC THEN EXISTS_TAC "x:*" THEN
       ASM_REWRITE_TAC []]]);;

% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let CARD_DIFF =
    prove_thm
    (`CARD_DIFF`,
     "!t:(*)set. !s. CARD (s DIFF t) = (CARD s - CARD (s INTER t))",
     SET_INDUCT_TAC THEN REPEAT GEN_TAC THENL
     [REWRITE_TAC [DIFF_EMPTY;INTER_EMPTY;CARD_EMPTY;SUB_0];
      PURE_ONCE_REWRITE_TAC [INTER_COMM] THEN
      PURE_ONCE_REWRITE_TAC [INSERT_INTER] THEN
      COND_CASES_TAC THENL
      [ASM_REWRITE_TAC [CARD_INSERT;IN_INTER;DIFF_INSERT;CARD_DELETE] THEN
       PURE_ONCE_REWRITE_TAC [SYM (SPEC_ALL SUB_PLUS)] THEN
       REWRITE_TAC [num_CONV "1";ADD_CLAUSES;DELETE_INTER] THEN
       MP_TAC (SPECL ["s':(*)set";"s:(*)set";"e:*"] IN_INTER) THEN
       ASM_REWRITE_TAC [DELETE_NON_ELEMENT] THEN
       DISCH_THEN SUBST1_TAC THEN
       SUBST1_TAC (SPECL ["s:(*)set";"s':(*)set"] INTER_COMM) THEN REFL_TAC;
       IMP_RES_TAC DELETE_NON_ELEMENT THEN
       PURE_ONCE_REWRITE_TAC [INTER_COMM] THEN
       ASM_REWRITE_TAC [DIFF_INSERT]]]);;

% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let LESS_CARD_DIFF =
    prove_thm
    (`LESS_CARD_DIFF`,
     "!t:(*)set. !s. (CARD t < CARD s) ==> (0 < CARD(s DIFF t))",
     PURE_REWRITE_TAC [CARD_DIFF; GSYM SUB_LESS_0] THEN
     REPEAT STRIP_TAC THEN
     let th1 = SPECL ["s:(*)set";"t:(*)set"] CARD_INTER_LESS_EQ in
     let th2 = PURE_ONCE_REWRITE_RULE [LESS_OR_EQ] th1 in
     DISJ_CASES_THEN2 ACCEPT_TAC (SUBST_ALL_TAC o SYM) th2 THEN
     let th3 = SPECL ["t:(*)set";"s:(*)set"] CARD_INTER_LESS_EQ in
     let th4 = PURE_ONCE_REWRITE_RULE [INTER_COMM] th3 in
     IMP_RES_TAC (PURE_ONCE_REWRITE_RULE [GSYM NOT_LESS] th4));;


quit();; % Needed for Common Lisp %