1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
|
% ===================================================================== %
% LIBRARY: finite_sets (prior to version 1.12 called "sets") %
% FILE: mk_sets.ml %
% %
% DESCRIPTION: Defines a new type for finite sets and proves properties %
% of sets. The theory is a formalization of the theory of sets %
% presented in chapter 10 of Manna and Waldingers "The Logical Basis of %
% Computer Programming, VOL 1." %
% %
% AUTHORS: Phil Windley, Philippe Leveilley %
% DATE: 12 May, 1989 %
% %
% REVISED: Tom Melham (extensively revised and extended) %
% DATE: February 1992 %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Create the new theory. %
% --------------------------------------------------------------------- %
new_theory `finite_sets`;;
% ===================================================================== %
% Type definition. %
% %
% The representing type is *->bool. The representation of the empty %
% set is the abstraction \x.F. The insertion operation is represented %
% by \x s. (\e. e = x \/ s e), which gives the representation of the %
% set obtained by adding the element x to the set s. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% A predicate s:*->bool represents a finite set iff it is in the %
% intersection of all classes of such predicates that contain the %
% representation of empty and are closed under the representation of %
% insert operation. Hence s:*->bool is finite if it can be obtained %
% by applying a finite sequence of insert operations to the empty set. %
% The following proofs derive the existence of a predicate IS_SET_REP %
% that expresses this definition. %
% --------------------------------------------------------------------- %
% --------------------------------------------------------------------- %
% Abbreviation for IS_SET_REP. %
% --------------------------------------------------------------------- %
let IS_SET_REP =
"\s:*->bool.
!P. P (\x.F) /\ (!t. P t ==> !x. P(\y. (y=x) \/ t y)) ==> P s";;
% --------------------------------------------------------------------- %
% The predicate \x.F represents the empty set (IS_SET_REP holds of it). %
% --------------------------------------------------------------------- %
let IS_SET_REP_EMPTY =
TAC_PROOF
(([], "^IS_SET_REP (\x:*.F)"),
CONV_TAC BETA_CONV THEN REPEAT STRIP_TAC);;
% --------------------------------------------------------------------- %
% Set representations are closed under the insertion function. %
% --------------------------------------------------------------------- %
let INSERTION_PRESERVES_IS_SET_REP =
TAC_PROOF
(([], "!s:*->bool. ^IS_SET_REP s ==> !x. ^IS_SET_REP (\y.(y=x) \/ s y)"),
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN RES_TAC THEN
RES_THEN MATCH_ACCEPT_TAC);;
% --------------------------------------------------------------------- %
% IS_SET_REP is true of the smallest such class of sets. %
% --------------------------------------------------------------------- %
let REP_INDUCT =
TAC_PROOF
(([], "!P. (P(\x:*.F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y)))) ==>
!s:*->bool. ^IS_SET_REP s ==> P s"),
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN RES_TAC);;
% --------------------------------------------------------------------- %
% IS_SET_REP is precisely the predicate with these three properties. %
% --------------------------------------------------------------------- %
let IS_SET_REP_EXISTS =
TAC_PROOF
(([], "?IS_SET_REP:(*->bool)->bool.
(IS_SET_REP \x.F) /\
(!s. IS_SET_REP s ==> !x. IS_SET_REP (\y.(y=x) \/ s y)) /\
(!P. (P(\x:*.F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y)))) ==>
!s:*->bool. IS_SET_REP s ==> P s)"),
EXISTS_TAC IS_SET_REP THEN
REPEAT CONJ_TAC THENL
[ACCEPT_TAC IS_SET_REP_EMPTY;
ACCEPT_TAC INSERTION_PRESERVES_IS_SET_REP;
ACCEPT_TAC REP_INDUCT]);;
% --------------------------------------------------------------------- %
% Define IS_SET_REP to be this predicate. %
% --------------------------------------------------------------------- %
let IS_SET_REP =
new_specification `IS_SET_REP`
[`constant`,`IS_SET_REP`] IS_SET_REP_EXISTS;;
% --------------------------------------------------------------------- %
% A slightly stronger induction theorem. %
% --------------------------------------------------------------------- %
let STRONG_SET_REP_INDUCT =
TAC_PROOF
(([], "!P:(*->bool)->bool.
(P(\x:*. F) /\
(!t. IS_SET_REP t ==> P t ==> (!x. P(\y. (y = x) \/ t y)))) ==>
(!s. IS_SET_REP s ==> P s)"),
let [th1;th2;th3] = CONJUNCTS IS_SET_REP in
GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN
let th4 = BETA_RULE (SPEC "\s:*->bool. IS_SET_REP s /\ P s" th3) in
let th5 = CONJUNCT2 (UNDISCH (SPEC "s:*->bool" (UNDISCH th4))) in
let th6 = DISCH "IS_SET_REP (s:*->bool)" th5 in
MATCH_MP_TAC (DISCH_ALL th6) THEN CONJ_TAC THENL
[ASM_REWRITE_TAC [th1];
REPEAT STRIP_TAC THENL
[IMP_RES_TAC th2; RES_TAC] THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;
% --------------------------------------------------------------------- %
% Theorem stating that the representing type is non empty. %
% --------------------------------------------------------------------- %
let EXISTENCE_THM =
TAC_PROOF
(([], "?(s:*->bool) . IS_SET_REP s"),
EXISTS_TAC "\x:*.F" THEN
REWRITE_TAC [IS_SET_REP]);;
% --------------------------------------------------------------------- %
% Now, make the type definition. %
% --------------------------------------------------------------------- %
let set_TY_DEF =
new_type_definition
(`set`,"IS_SET_REP:(*->bool)->bool", EXISTENCE_THM);;
% ========================================================================== %
% Abstract characterization of the type (*)set. This consists of three %
% constants EMPTY, IN, and INSERT which satisfy: %
% %
% NOT_IN_EMPTY |- !x. ~(IN x EMPTY)) %
% IN_INSERT |- !x y s. IN x (INSERT y s) = ((x=y) \/ IN x s) %
% INSERT_INSERT |- !x s. INSERT x (INSERT x s) = INSERT x s %
% INSERT_COMM |- !x y s. INSERT x (INSERT y s) = INSERT y (INSERT x s) %
% SET_INDUCT |- !P:(*)set->bool. %
% (P EMPTY /\ !s. P s ==> !e. P(INSERT e s)) %
% ==> !s. P s %
% ========================================================================== %
let EXISTENCE_LEMMA =
TAC_PROOF
(([], "?EMPTY:(*)set.
?INSERT:*->(*)set->(*)set.
?IN:*->(*)set->bool.
(!x. ~(IN x EMPTY)) /\
(!x y s. IN x (INSERT y s) = ((x=y) \/ IN x s)) /\
(!x s. INSERT x (INSERT x s) = INSERT x s) /\
(!x y s. INSERT x (INSERT y s) = INSERT y (INSERT x s)) /\
(!P:(*)set->bool.
(P EMPTY /\ !s. P s ==> !e. P(INSERT e s)) ==> !s. P s)"),
let thm = MATCH_MP ABS_REP_THM set_TY_DEF in
STRIP_ASSUME_TAC thm THEN
EXISTS_TAC "abs (\x:*.F) :(*)set" THEN
EXISTS_TAC "\x:*. \s:(*)set. abs (\y. (y=x) \/ (rep s y)):(*)set" THEN
EXISTS_TAC "\x:*. \s:(*)set. (rep s:*->bool) x" THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
let [th1;th2;th3] = CONJUNCTS IS_SET_REP in
REPEAT (CONJ_TAC ORELSE GEN_TAC) THENL
[ASSUME_TAC th1 THEN RES_THEN SUBST1_TAC THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN REPEAT STRIP_TAC;
let th4 = SYM(BETA_CONV "(\y':*. (y' = y) \/ rep (s:(*)set) y') x") in
SUBST1_TAC th4 THEN AP_THM_TAC THEN
FIRST_ASSUM (\th. REWRITE_TAC [SYM (SPEC "r:*->bool" th)]) THEN
MATCH_MP_TAC th2 THEN ASM_REWRITE_TAC [];
FIRST_ASSUM (\th.
let th4 = SPEC "rep (s:(*)set):*->bool" th in
let as1 = ASSUME "!a:(*)set.abs(rep a:*->bool) = a" in
let th5 = SPEC "x:*" (MATCH_MP th2 (REWRITE_RULE [as1] th4)) in
ASSUME_TAC th5 THEN RES_THEN SUBST1_TAC THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [DISJ_ASSOC]);
FIRST_ASSUM (\th.
let th4 = SPEC "rep (s:(*)set):*->bool" th in
let as1 = ASSUME "!a:(*)set.abs(rep a:*->bool) = a" in
let th5 = MATCH_MP th2 (REWRITE_RULE [as1] th4) in
ASSUME_TAC (SPEC "x:*" th5) THEN ASSUME_TAC (SPEC "y:*" th5) THEN
RES_THEN SUBST1_TAC THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
PURE_ONCE_REWRITE_TAC [DISJ_ASSOC] THEN
let disj = ISPEC "x:* = y" DISJ_SYM in
CONV_TAC (RAND_CONV (ONCE_DEPTH_CONV (REWR_CONV disj))) THEN
REFL_TAC);
REPEAT STRIP_TAC THEN
let th4 = STRONG_SET_REP_INDUCT in
let th5 = BETA_RULE (SPEC "\r:*->bool. P(abs r:(*)set):bool" th4) in
let th6 = SPEC "rep (s:(*)set):*->bool" (UNDISCH th5) in
MP_TAC (DISCH_ALL th6) THEN ASM_REWRITE_TAC [] THEN
DISCH_THEN MATCH_MP_TAC THEN GEN_TAC THEN
DISCH_THEN (SUBST1_TAC o SYM) THEN
ASM_REWRITE_TAC []]);;
% --------------------------------------------------------------------- %
% Now, define EMPTY, IN and INSERT. %
% --------------------------------------------------------------------- %
let FINITE_SET_DEF =
new_specification `FINITE_SET_DEF`
[`constant`,`EMPTY`;`infix`,`INSERT`;`infix`,`IN`]
EXISTENCE_LEMMA;;
% --------------------------------------------------------------------- %
% Set up the {x1,...,xn} notation. %
% --------------------------------------------------------------------- %
define_finite_set_syntax(`EMPTY`,`INSERT`);;
% --------------------------------------------------------------------- %
% Save the first four conjuncts of FINITE_SET_DEF under separate names. %
% --------------------------------------------------------------------- %
let [NOT_IN_EMPTY;IN_INSERT;INSERT_INSERT;INSERT_COMM;_] =
CONJUNCTS FINITE_SET_DEF;;
save_thm(`NOT_IN_EMPTY`,NOT_IN_EMPTY);;
save_thm(`IN_INSERT`,IN_INSERT);;
save_thm(`INSERT_INSERT`,INSERT_INSERT);;
save_thm(`INSERT_COMM`,INSERT_COMM);;
% ===================================================================== %
% Basic theorems needed to prove EXTENSION. %
% ===================================================================== %
let COMPONENT =
prove_thm
(`COMPONENT`,
"!x:*.!s. x IN (x INSERT s)",
REWRITE_TAC [IN_INSERT]);;
let NOT_EMPTY_INSERT =
prove_thm
(`NOT_EMPTY_INSERT`,
"!x:*. !s. ~({} = x INSERT s)",
REPEAT GEN_TAC THEN
DISCH_THEN (MP_TAC o (AP_TERM "IN (x:*)")) THEN
REWRITE_TAC [IN_INSERT;NOT_IN_EMPTY]);;
let NOT_INSERT_EMPTY =
save_thm
(`NOT_INSERT_EMPTY`,
CONV_RULE (ONCE_DEPTH_CONV SYM_CONV) NOT_EMPTY_INSERT);;
let lemma =
TAC_PROOF
(([], "!x:*. !s. x IN s ==> (x INSERT s = s)"),
let ind = el 5 (CONJUNCTS FINITE_SET_DEF) in
GEN_TAC THEN INDUCT_THEN ind ASSUME_TAC THENL
[REWRITE_TAC [NOT_IN_EMPTY];
PURE_ONCE_REWRITE_TAC [IN_INSERT] THEN
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC [INSERT_INSERT];
PURE_ONCE_REWRITE_TAC [INSERT_COMM] THEN
RES_THEN SUBST1_TAC THEN REFL_TAC]]);;
let ABSORPTION =
prove_thm
(`ABSORPTION`,
"!x:*. !s. x IN s = (x INSERT s = s)",
REPEAT GEN_TAC THEN EQ_TAC THENL
[MATCH_ACCEPT_TAC lemma;
DISCH_THEN (SUBST1_TAC o SYM) THEN
MATCH_ACCEPT_TAC COMPONENT]);;
% ===================================================================== %
% Finite set induction: strong form. %
% ===================================================================== %
let SET_INDUCT =
prove_thm
(`SET_INDUCT`,
"!P:(*)set->bool.
(P EMPTY /\ !s. P s ==> !e. ~(e IN s) ==> P(INSERT e s)) ==> !s. P s",
let ind = el 5 (CONJUNCTS FINITE_SET_DEF) in
REPEAT STRIP_TAC THEN MATCH_MP_TAC ind THEN
REPEAT STRIP_TAC THENL
[FIRST_ASSUM ACCEPT_TAC;
ASM_CASES_TAC "(e:*) IN s" THENL
[IMP_RES_THEN SUBST1_TAC ABSORPTION THEN
FIRST_ASSUM ACCEPT_TAC;
RES_TAC]]);;
% --------------------------------------------------------------------- %
% Load the set induction tactic in... uncompiled. %
% --------------------------------------------------------------------- %
loadt `set_ind.ml`;;
% ===================================================================== %
% Axiom of extension. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% First, prove DECOMPOSITION. %
% --------------------------------------------------------------------- %
let DECOMPOSITION =
prove_thm
(`DECOMPOSITION`,
"!s:(*)set. !x. x IN s = ?t. (s = x INSERT t) /\ ~x IN t",
REPEAT GEN_TAC THEN EQ_TAC THENL
[MAP_EVERY (SPEC_TAC o (\x.(x,x))) ["x:*";"s:(*)set"] THEN
SET_INDUCT_TAC THENL
[REWRITE_TAC [NOT_IN_EMPTY];
PURE_ONCE_REWRITE_TAC [IN_INSERT] THEN
REPEAT STRIP_TAC THENL
[EXISTS_TAC "s:(*)set" THEN ASM_REWRITE_TAC [];
RES_TAC THEN EXISTS_TAC "(e:*) INSERT t" THEN
FIRST_ASSUM SUBST1_TAC THEN CONJ_TAC THENL
[MATCH_ACCEPT_TAC INSERT_COMM;
ASM_REWRITE_TAC [IN_INSERT] THEN
DISCH_THEN SUBST_ALL_TAC THEN RES_TAC]]];
STRIP_TAC THEN ASM_REWRITE_TAC [IN_INSERT]]);;
% --------------------------------------------------------------------- %
% And prove MEMBER_NOT_EMPTY %
% --------------------------------------------------------------------- %
let MEMBER_NOT_EMPTY =
prove_thm
(`MEMBER_NOT_EMPTY`,
"!s:(*)set. (?x. x IN s) = ~(s = {})",
SET_INDUCT_TAC THENL
[REWRITE_TAC [NOT_IN_EMPTY];
REWRITE_TAC [NOT_INSERT_EMPTY;IN_INSERT] THEN
EXISTS_TAC "e:*" THEN REWRITE_TAC []]);;
% --------------------------------------------------------------------- %
% Now, the axiom of EXTENSION. %
% --------------------------------------------------------------------- %
let lemma =
TAC_PROOF
(([], "!s t. (!x:*. x IN s = x IN t) ==> (s = t)"),
SET_INDUCT_TAC THENL
[REWRITE_TAC [NOT_IN_EMPTY] THEN
CONV_TAC (ONCE_DEPTH_CONV FORALL_NOT_CONV) THEN
REWRITE_TAC [MEMBER_NOT_EMPTY] THEN
GEN_TAC THEN DISCH_THEN (ACCEPT_TAC o SYM);
REPEAT STRIP_TAC THEN
ASSUME_TAC (SPECL ["e:*";"s:(*)set"] COMPONENT) THEN
RES_TAC THEN IMP_RES_TAC DECOMPOSITION THEN
SUBST_ALL_TAC (ASSUME "t = (e:*) INSERT t'") THEN
AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
GEN_TAC THEN
FIRST_ASSUM (\th.
let eqn = REWRITE_RULE [IN_INSERT] (SPEC "x:*" th) in
ASSUME_TAC (GEN_ALL eqn)) THEN
EQ_TAC THEN STRIP_TAC THEN RES_TAC THEN
SUBST_ALL_TAC (ASSUME "x:* = e") THEN RES_TAC]);;
let EXTENSION =
prove_thm
(`EXTENSION`,
"!s t. (s=t) = (!x:*. x IN s = x IN t)",
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN SUBST1_TAC THEN GEN_TAC THEN REFL_TAC;
MATCH_ACCEPT_TAC lemma]);;
let NOT_EQUAL_SETS =
prove_thm
(`NOT_EQUAL_SETS`,
"!s:(*)set. !t. ~(s = t) = ?x. x IN t = ~x IN s",
PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
REPEAT STRIP_TAC THEN EQ_TAC THENL
[DISCH_THEN (STRIP_THM_THEN MP_TAC) THEN
ASM_CASES_TAC "(x:*) IN s" THEN ASM_REWRITE_TAC [] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[];
STRIP_TAC THEN EXISTS_TAC "x:*" THEN
ASM_CASES_TAC "(x:*) IN s" THEN ASM_REWRITE_TAC []]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let NUM_SET_WOP =
prove_thm
(`NUM_SET_WOP`,
"!s. (?n. n IN s) = ?n. n IN s /\ (!m. m IN s ==> n <= m)",
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[let th = BETA_RULE (ISPEC "\n:num. n IN s" WOP) in
IMP_RES_THEN (X_CHOOSE_THEN "N:num" STRIP_ASSUME_TAC) th THEN
EXISTS_TAC "N:num" THEN CONJ_TAC THENL
[FIRST_ASSUM ACCEPT_TAC;
GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN
ASM_REWRITE_TAC [GSYM NOT_LESS]];
EXISTS_TAC "n:num" THEN FIRST_ASSUM ACCEPT_TAC]);;
% --------------------------------------------------------------------- %
% Cases theorem for EMPTY and INSERT. %
% --------------------------------------------------------------------- %
let SET_CASES =
prove_thm
(`SET_CASES`,
"!s:(*)set. (s = {}) \/ ?x:*. ?t. ((s = x INSERT t) /\ ~x IN t)",
SET_INDUCT_TAC THENL
[DISJ1_TAC THEN REFL_TAC;
DISJ2_TAC THEN
MAP_EVERY EXISTS_TAC ["e:*";"s:(*)set"] THEN
ASM_REWRITE_TAC []]);;
% ===================================================================== %
% Set inclusion. %
% ===================================================================== %
let SUBSET_DEF = new_infix_definition
(`SUBSET_DEF`, "SUBSET s t = !x:*. x IN s ==> x IN t");;
let SUBSET_TRANS = prove_thm
(`SUBSET_TRANS`,
"!(s:(*)set) t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u",
REWRITE_TAC [SUBSET_DEF] THEN
REPEAT STRIP_TAC THEN
REPEAT (FIRST_ASSUM MATCH_MP_TAC) THEN
FIRST_ASSUM ACCEPT_TAC);;
let SUBSET_REFL = prove_thm
(`SUBSET_REFL`,
"!(s:(*)set). s SUBSET s",
REWRITE_TAC[SUBSET_DEF]);;
let SUBSET_ANTISYM = prove_thm
(`SUBSET_ANTISYM`,
"!(s:(*)set) t. (s SUBSET t) /\ (t SUBSET s) ==> (s = t)",
REWRITE_TAC [SUBSET_DEF; EXTENSION] THEN
REPEAT STRIP_TAC THEN
EQ_TAC THEN
FIRST_ASSUM MATCH_ACCEPT_TAC);;
let EMPTY_SUBSET =
prove_thm
(`EMPTY_SUBSET`,
"!s:(*)set. EMPTY SUBSET s",
REWRITE_TAC [SUBSET_DEF;NOT_IN_EMPTY]);;
let SUBSET_EMPTY =
prove_thm
(`SUBSET_EMPTY`,
"!s:(*)set. s SUBSET EMPTY = (s = EMPTY)",
PURE_REWRITE_TAC [SUBSET_DEF;NOT_IN_EMPTY] THEN
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY]);;
let INSERT_SUBSET =
prove_thm
(`INSERT_SUBSET`,
"!x:*. !s t. (x INSERT s) SUBSET t = (x IN t /\ s SUBSET t)",
REWRITE_TAC [IN_INSERT;SUBSET_DEF] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[FIRST_ASSUM MATCH_MP_TAC THEN DISJ1_TAC THEN REFL_TAC;
FIRST_ASSUM MATCH_MP_TAC THEN DISJ2_TAC THEN FIRST_ASSUM ACCEPT_TAC;
ASM_REWRITE_TAC [];
RES_TAC]);;
let SUBSET_INSERT =
prove_thm
(`SUBSET_INSERT`,
"!x:*. !s. ~(x IN s) ==> !t. s SUBSET (x INSERT t) = s SUBSET t",
PURE_REWRITE_TAC [SUBSET_DEF;IN_INSERT] THEN
REPEAT STRIP_TAC THEN EQ_TAC THENL
[REPEAT STRIP_TAC THEN
let tac th g = SUBST_ALL_TAC th g ? STRIP_ASSUME_TAC th g in
RES_THEN (STRIP_THM_THEN tac) THEN RES_TAC;
REPEAT STRIP_TAC THEN DISJ2_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM ACCEPT_TAC]);;
% ===================================================================== %
% Proper subset. %
% ===================================================================== %
let PSUBSET_DEF =
new_infix_definition
(`PSUBSET_DEF`, "PSUBSET (s:(*)set) t = (s SUBSET t /\ ~(s = t))");;
let PSUBSET_TRANS =
prove_thm
(`PSUBSET_TRANS`,
"!s:(*)set. !t u. (s PSUBSET t /\ t PSUBSET u) ==> (s PSUBSET u)",
PURE_ONCE_REWRITE_TAC [PSUBSET_DEF] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
[IMP_RES_TAC SUBSET_TRANS;
DISCH_THEN SUBST_ALL_TAC THEN
IMP_RES_TAC SUBSET_ANTISYM THEN
RES_TAC]);;
let PSUBSET_IRREFL =
prove_thm
(`PSUBSET_IRREFL`,
"!s:(*)set. ~(s PSUBSET s)",
REWRITE_TAC [PSUBSET_DEF;SUBSET_REFL]);;
let NOT_PSUBSET_EMPTY =
prove_thm
(`NOT_PSUBSET_EMPTY`,
"!s:(*)set. ~(s PSUBSET EMPTY)",
REWRITE_TAC [PSUBSET_DEF;SUBSET_EMPTY;NOT_AND]);;
let PSUBSET_INSERT_SUBSET =
prove_thm
(`PSUBSET_INSERT_SUBSET`,
"!s t. s PSUBSET t = ?x:*. ~(x IN s) /\ (x INSERT s) SUBSET t",
PURE_REWRITE_TAC [PSUBSET_DEF;NOT_EQUAL_SETS] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[ASM_CASES_TAC "(x:*) IN s" THENL
[ASM_CASES_TAC "(x:*) IN t" THENL
[RES_TAC; IMP_RES_TAC SUBSET_DEF THEN RES_TAC];
EXISTS_TAC "x:*" THEN RES_TAC THEN
ASM_REWRITE_TAC [INSERT_SUBSET]];
IMP_RES_TAC INSERT_SUBSET;
IMP_RES_TAC INSERT_SUBSET THEN
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[]]);;
let lemma =
TAC_PROOF(([], "~(a:bool = b) = (b = ~a)"),
BOOL_CASES_TAC "b:bool" THEN REWRITE_TAC[]);;
let PSUBSET_MEMBER =
prove_thm
(`PSUBSET_MEMBER`,
"!s:(*)set. !t. s PSUBSET t = (s SUBSET t /\ ?y. y IN t /\ ~y IN s)",
REPEAT GEN_TAC THEN PURE_ONCE_REWRITE_TAC [PSUBSET_DEF] THEN
PURE_ONCE_REWRITE_TAC [EXTENSION;SUBSET_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
PURE_ONCE_REWRITE_TAC [lemma] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[RES_TAC;
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [] THEN
ASM_CASES_TAC "(x:*) IN s" THENL
[RES_TAC THEN RES_TAC;FIRST_ASSUM ACCEPT_TAC];
RES_TAC;
EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[]]);;
% ===================================================================== %
% Union. %
% ===================================================================== %
let UNION_EXISTS =
TAC_PROOF
(([], "!s t. ?u. !x:*. x IN u = x IN s \/ x IN t"),
SET_INDUCT_TAC THEN GEN_TAC THENL
[EXISTS_TAC "t:(*)set" THEN
REWRITE_TAC [NOT_IN_EMPTY];
FIRST_ASSUM (STRIP_ASSUME_TAC o SPEC "t:(*)set") THEN
EXISTS_TAC "(e:*) INSERT u" THEN
ASM_REWRITE_TAC [IN_INSERT;DISJ_ASSOC]]);;
let IN_UNION =
let th1 = CONV_RULE SKOLEM_CONV UNION_EXISTS in
new_specification `IN_UNION` [`infix`,`UNION`] th1;;
let UNION_ASSOC =
prove_thm
(`UNION_ASSOC`,
"!(s:(*)set) t u. (s UNION t) UNION u = s UNION (t UNION u)",
REWRITE_TAC [EXTENSION; IN_UNION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
ASM_REWRITE_TAC[]);;
let UNION_IDEMPOT =
prove_thm
(`UNION_IDEMPOT`,
"!(s:(*)set). s UNION s = s",
REWRITE_TAC[EXTENSION; IN_UNION]);;
let UNION_COMM =
prove_thm
(`UNION_COMM`,
"!(s:(*)set) t. s UNION t = t UNION s",
REWRITE_TAC[EXTENSION; IN_UNION] THEN
REPEAT GEN_TAC THEN MATCH_ACCEPT_TAC DISJ_SYM);;
let SUBSET_UNION =
prove_thm
(`SUBSET_UNION`,
"(!s:(*)set. !t. s SUBSET (s UNION t)) /\
(!s:(*)set. !t. s SUBSET (t UNION s))",
PURE_REWRITE_TAC [SUBSET_DEF;IN_UNION] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;
let SUBSET_UNION_ABSORPTION =
prove_thm
(`SUBSET_UNION_ABSORPTION`,
"!s:(*)set. !t. s SUBSET t = (s UNION t = t)",
REWRITE_TAC [SUBSET_DEF;EXTENSION;IN_UNION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[RES_TAC;ASM_REWRITE_TAC[];RES_TAC]);;
let UNION_EMPTY =
prove_thm
(`UNION_EMPTY`,
"(!s:(*)set. EMPTY UNION s = s) /\
(!s:(*)set. s UNION EMPTY = s)",
REWRITE_TAC [IN_UNION;EXTENSION;NOT_IN_EMPTY]);;
let EMPTY_UNION =
prove_thm
(`EMPTY_UNION`,
"!s:(*)set. !t. (s UNION t = EMPTY) = ((s = EMPTY) /\ (t = EMPTY))",
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_UNION;DE_MORGAN_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN RES_TAC);;
let INSERT_UNION =
prove_thm
(`INSERT_UNION`,
"!x:*. !s t.
(x INSERT s) UNION t = (x IN t => s UNION t | x INSERT (s UNION t))",
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC [EXTENSION;IN_UNION;IN_INSERT] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC []);;
let INSERT_UNION_EQ =
prove_thm
(`INSERT_UNION_EQ`,
"!x:*. !s t. (x INSERT s) UNION t = x INSERT (s UNION t)",
REPEAT GEN_TAC THEN
REWRITE_TAC [EXTENSION;IN_UNION;IN_INSERT;DISJ_ASSOC]);;
% ===================================================================== %
% Intersection. %
% ===================================================================== %
let INTER_EXISTS =
TAC_PROOF
(([], "!s t. ?i. !x:*. x IN i = x IN s /\ x IN t"),
SET_INDUCT_TAC THEN GEN_TAC THENL
[EXISTS_TAC "{}:(*)set" THEN
REWRITE_TAC [NOT_IN_EMPTY];
FIRST_ASSUM (STRIP_ASSUME_TAC o SPEC "t:(*)set") THEN
ASM_CASES_TAC "(e:*) IN t" THENL
[EXISTS_TAC "(e:*) INSERT i" THEN GEN_TAC THEN
ASM_CASES_TAC "x:* = e" THEN
ASM_REWRITE_TAC [IN_INSERT];
EXISTS_TAC "i:(*)set" THEN GEN_TAC THEN
ASM_CASES_TAC "x:* = e" THEN
ASM_REWRITE_TAC [IN_INSERT]]]);;
let IN_INTER =
let th1 = CONV_RULE SKOLEM_CONV INTER_EXISTS in
new_specification `IN_INTER` [`infix`,`INTER`] th1;;
let INTER_ASSOC = prove_thm
(`INTER_ASSOC`,
"!(s:(*)set) t u. (s INTER t) INTER u = s INTER (t INTER u)",
REWRITE_TAC [EXTENSION; IN_INTER; CONJ_ASSOC]);;
let INTER_IDEMPOT = prove_thm
(`INTER_IDEMPOT`,
"!(s:(*)set). s INTER s = s",
REWRITE_TAC[EXTENSION; IN_INTER]);;
let INTER_COMM = prove_thm
(`INTER_COMM`,
"!(s:(*)set) t. s INTER t = t INTER s",
REWRITE_TAC[EXTENSION; IN_INTER] THEN
REPEAT GEN_TAC THEN
MATCH_ACCEPT_TAC CONJ_SYM);;
let INTER_SUBSET =
prove_thm
(`INTER_SUBSET`,
"(!s:(*)set. !t. (s INTER t) SUBSET s) /\
(!s:(*)set. !t. (t INTER s) SUBSET s)",
PURE_REWRITE_TAC [SUBSET_DEF;IN_INTER] THEN
REPEAT STRIP_TAC);;
let SUBSET_INTER_ABSORPTION =
prove_thm
(`SUBSET_INTER_ABSORPTION`,
"!s:(*)set. !t. s SUBSET t = (s INTER t = s)",
REWRITE_TAC [SUBSET_DEF;EXTENSION;IN_INTER] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[FIRST_ASSUM ACCEPT_TAC; RES_TAC; RES_TAC]);;
let INTER_EMPTY =
prove_thm
(`INTER_EMPTY`,
"(!s:(*)set. EMPTY INTER s = EMPTY) /\
(!s:(*)set. s INTER EMPTY = EMPTY)",
REWRITE_TAC [IN_INTER;EXTENSION;NOT_IN_EMPTY]);;
let INSERT_INTER =
prove_thm
(`INSERT_INTER`,
"!x:*. !s t.
(x INSERT s) INTER t = (x IN t => x INSERT (s INTER t) | s INTER t)",
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC [EXTENSION;IN_INTER;IN_INSERT] THEN
GEN_TAC THEN EQ_TAC THENL
[STRIP_TAC THEN ASM_REWRITE_TAC [];
STRIP_TAC THEN ASM_REWRITE_TAC [];
PURE_ONCE_REWRITE_TAC [CONJ_SYM] THEN
DISCH_THEN (CONJUNCTS_THEN MP_TAC) THEN
STRIP_TAC THEN ASM_REWRITE_TAC [];
STRIP_TAC THEN ASM_REWRITE_TAC []]);;
% ===================================================================== %
% Distributivity %
% ===================================================================== %
let UNION_OVER_INTER = prove_thm
(`UNION_OVER_INTER`,
"!s:(*)set. !t u.
s INTER (t UNION u) = (s INTER t) UNION (s INTER u)",
REWRITE_TAC [EXTENSION;IN_INTER;IN_UNION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
ASM_REWRITE_TAC[]);;
let INTER_OVER_UNION = prove_thm
(`INTER_OVER_UNION`,
"!s:(*)set. !t u.
s UNION (t INTER u) = (s UNION t) INTER (s UNION u)",
REWRITE_TAC [EXTENSION;IN_INTER;IN_UNION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
ASM_REWRITE_TAC[]);;
% ===================================================================== %
% Disjoint sets. %
% ===================================================================== %
let DISJOINT_DEF =
new_definition
(`DISJOINT_DEF`, "DISJOINT (s:(*)set) t = ((s INTER t) = EMPTY)");;
let IN_DISJOINT =
prove_thm
(`IN_DISJOINT`,
"!s:(*)set. !t. DISJOINT s t = ~(?x. x IN s /\ x IN t)",
REWRITE_TAC [DISJOINT_DEF;EXTENSION;IN_INTER;NOT_IN_EMPTY] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
REPEAT GEN_TAC THEN REFL_TAC);;
let DISJOINT_SYM =
prove_thm
(`DISJOINT_SYM`,
"!s:(*)set. !t. DISJOINT s t = DISJOINT t s",
PURE_ONCE_REWRITE_TAC [DISJOINT_DEF] THEN REPEAT GEN_TAC THEN
SUBST1_TAC (SPECL ["s:(*)set";"t:(*)set"] INTER_COMM) THEN REFL_TAC);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let DISJOINT_EMPTY =
prove_thm
(`DISJOINT_EMPTY`,
"!s:(*)set. DISJOINT EMPTY s /\ DISJOINT s EMPTY",
REWRITE_TAC [DISJOINT_DEF;INTER_EMPTY]);;
let DISJOINT_EMPTY_REFL =
prove_thm
(`DISJOINT_EMPTY_REFL`,
"!s:(*)set. (s = EMPTY) = (DISJOINT s s)",
REWRITE_TAC [DISJOINT_DEF;INTER_IDEMPOT]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let DISJOINT_INSERT =
prove_thm
(`DISJOINT_INSERT`,
"!(x:*) s t. DISJOINT (x INSERT s) t = (DISJOINT s t) /\ ~(x IN t)",
REWRITE_TAC [IN_DISJOINT;IN_INSERT] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
REWRITE_TAC [DE_MORGAN_THM] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[(let v = genvar ":*" in let GTAC = X_GEN_TAC v in
DISCH_THEN (\th. CONJ_TAC THENL [GTAC;ALL_TAC] THEN MP_TAC th) THENL
[DISCH_THEN (STRIP_ASSUME_TAC o SPEC v) THEN ASM_REWRITE_TAC [];
DISCH_THEN (MP_TAC o SPEC "x:*") THEN REWRITE_TAC[]]);
REPEAT STRIP_TAC THEN ASM_CASES_TAC "x':* = x" THENL
[ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]]]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let DISJOINT_UNION =
prove_thm
(`DISJOINT_UNION`,
"!s:(*)set. !t u. DISJOINT (s UNION t) u = DISJOINT s u /\ DISJOINT t u",
REWRITE_TAC [IN_DISJOINT;IN_UNION] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
CONV_TAC (ONCE_DEPTH_CONV AND_FORALL_CONV) THEN
REWRITE_TAC [DE_MORGAN_THM;RIGHT_AND_OVER_OR] THEN
REPEAT GEN_TAC THEN EQ_TAC THEN
DISCH_THEN (\th. GEN_TAC THEN STRIP_ASSUME_TAC (SPEC "x:*" th)) THEN
ASM_REWRITE_TAC []);;
% ===================================================================== %
% Set difference %
% ===================================================================== %
let DIFF_EXISTS =
TAC_PROOF
(([], "!s t. ?d. !x:*. x IN d = x IN s /\ ~x IN t"),
SET_INDUCT_TAC THEN GEN_TAC THENL
[EXISTS_TAC "{}:(*)set" THEN
REWRITE_TAC [NOT_IN_EMPTY];
FIRST_ASSUM (STRIP_ASSUME_TAC o SPEC "t:(*)set") THEN
ASM_CASES_TAC "(e:*) IN t" THENL
[EXISTS_TAC "d:(*)set" THEN GEN_TAC THEN
ASM_CASES_TAC "x:* = e" THEN
ASM_REWRITE_TAC [IN_INSERT];
EXISTS_TAC "e INSERT (d:(*)set)" THEN GEN_TAC THEN
ASM_CASES_TAC "x:* = e" THEN
ASM_REWRITE_TAC [IN_INSERT]]]);;
let IN_DIFF =
let th1 = CONV_RULE SKOLEM_CONV DIFF_EXISTS in
new_specification `IN_DIFF` [`infix`,`DIFF`] th1;;
let DIFF_EMPTY =
prove_thm
(`DIFF_EMPTY`,
"!s:(*)set. s DIFF EMPTY = s",
GEN_TAC THEN
REWRITE_TAC [NOT_IN_EMPTY;IN_DIFF;EXTENSION]);;
let EMPTY_DIFF =
prove_thm
(`EMPTY_DIFF`,
"!s:(*)set. EMPTY DIFF s = EMPTY",
GEN_TAC THEN
REWRITE_TAC [NOT_IN_EMPTY;IN_DIFF;EXTENSION]);;
let DIFF_DIFF =
prove_thm
(`DIFF_DIFF`,
"!s:(*)set. !t. (s DIFF t) DIFF t = s DIFF t",
REWRITE_TAC [EXTENSION;IN_DIFF;SYM(SPEC_ALL CONJ_ASSOC)]);;
let DIFF_EQ_EMPTY =
prove_thm
(`DIFF_EQ_EMPTY`,
"!s:(*)set. s DIFF s = EMPTY",
REWRITE_TAC [EXTENSION;IN_DIFF;NOT_IN_EMPTY;DE_MORGAN_THM] THEN
PURE_ONCE_REWRITE_TAC [DISJ_SYM] THEN
REWRITE_TAC [EXCLUDED_MIDDLE]);;
% ===================================================================== %
% Removal of an element %
% ===================================================================== %
let DELETE_DEF =
new_infix_definition
(`DELETE_DEF`, "DELETE s (x:*) = s DIFF {x}");;
let IN_DELETE =
prove_thm
(`IN_DELETE`,
"!s. !x:*. !y. x IN (s DELETE y) = (x IN s /\ ~(x = y))",
PURE_ONCE_REWRITE_TAC [DELETE_DEF] THEN
REWRITE_TAC [IN_DIFF;IN_INSERT;NOT_IN_EMPTY]);;
let DELETE_NON_ELEMENT =
prove_thm
(`DELETE_NON_ELEMENT`,
"!x:*. !s. ~x IN s = ((s DELETE x) = s)",
PURE_REWRITE_TAC [EXTENSION;IN_DELETE] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[FIRST_ASSUM ACCEPT_TAC;
FIRST_ASSUM (\th g. SUBST_ALL_TAC th g ? NO_TAC g) THEN RES_TAC;
RES_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REFL_TAC]);;
let IN_DELETE_EQ =
prove_thm
(`IN_DELETE_EQ`,
"!s x. !x':*.
(x IN s = x' IN s) = (x IN (s DELETE x') = x' IN (s DELETE x))",
REPEAT GEN_TAC THEN ASM_CASES_TAC "x:* = x'" THENL
[ASM_REWRITE_TAC [];
FIRST_ASSUM (ASSUME_TAC o NOT_EQ_SYM) THEN
ASM_REWRITE_TAC [IN_DELETE]]);;
let EMPTY_DELETE =
prove_thm
(`EMPTY_DELETE`,
"!x:*. EMPTY DELETE x = EMPTY",
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_DELETE]);;
let DELETE_DELETE =
prove_thm
(`DELETE_DELETE`,
"!x:*. !s. (s DELETE x) DELETE x = s DELETE x",
REWRITE_TAC [EXTENSION;IN_DELETE;SYM(SPEC_ALL CONJ_ASSOC)]);;
let DELETE_COMM =
prove_thm
(`DELETE_COMM`,
"!x:*. !y. !s. (s DELETE x) DELETE y = (s DELETE y) DELETE x",
PURE_REWRITE_TAC [EXTENSION;IN_DELETE;CONJ_ASSOC] THEN
REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
REPEAT CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC);;
let DELETE_SUBSET =
prove_thm
(`DELETE_SUBSET`,
"!x:*. !s. (s DELETE x) SUBSET s",
PURE_REWRITE_TAC [SUBSET_DEF;IN_DELETE] THEN
REPEAT STRIP_TAC);;
let SUBSET_DELETE =
prove_thm
(`SUBSET_DELETE`,
"!x:*. !s t. s SUBSET (t DELETE x) = (~(x IN s) /\ (s SUBSET t))",
REWRITE_TAC [SUBSET_DEF;IN_DELETE;EXTENSION] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[REPEAT STRIP_TAC THENL
[ASSUME_TAC (REFL "x:*") THEN RES_TAC; RES_TAC];
REPEAT STRIP_TAC THENL
[RES_TAC; FIRST_ASSUM (\th g. SUBST_ALL_TAC th g) THEN RES_TAC]]);;
let SUBSET_INSERT_DELETE =
prove_thm
(`SUBSET_INSERT_DELETE`,
"!x:*. !s t. s SUBSET (x INSERT t) = ((s DELETE x) SUBSET t)",
REPEAT GEN_TAC THEN
REWRITE_TAC [SUBSET_DEF;IN_INSERT;IN_DELETE] THEN
EQ_TAC THEN REPEAT STRIP_TAC THENL
[RES_TAC THEN RES_TAC;
ASM_CASES_TAC "x':* = x" THEN
ASM_REWRITE_TAC[] THEN RES_TAC]);;
let DIFF_INSERT =
prove_thm
(`DIFF_INSERT`,
"!s t. !x:*. s DIFF (x INSERT t) = (s DELETE x) DIFF t",
PURE_REWRITE_TAC [EXTENSION;IN_DIFF;IN_INSERT;IN_DELETE] THEN
REWRITE_TAC [DE_MORGAN_THM;CONJ_ASSOC]);;
let DELETE_INSERT =
prove_thm
(`DELETE_INSERT`,
"!x:*. !y s.
(x INSERT s) DELETE y = ((x=y) => s DELETE y | x INSERT (s DELETE y))",
REWRITE_TAC [EXTENSION;IN_DELETE;IN_INSERT] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN (STRIP_THM_THEN MP_TAC) THEN DISCH_TAC THEN
let tac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
DISCH_THEN (STRIP_THM_THEN tac) THENL
[ASM_REWRITE_TAC [IN_INSERT];
COND_CASES_TAC THEN ASM_REWRITE_TAC [IN_DELETE;IN_INSERT]];
COND_CASES_TAC THEN ASM_REWRITE_TAC [IN_DELETE;IN_INSERT] THENL
[STRIP_TAC THEN ASM_REWRITE_TAC [];
STRIP_TAC THEN ASM_REWRITE_TAC []]]);;
let INSERT_DELETE =
prove_thm
(`INSERT_DELETE`,
"!x:*. !s. x IN s ==> (x INSERT (s DELETE x) = s)",
PURE_REWRITE_TAC [EXTENSION;IN_INSERT;IN_DELETE] THEN
REPEAT GEN_TAC THEN DISCH_THEN (\th. GEN_TAC THEN MP_TAC th) THEN
ASM_CASES_TAC "x':* = x" THEN ASM_REWRITE_TAC[]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let DELETE_INTER =
prove_thm
(`DELETE_INTER`,
"!s t. !x:*. (s DELETE x) INTER t = (s INTER t) DELETE x",
PURE_ONCE_REWRITE_TAC [EXTENSION] THEN REPEAT GEN_TAC THEN
REWRITE_TAC [IN_INTER;IN_DELETE] THEN
EQ_TAC THEN REPEAT STRIP_TAC THEN
FIRST [FIRST_ASSUM ACCEPT_TAC;RES_TAC]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let DISJOINT_DELETE_SYM =
prove_thm
(`DISJOINT_DELETE_SYM`,
"!s t. !x:*. DISJOINT (s DELETE x) t = DISJOINT (t DELETE x) s",
REWRITE_TAC [DISJOINT_DEF;EXTENSION;NOT_IN_EMPTY] THEN
REWRITE_TAC [IN_INTER;IN_DELETE;DE_MORGAN_THM] THEN
REPEAT GEN_TAC THEN EQ_TAC THEN
let X = "X:*" in
DISCH_THEN (\th. X_GEN_TAC X THEN STRIP_ASSUME_TAC (SPEC X th)) THEN
ASM_REWRITE_TAC []);;
% ===================================================================== %
% Choice %
% ===================================================================== %
let CHOICE_EXISTS =
TAC_PROOF
(([], "?CHOICE. !s:(*)set. ~(s = EMPTY) ==> (CHOICE s) IN s"),
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY] THEN
EXISTS_TAC "\s. @x:*. x IN s" THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
CONV_TAC (ONCE_DEPTH_CONV SELECT_CONV) THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
REWRITE_TAC []);;
let CHOICE_DEF =
new_specification `CHOICE_DEF` [`constant`,`CHOICE`] CHOICE_EXISTS;;
% ===================================================================== %
% The REST of a set after removing a chosen element. %
% ===================================================================== %
let REST_DEF =
new_definition
(`REST_DEF`, "REST (s:(*)set) = s DELETE (CHOICE s)");;
let CHOICE_NOT_IN_REST =
prove_thm
(`CHOICE_NOT_IN_REST`,
"!s:(*)set. ~(CHOICE s) IN (REST s)",
REWRITE_TAC [IN_DELETE;REST_DEF]);;
let CHOICE_INSERT_REST =
prove_thm
(`CHOICE_INSERT_REST`,
"!s:(*)set. ~(s = EMPTY) ==> (((CHOICE s) INSERT (REST s)) = s)",
REPEAT GEN_TAC THEN STRIP_TAC THEN
REWRITE_TAC [EXTENSION;IN_INSERT;REST_DEF;IN_DELETE] THEN
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL
[IMP_RES_TAC CHOICE_DEF THEN ASM_REWRITE_TAC [];
ASM_REWRITE_TAC [EXCLUDED_MIDDLE]]);;
let REST_SUBSET =
prove_thm
(`REST_SUBSET`,
"!s:(*)set. (REST s) SUBSET s",
REWRITE_TAC [SUBSET_DEF;REST_DEF;IN_DELETE] THEN REPEAT STRIP_TAC);;
let lemma =
TAC_PROOF(([], "(P /\ Q = P) = (P ==> Q)"),
BOOL_CASES_TAC "P:bool" THEN REWRITE_TAC[]);;
let REST_PSUBSET =
prove_thm
(`REST_PSUBSET`,
"!s:(*)set. ~(s = EMPTY) ==> (REST s) PSUBSET s",
REWRITE_TAC [PSUBSET_DEF;REST_SUBSET] THEN
GEN_TAC THEN STRIP_TAC THEN
REWRITE_TAC [EXTENSION;REST_DEF;IN_DELETE] THEN
CONV_TAC NOT_FORALL_CONV THEN
REWRITE_TAC [DE_MORGAN_THM;lemma;NOT_IMP] THEN
EXISTS_TAC "CHOICE (s:(*)set)" THEN
IMP_RES_TAC CHOICE_DEF THEN
ASM_REWRITE_TAC []);;
% ===================================================================== %
% Singleton set. %
% ===================================================================== %
let SING_DEF =
new_definition
(`SING_DEF`, "SING s = ?x:*. s = {x}");;
let SING =
prove_thm
(`SING`,
"!x:*. SING {x}",
PURE_ONCE_REWRITE_TAC [SING_DEF] THEN
GEN_TAC THEN EXISTS_TAC "x:*" THEN REFL_TAC);;
let IN_SING =
prove_thm
(`IN_SING`,
"!x y. x IN {y:*} = (x = y)",
REWRITE_TAC [IN_INSERT;NOT_IN_EMPTY]);;
let NOT_SING_EMPTY =
prove_thm
(`NOT_SING_EMPTY`,
"!x:*. ~({x} = EMPTY)",
REWRITE_TAC [EXTENSION;IN_SING;NOT_IN_EMPTY] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
GEN_TAC THEN EXISTS_TAC "x:*" THEN REWRITE_TAC[]);;
let NOT_EMPTY_SING =
prove_thm
(`NOT_EMPTY_SING`,
"!x:*. ~(EMPTY = {x})",
REWRITE_TAC [EXTENSION;IN_SING;NOT_IN_EMPTY] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
GEN_TAC THEN EXISTS_TAC "x:*" THEN REWRITE_TAC[]);;
let EQUAL_SING =
prove_thm
(`EQUAL_SING`,
"!x:*. !y. ({x} = {y}) = (x = y)",
REWRITE_TAC [EXTENSION;IN_SING] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN (\th. REWRITE_TAC [SYM(SPEC_ALL th)]);
DISCH_THEN SUBST1_TAC THEN GEN_TAC THEN REFL_TAC]);;
let DISJOINT_SING_EMPTY =
prove_thm
(`DISJOINT_SING_EMPTY`,
"!x:*. DISJOINT {x} EMPTY",
REWRITE_TAC [DISJOINT_DEF;INTER_EMPTY]);;
let INSERT_SING_UNION =
prove_thm
(`INSERT_SING_UNION`,
"!s. !x:*. x INSERT s = {x} UNION s",
REWRITE_TAC [EXTENSION;IN_INSERT;IN_UNION;NOT_IN_EMPTY]);;
let SING_DELETE =
prove_thm
(`SING_DELETE`,
"!x:*. {x} DELETE x = EMPTY",
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_DELETE;IN_INSERT] THEN
PURE_ONCE_REWRITE_TAC [CONJ_SYM] THEN
REWRITE_TAC [DE_MORGAN_THM;EXCLUDED_MIDDLE]);;
let DELETE_EQ_SING =
prove_thm
(`DELETE_EQ_SING`,
"!s. !x:*. (x IN s) ==> ((s DELETE x = EMPTY) = (s = {x}))",
PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
REWRITE_TAC [NOT_IN_EMPTY;DE_MORGAN_THM;IN_INSERT;IN_DELETE] THEN
REPEAT STRIP_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN GEN_TAC THEN
FIRST_ASSUM (\th g. STRIP_ASSUME_TAC (SPEC "x':*" th) g) THEN
ASM_REWRITE_TAC [] THEN DISCH_THEN SUBST_ALL_TAC THEN RES_TAC;
let th = PURE_ONCE_REWRITE_RULE [DISJ_SYM] EXCLUDED_MIDDLE in
DISCH_TAC THEN GEN_TAC THEN ASM_REWRITE_TAC [th]]);;
let CHOICE_SING =
prove_thm
(`CHOICE_SING`,
"!x:*. CHOICE {x} = x",
GEN_TAC THEN
MP_TAC (MATCH_MP CHOICE_DEF (SPEC "x:*" NOT_SING_EMPTY)) THEN
REWRITE_TAC [IN_SING]);;
let REST_SING =
prove_thm
(`REST_SING`,
"!x:*. REST {x} = EMPTY",
REWRITE_TAC [CHOICE_SING;REST_DEF;SING_DELETE]);;
let SING_IFF_EMPTY_REST =
prove_thm
(`SING_IFF_EMPTY_REST`,
"!s:(*)set. SING s = ~(s = EMPTY) /\ (REST s = EMPTY)",
PURE_ONCE_REWRITE_TAC [SING_DEF] THEN
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL
[ASM_REWRITE_TAC [REST_SING] THEN
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_INSERT] THEN
CONV_TAC NOT_FORALL_CONV THEN
EXISTS_TAC "x:*" THEN REWRITE_TAC [];
EXISTS_TAC "CHOICE s:*" THEN
IMP_RES_THEN (SUBST1_TAC o SYM) CHOICE_INSERT_REST THEN
ASM_REWRITE_TAC [EXTENSION;IN_SING;CHOICE_SING]]);;
% ===================================================================== %
% The image of a function on a set. %
% ===================================================================== %
let IMAGE_EXISTS =
TAC_PROOF
(([], "!f:*->**. !s:(*)set. ?t. !y. y IN t = ?x. (y = f x) /\ x IN s"),
GEN_TAC THEN SET_INDUCT_TAC THENL
[EXISTS_TAC "{}:(**)set" THEN REWRITE_TAC [NOT_IN_EMPTY];
FIRST_ASSUM (CHOOSE_THEN STRIP_ASSUME_TAC) THEN
EXISTS_TAC "(f (e:*):**) INSERT t" THEN
ASM_REWRITE_TAC [IN_INSERT] THEN GEN_TAC THEN
EQ_TAC THEN REPEAT STRIP_TAC THENL
[EXISTS_TAC "e:*" THEN ASM_REWRITE_TAC [];
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [];
ASM_REWRITE_TAC [];
DISJ2_TAC THEN EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC []]]);;
let IN_IMAGE =
let th1 = CONV_RULE SKOLEM_CONV IMAGE_EXISTS in
new_specification `IN_IMAGE` [`constant`,`IMAGE`] th1;;
let IMAGE_IN =
prove_thm
(`IMAGE_IN`,
"!x s. (x IN s) ==> !(f:*->**). f x IN (IMAGE f s)",
PURE_ONCE_REWRITE_TAC [IN_IMAGE] THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC "x:*" THEN
CONJ_TAC THENL [REFL_TAC; FIRST_ASSUM ACCEPT_TAC]);;
let IMAGE_EMPTY =
prove_thm
(`IMAGE_EMPTY`,
"!f:*->**. IMAGE f EMPTY = EMPTY",
REWRITE_TAC[EXTENSION;IN_IMAGE;NOT_IN_EMPTY]);;
let IMAGE_ID =
prove_thm
(`IMAGE_ID`,
"!s:* set. IMAGE (\x:*.x) s = s",
REWRITE_TAC [EXTENSION;IN_IMAGE] THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[ALL_TAC;EXISTS_TAC "x:*"] THEN
ASM_REWRITE_TAC []);;
let IMAGE_COMPOSE =
prove_thm
(`IMAGE_COMPOSE`,
"!f:**->***. !g:*->**. !s. IMAGE (f o g) s = IMAGE f (IMAGE g s)",
PURE_REWRITE_TAC [EXTENSION;IN_IMAGE;o_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[EXISTS_TAC "g (x':*):**" THEN
CONJ_TAC THENL [ALL_TAC;EXISTS_TAC "x':*"] THEN
ASM_REWRITE_TAC [];
EXISTS_TAC "x'':*" THEN ASM_REWRITE_TAC[]]);;
let IMAGE_INSERT =
prove_thm
(`IMAGE_INSERT`,
"!(f:*->**) x s. IMAGE f (x INSERT s) = f x INSERT (IMAGE f s)",
PURE_REWRITE_TAC [EXTENSION;IN_INSERT;IN_IMAGE] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[ALL_TAC;DISJ2_TAC THEN EXISTS_TAC "x'':*";
EXISTS_TAC "x:*";EXISTS_TAC "x'':*"] THEN
ASM_REWRITE_TAC[]);;
let IMAGE_EQ_EMPTY =
prove_thm
(`IMAGE_EQ_EMPTY`,
"!s. !f:*->**. ((IMAGE f s) = EMPTY) = (s = EMPTY)",
GEN_TAC THEN
STRIP_ASSUME_TAC (SPEC "s:(*)set" SET_CASES) THEN
ASM_REWRITE_TAC [IMAGE_EMPTY;IMAGE_INSERT;NOT_INSERT_EMPTY]);;
let IMAGE_DELETE =
prove_thm
(`IMAGE_DELETE`,
"!(f:*->**) x s. ~(x IN s) ==> (IMAGE f (s DELETE x) = (IMAGE f s))",
REPEAT GEN_TAC THEN STRIP_TAC THEN
PURE_REWRITE_TAC [EXTENSION;IN_DELETE;IN_IMAGE] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
EXISTS_TAC "x'':*" THEN ASM_REWRITE_TAC [] THEN
DISCH_THEN SUBST_ALL_TAC THEN RES_TAC);;
let IMAGE_UNION =
prove_thm
(`IMAGE_UNION`,
"!(f:*->**) s t. IMAGE f (s UNION t) = (IMAGE f s) UNION (IMAGE f t)",
PURE_REWRITE_TAC [EXTENSION;IN_UNION;IN_IMAGE] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[DISJ1_TAC;DISJ2_TAC;ALL_TAC;ALL_TAC] THEN
EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []);;
let IMAGE_SUBSET =
prove_thm
(`IMAGE_SUBSET`,
"!s t. (s SUBSET t) ==> !f:*->**. (IMAGE f s) SUBSET (IMAGE f t)",
PURE_REWRITE_TAC [SUBSET_DEF;IN_IMAGE] THEN
REPEAT STRIP_TAC THEN RES_TAC THEN
EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []);;
let IMAGE_INTER =
prove_thm
(`IMAGE_INTER`,
"!(f:*->**) s t. IMAGE f (s INTER t) SUBSET (IMAGE f s INTER IMAGE f t)",
REPEAT GEN_TAC THEN
REWRITE_TAC [SUBSET_DEF;IN_IMAGE;IN_INTER] THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC "x':*" THEN
CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC);;
let lemma =
TAC_PROOF
(([], "!s x. x IN s ==> !f:*->**. (f x) IN (IMAGE f s)"),
REPEAT STRIP_TAC THEN PURE_ONCE_REWRITE_TAC [IN_IMAGE] THEN
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[]);;
let SET_MINIMUM =
prove_thm
(`SET_MINIMUM`,
"!s:(*)set. !M.
(?x. x IN s) = ?x. x IN s /\ !y. y IN s ==> M x <= M y",
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[IMP_RES_THEN (ASSUME_TAC o ISPEC "M:*->num") lemma THEN
let rule = REWRITE_RULE [IN_IMAGE] in
IMP_RES_THEN (STRIP_ASSUME_TAC o rule) NUM_SET_WOP THEN
EXISTS_TAC "x':*" THEN CONJ_TAC THENL
[FIRST_ASSUM ACCEPT_TAC;
FIRST_ASSUM (SUBST_ALL_TAC o SYM) THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC "y:*" THEN CONJ_TAC THENL
[REFL_TAC; FIRST_ASSUM ACCEPT_TAC]];
EXISTS_TAC "x:*" THEN FIRST_ASSUM ACCEPT_TAC]);;
% ===================================================================== %
% Injective functions on a set. %
% ===================================================================== %
let INJ_DEF =
new_definition
(`INJ_DEF`,
"INJ (f:*->**) s t =
(!x. x IN s ==> (f x) IN t) /\
(!x y. (x IN s /\ y IN s) ==> (f x = f y) ==> (x = y))");;
let INJ_ID =
prove_thm
(`INJ_ID`,
"!s. INJ (\x:*.x) s s",
PURE_ONCE_REWRITE_TAC [INJ_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC);;
let INJ_COMPOSE =
prove_thm
(`INJ_COMPOSE`,
"!f:*->**. !g:**->***.
!s t u. (INJ f s t /\ INJ g t u) ==> INJ (g o f) s u",
PURE_REWRITE_TAC [INJ_DEF;o_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[FIRST_ASSUM MATCH_MP_TAC THEN RES_TAC;
RES_TAC THEN RES_TAC]);;
let INJ_EMPTY =
prove_thm
(`INJ_EMPTY`,
"!f:*->**. (!s. INJ f {} s) /\ (!s. INJ f s {} = (s = {}))",
REWRITE_TAC [INJ_DEF;NOT_IN_EMPTY;EXTENSION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN RES_TAC);;
% ===================================================================== %
% Surjective functions on a set. %
% ===================================================================== %
let SURJ_DEF =
new_definition
(`SURJ_DEF`,
"SURJ (f:*->**) s t =
(!x. x IN s ==> (f x) IN t) /\
(!x. (x IN t) ==> ?y. y IN s /\ (f y = x))");;
let SURJ_ID =
prove_thm
(`SURJ_ID`,
"!s. SURJ (\x:*.x) s s",
PURE_ONCE_REWRITE_TAC [SURJ_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC "x':*" THEN
ASM_REWRITE_TAC []);;
let SURJ_COMPOSE =
prove_thm
(`SURJ_COMPOSE`,
"!f:*->**. !g:**->***.
!s t u. (SURJ f s t /\ SURJ g t u) ==> SURJ (g o f) s u",
PURE_REWRITE_TAC [SURJ_DEF;o_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[FIRST_ASSUM MATCH_MP_TAC THEN RES_TAC;
RES_TAC THEN RES_TAC THEN
EXISTS_TAC "y'':*" THEN
ASM_REWRITE_TAC []]);;
let SURJ_EMPTY =
prove_thm
(`SURJ_EMPTY`,
"!f:*->**. (!s. SURJ f {} s = (s = {})) /\ (!s. SURJ f s {} = (s = {}))",
REWRITE_TAC [SURJ_DEF;NOT_IN_EMPTY;EXTENSION]);;
let IMAGE_SURJ =
prove_thm
(`IMAGE_SURJ`,
"!f:*->**. !s t. SURJ f s t = ((IMAGE f s) = t)",
PURE_REWRITE_TAC [SURJ_DEF;EXTENSION;IN_IMAGE] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[RES_TAC THEN ASM_REWRITE_TAC [];
MAP_EVERY PURE_ONCE_REWRITE_TAC [[CONJ_SYM];[EQ_SYM_EQ]] THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC];
DISCH_THEN (ASSUME_TAC o CONV_RULE (ONCE_DEPTH_CONV SYM_CONV)) THEN
ASM_REWRITE_TAC [] THEN REPEAT STRIP_TAC THENL
[EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [];
EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []]]);;
% ===================================================================== %
% Bijective functions on a set. %
% ===================================================================== %
let BIJ_DEF =
new_definition
(`BIJ_DEF`,
"BIJ (f:*->**) s t = INJ f s t /\ SURJ f s t");;
let BIJ_ID =
prove_thm
(`BIJ_ID`,
"!s. BIJ (\x:*.x) s s",
REWRITE_TAC [BIJ_DEF;INJ_ID;SURJ_ID]);;
let BIJ_EMPTY =
prove_thm
(`BIJ_EMPTY`,
"!f:*->**. (!s. BIJ f {} s = (s = {})) /\ (!s. BIJ f s {} = (s = {}))",
REWRITE_TAC [BIJ_DEF;INJ_EMPTY;SURJ_EMPTY]);;
let BIJ_COMPOSE =
prove_thm
(`BIJ_COMPOSE`,
"!f:*->**. !g:**->***.
!s t u. (BIJ f s t /\ BIJ g t u) ==> BIJ (g o f) s u",
PURE_REWRITE_TAC [BIJ_DEF] THEN
REPEAT STRIP_TAC THENL
[IMP_RES_TAC INJ_COMPOSE;IMP_RES_TAC SURJ_COMPOSE]);;
% ===================================================================== %
% Left and right inverses. %
% ===================================================================== %
let lemma1 =
TAC_PROOF
(([], "!f:*->**. !s.
(!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)) =
(!y. y IN s ==> !x.((x IN s /\ (f x = f y))=(y IN s /\ (x = y))))"),
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
RES_TAC THEN ASM_REWRITE_TAC []);;
let lemma2 =
TAC_PROOF
(([],
"!f:*->**. !s. ?g. !t. INJ f s t ==> !x:*. x IN s ==> (g(f x) = x)"),
REPEAT GEN_TAC THEN PURE_REWRITE_TAC [INJ_DEF;lemma1] THEN
EXISTS_TAC "\y:**. @x:*. x IN s /\ (f x = y)" THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN (RES_THEN \th. REWRITE_TAC [th]) THEN
ASM_REWRITE_TAC [] THEN CONV_TAC SELECT_CONV THEN
EXISTS_TAC "x:*" THEN REFL_TAC);;
% --------------------------------------------------------------------- %
% LINV_DEF: %
% |- !f s t. INJ f s t ==> (!x. x IN s ==> (LINV f s(f x) = x)) %
% --------------------------------------------------------------------- %
let LINV_DEF =
let th1 = CONV_RULE (ONCE_DEPTH_CONV RIGHT_IMP_EXISTS_CONV) lemma2 in
let th2 = CONV_RULE SKOLEM_CONV th1 in
new_specification `LINV_DEF` [`constant`,`LINV`] th2;;
let lemma3 =
TAC_PROOF
(([],
"!f:*->**. !s. ?g. !t. SURJ f s t ==> !x:**. x IN t ==> (f(g x) = x)"),
REPEAT GEN_TAC THEN PURE_REWRITE_TAC [SURJ_DEF] THEN
EXISTS_TAC "\y:**. @x:*. x IN s /\ (f x = y)" THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
(\(A,g).
let tm = mk_conj("^(rand(lhs g)) IN s",g) in
SUBGOAL_THEN tm (\th. ACCEPT_TAC(CONJUNCT2 th))(A,g)) THEN
CONV_TAC SELECT_CONV THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM ACCEPT_TAC);;
% --------------------------------------------------------------------- %
% RINV_DEF: %
% |- !f s t. SURJ f s t ==> (!x. x IN t ==> (f(RINV f s x) = x)) %
% --------------------------------------------------------------------- %
let RINV_DEF =
let th1 = CONV_RULE (ONCE_DEPTH_CONV RIGHT_IMP_EXISTS_CONV) lemma3 in
let th2 = CONV_RULE SKOLEM_CONV th1 in
new_specification `RINV_DEF` [`constant`,`RINV`] th2;;
% ===================================================================== %
% Cardinality %
% ===================================================================== %
% --------------------------------------------------------------------- %
% card_rel_def: defining equations for a relation "R s n", which means %
% that the finite s has cardinality n. %
% --------------------------------------------------------------------- %
let card_rel_def =
"(!s. R s 0 = (s = EMPTY)) /\
(!s n. R s (SUC n) = ?x:*. x IN s /\ R (s DELETE x) n)";;
% --------------------------------------------------------------------- %
% Prove that such a relation exists. %
% --------------------------------------------------------------------- %
let CARD_REL_EXISTS = prove_rec_fn_exists num_Axiom card_rel_def;;
% --------------------------------------------------------------------- %
% Now, prove that it doesn't matter which element we delete %
% Proof modified for Version 12 IMP_RES_THEN [TFM 91.01.23] %
% --------------------------------------------------------------------- %
let CARD_REL_DEL_LEMMA =
TAC_PROOF
((conjuncts card_rel_def,
"!n:num.!s.!x:*.
x IN s ==> R (s DELETE x) n ==> !y:*. y IN s ==> R (s DELETE y) n"),
INDUCT_TAC THENL
[REPEAT GEN_TAC THEN DISCH_TAC THEN
IMP_RES_TAC DELETE_EQ_SING THEN ASM_REWRITE_TAC [] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC [IN_SING] THEN
GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC [SING_DELETE];
ASM_REWRITE_TAC [] THEN REPEAT STRIP_TAC THEN
let th = (SPEC "y:* = x'" EXCLUDED_MIDDLE) in
DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC th THENL
[MP_TAC (SPECL ["s:(*)set";"x:*";"x':*"] IN_DELETE_EQ) THEN
ASM_REWRITE_TAC [] THEN DISCH_TAC THEN
PURE_ONCE_REWRITE_TAC [DELETE_COMM] THEN
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[];
let th = (SPEC "x:* = y" EXCLUDED_MIDDLE) in
DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC th THENL
[EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC [];
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [IN_DELETE] THEN
RES_THEN (TRY o IMP_RES_THEN ASSUME_TAC) THEN
PURE_ONCE_REWRITE_TAC [DELETE_COMM] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC [IN_DELETE] THEN
CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN FIRST_ASSUM ACCEPT_TAC]]]);;
% --------------------------------------------------------------------- %
% So "R s" specifies a unique number. %
% --------------------------------------------------------------------- %
let CARD_REL_UNIQUE =
TAC_PROOF
((conjuncts card_rel_def,
"!n:num. !s:(*)set. R s n ==> (!m. R s m ==> (n = m))"),
INDUCT_TAC THEN ASM_REWRITE_TAC [] THENL
[GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN
CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THENL
[STRIP_TAC THEN REFL_TAC; ASM_REWRITE_TAC[NOT_SUC;NOT_IN_EMPTY]];
GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THENL
[ASM_REWRITE_TAC [NOT_SUC;SYM(SPEC_ALL MEMBER_NOT_EMPTY)] THEN
EXISTS_TAC "x:*" THEN FIRST_ASSUM ACCEPT_TAC;
ASM_REWRITE_TAC [INV_SUC_EQ] THEN STRIP_TAC THEN
IMP_RES_TAC CARD_REL_DEL_LEMMA THEN RES_TAC]]);;
% --------------------------------------------------------------------- %
% Now, ?n. R s n if s is finite. %
% --------------------------------------------------------------------- %
let CARD_REL_EXISTS_LEMMA =
TAC_PROOF
((conjuncts card_rel_def, "!s:(*)set. ?n:num. R s n"),
SET_INDUCT_TAC THENL
[EXISTS_TAC "0" THEN ASM_REWRITE_TAC[];
FIRST_ASSUM (\th g. CHOOSE_THEN ASSUME_TAC th g) THEN
EXISTS_TAC "SUC n" THEN ASM_REWRITE_TAC [] THEN
EXISTS_TAC "e:*" THEN IMP_RES_TAC DELETE_NON_ELEMENT THEN
ASM_REWRITE_TAC [DELETE_INSERT;IN_INSERT]]);;
% --------------------------------------------------------------------- %
% So (@n. R s n) = m iff R s m (\s.@n.R s n defines a function) %
% Proof modified for Version 12 IMP_RES_THEN [TFM 91.01.23] %
% --------------------------------------------------------------------- %
let CARD_REL_THM =
TAC_PROOF
((conjuncts card_rel_def,
"!m s.((@n:num. R (s:(*)set) n) = m) = R s m"),
REPEAT STRIP_TAC THEN
STRIP_ASSUME_TAC (SPEC "s:(*)set" CARD_REL_EXISTS_LEMMA) THEN
EQ_TAC THENL
[DISCH_THEN (SUBST1_TAC o SYM) THEN CONV_TAC SELECT_CONV THEN
EXISTS_TAC "n:num" THEN FIRST_ASSUM MATCH_ACCEPT_TAC;
STRIP_TAC THEN
IMP_RES_THEN ASSUME_TAC CARD_REL_UNIQUE THEN
CONV_TAC SYM_CONV THEN
FIRST_ASSUM MATCH_MP_TAC THEN
CONV_TAC SELECT_CONV THEN
EXISTS_TAC "n:num" THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;
% --------------------------------------------------------------------- %
% Now, prove the existence of the required cardinality function. %
% --------------------------------------------------------------------- %
let CARD_EXISTS =
TAC_PROOF
(([]," ?CARD.
(CARD EMPTY = 0) /\
(!s. !x:*. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s)))"),
STRIP_ASSUME_TAC CARD_REL_EXISTS THEN
EXISTS_TAC "\s:(*)set. @n:num. R s n" THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN CONJ_TAC THENL
[ASM_REWRITE_TAC [CARD_REL_THM];
REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
[IMP_RES_THEN SUBST1_TAC ABSORPTION THEN REFL_TAC;
ASM_REWRITE_TAC [CARD_REL_THM] THEN
EXISTS_TAC "x:*" THEN
IMP_RES_TAC DELETE_NON_ELEMENT THEN
ASM_REWRITE_TAC [IN_INSERT;DELETE_INSERT] THEN
CONV_TAC SELECT_CONV THEN
MATCH_ACCEPT_TAC CARD_REL_EXISTS_LEMMA]]);;
% --------------------------------------------------------------------- %
% Finally, introduce the CARD function via a constant specification. %
% --------------------------------------------------------------------- %
let CARD_DEF =
new_specification `CARD_DEF` [`constant`,`CARD`] CARD_EXISTS;;
% --------------------------------------------------------------------- %
% Various cardinality results. %
% --------------------------------------------------------------------- %
let CARD_EMPTY = save_thm(`CARD_EMPTY`,CONJUNCT1 CARD_DEF);;
let CARD_INSERT = save_thm(`CARD_INSERT`,CONJUNCT2 CARD_DEF);;
let CARD_EQ_0 =
prove_thm
(`CARD_EQ_0`,
"!s:(*)set. (CARD s = 0) = (s = EMPTY)",
SET_INDUCT_TAC THENL
[REWRITE_TAC [CARD_EMPTY];
ASM_REWRITE_TAC [CARD_INSERT;NOT_INSERT_EMPTY;NOT_SUC]]);;
let CARD_DELETE =
prove_thm
(`CARD_DELETE`,
"!s. !x:*. CARD(s DELETE x) = (x IN s => (CARD s) - 1 | CARD s)",
SET_INDUCT_TAC THENL
[REWRITE_TAC [EMPTY_DELETE;NOT_IN_EMPTY];
PURE_REWRITE_TAC [DELETE_INSERT;IN_INSERT] THEN
REPEAT GEN_TAC THEN ASM_CASES_TAC "x:* = e" THENL
[ASM_REWRITE_TAC [SUC_SUB1;CARD_DEF];
SUBST1_TAC (SPECL ["e:*";"x:*"] EQ_SYM_EQ) THEN
ASM_REWRITE_TAC [CARD_DEF;IN_DELETE;SUC_SUB1] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC [] THEN
STRIP_ASSUME_TAC (SPEC "CARD(s:(*)set)" num_CASES) THENL
[(let tac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
REPEAT_GTCL IMP_RES_THEN tac CARD_EQ_0 THEN
IMP_RES_TAC NOT_IN_EMPTY);
ASM_REWRITE_TAC [SUC_SUB1]]]]);;
let lemma1 =
TAC_PROOF
(([], "!n m. (SUC n <= SUC m) = (n <= m)"),
REWRITE_TAC [LESS_OR_EQ;INV_SUC_EQ;LESS_MONO_EQ]);;
let lemma2 =
TAC_PROOF
(([], "!n m. (n <= SUC m) = (n <= m \/ (n = SUC m))"),
REWRITE_TAC [LESS_OR_EQ;LESS_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC[]);;
let CARD_INTER_LESS_EQ =
prove_thm
(`CARD_INTER_LESS_EQ`,
"!s:(*)set. !t. CARD (s INTER t) <= CARD s",
SET_INDUCT_TAC THENL
[REWRITE_TAC [CARD_DEF;INTER_EMPTY;LESS_EQ_REFL];
PURE_ONCE_REWRITE_TAC [INSERT_INTER] THEN
GEN_TAC THEN COND_CASES_TAC THENL
[ASM_REWRITE_TAC [CARD_DEF;IN_INTER;lemma1];
ASM_REWRITE_TAC [CARD_DEF;lemma2]]]);;
let CARD_UNION =
prove_thm
(`CARD_UNION`,
"!s:(*)set. !t.
(CARD (s UNION t) + CARD (s INTER t) = CARD s + CARD t)",
SET_INDUCT_TAC THENL
[REWRITE_TAC [UNION_EMPTY;INTER_EMPTY;CARD_DEF;ADD_CLAUSES];
REPEAT STRIP_TAC THEN REWRITE_TAC [INSERT_UNION;INSERT_INTER] THEN
ASM_CASES_TAC "(e:*) IN t" THENL
[ASM_REWRITE_TAC [IN_INTER;ADD_CLAUSES;CARD_DEF];
ASM_REWRITE_TAC [CARD_DEF;ADD_CLAUSES; INV_SUC_EQ; IN_UNION]]]);;
let lemma =
TAC_PROOF
(([], "!n m. (n <= SUC m) = (n <= m \/ (n = SUC m))"),
REWRITE_TAC [LESS_OR_EQ;LESS_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC[]);;
let CARD_SUBSET =
prove_thm
(`CARD_SUBSET`,
"!s:(*)set. !t. t SUBSET s ==> (CARD t <= CARD s)",
SET_INDUCT_TAC THENL
[REWRITE_TAC [SUBSET_EMPTY;CARD_EMPTY] THEN
GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC [CARD_DEF;LESS_EQ_REFL];
ASM_REWRITE_TAC [CARD_INSERT;SUBSET_INSERT_DELETE] THEN
REPEAT STRIP_TAC THEN RES_THEN MP_TAC THEN
ASM_REWRITE_TAC [CARD_DELETE] THEN COND_CASES_TAC THENL
[(let th = SPEC "CARD (t:(*)set)" num_CASES in
REPEAT_TCL STRIP_THM_THEN SUBST_ALL_TAC th) THENL
[REWRITE_TAC [LESS_OR_EQ;LESS_0];
REWRITE_TAC [SUC_SUB1;LESS_OR_EQ;LESS_MONO_EQ;INV_SUC_EQ]];
STRIP_TAC THEN ASM_REWRITE_TAC [lemma]]]);;
let CARD_PSUBSET =
prove_thm
(`CARD_PSUBSET`,
"!s:(*)set. !t. t PSUBSET s ==> (CARD t < CARD s)",
REPEAT STRIP_TAC THEN IMP_RES_TAC PSUBSET_DEF THEN
IMP_RES_THEN MP_TAC CARD_SUBSET THEN
PURE_ONCE_REWRITE_TAC [LESS_OR_EQ] THEN
DISCH_THEN (STRIP_THM_THEN (\th g. ACCEPT_TAC th g ? MP_TAC th g)) THEN
IMP_RES_THEN STRIP_ASSUME_TAC PSUBSET_INSERT_SUBSET THEN
IMP_RES_THEN MP_TAC CARD_SUBSET THEN
IMP_RES_TAC INSERT_SUBSET THEN
ASM_REWRITE_TAC [CARD_INSERT;LESS_EQ] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM ACCEPT_TAC);;
let CARD_SING =
prove_thm
(`CARD_SING`,
"!x:*. CARD {x} = 1",
CONV_TAC (ONCE_DEPTH_CONV num_CONV) THEN
REWRITE_TAC [CARD_EMPTY;CARD_INSERT;NOT_IN_EMPTY]);;
let SING_IFF_CARD1 =
prove_thm
(`SING_IFF_CARD1`,
"!s:(*)set. (SING s) = (CARD s = 1)",
REWRITE_TAC [SING_DEF;num_CONV "1"] THEN
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN (CHOOSE_THEN SUBST1_TAC) THEN
REWRITE_TAC [CARD_SING;num_CONV "1"];
STRIP_ASSUME_TAC (SPEC "s:(*)set" SET_CASES) THENL
[ASM_REWRITE_TAC [CARD_EMPTY;NOT_EQ_SYM(SPEC_ALL NOT_SUC)];
FIRST_ASSUM SUBST1_TAC THEN
ASM_REWRITE_TAC [CARD_INSERT;INV_SUC_EQ;CARD_EQ_0] THEN
DISCH_TAC THEN EXISTS_TAC "x:*" THEN
ASM_REWRITE_TAC []]]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let CARD_DIFF =
prove_thm
(`CARD_DIFF`,
"!t:(*)set. !s. CARD (s DIFF t) = (CARD s - CARD (s INTER t))",
SET_INDUCT_TAC THEN REPEAT GEN_TAC THENL
[REWRITE_TAC [DIFF_EMPTY;INTER_EMPTY;CARD_EMPTY;SUB_0];
PURE_ONCE_REWRITE_TAC [INTER_COMM] THEN
PURE_ONCE_REWRITE_TAC [INSERT_INTER] THEN
COND_CASES_TAC THENL
[ASM_REWRITE_TAC [CARD_INSERT;IN_INTER;DIFF_INSERT;CARD_DELETE] THEN
PURE_ONCE_REWRITE_TAC [SYM (SPEC_ALL SUB_PLUS)] THEN
REWRITE_TAC [num_CONV "1";ADD_CLAUSES;DELETE_INTER] THEN
MP_TAC (SPECL ["s':(*)set";"s:(*)set";"e:*"] IN_INTER) THEN
ASM_REWRITE_TAC [DELETE_NON_ELEMENT] THEN
DISCH_THEN SUBST1_TAC THEN
SUBST1_TAC (SPECL ["s:(*)set";"s':(*)set"] INTER_COMM) THEN REFL_TAC;
IMP_RES_TAC DELETE_NON_ELEMENT THEN
PURE_ONCE_REWRITE_TAC [INTER_COMM] THEN
ASM_REWRITE_TAC [DIFF_INSERT]]]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let LESS_CARD_DIFF =
prove_thm
(`LESS_CARD_DIFF`,
"!t:(*)set. !s. (CARD t < CARD s) ==> (0 < CARD(s DIFF t))",
PURE_REWRITE_TAC [CARD_DIFF; GSYM SUB_LESS_0] THEN
REPEAT STRIP_TAC THEN
let th1 = SPECL ["s:(*)set";"t:(*)set"] CARD_INTER_LESS_EQ in
let th2 = PURE_ONCE_REWRITE_RULE [LESS_OR_EQ] th1 in
DISJ_CASES_THEN2 ACCEPT_TAC (SUBST_ALL_TAC o SYM) th2 THEN
let th3 = SPECL ["t:(*)set";"s:(*)set"] CARD_INTER_LESS_EQ in
let th4 = PURE_ONCE_REWRITE_RULE [INTER_COMM] th3 in
IMP_RES_TAC (PURE_ONCE_REWRITE_RULE [GSYM NOT_LESS] th4));;
quit();; % Needed for Common Lisp %
|