1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% FILE: minmax.ml %
% EDITOR: Paul Curzon %
% DATE: June 1991 %
% DESCRIPTION: Maximum and Minimum %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%********************************* HISTORY ********************************%
% %
% This file is part of the more_arithmetic theory in the bags library by %
% Philippe Leveilley %
% Conversion to HOL12 and editing was done by %
% Wim Ploegaerts %
% %
%****************************************************************************%
% %
% PC 21/4/93 %
% Removed dependencies on several external files/theories %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
system `rm -f min_max.th`;;
new_theory `min_max`;;
% PC 22-4-92 No longer used%
%loadf `tools`;;%
%============================================================================%
% %
% MIN AND MAX by PL %
% %
%============================================================================%
let MAX_DEF = new_definition
(`MAX_DEF`,
"MAX n p = ((n <= p) => p | n)"
);;
let MAX_0 = prove_thm
(`MAX_0`,
"!n. MAX 0 n = n",
REWRITE_TAC [MAX_DEF; ZERO_LESS_EQ]
);;
let MAX_SYM = prove_thm
(`MAX_SYM`,
"!n p. MAX n p = MAX p n",
REPEAT GEN_TAC THEN
ASM_CASES_TAC "n:num=p" THENL
[ % n = p %
ASM_REWRITE_TAC []
; % ~ n = p %
REWRITE_TAC [MAX_DEF] THEN
ASM_CASES_TAC "n <= p" THEN
ASM_REWRITE_TAC [LESS_OR_EQ] THEN
POP_ASSUM_LIST (\ [T1;T2].
REWRITE_TAC [GSYM T2; REWRITE_RULE [GSYM NOT_LESS] T1])
]
);;
let MAX_REFL = prove_thm
(`MAX_REFL`,
"!n. MAX n n = n",
REWRITE_TAC [MAX_DEF; LESS_OR_EQ]
);;
let MAX_SUC = prove_thm
(`MAX_SUC`,
"!n. MAX n (SUC n) = SUC n",
REWRITE_TAC [MAX_DEF; LESS_EQ_SUC_REFL]
);;
let SUC_MAX = prove_thm
(`SUC_MAX`,
"!n p. MAX (SUC n) (SUC p) = SUC (MAX n p)",
REPEAT GEN_TAC THEN
REWRITE_TAC [MAX_DEF; LESS_EQ_MONO] THEN
COND_CASES_TAC THEN
ASM_REWRITE_TAC[]
);;
let MIN_DEF = new_definition
(`MIN_DEF`,
"MIN n p = ((n <= p) => n | p)"
);;
let MIN_0 = prove_thm
(`MIN_0`,
"!n. MIN 0 n = 0",
REWRITE_TAC [MIN_DEF; ZERO_LESS_EQ]
);;
let MIN_SYM = prove_thm
(`MIN_SYM`,
"!n p. MIN n p = MIN p n",
REPEAT GEN_TAC THEN
ASM_CASES_TAC "n:num=p" THENL
[ % n = p %
ASM_REWRITE_TAC []
; % ~ n = p %
REWRITE_TAC [MIN_DEF] THEN
ASM_CASES_TAC "n <= p" THEN
ASM_REWRITE_TAC [LESS_OR_EQ] THEN
POP_ASSUM_LIST (\ [T1;T2].
REWRITE_TAC [GSYM T2; REWRITE_RULE [GSYM NOT_LESS] T1])
]
);;
let MIN_REFL = prove_thm
(`MIN_REFL`,
"!n. MIN n n = n",
REWRITE_TAC [MIN_DEF; LESS_OR_EQ]
);;
let MIN_SUC = prove_thm
(`MIN_SUC`,
"!n. MIN n (SUC n) = n",
REWRITE_TAC [MIN_DEF; LESS_EQ_SUC_REFL]
);;
let SUC_MIN = prove_thm
(`SUC_MIN`,
"!n p. MIN (SUC n) (SUC p) = SUC (MIN n p)",
REPEAT GEN_TAC THEN
REWRITE_TAC [MIN_DEF; LESS_EQ_MONO] THEN
COND_CASES_TAC THEN
ASM_REWRITE_TAC[]
);;
close_theory();;
|