1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
%----------------------------------------------------------------
FILE : normalize.ml
DESCRIPTION : Defines a tactic for normalizing arithmetic
expressions involving natural numbers.
READS FILES : <none>
WRITES FILES : <none>
AUTHOR : P. J. Windley
DATE : 20 FEB 89
----------------------------------------------------------------%
%< Some comments of WP:>%
%< because of the assymetry of "-" (3 - 6 = 0) this normalization does not
normalize terms with substractions >%
%< to avoid the name clash with the :zet MULT_ASSOC>%
let NUM_MULT_ASSOC = theorem `arithmetic` `MULT_ASSOC`;;
%<-------------------------------------------------------------------------->%
% ADD3_SYM = |- !a b c. (a + b) + c = (a + c) + b %
let ADD3_SYM =
TAC_PROOF
(([], "!a b c. (a+b)+c = (a+c)+b"),
REPEAT GEN_TAC
THEN REWRITE_TAC[SYM(SPEC_ALL ADD_ASSOC)]
THEN SUBST_TAC[SPECL["b:num";"c:num"]ADD_SYM]
THEN REFL_TAC);;
%<-------------------------------------------------------------------------->%
% MULT3_SYM = |- !a b c. (a * b) * c = (a * c) * b %
let MULT3_SYM =
TAC_PROOF
(([], "!a b c. (a*b)*c = (a*c)*b"),
REPEAT GEN_TAC
THEN REWRITE_TAC[SYM(SPEC_ALL NUM_MULT_ASSOC)]
THEN SUBST_TAC[SPECL["b:num";"c:num"]MULT_SYM]
THEN REFL_TAC);;
%<-------------------------------------------------------------------------->%
let const_name = fst o dest_const;;
let var_name = fst o dest_var;;
let is_plus_term t =
if is_comb t & ((const_name (fst (strip_comb t))) = `+`) then
true
else
false;;
let is_mult_term t =
if is_comb t & ((const_name (fst (strip_comb t))) = `*`) then
true
else
false;;
%<-------------------------------------------------------------------------->%
%
ADD_SYM_CONV "a+b" --> |- a+b = b+a if b << a
ADD_SYM_CONV "(a+b)+c" --> |- (a+b)+c = (a+c)+b if c << b
%
let ADD_SYM_CONV t =
let op1,[t1;t2] = strip_comb t
in
if op1 = "$+" & not (is_plus_term t1) & (t2 << t1) % t=a+b %
then SPECL[t1;t2]ADD_SYM
else
(let op2,[t3;t4] = strip_comb t1
in
if op1 = "$+" & op2 = "$+" & (t2 << t4) % t=(a+b)+c %
then SPECL[t3;t4;t2]ADD3_SYM
else fail);;
%<-------------------------------------------------------------------------->%
%
MULT_SYM_CONV "a*b" --> |- a*b = b*a if b << a
MULT_SYM_CONV "(a*b)*c" --> |- (a*b)*c = (a*c)*b if c << b
%
let MULT_SYM_CONV t =
let op1,[t1;t2] = strip_comb t
in
if op1 = "$*" & not (is_mult_term t1) & (t2 << t1) % t=a*b %
then SPECL[t1;t2]MULT_SYM
else
(let op2,[t3;t4] = strip_comb t1
in
if op1 = "$*" & op2 = "$*" & (t2 << t4) % t=(a*b)*c %
then SPECL[t3;t4;t2]MULT3_SYM
else fail);;
%<-------------------------------------------------------------------------->%
%
ADD_ASSOC_CONV "a+(b+c)" --> |- a+(b+c) = (a+b)+c
%
let ADD_ASSOC_CONV t =
let op1,[t1;t2] = strip_comb t
in
let op2,[t3;t4] = strip_comb t2
in
if op1 = "$+" & op2 = "$+"
then SPECL[t1;t3;t4]ADD_ASSOC
else fail;;
%<-------------------------------------------------------------------------->%
%
ASSOC_ADD_CONV "(a+b)+c" --> |- (a+b)+c = a+(b+c)
%
let assoc_add = (GEN_ALL o SYM o SPEC_ALL) ADD_ASSOC;;
let ASSOC_ADD_CONV t =
let op1,[t1;t2] = strip_comb t
in
let op2,[t3;t4] = strip_comb t1
in
if op1 = "$+" & op2 = "$+"
then SPECL[t3;t4;t2] assoc_add
else fail;;
%<-------------------------------------------------------------------------->%
%
MULT_ASSOC_CONV "a*(b*c)" --> |- a*(b*c) = (a*b)*c
%
let MULT_ASSOC_CONV t =
let op1,[t1;t2] = strip_comb t
in
let op2,[t3;t4] = strip_comb t2
in
if op1 = "$*" & op2 = "$*"
then SPECL[t1;t3;t4] NUM_MULT_ASSOC
else fail;;
%<-------------------------------------------------------------------------->%
%
ASSOC_MULT_CONV "(a*b)*c" --> |- (a*b)*c = a*(b*c)
%
let assoc_mult = (GEN_ALL o SYM o SPEC_ALL) NUM_MULT_ASSOC;;
let ASSOC_MULT_CONV t =
let op1,[t1;t2] = strip_comb t
in
let op2,[t3;t4] = strip_comb t1
in
if op1 = "$*" & op2 = "$*"
then SPECL[t3;t4;t2] assoc_mult
else fail;;
%<-------------------------------------------------------------------------->%
%
WP - 15-6-1990,
ADD_DISTRIB_CONV "a*(b+c)" --> |- (a*b) + (a*c)
"(a+b)*c" --> |- (a*c) + (b*c)
%
let ADD_DISTRIB_CONV t =
let op1,[t2;t3] = strip_comb t
in
let op2,l2 = strip_comb t2 and op3,l3 = strip_comb t3
in
if op1 = "$*" & op2 = "$+"
then
SPECL (l2 @ [t3]) RIGHT_ADD_DISTRIB
if op1 = "$*" & op3 = "$+"
then
SPECL (l3 @ [t2]) LEFT_ADD_DISTRIB
else fail;;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%< The normalization conversion >%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%< normalization of term only containing + >%
let ADD_NORMALIZE_CONV =
TOP_DEPTH_CONV ADD_ASSOC_CONV
THENC TOP_DEPTH_CONV ADD_SYM_CONV;;
%<-------------------------------------------------------------------------->%
%< terms with + and *; without distributivity >%
let NORMALIZE_CONV =
TOP_DEPTH_CONV ADD_ASSOC_CONV
THENC TOP_DEPTH_CONV ADD_SYM_CONV
THENC TOP_DEPTH_CONV MULT_ASSOC_CONV
THENC TOP_DEPTH_CONV MULT_SYM_CONV;;
%<-------------------------------------------------------------------------->%
%< terms with + and *; with distributivity >%
%< WP 15-6-1990 >%
let NUM_NORMALIZE_CONV =
TOP_DEPTH_CONV ADD_DISTRIB_CONV
THENC NORMALIZE_CONV;;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%< The related tactics >%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
let ADD_NORMALIZE_TAC =
CONV_TAC ADD_NORMALIZE_CONV
THEN (REFL_TAC ORELSE ALL_TAC);;
let NORMALIZE_TAC =
PURE_REWRITE_TAC [
RIGHT_ADD_DISTRIB;
LEFT_ADD_DISTRIB;
]
THEN CONV_TAC NORMALIZE_CONV
THEN (REFL_TAC ORELSE ALL_TAC);;
%<-------------------------------------------------------------------------->%
% Example
set_goal([], "((((a + (b + a)) + (d + e)) + e) + f) + h =
a + ((e + f) + ((e + (d + (b + a))) + h))");;
expand(NORMALIZE_TAC);;
expand(ADD_NORMALIZE_TAC);;
set_goal([],
"(((((a * 2 * b) + (bee + a)) + (deer + (e * 2 * r))) + e) + f) + h =
(b * a * 2) + ((e + f) + (((r * e * 2) + (deer + (bee + a))) + h))"
);;
expand(NORMALIZE_TAC);;
set_goal([], "(adam + bee) * cable = (cable * bee) + (cable * adam)");;
expand(NORMALIZE_TAC);;
set_goal([],
"((((((a + t) * 2 * b) + (bee + a)) +
(deer + (e * 2 * r))) + e) + (f * 4)) + h =
((((((((2 * a) + ((2 * e) * r)) + (4 * f)) + ((2 * b) * t)) + a) +
bee) + deer) + e) + h");;
expand(NORMALIZE_TAC);;
%
%<------------------------------------------------------------------------->%
|