1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
|
let max l =
% : (int list -> int) %
letrec max_fun m l =
% : (int -> int list -> int) %
if (null l)
then m
else if ((hd l) > m)
then max_fun (hd l) (tl l)
else max_fun m (tl l)
in if (null l)
then failwith `max -- null list given`
else max_fun (hd l) (tl l);;
let min l =
% : (int list -> int) %
letrec min_fun m l =
% : (int -> int list -> int) %
if (null l)
then m
else if ((hd l) < m)
then min_fun (hd l) (tl l)
else min_fun m (tl l)
in if (null l)
then failwith `min -- null list given`
else min_fun (hd l) (tl l);;
letrec space n =
% : (int -> string) %
if (n < 1)
then ``
else ` ` ^ (space (n-1));;
let split_list (nh,nt) l =
% : ((int # int) -> * list -> (* list # * list # * list)) %
letrec get_head n lh lt =
% : (int -> * list -> * list -> (* list # * list)) %
if ((n < 0) or (n = 0))
then (lh,lt)
else if (null lt)
then failwith `split_list -- insufficient elements in list`
else get_head (n - 1) (lh @ [hd lt]) (tl lt)
in let (h,r) = get_head nh [] l
and nm = (length l) - (nh + nt)
in if (nm < 0)
then failwith `split_list -- insufficient elements in list`
else (h,get_head nm [] r);;
letrec replace assocl (key,new) =
% : ((* # **) list -> (* # **) -> (* # **) list) %
if (null assocl)
then []
else if (key = (fst (hd assocl)))
then (key,new).(tl assocl)
else (hd assocl).(replace (tl assocl) (key,new));;
letrec replacel assocl changes =
% : ((* # **) list -> (* # **) list -> (* # **) list) %
if (null changes)
then assocl
else replacel (replace assocl (hd changes)) (tl changes);;
abstype nat = int
with Nat n = if (n < 0)
then failwith `Nat -- number cannot be negative`
else abs_nat n
and Int n = rep_nat n
and print_nat n = print_int (rep_nat n);;
top_print print_nat;;
let get_margin () =
% : (void -> int) %
let old = set_margin 0
in let new = set_margin old
in old;;
rectype print_tree = Print_node of string # print_tree list;;
let print_tree_name pt =
% : (print_tree -> string) %
case pt of (Print_node (s,_)) . s;;
let print_tree_children pt =
% : (print_tree -> print_tree list) %
case pt of (Print_node (_,l)) . l;;
type metavar_binding = Bound_name of string
| Bound_names of string list
| Bound_child of print_tree
| Bound_children of print_tree list;;
lettype print_binding = (string # metavar_binding) list;;
lettype print_test = (string # int) list -> print_binding -> bool;;
rectype print_patt_tree = Print_metavar of name_metavar # child_metavar list
| Print_loop of print_patt_tree # string #
string list # print_patt_tree
and name_metavar = Wild_name
| Const_name of string
| Var_name of string
and child_metavar = Wild_child
| Wild_children
| Patt_child of print_patt_tree
| Var_child of string
| Var_children of string;;
lettype print_pattern = string # print_patt_tree # print_test;;
let lookup_metavar pbind mvar =
% : (print_binding -> string -> metavar_binding) %
(snd (assoc mvar pbind))
? failwith `lookup_metavar -- Metavariable not found in binding`;;
letrec print_merge pb1 pb2 =
% : (print_binding -> print_binding -> print_binding) %
if (null pb2)
then pb1
else ((let p = assoc (fst (hd pb2)) pb1
in if ((snd p) = (snd(hd pb2)))
then (print_merge pb1 (tl pb2))
else failwith `print_merge`)
??[`find`] (hd pb2).(print_merge pb1 (tl pb2))
);;
letrec raise_binding pb =
% : (print_binding -> print_binding) %
if (null pb)
then []
else let (m,b) = hd pb
in (m,case b
of (Bound_name s) . (Bound_names [s])
| (Bound_names _) . b
| (Bound_child pt) . (Bound_children [pt])
| (Bound_children _) . b
).(raise_binding (tl pb));;
letrec raise_bindings pb1 pb2 =
% : (print_binding -> print_binding -> print_binding) %
if (null pb1)
then if (null pb2)
then []
else failwith `raise_bindings -- inconsistent bindings`
else if (null pb2)
then failwith `raise_bindings -- inconsistent bindings`
else let (m1,b1) = (hd pb1)
and (m2,b2) = (hd pb2)
in if (m1 = m2)
then (m1,case (b1,b2)
of (Bound_name s1,Bound_name s2) .
(Bound_names (s1.[s2]))
| (Bound_name s1,Bound_names sl2) .
(Bound_names (s1.sl2))
| (Bound_names sl1,Bound_name s2) .
(Bound_names (sl1 @ [s2]))
| (Bound_names sl1,Bound_names sl2) .
(Bound_names (sl1 @ sl2))
| (Bound_child pt1,Bound_child pt2) .
(Bound_children (pt1.[pt2]))
| (Bound_child pt1,Bound_children ptl2) .
(Bound_children (pt1.ptl2))
| (Bound_children ptl1,Bound_child pt2) .
(Bound_children (ptl1 @ [pt2]))
| (Bound_children ptl1,Bound_children ptl2) .
(Bound_children (ptl1 @ ptl2))
| (_) . failwith `raise_bindings -- ` ^
`inconsistent bindings`
).(raise_bindings (tl pb1) (tl pb2))
else failwith `raise_bindings -- inconsistent bindings`;;
letrec print_tree_match ptpatt pt =
% : (print_patt_tree -> print_tree -> print_binding) %
letrec name_match m s =
% : (name_metavar -> string -> print_binding) %
case m
of (Wild_name) . []
| (Const_name s') .
(if (s = s')
then []
else failwith `print_tree_match`)
| (Var_name s') . [s',Bound_name s]
and children_match ml ptl =
% : (child_metavar list -> print_tree list -> print_binding) %
letrec correspond ml' ptl' =
% : (child_metavar list -> print_tree list -> %
% (child_metavar # (print_tree list)) list) %
if (null ml')
then if (null ptl')
then []
else failwith `print_tree_match`
else case (hd ml')
of (Wild_children) .
( (let (_,l,r) = split_list (0,length (tl ml')) ptl'
in ((hd ml'),l).(correspond (tl ml') r))
? failwith `print_tree_match`
)
| (Var_children _) .
( (let (_,l,r) = split_list (0,length (tl ml')) ptl'
in ((hd ml'),l).(correspond (tl ml') r))
? failwith `print_tree_match`
)
| (_) .
(if (null ptl')
then failwith `print_tree_match`
else ((hd ml'),[hd ptl']).(correspond (tl ml') (tl ptl'))
)
and child_match m ptl' =
% : (child_metavar -> print_tree list -> print_binding) %
case (m,ptl')
of (Wild_child,_) . []
| (Wild_children,_) . []
| (Patt_child ptpatt',[pt']) . (print_tree_match ptpatt' pt')
| (Var_child s,[pt']) . [s,Bound_child pt']
| (Var_children s,ptl') . [s,Bound_children ptl']
| (_) . failwith `print_tree_match -- ` ^
`inconsistent arguments to child_match`
and merge l =
% : ((child_metavar # (print_tree list)) list -> print_binding) %
if (null l)
then []
else print_merge (child_match (fst (hd l)) (snd (hd l)))
(merge (tl l))
in merge (correspond ml ptl)
and loop_match ptpatt' s fixedpb subpatt pb pt' =
% : (print_patt_tree -> string -> print_binding -> print_patt_tree -> %
% print_binding -> print_tree -> (print_binding # print_tree)) %
let traps = [`print_tree_match`;`print_merge`]
in (let mainpb = print_tree_match ptpatt' pt'
in let newpt = lookup_loop_metavar mainpb s
in let newpb = print_merge
(print_merge mainpb
(print_tree_match subpatt newpt))
fixedpb
in loop_match ptpatt' s fixedpb subpatt
(raise_bindings pb newpb) newpt
) ?? traps (pb,pt')
and lookup_loop_metavar pb s =
% : (print_binding -> string -> print_tree) %
case (lookup_metavar pb s)
of (Bound_child pt') . pt'
| (_) . failwith `print_tree_match -- attempt to loop on non-print_tree`
in case ptpatt
of (Print_metavar (nm,cml)) .
(print_merge (children_match cml (print_tree_children pt))
(name_match nm (print_tree_name pt)))
| (Print_loop (ptpatt',s,fixl,subpatt)) .
(let mainpb = print_tree_match ptpatt' pt
in let newpt = lookup_loop_metavar mainpb s
in let pb = print_merge mainpb
(print_tree_match subpatt newpt)
in let fixedpb = filter (\p. mem (fst p) fixl) pb
in let (pb',pt') =
loop_match ptpatt' s fixedpb subpatt
pb newpt
in replacel (raise_binding pb')
((s,Bound_child pt').fixedpb));;
let print_pattern_match (ppatt:print_pattern) context params pt =
% : (print_pattern -> string -> (string # int) list -> print_tree -> %
% print_binding) %
if (((fst ppatt) = ``) or ((fst ppatt) = context))
then let result = (print_tree_match (fst (snd ppatt)) pt)
in (if ((snd (snd ppatt)) params result)
then result
else failwith `print_pattern_match`)
else failwith `print_pattern_match`;;
letrec change_params params param_changes =
% : ((string # int) list -> (string # int) list -> (string # int) list) %
if (null params)
then param_changes
else if (can (assoc (fst (hd params))) param_changes)
then (change_params (tl params) param_changes)
else (hd params).(change_params (tl params) param_changes);;
rectype print_box = Null_box
| Atomic_box of string
| Compound_box of (nat # nat # nat) # nat #
(print_box # int # int) #
(print_box # int # int);;
let print_box_io pb =
% : (print_box -> int) %
case pb
of (Null_box) . 0
| (Atomic_box _) . 0
| (Compound_box ((io,_,_),_)) . (Int io);;
let print_box_width pb =
% : (print_box -> int) %
case pb
of (Null_box) . 0
| (Atomic_box s) . (length (explode s))
| (Compound_box ((_,width,_),_)) . (Int width);;
let print_box_fo pb =
% : (print_box -> int) %
case pb
of (Null_box) . 0
| (Atomic_box s) . (length (explode s))
| (Compound_box ((_,_,fo),_)) . (Int fo);;
let print_box_height pb =
% : (print_box -> int) %
case pb
of (Null_box) . 0
| (Atomic_box _) . 1
| (Compound_box (_,height,_)) . (Int height);;
let print_box_sizes pb =
% : (print_box -> (int # int # int) # int) %
case pb
of (Null_box) . ((0,0,0),0)
| (Atomic_box s) . (let w = length (explode s) in ((0,w,w),1))
| (Compound_box ((io,w,fo),h,_)) . ((Int io,Int w,Int fo),Int h);;
% join_boxes does not work properly with boxes of zero height. %
let join_boxes x y pb1 pb2 =
% : (int -> int -> print_box -> print_box -> print_box) %
let ((io1,w1,fo1),h1) = print_box_sizes pb1
and ((io2,w2,fo2),h2) = print_box_sizes pb2
in let lo = x - io2
and ro = (w2 - io2) - (w1 - x)
in let io = if (lo < 0) then (io1 - lo) else io1
and w = if (lo < 0)
then if (ro < 0) then (w1 - lo) else w2
else if (ro < 0) then w1 else (w2 + lo)
and fo = if (lo < 0) then fo2 else (fo2 + lo)
and h = h1 + h2 + y
and x1 = 0
and y1 = 0
and x2 = x - io1
and y2 = h1 + y
in (Compound_box
((Nat io,Nat w,Nat fo),Nat h,(pb1,x1,y1),(pb2,x2,y2)));;
let join_H_boxes dx pb1 pb2 =
% : (nat -> print_box -> print_box -> print_box) %
case (pb1,pb2)
of (Null_box,_) . pb2
| (_,Null_box) . pb1
| (Atomic_box s1,Atomic_box s2) .
(Atomic_box (s1 ^ (space (Int dx)) ^ s2))
| (_) . (join_boxes ((print_box_fo pb1) + (Int dx)) (-1) pb1 pb2);;
let join_V_boxes di dh pb1 pb2 =
% : (int -> nat -> print_box -> print_box -> print_box) %
case (pb1,pb2)
of (Null_box,_) . pb2
| (_,Null_box) . pb1
| (_) . (join_boxes ((print_box_io pb1) + di) (Int dh) pb1 pb2);;
type print_indent = Abs of int
| Inc of int;;
type unbuilt_box = UB_H of (int -> int -> print_box) #
(nat # (int -> int -> print_box)) list
| UB_V of (int -> int -> print_box) #
((print_indent # nat) #
(int -> int -> print_box)) list
| UB_HV of (int -> int -> print_box) #
((nat # print_indent # nat) #
(int -> int -> print_box)) list
| UB_HoV of (int -> int -> print_box) #
((nat # print_indent # nat) #
(int -> int -> print_box)) list;;
let build_H_box m i box boxl =
% : (int -> int -> (int -> int -> print_box) -> %
% (nat # (int -> int -> print_box)) list -> print_box) %
letrec f pb m' i boxl' =
% : (print_box -> int -> int -> %
% (nat # (int -> int -> print_box)) list -> print_box) %
if (null boxl')
then pb
else let (dx,pbfn) = hd boxl'
in let m'' = m' + 1 + (Int dx)
and i' = i + ((print_box_fo pb) - (print_box_io pb)) + (Int dx)
in f (join_H_boxes dx pb (pbfn m'' i')) m'' i (tl boxl')
and gaps boxl' =
% : ((nat # (int -> int -> print_box)) list -> int) %
itlist (\x n. (Int (fst x)) + n) boxl' 0
in let m' = m - ((gaps boxl) + (length boxl))
in f (box m' i) m' i boxl;;
let build_V_box m i box boxl =
% : (int -> int -> (int -> int -> print_box) -> %
% ((print_indent # nat) # (int -> int -> print_box)) list -> print_box) %
letrec f pb m i i' boxl' =
% : (print_box -> int -> int -> int -> %
% ((print_indent # nat) # (int -> int -> print_box)) list -> %
% print_box) %
if (null boxl')
then pb
else let ((pi,dh),pbfn) = hd boxl'
in let di = case pi
of (Abs n) . n
| (Inc n) . (n + i' - i)
in f (join_V_boxes di dh pb (pbfn m (i + di)))
m i (i + di) (tl boxl')
in f (box m i) m i i boxl;;
let build_HV_box m i box boxl =
% : (int -> int -> (int -> int -> print_box) -> %
% ((nat # print_indent # nat) # (int -> int -> print_box)) list -> %
% print_box) %
letrec fH newboxl newbox m i i' boxl' =
% : ((int # nat # print_box) list -> %
% (int # nat # print_box) -> int -> int -> int -> %
% ((nat # print_indent # nat) # (int -> int -> print_box)) list -> %
% (int # nat # print_box) list) %
if (null boxl')
then newbox.newboxl
else let ((dx,pi,dh),pbfn) = hd boxl'
and (newdi,newdh,pb) = newbox
in let di = case pi
of (Abs n) . n
| (Inc n) . (n + i' - i)
and no_break_indent =
(Int dx) + (print_box_fo pb) - (print_box_io pb)
in if ((di - (i' - i)) < no_break_indent)
then let newb = pbfn m (i + di)
in let newhb = join_H_boxes dx pb newb
in if (((print_box_width newhb) > m) or
((print_box_width newhb) -
(print_box_io newhb)
> (m - max [i';0])))
then fH (newbox.newboxl) (di,dh,newb) m i
(i + di) (tl boxl')
else fH newboxl (newdi,newdh,newhb) m i i'
(tl boxl')
else let newhb = join_H_boxes dx pb
(pbfn m (i' + no_break_indent))
in fH newboxl (newdi,newdh,newhb) m i i' (tl boxl')
in let newboxl = fH [] (0,Nat 0,box m i) m i i boxl
in itlist (\(di,dh,pb2) pb1. join_V_boxes di dh pb1 pb2) newboxl
Null_box;;
let build_HoV_box m i box boxl =
% : (int -> int -> (int -> int -> print_box) -> %
% ((nat # print_indent # nat) # (int -> int -> print_box)) list -> %
% print_box) %
letrec f newboxl m i i' boxl' =
% : ((nat # int # nat # print_box) list -> int -> int -> int -> %
% ((nat # print_indent # nat) # (int -> int -> print_box)) list -> %
% (nat # int # nat # print_box) list) %
if (null boxl')
then newboxl
else let ((dx,pi,dh),pbfn) = hd boxl'
in let di = case pi
of (Abs n) . n
| (Inc n) . (n + i' - i)
in f ((dx,di,dh,pbfn m (i + di)).newboxl) m i (i + di)
(tl boxl')
in let newb = box m i
and newboxl = f [] m i i boxl
in let newhb = itlist (\(dx,di,dh,pb2) pb1. join_H_boxes dx pb1 pb2)
newboxl newb
in let hw = print_box_width newhb
and hio = print_box_io newhb
in if ((hw > m) or (hw - hio > (m - max [i;0])))
then let newvb =
itlist
(\(dx,di,dh,pb2) pb1. join_V_boxes di dh pb1 pb2)
newboxl newb
in let vw = print_box_width newvb
and vio = print_box_io newvb
in if ((hw > vw) or (hw - hio > vw - vio))
then newvb
else newhb
else newhb;;
let build_print_box m i unbox =
% : (int -> int -> unbuilt_box -> print_box) %
case unbox
of (UB_H (box,boxl)) . (build_H_box m i box boxl)
| (UB_V (box,boxl)) . (build_V_box m i box boxl)
| (UB_HV (box,boxl)) . (build_HV_box m i box boxl)
| (UB_HoV (box,boxl)) . (build_HoV_box m i box boxl);;
lettype print_int_exp = (string # int) list -> print_binding -> int;;
rectype print_box_spec = H_box of (nat # print_object) list
| V_box of ((print_indent # nat) # print_object) list
| HV_box of ((nat # print_indent # nat) # print_object)
list
| HoV_box of ((nat # print_indent # nat) # print_object)
list
and print_format = PF_empty
| PF of print_box_spec
| PF_branch of print_test # print_format # print_format
and print_object = PO_constant of string
| PO_leaf of string # (string -> string)
| PO_subcall of (string #
(print_tree list -> print_tree list))
# (string # print_int_exp) list
| PO_context_subcall of string
# (string #
(print_tree list -> print_tree list))
# (string # print_int_exp) list
| PO_format of print_format
| PO_expand of print_box_spec;;
let PF_H = PF o H_box
and PF_V = PF o V_box
and PF_HV = PF o HV_box
and PF_HoV = PF o HoV_box;;
lettype print_rule = print_pattern # print_format;;
lettype print_rule_function = string -> (string # int) list -> print_tree ->
(print_binding # print_format);;
letrec print_rule_fun prl context params pt =
% : (print_rule list -> string -> (string # int) list -> print_tree -> %
% (print_binding # print_format)) %
% : (print_rule list -> print_rule_function) %
if (null prl)
then failwith `print_rule_fun`
else let traps = [`print_pattern_match`;`print_tree_match`;`print_merge`]
in ( (print_pattern_match (fst (hd prl)) context params pt,
snd (hd prl))
?? traps (print_rule_fun (tl prl) context params pt)
);;
ml_curried_infix `then_try`;;
let then_try prf1 prf2 =
% : (print_rule_function -> print_rule_function -> print_rule_function) %
(\context params pt. ( (prf1 context params pt)
?? [`print_rule_fun`] (prf2 context params pt)
)) : print_rule_function;;
let raw_tree_rules =
% : (print_rule list) %
[(``,Print_metavar (Var_name `n`,[Var_children `cl`;Var_child `c`]),
(\x y. true)),
(PF_HV [(Nat 0,Abs 0,Nat 0),
PO_leaf (`n`,(\s.s));
(Nat 0,Abs 3,Nat 0),
PO_format
(PF_H [Nat 0,
PO_constant `(`;
Nat 0,
PO_format
(PF_HoV [(Nat 0,Abs 0,Nat 0),
PO_expand (H_box [Nat 0,
PO_subcall
((`cl`,(\l.l)),[]);
Nat 0,
PO_constant `,`]);
(Nat 0,Abs 0,Nat 0),
PO_subcall ((`c`,(\l.l)),[])]);
Nat 0,
PO_constant `)`])]);
(``,Print_metavar (Var_name `n`,[]),(\x y. true)),
(PF_H [Nat 0,PO_leaf (`n`,(\s.s))])
] : print_rule list;;
let raw_tree_rules_fun =
% : (print_rule_function) %
print_rule_fun raw_tree_rules;;
letrec expand_binding pb =
% : (print_binding -> print_binding list) %
letrec split_binding b pb' =
% : (bool -> print_binding -> (print_binding # print_binding # bool)) %
if (null pb')
then ([],[],b)
else let (pbhead,pbtail,flag) = split_binding b (tl pb')
and (m,mb) = hd pb'
in let (h,t,f) =
case mb
of (Bound_name _) . ((m,mb),(m,mb),flag)
| (Bound_names sl) .
(if (null sl)
then ((m,mb),(m,mb),flag)
else ((m,Bound_name (hd sl)),
(m,Bound_names (tl sl)),true))
| (Bound_child _) . ((m,mb),(m,mb),flag)
| (Bound_children ptl) .
(if (null ptl)
then ((m,mb),(m,mb),flag)
else ((m,Bound_child (hd ptl)),
(m,Bound_children (tl ptl)),true))
in ((h.pbhead),(t.pbtail),f)
in let (newpb,restpb,more_to_do) = split_binding false pb
in if more_to_do
then newpb.(expand_binding restpb)
else [];;
letrec print_tree_to_box m i prf context params pt =
% : (int -> int -> print_rule_function -> string -> (string # int) list -> %
% print_tree -> print_box) %
let (pbind,pf) =
( (prf context params pt)
?? [`print_rule_fun`] (raw_tree_rules_fun context params pt)
)
in print_format_fun pt m i prf context params pf pbind
and print_box_spec_fun oldpt m i prf context params pbind pbs =
% : (print_tree -> int -> int -> print_rule_function -> string -> %
% (string # int) list -> print_binding -> print_box_spec -> print_box) %
let f pof xpol =
% : ((print_rule_function -> string -> (string # int) list -> %
% print_binding -> print_object -> (int -> int -> print_box) list) %
% -> (* # print_object) list -> %
% (int -> int -> print_box) # (* # (int -> int -> print_box)) list) %
let xpbfnl = flat (map (\(x,po). map (\pbfn. (x,pbfn)) (pof po)) xpol)
in if (null xpbfnl)
then failwith `print_box_spec_fun`
else (snd (hd xpbfnl),tl xpbfnl)
and pof = print_object_fun oldpt prf context params pbind
in build_print_box m i
(case pbs
of (H_box xpol) . (UB_H (f pof xpol))
| (V_box xpol) . (UB_V (f pof xpol))
| (HV_box xpol) . (UB_HV (f pof xpol))
| (HoV_box xpol) . (UB_HoV (f pof xpol)))
and print_format_fun oldpt m i prf context params pf pbind =
% : (print_tree -> int -> int -> print_rule_function -> string -> %
% (string # int) list -> print_format -> print_binding -> print_box) %
case pf
of (PF_empty) . Null_box
| (PF pbs) . ( (print_box_spec_fun oldpt m i prf context params pbind pbs)
?? [`print_box_spec_fun`] Null_box
)
| (PF_branch (ptest,pf1,pf2)) .
(if (ptest params pbind)
then (print_format_fun oldpt m i prf context params pf1 pbind)
else (print_format_fun oldpt m i prf context params pf2 pbind))
and print_object_fun oldpt prf context params pbind po =
% : (print_tree -> print_rule_function -> string -> (string # int) list -> %
% print_binding -> print_object -> (int -> print_box) list) %
case po
of (PO_constant s) . [\m i. Atomic_box s]
| (PO_leaf (metavar,string_fun)) .
(case (lookup_metavar pbind metavar)
of (Bound_name s) . [\m i. Atomic_box (string_fun s)]
| (Bound_names sl) .
(map (\s m i. Atomic_box (string_fun s)) sl)
| (_) . failwith `print_tree_to_box -- ` ^
`type of metavariable in pattern does n't match type in format`)
| (PO_subcall ((metavar,list_fun),param_changes)) .
(let ptl = case (if (metavar = ``)
then (Bound_child oldpt)
else (lookup_metavar pbind metavar))
of (Bound_child pt) . [pt]
| (Bound_children ptl) . ptl
| (_) . failwith (`print_tree_to_box -- ` ^
`type of metavariable in pattern ` ^
`does n't match type in format`)
in map (\pt m i. print_tree_to_box m i prf context
(change_params params
(map (\(s,f). s,(f params pbind))
param_changes)) pt)
(list_fun ptl))
| (PO_context_subcall (new_context,x)) .
(print_object_fun oldpt prf new_context params pbind (PO_subcall x))
| (PO_format pf) .
[\m i. print_format_fun oldpt m i prf context params pf pbind]
| (PO_expand x) .
(map (\pbind' m i.
print_format_fun oldpt m i prf context params (PF x) pbind')
(expand_binding pbind)
);;
let join_strings (s1,x1) (s2,x2) =
% : (string # int -> string # int -> string # int) %
if (x1 = x2)
then if ((s1 = ``) or (s2 = ``))
then (s1 ^ s2,x1)
else failwith `join_strings -- overlapping strings`
else if (x1 < x2)
then let sep = x2 - (x1 + length (explode s1))
in if (sep < 0)
then failwith `join_strings -- overlapping strings`
else (s1 ^ (space sep) ^ s2,x1)
else let sep = x1 - (x2 + length (explode s2))
in if (sep < 0)
then failwith `join_strings -- overlapping strings`
else (s2 ^ (space sep) ^ s1,x2);;
letrec merge_string_lists sl1 sl2 =
% : ((string # int # int) list -> (string # int # int) list -> %
% (string # int # int) list) %
if (null sl1)
then sl2
else if (null sl2)
then sl1
else let (s1,x1,y1) = hd sl1
and (s2,x2,y2) = hd sl2
in (if (y1 = y2) then
(let (s,x) = join_strings (s1,x1) (s2,x2)
in (s,x,y1).(merge_string_lists (tl sl1) (tl sl2)))
if (y1 < y2) then
(hd sl1).(merge_string_lists (tl sl1) sl2)
if (y1 > y2) then
(hd sl2).(merge_string_lists sl1 (tl sl2))
else fail);;
letrec stringify_print_box x y pb =
% : (int -> int -> print_box -> (string # int # int) list) %
case pb
of (Null_box) . []
| (Atomic_box s) . [s,x,y]
| (Compound_box (_,_,(pb1,x1,y1),(pb2,x2,y2))) .
(merge_string_lists (stringify_print_box (x+x1) (y+y1) pb1)
(stringify_print_box (x+x2) (y+y2) pb2));;
letrec fill_in_strings t b sl =
% : (int -> int -> (string # int # int) list -> string list) %
if ((t = b) or (t > b))
then if (null sl)
then []
else failwith `fill_in_strings -- string below specified region`
else if (null sl)
then (``).(fill_in_strings (t+1) b sl)
else let (s,x,y) = hd sl
in if (x < 0)
then failwith (`fill_in_strings -- ` ^
`string to the left of specified region`)
else if (y < t)
then failwith (`fill_in_strings -- ` ^
`string above specified region`)
else if (y = t)
then ((space x) ^ s).
(fill_in_strings (t+1) b (tl sl))
else (``).(fill_in_strings (t+1) b sl);;
let print_box_to_strings i pb =
% : (int -> print_box -> string list) %
fill_in_strings 0 (print_box_height pb) (stringify_print_box i 0 pb);;
let display_strings sl =
% : (string list -> void) %
do (map (\s. tty_write (s ^ `\L`)) sl);;
let output_strings file app sl =
% : (string -> bool -> string list -> void) %
let port = if app
then append_openw file
else openw file
in do (map (\s. write (port,(s ^ `\L`))) sl;
close port);;
let insert_strings sl =
% : (string list -> void) %
letrec terminate_strings sl' =
% : (string list -> string list) %
if (null sl')
then []
else if (null (tl sl'))
then [hd sl']
else ((hd sl') ^ `\L`).(terminate_strings (tl sl'))
in do (map print_string (terminate_strings sl));;
let pretty_print m i prf context params pt =
% : (int -> int -> print_rule_function -> string -> (string # int) list -> %
% print_tree -> void) %
(display_strings o (print_box_to_strings i))
(print_tree_to_box m i prf context params pt);;
let pp prf context params pt =
% : (print_rule_function -> string -> (string # int) list -> print_tree -> %
% void) %
(insert_strings o (print_box_to_strings 0))
(print_tree_to_box (get_margin ()) 0 prf context params pt);;
ml_curried_infix `is_a_member_of`;;
let is_a_member_of metavar sl =
% : (string -> string list -> print_test) %
(\params pbind.
mem (case (lookup_metavar pbind metavar)
of (Bound_name s) . s
| (_) . failwith (`is_a_member_of -- used on a metavar that is ` ^
`not bound to a name`)) sl) : print_test;;
let bound_number s =
% : (string -> ((string # int) list -> print_binding -> int)) %
(\params (pbind:print_binding).
(snd (assoc s params))
? failwith (`bound_number -- `^s^` not in parameters`));;
let bound_name meta =
% : (string -> ((string # int) list -> print_binding -> string)) %
(\(params:(string # int) list) pbind.
case ((lookup_metavar pbind meta)
? failwith (`bound_name -- \``^meta^`' not a metavariable`))
of (Bound_name s) . s
| (_) . failwith
(`bound_name -- metavar \``^meta^`' not bound to a name`));;
let bound_names meta =
% : (string -> ((string # int) list -> print_binding -> string list)) %
(\(params:(string # int) list) pbind.
case ((lookup_metavar pbind meta)
? failwith (`bound_names -- \``^meta^`' not a metavariable`))
of (Bound_names sl) . sl
| (_) . failwith
(`bound_names -- metavar \``^meta^`' not bound to names`));;
let bound_child meta =
% : (string -> ((string # int) list -> print_binding -> print_tree)) %
(\(params:(string # int) list) pbind.
case ((lookup_metavar pbind meta)
? failwith (`bound_child -- \``^meta^`' not a metavariable`))
of (Bound_child pt) . pt
| (_) . failwith (`bound_child -- metavar \``^meta^
`' not bound to a child`));;
let bound_children meta =
% : (string -> ((string # int) list -> print_binding -> string)) %
(\(params:(string # int) list) pbind.
case ((lookup_metavar pbind meta)
? failwith
(`bound_children -- \``^meta^`' not a metavariable`))
of (Bound_children ptl) . ptl
| (_) . failwith (`bound_children -- metavar \``^meta^
`' not bound to children`));;
let apply0 f =
% : (* -> ((string # int) list -> print_binding -> *)) %
(\(params:(string # int) list) (pbind:print_binding). f);;
let apply1 f val =
% : ((* -> **) -> ((string # int) list -> print_binding -> *) -> %
% ((string # int) list -> print_binding -> **)) %
(\(params:(string # int) list) (pbind:print_binding).
f (val params pbind));;
let apply2 f val1 val2 =
% : ((* -> ** -> **) -> %
% ((string # int) list -> print_binding -> *) -> %
% ((string # int) list -> print_binding -> **) -> %
% ((string # int) list -> print_binding -> ***)) %
(\(params:(string # int) list) (pbind:print_binding).
f (val1 params pbind) (val2 params pbind));;
|