File: thm_convs.ml

package info (click to toggle)
hol88 2.02.19940316-15
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,928 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 7,118; makefile: 6,075; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (174 lines) | stat: -rw-r--r-- 6,874 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
%****************************************************************************%
% FILE          : thm_convs.ml                                               %
% DESCRIPTION   : Conversions for rewriting with arithmetic theorems.        %
%                                                                            %
% READS FILES   : <none>                                                     %
% WRITES FILES  : <none>                                                     %
%                                                                            %
% AUTHOR        : R.J.Boulton                                                %
% DATE          : 4th March 1991                                             %
%                                                                            %
% LAST MODIFIED : R.J.Boulton                                                %
% DATE          : 8th October 1992                                           %
%****************************************************************************%

%============================================================================%
% Conversions for rewriting Boolean terms                                    %
%============================================================================%

CONJ_ASSOC_NORM_CONV := REWR_CONV (GSYM CONJ_ASSOC);;

DISJ_ASSOC_NORM_CONV := REWR_CONV (GSYM DISJ_ASSOC);;

EQ_EXPAND_CONV := REWR_CONV EQ_EXPAND;;

IMP_EXPAND_CONV := REWR_CONV IMP_DISJ_THM;;

IMP_F_EQ_F_CONV := REWR_CONV IMP_F_EQ_F;;

IMP_IMP_CONJ_IMP_CONV := REWR_CONV AND_IMP_INTRO;;

LEFT_DIST_NORM_CONV := REWR_CONV LEFT_AND_OVER_OR;;

NOT_CONJ_NORM_CONV :=
 REWR_CONV
  (GEN_ALL (CONJUNCT1 (SPECL ["t1:bool";"t2:bool"] DE_MORGAN_THM)));;

NOT_DISJ_NORM_CONV :=
 REWR_CONV
  (GEN_ALL (CONJUNCT2 (SPECL ["t1:bool";"t2:bool"] DE_MORGAN_THM)));;

NOT_NOT_NORM_CONV := REWR_CONV (CONJUNCT1 NOT_CLAUSES);;

OR_F_CONV := REWR_CONV (el 3 (CONJUNCTS (SPEC "x:bool" OR_CLAUSES)));;

RIGHT_DIST_NORM_CONV := REWR_CONV RIGHT_AND_OVER_OR;;

%============================================================================%
% Conversions for rewriting arithmetic terms                                 %
%============================================================================%

ADD_ASSOC_CONV := REWR_CONV (theorem `arithmetic` `ADD_ASSOC`);;

ADD_SYM_CONV := REWR_CONV (theorem `arithmetic` `ADD_SYM`);;

GATHER_BOTH_CONV :=
 REWR_CONV
  (SYM (SPECL ["a:num";"b:num";"x:num"]
         (theorem `arithmetic` `RIGHT_ADD_DISTRIB`)));;

GATHER_LEFT_CONV :=
 REWR_CONV
  (SUBS [el 3 (CONJUNCTS (SPECL ["x:num";"n:num"]
                           (theorem `arithmetic` `MULT_CLAUSES`)))]
    (SYM (SPECL ["a:num";"1";"x:num"]
           (theorem `arithmetic` `RIGHT_ADD_DISTRIB`))));;

GATHER_NEITHER_CONV := REWR_CONV (GSYM (theorem `arithmetic` `TIMES2`));;

GATHER_RIGHT_CONV :=
 REWR_CONV
  (SUBS [el 3 (CONJUNCTS (SPECL ["x:num";"n:num"]
                           (theorem `arithmetic` `MULT_CLAUSES`)))]
    (SYM (SPECL ["1";"b:num";"x:num"]
           (theorem `arithmetic` `RIGHT_ADD_DISTRIB`))));;

GEQ_NORM_CONV := REWR_CONV (theorem `arithmetic` `GREATER_EQ`);;

GREAT_NORM_CONV :=
 REWR_CONV
  (SUBS [SYM (SPECL ["m:num";"n:num"] (definition `arithmetic` `GREATER`));
         SPEC "n:num" (theorem `arithmetic` `SUC_ONE_ADD`)]
    (SPECL ["n:num";"m:num"] (theorem `arithmetic` `LESS_EQ`)));;

LEFT_ADD_DISTRIB_CONV := REWR_CONV (theorem `arithmetic` `LEFT_ADD_DISTRIB`);;

LESS_NORM_CONV :=
 REWR_CONV
  (SUBS [SPEC "m:num" (theorem `arithmetic` `SUC_ONE_ADD`)]
    (SPECL ["m:num";"n:num"] (theorem `arithmetic` `LESS_EQ`)));;

MULT_ASSOC_CONV := REWR_CONV (theorem `arithmetic` `MULT_ASSOC`);;

MULT_COMM_CONV := REWR_CONV MULT_COMM;;

NOT_GEQ_NORM_CONV :=
 REWR_CONV
  (SUBS [SPEC "m:num" (theorem `arithmetic` `SUC_ONE_ADD`)]
    (SPECL ["m:num";"n:num"] (theorem `arithmetic` `NOT_GREATER_EQ`)));;

NOT_GREAT_NORM_CONV := REWR_CONV (theorem `arithmetic` `NOT_GREATER`);;

NOT_LEQ_NORM_CONV :=
 REWR_CONV
  (SUBS [SPEC "n:num" (theorem `arithmetic` `SUC_ONE_ADD`)]
    (SPECL ["m:num";"n:num"] (theorem `arithmetic` `NOT_LEQ`)));;

NOT_LESS_NORM_CONV := REWR_CONV (theorem `arithmetic` `NOT_LESS`);;

NOT_NUM_EQ_NORM_CONV :=
 REWR_CONV
  (SUBS [SPEC "m:num" (theorem `arithmetic` `SUC_ONE_ADD`);
         SPEC "n:num" (theorem `arithmetic` `SUC_ONE_ADD`)]
    (SPECL ["m:num";"n:num"] (theorem `arithmetic` `NOT_NUM_EQ`)));;

NUM_EQ_NORM_CONV := REWR_CONV (theorem `arithmetic` `EQ_LESS_EQ`);;

PLUS_ZERO_CONV := REWR_CONV PLUS_ZERO;;

SYM_ADD_ASSOC_CONV := REWR_CONV (GSYM (theorem `arithmetic` `ADD_ASSOC`));;

SYM_ONE_MULT_CONV := REWR_CONV (GEN_ALL (SYM (SPEC_ALL ONE_MULT)));;

ZERO_MULT_CONV := REWR_CONV ZERO_MULT;;

ZERO_MULT_PLUS_CONV :=
 REWR_CONV
  (SUBS [SYM (CONJUNCT1
              (SPECL ["a:num";"b:num"] (theorem `arithmetic` `MULT_CLAUSES`)))]
   (SPEC "b:num" (GEN_ALL (CONJUNCT1 (theorem `arithmetic` `ADD_CLAUSES`)))));;

ZERO_PLUS_CONV := REWR_CONV ZERO_PLUS;;

%============================================================================%
% Conversions for rewriting inequalities                                     %
%============================================================================%

LEQ_PLUS_CONV := REWR_CONV (theorem `arithmetic` `ADD_MONO_LESS_EQ`);;

%============================================================================%
% Conversions for final simplification                                       %
%============================================================================%

FORALL_SIMP_CONV := REWR_CONV FORALL_SIMP;;

%============================================================================%
% Conversions for normalising and eliminating subtraction                    %
%============================================================================%

NUM_COND_RATOR_CONV := REWR_CONV (INST_TYPE [":num",":*"] COND_RATOR);;
NUM_COND_RAND_CONV := REWR_CONV (INST_TYPE [":num",":*"] COND_RAND);;
SUB_NORM_CONV :=
 let REWRITES_CONV thl =
    let net = mk_conv_net thl
    in  \tm. FIRST_CONV (lookup_term net tm) tm
 in
 (REWRITES_CONV o (map (theorem `arithmetic`)))
  [`SUB_LEFT_ADD`;          `SUB_RIGHT_ADD`;
   `SUB_LEFT_SUB`;          `SUB_RIGHT_SUB`;
   `LEFT_SUB_DISTRIB`;      `RIGHT_SUB_DISTRIB`;
   `SUB_LEFT_SUC`;
   `SUB_LEFT_LESS_EQ`;      `SUB_RIGHT_LESS_EQ`;
   `SUB_LEFT_LESS`;         `SUB_RIGHT_LESS`;
   `SUB_LEFT_GREATER_EQ`;   `SUB_RIGHT_GREATER_EQ`;
   `SUB_LEFT_GREATER`;      `SUB_RIGHT_GREATER`;
   `SUB_LEFT_EQ`;           `SUB_RIGHT_EQ`
  ];;

%============================================================================%
% Conversions for normalising and eliminating conditionals                   %
%============================================================================%

COND_RATOR_CONV := REWR_CONV COND_RATOR;;
COND_RAND_CONV := REWR_CONV COND_RAND;;
COND_EXPAND_CONV := REWR_CONV COND_EXPAND;;