File: appendix.tex

package info (click to toggle)
hol88 2.02.19940316-15
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,928 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 7,118; makefile: 6,075; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (133 lines) | stat: -rw-r--r-- 3,012 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
% appendix.tex %
% Principal lemmas %

% ----------------------------------------------------------------------------

\section{Principal lemmas}
\label{PrincipalLemmas}

Binomial coefficients, \verb@CHOOSE@:
\begin{session}
\begin{verbatim}
CHOOSE_LESS = |- !n k. n < k ==> (CHOOSE n k = 0)

CHOOSE_SAME = |- !n. CHOOSE n n = 1
\end{verbatim}
\end{session}

Algebraic laws:
\begin{session}
\begin{verbatim}
RIGHT_CANCELLATION = 
|- !plus. Group plus ==> (!a b c. (plus b a = plus c a) ==> (b = c))

RING_0 = 
|- !plus times.
    RING(plus,times) ==>
    (!a. times(Id plus)a = Id plus) /\ (!a. times a(Id plus) = Id plus)
\end{verbatim}
\end{session}

\newpage
Scalar powers:
\begin{session}
\begin{verbatim}
POWER_1 = |- !plus. MONOID plus ==> (POWER plus 1 a = a)

POWER_DISTRIB = 
|- !plus times.
    RING(plus,times) ==>
    (!a b n. times a(POWER plus n b) = POWER plus n(times a b))

POWER_ADD = 
|- !plus.
    MONOID plus ==>
    (!m n a. POWER plus(m + n)a = plus(POWER plus m a)(POWER plus n a))
\end{verbatim}
\end{session}

Reduction of lists:
\begin{session}
\begin{verbatim}
REDUCE_APPEND = 
|- !plus.
    MONOID plus ==>
    (!as bs.
      REDUCE plus(APPEND as bs) = plus(REDUCE plus as)(REDUCE plus bs))

REDUCE_MAP_MULT = 
|- !plus times.
    RING(plus,times) ==>
    (!a bs. REDUCE plus(MAP(times a)bs) = times a(REDUCE plus bs))

REDUCE_MAP = 
|- !plus.
    MONOID plus /\ COMMUTATIVE plus ==>
    (!f g as.
      REDUCE plus(MAP(\k. plus(f k)(g k))as) =
      plus(REDUCE plus(MAP f as))(REDUCE plus(MAP g as)))
\end{verbatim}
\end{session}

Subranges of the natural numbers:
\begin{session}
\begin{verbatim}
RANGE_TOP = |- !n m. RANGE m(SUC n) = APPEND(RANGE m n)[m + n]

RANGE_SHIFT = |- !n m. RANGE(SUC m)n = MAP SUC(RANGE m n)
\end{verbatim}
\end{session}

\newpage
$\Sigma$-notation:
\begin{session}
\begin{verbatim}
SIGMA_ID = |- !plus m f. SIGMA(plus,m,0)f = Id plus

SIGMA_LEFT_SPLIT = 
|- !plus m n f. SIGMA(plus,m,SUC n)f = plus(f m)(SIGMA(plus,SUC m,n)f)

SIGMA_RIGHT_SPLIT = 
|- !plus.
    MONOID plus ==>
    (!m n f. SIGMA(plus,m,SUC n)f = plus(SIGMA(plus,m,n)f)(f(m + n)))

SIGMA_SHIFT = 
|- !plus m n f. SIGMA(plus,SUC m,n)f = SIGMA(plus,m,n)(f o SUC)

SIGMA_MULT_COMM = 
|- !plus times.
    RING(plus,times) ==>
    (!m n a f.
      times a(SIGMA(plus,m,n)f) = SIGMA(plus,m,n)((times a) o f))

SIGMA_PLUS_COMM = 
|- !plus.
    MONOID plus /\ COMMUTATIVE plus ==>
    (!f g m n.
      plus(SIGMA(plus,m,n)f)(SIGMA(plus,m,n)g) =
      SIGMA(plus,m,n)(\k. plus(f k)(g k)))

SIGMA_EXT = 
|- !plus.
    MONOID plus ==>
    (!f g m n.
      (!k. k < n ==> (f(m + k) = g(m + k))) ==>
      (SIGMA(plus,m,n)f = SIGMA(plus,m,n)g))
\end{verbatim}
\end{session}

Terms from the Binomial Theorem:
\begin{session}
\begin{verbatim}
BINTERM_0 = 
|- !plus times.
    RING(plus,times) ==>
    (!a b n. BINTERM plus times a b n 0 = POWER times n a)

BINTERM_n = 
|- !plus times.
    RING(plus,times) ==>
    (!a b n. BINTERM plus times a b n n = POWER times n b)
\end{verbatim}
\end{session}