File: tool.tex

package info (click to toggle)
hol88 2.02.19940316-15
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,928 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 7,118; makefile: 6,075; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (1327 lines) | stat: -rw-r--r-- 41,351 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
\chapter{How to program a proof tool}\label{tool}

Users of \HOL\ can create their own theorem proving tools by combining
predefined rules and tactics. The \ML\ type-discipline
ensures that only logically sound methods can be used to create values
of type \ml{thm}.
In this chapter, a simple but real\footnote{The example
is `real' in that the need for it came up last week.} example is described. 

Several implementations of the tool are given to illustrate various styles
of proof programming. The first implementation is the obvious one, but
is very slow because of the `brute force' method used. The second
implementation produces a much more streamlined proof, but still has a
brute force component, namely the use of a tautology checker from the
library \ml{taut}. The third implementation replaces the general
tautology checker with a special purpose derived inference rule. The
fourth and final implementation uses an optimised implementation of
the special purpose rule; understanding it is left as an exercise in
using \DESCRIPTION.

The timings in this chapter are based on Version 1.12. Later versions
of \HOL{} have an optimised tautology checker library due to Richard
Boulton. This new tautology checker is actually faster than the
special purpose derived rule described in
Section~\ref{bogus-optimization}.  Thus with the new tautology checker
the so called ``even more efficient implementation'' is actually
slower than the program it replaces! This was only discovered (by
Juanito Camilleri) during the preparation of Version 2 of the
tutorial. Rather than completely rewriting the chapter, it was decided
to leave it essentially as it was (except for the addition of this
 paragraph). The methods
that are described are still useful, and there is an important lesson
here: optimizations can become obsolete.  The really dedicated reader
could learn a lot by studying the old and new tautology checker
({\small\verb%contrib/icl-taut%} and
{\small\verb%Library/taut%}, respectively) to find out how they work.
Besides improving the tautology library, Richard Boulton also
reimplemented rewriting using ideas from Tom Melham and Roger Fleming.
As a result, in versions later than 1.12 the various rewriting tools
are quite a bit faster and generate fewer intermediate theorems.


It is sometimes claimed that `\LCF-style' systems can never be
practical, because the efficiency needed to handle real examples can
only be obtained with decision procedures coded as primitive rules. It
is hoped that this chapter, as well as the \ml{taut} library, shows
that the truth of such claims is not obvious. Research is currently in
progress to see if a variety of practical decision algorithms can be
implemented as efficient derived rules.

The tool described here is a tactic that puts conjunctions into the
normal form obtained by right associating, sorting the conjuncts into
a canonical order and then removing repetitions. This canonical order
uses the built-in polymorphic infix \ml{<<}, which orders any pair of
\ML\ values with the same type.

\section{A simple implementation}

A first implementation uses `brute-force' rewriting with
the equations:

\begin{hol}\begin{verbatim}
   |- (t1 /\ t2) /\ t3 = t1 /\ (t2 /\ t3)     % Associativity          %

   |- t1 /\ t2 = t2 /\ t1                     % Symmetry (if t2 << t1) %
   |- t1 /\ (t2 /\ t3) = t2 /\ (t1 /\ t3)     % Symmetry (if t2 << t1) %

   |- t /\ t = t                              % Cancel repeated terms  %
   |- t1 /\ (t1 /\ t2) = t1 /\ t2             % Cancel repeated terms  %
\end{verbatim}\end{hol}

\noindent These equations are easily proved using the 
library \ml{taut}. Note that \HOL\ Version 1.12 is used in
this chapter. Versions of \HOL\ later than 1.12 contain improved
rewriting tools and a new version of the library \ml{taut} (the old version
of the library is preserved in the directory
{\small\verb%contrib/icl-taut%}).


\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
scaup% hol
          _  _    __    _      __    __
   |___   |__|   |  |   |     |__|  |__|
   |      |  |   |__|   |__   |__|  |__|
   
          Version 1.12 (Sun3/Franz), built on Feb 23 1991

#load_library `taut`;;
Loading library `taut` ...
........................
Library `taut` loaded.
() : void
\end{verbatim}\end{session}

\noindent The library \ml{taut} defines \ml{TAUT\_RULE}\footnote{The function \ml{TAUT\_RULE} has been replaced by a function called \ml{TAUT\_PROVE} 
in the new version of the \ml{taut} library available in versions of 
\HOL\ later than 1.12}
which converts a term to the corresponding theorem, if the term is a tautology.
\vfill
\newpage
\begin{session}\begin{verbatim}
#let ASSOC = TAUT_RULE "(t1 /\ t2) /\ t3 = t1 /\ t2 /\ t3";;
ASSOC = |- (t1 /\ t2) /\ t3 = t1 /\ t2 /\ t3

#let SYM1 = TAUT_RULE "t1 /\ t2 = t2 /\ t1";;
SYM1 = |- t1 /\ t2 = t2 /\ t1

#let SYM2 = TAUT_RULE "t1 /\ t2 /\ t3 = t2 /\ t1 /\ t3";;
SYM2 = |- t1 /\ t2 /\ t3 = t2 /\ t1 /\ t3

#let CANCEL1 = TAUT_RULE "t /\ t = t";;
CANCEL1 = |- t /\ t = t

#let CANCEL2 = TAUT_RULE "t1 /\ t1 /\ t2 = t1 /\ t2";;
CANCEL2 = |- t1 /\ t1 /\ t2 = t1 /\ t2
\end{verbatim}\end{session}

\noindent One cannot just use \ml{REWRITE\_TAC} with \ml{SYM1} and
\ml{SYM2}, because it would loop.  What is needed is a special
rewriting tool that will only apply symmetry when terms are out of
order. Such a tool can be implemented as a {\it conversion\/}.

Conversions are described in detail in \DESCRIPTION. The idea, which
is due to Larry Paulson \cite{lcp_rewrite}, is that a conversion is an
\ML\ function that maps a term $t_1$ to an equation:

\medskip
{\small\verb%|- %}$t_1${\small\verb% = %}$t_2$.  
\medskip

\noindent The intention is that a conversion will only apply to a
subset of terms: on members of this subset it will generate an
equation, on all other terms it will fail. Because conversions are so
central to theorem-proving in \HOL, the \ML\ type
{\small\verb%term->thm%} is abbreviated to {\small\verb%conv%}.
Conversions are applied using the function:

\begin{hol}\begin{verbatim}
   REWR_CONV : thm -> conv
\end{verbatim}\end{hol}

\noindent This takes an equation {\small\verb%|- %}$t_1${\small\verb% = %}$t_2$
and generates a conversion (\ie\ \ML\ function of type {\small\verb%term->thm%}) 
that maps any term $u$ that matches $t_1$ to the theorem
{\small\verb%|- %}$u${\small\verb% = %}$v$, where $v$ is 
obtained by applying the substitution obtained by matching $u$ with $t_1$ to $t_2$.
If $u$ doesn't match $t_1$ then the application of \ml{REWR\_CONV} fails.


\begin{session}\begin{verbatim}
#REWR_CONV ASSOC "(A /\ B) /\ C";;
|- (A /\ B) /\ C = A /\ B /\ C

#REWR_CONV ASSOC "A /\ (B /\ C)";;
evaluation failed     REWR_CONV: lhs of theorem doesn't match term

#REWR_CONV SYM1 "B /\ A";;
|- B /\ A = A /\ B

#REWR_CONV SYM1 "A \/ B";;
evaluation failed     REWR_CONV: lhs of theorem doesn't match term
\end{verbatim}\end{session}

\noindent For our application, the required conversion should map
a conjunction 

\medskip
$t_1${\small\verb% /\ (%}$t_{2_1}${\small\verb% /\ %}$t_{2_2}${\small\verb%)%} 
\medskip

\noindent in which 
$t_{2_1}${\small\verb% << %}$t_1$ to the equational theorem:

\medskip

{\small\verb%|- %}$t_1${\small\verb% /\ (%}$t_{2_1}${\small\verb% /\ %}$t_{2_2}${\small\verb%)  =  %} $t_{2_1}${\small\verb% /\ (%}$t_1${\small\verb% /\ %}$t_{2_2}${\small\verb%)%} 

\medskip

\noindent If $t_1${\small\verb% << %}$t_{2_1}$ then the conversion fails
(in the \ML\ sense) when applied to
$t_1${\small\verb% /\ (%}$t_{2_1}${\small\verb% /\ %}$t_{2_2}${\small\verb%)%}.
In addition, if the right conjunct is not itself a conjunction, then
the conversion should reorder if necessary. More precisely, if the conversion
is applied to $t_1${\small\verb% /\ %}$t_2$ where $t_2$ is not a conjunction and
$t_2${\small\verb% << %}$t_1$, then it should generate the equation:

\medskip
{\small\verb%|- %}$t_1${\small\verb% /\ %}$t_2${\small\verb%  =  %}$t_2${\small\verb% /\ %}$t_1$
\medskip

\noindent Such a conversion is easily implemented in \ML\ using
\ml{SYM1} and \ml{SYM2} proved above, together with the \ML\ syntax
processing functions \ml{is\_conj} and \ml{dest\_conj}, where:

\begin{hol}\begin{verbatim}
   is_conj   : term -> bool 
   dest_conj : term -> (term # term)
\end{verbatim}\end{hol}

\noindent These are functions that test whether a term is a conjunction, and
splits a term into its two conjuncts, respectively. For example:

\begin{session}\begin{verbatim}
#is_conj "A /\ B";;
true : bool

#is_conj "A \/ B";;
false : bool

#dest_conj "A /\ B";;
("A", "B") : (term # term)

#dest_conj "A \/ B";;
evaluation failed     dest_conj
\end{verbatim}\end{session}

The implementation of the special purpose conversion, 
\ml{CONJ\_ORD\_CONV}, is now straightforward.


\begin{session}\begin{verbatim}
#let CONJ_ORD_CONV t =
# let t1,t2 = dest_conj t
# in
# if is_conj t2
#   then (let t21,t22 = dest_conj t2
#         in
#         if t21 << t1 then REWR_CONV SYM2 t else fail)
#   else (if t2  << t1 then REWR_CONV SYM1 t else fail);;
CONJ_ORD_CONV = - : conv
\end{verbatim}\end{session}

\noindent This is illustrated by:

\begin{session}\begin{verbatim}
#"A:bool" << "B:bool";;
true : bool

#"B:bool" << "C:bool";;
true : bool

#CONJ_ORD_CONV "B /\ A";;
|- B /\ A = A /\ B

#CONJ_ORD_CONV "A /\ B";;
evaluation failed     fail
\end{verbatim}\end{session}

The process of normalizing a conjunction can be split into four phases:

\begin{enumerate}
\item Right associate the conjunction by repeatedly applying:
\begin{quote}
\ml{REWR\_CONV\ ASSOC}
\end{quote}
\item Put the conjuncts in canonical order by repeatedly applying:
\begin{quote}
\ml{CONJ\_ORD\_CONV}
\end{quote}
\item Remove repetitions of $t$ of the form $t${\small\verb% /\ %}$t$ 
by repeatedly applying:
\begin{quote}
\ml{REWR\_CONV\ CANCEL1}
\end{quote}
\item Remove repetitions of $t_1$ in
$t_1${\small\verb% /\ (%}$t_1${\small\verb% /\ %}$t_2${\small\verb%)%}
by repeatedly applying:
\begin{quote}
\ml{REWR\_CONV\ CANCEL2}
\end{quote}
\end{enumerate}


To implement this, a method of repeatedly applying a conversion to
subterms of a term is needed. This is provided by the operator

\begin{hol}\begin{verbatim}
   TOP_DEPTH_CONV : conv -> conv
\end{verbatim}\end{hol}

\noindent If $c$ is a conversion then \ml{TOP\_DEPTH\_CONV}~$c$ is a
conversion that repeatedly applies $c$ to all subterms until $c$ is no
longer applicable to any subterms. The function \ml{TOP\_DEPTH\_CONV}
is one of a family of operators that apply conversions throughout 
terms. Members of this family differ in the order in which subterms
are visited and the amount of repetition that is done. For more
details, see the chapter on conversions in \DESCRIPTION.

\begin{session}\begin{verbatim}
#let ex1 = "A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D";;
ex1 = "A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D" : term

#REWR_CONV ASSOC ex1;;
evaluation failed     REWR_CONV: lhs of theorem doesn't match term

#TOP_DEPTH_CONV (REWR_CONV ASSOC) ex1;;
|- A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D =
   A /\ B /\ C /\ A /\ C /\ A /\ D /\ D
\end{verbatim}\end{session}

\noindent The right hand side of this theorem is \ml{ex1} in right-associated
form. The conclusion of a theorem can be extracted with the \ML\ function
\ml{concl} and the right hand side of an equation can be extracted with
\ml{rhs}. Thus, continuing the session:

\begin{session}\begin{verbatim}
#let ex2 = rhs(concl it);;
ex2 = "A /\ B /\ C /\ A /\ C /\ A /\ D /\ D" : term

#TOP_DEPTH_CONV CONJ_ORD_CONV ex2;;
|- A /\ B /\ C /\ A /\ C /\ A /\ D /\ D =
   A /\ A /\ A /\ B /\ C /\ C /\ D /\ D
\end{verbatim}\end{session}

\noindent The right hand side of this is the result of canonicalizing
the order of the conjuncts in the left hand side. Next, the repetitions
can be eliminated using \ml{CANCEL1} and \ml{CANCEL2}.

\begin{session}\begin{verbatim}
#let ex3 = rhs(concl it);;
ex3 = "A /\ A /\ A /\ B /\ C /\ C /\ D /\ D" : term

#TOP_DEPTH_CONV (REWR_CONV CANCEL1) ex3;;
|- A /\ A /\ A /\ B /\ C /\ C /\ D /\ D =
   A /\ A /\ A /\ B /\ C /\ C /\ D
\end{verbatim}\end{session}

\begin{session}\begin{verbatim}
#let ex4 = rhs(concl it);;
ex4 = "A /\ A /\ A /\ B /\ C /\ C /\ D" : term

#TOP_DEPTH_CONV (REWR_CONV CANCEL2) ex4;;
|- A /\ A /\ A /\ B /\ C /\ C /\ D = A /\ B /\ C /\ D
\end{verbatim}\end{session}


To make the conjunction normalizer, the four stages just described
must be performed in sequence. Conversions can be applied in sequence using
the infixed function:

\begin{hol}\begin{verbatim}
   THENC : conv -> conv -> conv
\end{verbatim}\end{hol}


\noindent If $c_1\ t_1$ evaluates to $\ml{ |- }t_1\ml{=}t_2$ and
$c_2\ t_2$ evaluates to $\ml{ |- }t_2\ml{=}t_3$, then
$\ml{(}c_1\ \ml{THENC}\ c_2\ml{)}\ t_1$ evaluates to
$\ml{\ |-\ }t_1\ml{=}t_3$. If the
evaluation of $c_1\ t_1$ or the evaluation of $c_2\ t_2$ fails,
then so does the evaluation of $c_1\ \ml{THENC}\ c_2$. \ml{THENC} is
justified by the transitivity of equality.

Using \ml{THENC}, the normalizer is defined by

\begin{session}\begin{verbatim}
#let CONJ_NORM_CONV =
# TOP_DEPTH_CONV(REWR_CONV ASSOC)   THENC
# TOP_DEPTH_CONV CONJ_ORD_CONV         THENC
# TOP_DEPTH_CONV(REWR_CONV CANCEL1) THENC
# TOP_DEPTH_CONV(REWR_CONV CANCEL2);;

CONJ_NORM_CONV = - : conv

#CONJ_NORM_CONV ex1;;
|- A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D = A /\ B /\ C /\ D
\end{verbatim}\end{session}

This conversion can now be converted to a rule or tactic using the functions
\ml{CONV\_RULE} or \ml{CONV\_TAC}, respectively.


\begin{hol}
\begin{verbatim}
   CONV_RULE : conv -> thm -> thm
   CONV_TAC  : conv -> tactic
\end{verbatim}
\end{hol}

\noindent $\ml{CONV\_RULE}\ c\ \ml{(|- }t\ml{)}$ returns $\ml{|- }t'$, where
$c\ t$ evaluates to the equation
$\ml{|-}\ t\ml{=}t'$. 
$\ml{CONV\_TAC}\ c$ is a tactic that
converts the conclusion of a goal using $c$. For more details see \DESCRIPTION.

\begin{session}\begin{verbatim}
#let CONJ_NORM_TAC = CONV_TAC CONJ_NORM_CONV;;
CONJ_NORM_TAC = - : tactic
\end{verbatim}\end{session}

Here is an example. It uses {\it antiquotation\/}: if $x$ is an \ML\
indentifier bound to term, then occurrences of
{\small\verb%^%}$x$ inside a quotation
denotes the term bound to $x$.

\begin{session}\begin{verbatim}
#g "^ex1 ==> B";;
"A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D ==> B"

() : void

#e CONJ_NORM_TAC;;
OK..
"A /\ B /\ C /\ D ==> B"
\end{verbatim}\end{session}

To summarize, here is the \ML\ code implementing the normalizer:

\begin{hol}\begin{verbatim}
   load_library `taut`;;

   let ASSOC   = TAUT_RULE "(t1 /\ t2) /\ t3 = t1 /\ t2 /\ t3"
   and SYM1    = TAUT_RULE "t1 /\ t2 = t2 /\ t1"
   and SYM2    = TAUT_RULE "t1 /\ t2 /\ t3 = t2 /\ t1 /\ t3"
   and CANCEL1 = TAUT_RULE "t /\ t = t"
   and CANCEL2 = TAUT_RULE "t1 /\ t1 /\ t2 = t1 /\ t2";;

   let CONJ_ORD_CONV t =
    let t1,t2 = dest_conj t
    in
    if is_conj t2
      then (let t21,t22 = dest_conj t2
            in
            if t21 << t1 then REWR_CONV SYM2 t else fail)
      else (if t2  << t1 then REWR_CONV SYM1 t else fail);;

   let CONJ_NORM_CONV =
    TOP_DEPTH_CONV(REWR_CONV ASSOC)   THENC
    TOP_DEPTH_CONV CONJ_ORD_CONV         THENC
    TOP_DEPTH_CONV(REWR_CONV CANCEL1) THENC
    TOP_DEPTH_CONV(REWR_CONV CANCEL2);;

   let CONJ_NORM_TAC = CONV_TAC CONJ_NORM_CONV;;
\end{verbatim}\end{hol} 

\section{A more efficient implementation}

The normalizer just given is rather slow. This can be shown by switching on the
system timer using the function:

\begin{hol}\begin{verbatim}
   timer : bool -> bool
\end{verbatim}\end{hol}

\noindent Evaluating \ml{timer~true} switches on timing; evaluating
\ml{timer~false} switches it off (the previous value of the timing flag
is returned). Garbage collection times are also shown, together with a
count of the number of intermediate theorems that are generated (which
gives an estimate of the number of primitive inferences done).

\begin{session}\begin{verbatim}
#timer true;;
false : bool
Run time: 0.0s

#CONJ_NORM_CONV ex1;;
|- A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D = A /\ B /\ C /\ D
Run time: 1.1s
Garbage collection time: 0.5s
Intermediate theorems generated: 73
\end{verbatim}\end{session}

\noindent Here is a bigger example:

\begin{session}\begin{verbatim}
#CONJ_NORM_CONV "^ex1 /\ (^ex1 /\ (^ex1 /\ ^ex1 /\ ^ex1) /\ ^ex1)";;
|- (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
   (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
   ((A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
    (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
    A /\
    (B /\ C /\ A) /\
    (C /\ A /\ D) /\
    D) /\
   A /\
   (B /\ C /\ A) /\
   (C /\ A /\ D) /\
   D =
   A /\ B /\ C /\ D
Run time: 38.3s
Garbage collection time: 11.5s
Intermediate theorems generated: 16761
\end{verbatim}\end{session}

The reason that \ml{CONJ\_CANON\_CONV} is slow is because of the
repeated pattern matching done during rewriting. A much more efficient
approach is to normalize the conjunction by \ML\ programming outside
the logic, and then to prove that the normalized term is equal to the
original one. An even more efficient approach, which is not explored
here, would be to avoid having to do this proof by verifing the
normalization code by some sort of meta-theoretic
reasoning about \ML. How to do this in
\HOL\ is not clear, but work on this approach has been done in the
context of {\small FOL} \cite{FOL}, the Boyer-Moore prover \cite{BoyerMoore}
and Nuprl \cite{Nuprl}. These approaches all use logically
sophisticated extra axioms, called reflection principles, that enable
metatheorems to be `reflected' into the logic as object level
theorems.

To normalize the term by \ML\ programming, the conjuncts are extracted,
repeated elements are deleted and the resulting list is sorted.

\HOL\ already has a predefined function:

\begin{hol}\begin{verbatim}
   conjuncts : term -> term list
\end{verbatim}\end{hol}

\noindent for extracting conjuncts.
\HOL\ also has a predefined \ML\ function for removing repeated elements of
a list:


\begin{hol}\begin{verbatim}
   setify : * list -> * list
\end{verbatim}\end{hol}

\noindent Both \ml{conjuncts} and \ml{setify} are illustrated below:

\begin{session}\begin{verbatim}
#timer false;;
true : bool

#conjuncts ex1;;
["A"; "B"; "C"; "A"; "C"; "A"; "D"; "D"] : term list

#setify it;;
["B"; "C"; "A"; "D"] : term list

#let ex1_list = it;;
ex1_list = ["B"; "C"; "A"; "D"] : term list
\end{verbatim}\end{session}

There is a predefined sorting function in \ML:

\begin{session}\begin{verbatim}
#sort;; 
sort = - : (((* # *) -> bool) -> * list -> * list)

#sort $< [3;2;5;6;1;1;7;9;3];;
[1; 1; 2; 3; 3; 5; 6; 7; 9] : int list

#sort $<< ex1_list;;
["A"; "B"; "C"; "D"] : term list
\end{verbatim}\end{session}

Using this function, the list of conjuncts of the normalization of a
term is easily computed.  The predefined \ML\ function:

\begin{hol}\begin{verbatim}
   list_mk_conj : term list -> term
\end{verbatim}\end{hol}

\noindent can then be used to build the normalized conjunction.


\begin{session}\begin{verbatim}
#ex1;;
"A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D" : term

#let ex1_norm = list_mk_conj(sort $<< (setify(conjuncts ex1)));;
ex1_norm = "A /\ B /\ C /\ D" : term
\end{verbatim}\end{session}

\noindent The calculation of \ml{ex1\_norm} from \ml{ex1} has been
done by (unverified) \ML\ code. What is required is the theorem
asserting that they are equal. This can be proved using the tautology
checker.

\begin{session}\begin{verbatim}
#TAUT_RULE "^ex1 = ^ex1_norm";;
|- A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D = A /\ B /\ C /\ D
\end{verbatim}\end{session}

\noindent A conversion that normalizes conjunctions is thus:

\begin{session}\begin{verbatim}
#let CONJ_NORM_CONV2 t =
# if is_conj t
#  then TAUT_RULE "^t = ^(list_mk_conj(sort $<< (setify(conjuncts t))))"
#  else fail;;
CONJ_NORM_CONV2 = - : conv

#CONJ_NORM_CONV2 ex1;;
|- A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D = A /\ B /\ C /\ D
\end{verbatim}\end{session}

\noindent \ml{CONJ\_CANON\_CONV2} is more than an order of magnitude faster 
than \ml{CONJ\_CANON\_CONV}:


\begin{session}\begin{verbatim}
#timer true;;
false : bool
Run time: 0.0s

#CONJ_NORM_CONV2 "^ex1 /\ (^ex1 /\ (^ex1 /\ ^ex1 /\ ^ex1) /\ ^ex1)";;
|- (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
   (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
   ((A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
    (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
    A /\
    (B /\ C /\ A) /\
    (C /\ A /\ D) /\
    D) /\
   A /\
   (B /\ C /\ A) /\
   (C /\ A /\ D) /\
   D =
   A /\ B /\ C /\ D
Run time: 1.9s
Garbage collection time: 0.5s
Intermediate theorems generated: 1273
\end{verbatim}\end{session}

\section{An even more efficient implementation}\label{bogus-optimization}

Although the implementation just given is much faster than the first
naive one, it can be improved further by replacing the call to the
general tautology checker with a special purpose conjunction-equivalence
prover.

To see how this works, the equivalence of \ml{ex1} and \ml{ex1\_norm} will first
be proved manually. The general form of this proof will then be abstracted into
a derived rule.

The goal is to prove that \ml{ex1} and \ml{ex1\_norm} are equal.

\begin{session}\begin{verbatim}
#timer false;;
true : bool

#g "^ex1 = ^ex1_norm";;
"A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D = A /\ B /\ C /\ D"

() : void
\end{verbatim}\end{session}

\noindent The predefined tactic \ml{EQ\_TAC} splits an equation into two
implications (see Section~\ref{EQTAC}).

\begin{session}\begin{verbatim}
#e EQ_TAC;;
OK..
2 subgoals
"A /\ B /\ C /\ D ==> A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D"

"A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D ==> A /\ B /\ C /\ D"

() : void
\end{verbatim}\end{session}

\noindent Each of these can be solved by:
\begin{enumerate}
\item moving the antecedent of the
implication to the assumption list (using \ml{DISCH\_TAC}, see
Section~\ref{DISCHTAC});
\item breaking up the remaining
goal (the consequent of the implication) into one subgoal per conjunct (using
\ml{CONJ\_TAC}, see Section~\ref{CONJTAC});
\item  solving each of these
conjuncts using the antecedent (which is now an assumption)
\end{enumerate}

\noindent Step 1--3 are now done interactively.

\begin{session}\begin{verbatim}
#e DISCH_TAC;;
OK..
"A /\ B /\ C /\ D"
    [ "A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D" ]

() : void
\end{verbatim}\end{session}

\noindent \ml{CONJ\_TAC} is repeated using the tactical \ml{REPEAT}
described in Section~\ref{THEN}.

\begin{session}\begin{verbatim}
#e (REPEAT CONJ_TAC);;
OK..
4 subgoals
"D"
    [ "A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D" ]

"C"
    [ "A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D" ]

"B"
    [ "A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D" ]

"A"
    [ "A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D" ]

() : void
\end{verbatim}\end{session}

\noindent The final step is to use the assumption
{\small\verb%"A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D"%} to solve each goal.
To do this, the assumption is grabbed using the tactical:

\begin{hol}\begin{verbatim}
   POP_ASSUM : (thm -> tactic) -> tactic
\end{verbatim}\end{hol}

\noindent Given a function \ml{$f$ : thm -> tactic}, the tactic
\ml{POP\_ASSUM}\ $f$ applies $f$ to the (assumed) first
assumption of a goal
and then applies the tactic created thereby to the original goal
minus its top assumption:

\begin{hol}\begin{alltt}
   POP_ASSUM \(f\) ([\(t\sb{1}\);\(\ldots\);\(t\sb{n}\)],\(t\)) = \(f\) (ASSUME \(t\sb{1}\)) ([\(t\sb{2}\);\(\ldots\);\(t\sb{n}\)],\(t\))
\end{alltt}\end{hol}

\noindent \ML\ functions such as $f$,
with type \ml{thm -> tactic} are abbreviated to \ml{thm\_tactic} (see
\DESCRIPTION\ for further details).

After grabbing the assumption, it is split into its individual conjunctions
using the predefined derived rule:

\begin{hol}\begin{verbatim}
   CONJUNCTS : thm -> thm list
\end{verbatim}\end{hol}

\noindent For example:


\begin{session}\begin{verbatim}
#CONJUNCTS(ASSUME "A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D");;
[. |- A; . |- B; . |- C; . |- A; . |- C; . |- A; . |- D; . |- D]
: thm list
\end{verbatim}\end{session}

\noindent Among the individual conjuncts is the goal, which can thus be
solved immediately using \ml{ACCEPT\_TAC} (see Section~\ref{ACCEPTTAC}).
The appropriate assumption can be chosen with the predefined tactical
\ml{MAP\_FIRST}, which
is characterized by:

\begin{hol}\begin{alltt}
   MAP_FIRST \(f\) [\(x\sb{1}\); \(\ldots\) ;\(x\sb{n}\)]  =  \(f\)(\(x\sb{1}\)) ORELSE \(\ldots\) ORELSE \(f\)(\(x\sb{n}\))
\end{alltt}\end{hol}

\noindent Returning to the proof: the final step is now performed by
popping the assumption and applying to it the function obtained by
composing \ml{CONJUNCTS} and \ml{MAP\_FIRST} using the \ML\ infixed
function composition operator \ml{o} 
(where \ml{(}$f$~\ml{o}~$g$\ml{)}$x$~\ml{=}~$g$\ml{(}$f$\ml{(}$x$\ml{))}).

\begin{session}\begin{verbatim}
#e(POP_ASSUM(MAP_FIRST ACCEPT_TAC o CONJUNCTS));;
OK..
goal proved
. |- A

Previous subproof:
3 subgoals
"D"
    [ "A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D" ]

"C"
    [ "A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D" ]

"B"
    [ "A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D" ]

() : void
\end{verbatim}\end{session}


\noindent The remaining subgoals are solved identically. Stitching together
the tactics just used results in:

\begin{hol}\begin{verbatim}
   EQ_TAC          THEN 
   DISCH_TAC       THEN
   REPEAT CONJ_TAC THEN 
   POP_ASSUM(MAP_FIRST ACCEPT_TAC o CONJUNCTS)
\end{verbatim}\end{hol}

\noindent With this, the entire proof can be done in one step.

\begin{session}\begin{verbatim}
#g "^ex1 = ^ex1_norm";;
"A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D = A /\ B /\ C /\ D"

() : void

#e(EQ_TAC          THEN 
#  DISCH_TAC       THEN
#  REPEAT CONJ_TAC THEN 
#  POP_ASSUM(MAP_FIRST ACCEPT_TAC o CONJUNCTS));;
OK..
goal proved
|- A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D = A /\ B /\ C /\ D

Previous subproof:
goal proved
() : void
\end{verbatim}\end{session}

Using this tactic, a derived rule \ml{CONJ\_EQ} can be defined that proves
two conjunctions equal. This is what is needed to replace the call to
\ml{TAUT\_RULE}.
\ml{CONJ\_EQ} is defined with the predefined function:

\begin{hol}\begin{verbatim}
   PROVE : term # tactic -> theorem
\end{verbatim}\end{hol}

\noindent \ml{PROVE}\ml{(}$t$\ml{,}$T$\ml{)} applies the tactic $T$ to
the goal \ml{([],}$t$\ml{)}; if this goal is proved by $T$ then the
resulting justification is applied to \ml{[]} to obtain the theorem
\ml{|-}~$t$, which is returned. If $T$ does not solve the goal, then
the application of \ml{PROVE} fails. Using \ml{PROVE}, the definition
of \ml{CONJ\_EQ} is:

\begin{hol}\begin{verbatim}
   let CONJ_EQ t1 t2 = 
    PROVE ("^t1 = ^t2", 
           EQ_TAC          THEN 
           DISCH_TAC       THEN
           REPEAT CONJ_TAC THEN 
           POP_ASSUM(MAP_FIRST ACCEPT_TAC o CONJUNCTS))
\end{verbatim}\end{hol}


\noindent Replacing the call to \ml{TAUT\_RULE} in the definition
of \ml{CONJ\_NORM\_CONV2} results in:

\begin{hol}\begin{verbatim}
   let CONJ_NORM_CONV3 t =
    if is_conj t
     then CONJ_EQ t (list_mk_conj(sort $<< (setify(conjuncts t))))
     else fail
\end{verbatim}\end{hol}

\noindent Continuing the session:

\begin{session}\begin{verbatim}
#let CONJ_EQ t1 t2 = 
# PROVE ("^t1 = ^t2", 
#        EQ_TAC          THEN 
#        DISCH_TAC       THEN
#        REPEAT CONJ_TAC THEN 
#        POP_ASSUM(MAP_FIRST ACCEPT_TAC o CONJUNCTS));;
CONJ_EQ = - : (term -> conv)

#let CONJ_NORM_CONV3 t =
# if is_conj t
#  then CONJ_EQ t (list_mk_conj(sort $<< (setify(conjuncts t))))
#  else fail;;
CONJ_NORM_CONV3 = - : conv
\end{verbatim}\end{session}

\noindent \ml{CONJ\_NORM\_CONV3} is almost twice
as efficient as \ml{CONJ\_NORM\_CONV2}. To show this, the timer is switched 
back on.

\begin{session}\begin{verbatim}
#timer true;;
false : bool
Run time: 0.0s
\end{verbatim}\end{session}

\noindent Here is the big example with \ml{CONJ\_NORM\_CONV3}:

\begin{session}\begin{verbatim}
#CONJ_NORM_CONV3 "^ex1 /\ (^ex1 /\ (^ex1 /\ ^ex1 /\ ^ex1) /\ ^ex1)";;
|- (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
   (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
   ((A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
    (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
    A /\
    (B /\ C /\ A) /\
    (C /\ A /\ D) /\
    D) /\
   A /\
   (B /\ C /\ A) /\
   (C /\ A /\ D) /\
   D =
   A /\ B /\ C /\ D
Run time: 1.0s
Garbage collection time: 0.5s
Intermediate theorems generated: 775
\end{verbatim}\end{session}

\section{Further optimizations}

Further improvements are still possible. As an exercise the reader
might want to decipher the following highly optimized definition of
\ml{CONJ\_EQ}.

The function \ml{PROVE\_CONJ}, defined below, 
converts a term $t$ to the theorem \ml{|-}~$t$
if that theorem occurs in a supplied list of theorems (\ml{ths} in the
code below), or $t$ is a conjunction each of whose conjuncts occurs in
the list. The definition of \ml{PROVE\_CONJ} uses the following
predefined \ML\ functions:

\begin{itemize}
\item \ml{uncurry}~$f$~\ml{(}$x$\ml{,}$y$\ml{)}~~\ml{=}~~$f$~$x$~$y$

\item \ml{(}$f${\small\verb% # %}$g$\ml{)}\ml{(}$x$\ml{,}$y$\ml{)}~~\ml{=}~~\ml{(}$f\ x$~\ml{,}~$g\ y$\ml{)}

\item \ml{find}~$p$~\ml{[}$x_1\ml{;}\ldots\ml{;}x_n$\ml{]}~~=~~{\it the first $x_i$ for which $p\ x_i$ is true\/}

\end{itemize}

\noindent and the inference rule \ml{CONJ}:


\[ \Gamma_1\turn
t_1\qquad\qquad\qquad\Gamma_2\turn t_2\over \Gamma_1\cup\Gamma_2 \turn t_1\conj
t_2 \]


\noindent Here is the definition of \ml{PROVE\_CONJ}:

\begin{hol}\begin{verbatim}
   letrec PROVE_CONJ ths tm =
    (uncurry CONJ ((PROVE_CONJ ths # PROVE_CONJ ths) (dest_conj tm))) ?
    find (\th. concl th = tm) ths
\end{verbatim}\end{hol}

\noindent Using this, the optimized \ml{CONJ\_EQ}, called
\ml{CONJ\_EQ2}, is defined using \ml{IMP\_ANTISYM\_RULE} (a predefined rule):


\[ \Gamma_1 \turn t_1 \imp t_2 \qquad\qquad \Gamma_2\turn t_2 \imp t_1\over
\Gamma_1 \cup \Gamma_2 \turn t_1 = t_2\]

\noindent The definition is:

\begin{hol}\begin{verbatim}
   let CONJ_EQ2 t1 t2 =
    let imp1 = DISCH t1 (PROVE_CONJ (CONJUNCTS(ASSUME t1)) t2)
    and imp2 = DISCH t2 (PROVE_CONJ (CONJUNCTS(ASSUME t2)) t1) 
    in IMP_ANTISYM_RULE imp1 imp2
\end{verbatim}\end{hol}

\noindent Loading these \ML\ function definitions into \HOL:

\begin{session}\begin{verbatim}
#letrec PROVE_CONJ ths tm =
# (uncurry CONJ ((PROVE_CONJ ths # PROVE_CONJ ths) (dest_conj tm))) ?
# find (\th. concl th = tm) ths;;
PROVE_CONJ = - : (thm list -> conv)
Run time: 0.0s

#let CONJ_EQ2 t1 t2 =
# let imp1 = DISCH t1 (PROVE_CONJ (CONJUNCTS(ASSUME t1)) t2)
# and imp2 = DISCH t2 (PROVE_CONJ (CONJUNCTS(ASSUME t2)) t1) 
# in IMP_ANTISYM_RULE imp1 imp2;;
CONJ_EQ2 = - : (term -> conv)
Run time: 0.0s
\end{verbatim}\end{session}


\noindent A version of \ml{CONJ\_NORM\_CONV} that
uses \ml{CONJ\_EQ2} is defined by:

\begin{hol}\begin{verbatim}
   let CONJ_NORM_CONV4 t =
    if is_conj t
     then CONJ_EQ2 t (list_mk_conj(sort $<< (setify(conjuncts t))))
     else fail
\end{verbatim}\end{hol}


\noindent Loading this into \ML:

\begin{session}\begin{verbatim}
#let CONJ_NORM_CONV4 t =
# if is_conj t
#  then CONJ_EQ2 t (list_mk_conj(sort $<< (setify(conjuncts t))))
#  else fail;;
CONJ_NORM_CONV4 = - : conv
Run time: 0.0s
\end{verbatim}\end{session}

\noindent This is even faster than \ml{CONJ\_NORM\_CONV3}:

\begin{session}\begin{verbatim}
#CONJ_NORM_CONV4 "^ex1 /\ (^ex1 /\ (^ex1 /\ ^ex1 /\ ^ex1) /\ ^ex1)";;
|- (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
   (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
   ((A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
    (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\
    A /\
    (B /\ C /\ A) /\
    (C /\ A /\ D) /\
    D) /\
   A /\
   (B /\ C /\ A) /\
   (C /\ A /\ D) /\
   D =
   A /\ B /\ C /\ D
Run time: 0.4s
Intermediate theorems generated: 155
\end{verbatim}\end{session}

\section{Normalizing all subterms}

There is an important difference in the functionality of
\ml{CONJ\_NORM\_CONV} and the various optimised versions of it. The
difference is that \ml{CONJ\_NORM\_CONV} applies to any term,
normalizing all subterms that are conjunctions. However the functions
\ml{CONJ\_NORM\_CONV}{\small $n$} (where {\small $n = 2,3,4$}) all 
fail on non-conjunctions.

\begin{session}\begin{verbatim}
#CONJ_NORM_CONV "^ex1 ==> ^ex1";;
|- A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D ==>
   A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D =
   A /\ B /\ C /\ D ==> A /\ B /\ C /\ D
Run time: 2.0s
Garbage collection time: 0.6s
Intermediate theorems generated: 1307

#CONJ_NORM_CONV4 "^ex1 => ^ex1";;
need 2 nd branch to conditional
skipping: ex1 " ;; parse failed     

#CONJ_NORM_CONV4 "^ex1 ==> ^ex1";;
evaluation failed     fail
\end{verbatim}\end{session}

What is needed is a function that will apply a conversion to all
conjunctive subterms of a term. Such a function is \ml{TOP\_DEPTH\_CONV}, however

\begin{hol}\begin{verbatim}
   TOP_DEPTH_CONV CONJ_NORM_CONV4
\end{verbatim}\end{hol}

\noindent would loop, because \ml{CONJ\_NORM\_CONV4} never fails on
conjunctions, so \ml{TOP\_DEPTH\_CONV} would keep applying it forever!
This is easily got around using:

\begin{hol}\begin{verbatim}
   CHANGED_CONV : conv -> conv
\end{verbatim}\end{hol}

\noindent \ml{CHANGED\_CONV}~$c$ behaves like $c$, except that if $c$
has no effect, then \ml{CHANGED\_CONV}~$c$ fails.

\begin{session}\begin{verbatim}
#TOP_DEPTH_CONV(CHANGED_CONV CONJ_NORM_CONV4) "^ex1 ==> ^ex1";;
|- A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D ==>
   A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D =
   A /\ B /\ C /\ D ==> A /\ B /\ C /\ D
Run time: 0.5s
Intermediate theorems generated: 292
\end{verbatim}\end{session}

Although this works, the scanning through subterms done by
\ml{TOP\_DEPTH\_CONV} is a bit `brute force'. Further efficiency can
be obtained by writing a special scanning function that
just applies a conversion to maximal conjunctive subterms.
This is provided by the code below. 
The understanding of this is a fairly hard exercise for the reader. The
section on conversions in \DESCRIPTION\ should be helpful.

First, an auxiliary derived rule for combining two equations into
a single equation by conjoining  the left hand sides and  the
right hand sides.

\begin{session}\begin{verbatim}
#let MK_CONJ th1 th2 = MK_COMB(AP_TERM "$/\" th1, th2);;
MK_CONJ = - : (thm -> thm -> thm)
Run time: 0.0s
\end{verbatim}\end{session}

\noindent Next a function that conjoins the left hand sides and right
hand sides of lists of equations.

\begin{session}\begin{verbatim}
#letrec MK_CONJL l =
# if null l     then fail
# if null(tl l) then hd l
#               else MK_CONJ (hd l) (MK_CONJL(tl l));;
MK_CONJL = - : proof
Run time: 0.0s
\end{verbatim}\end{session}

\noindent Next, a function that applies a conversion $c$ to all
conjunctive subterms of a term. This uses the \ML\ function:

\bigskip
\ml{map}~$f$~\ml{[}$x_1\ml{;}\ldots\ml{;}x_n$\ml{]}~~=~~\ml{[}$f\ x_1\ml{;}\ldots\ml{;}f\ x_n$\ml{]}

\bigskip

\noindent and the rules \ml{MK\_COMB}:


\[ \Gamma_1 \turn f = g \qquad\qquad \Gamma_2\turn x = y \over
\Gamma_1 \cup \Gamma_2 \turn f\ x = g\ y\]

\noindent and \ml{MK\_ABS}:


\[ \Gamma \turn \forall x.\ t_1 = t_2 \over
\Gamma \turn (\lambda x.\ t_1) = (\lambda x.\ t_2)\]

\noindent and \ml{GEN}:

$$\Gamma\turn t\over\Gamma\turn\uquant{x} t$$
\begin{itemize}
\item Where $x$ is not free in $\Gamma$.
\end{itemize}


\noindent and \ml{REFL}: 

$$ \over\turn t = t$$

\begin{itemize}
\item\ml{REFL}~$t$~~\ml{=}~~ $\turn t = t$.
\end{itemize}

\noindent The definition of \ml{CONJ\_DEPTH\_CONV} also uses:

\begin{hol}\begin{verbatim}
   is_comb   : term -> bool
   dest_comb : term -> (term # term)

   is_abs    : term -> bool
   dest_abs  : term -> (term # term)
\end{verbatim}\end{hol}

\noindent which are the tests and destructors for combinations and
abstractions, respectively.

\begin{session}\begin{verbatim}
#letrec CONJ_DEPTH_CONV c tm =
# if is_conj tm 
#  then (c THENC (MK_CONJL o map (CONJ_DEPTH_CONV c) o conjuncts)) tm
# if is_comb tm
#  then (let rator,rand = dest_comb tm in
#         MK_COMB (CONJ_DEPTH_CONV c rator, CONJ_DEPTH_CONV c rand))
# if is_abs tm 
#  then (let bv,body = dest_abs tm in
#         let bodyth = CONJ_DEPTH_CONV c body in
#         MK_ABS (GEN bv bodyth))
#   else (REFL tm);;
CONJ_DEPTH_CONV = - : (conv -> conv)
Run time: 0.0s
\end{verbatim}\end{session}

\noindent The next session shows that \ml{CONJ\_DEPTH\_CONV} is an
improvement over \ml{TOP\_DEPTH\_CONV}.

\begin{session}\begin{verbatim}
#CONJ_DEPTH_CONV CONJ_NORM_CONV4 "^ex1 ==> ^ex1";;
|- A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D ==>
   A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D =
   A /\ B /\ C /\ D ==> A /\ B /\ C /\ D
Run time: 0.4s
Intermediate theorems generated: 95
\end{verbatim}\end{session}

\noindent However, the figures show that we are getting to a point of
diminishing returns.

Finally, the tactic for normalizing all conjunctions in a goal is:

\begin{session}\begin{verbatim}
#let CONJ_NORM_TAC = CONV_TAC (CONJ_DEPTH_CONV CONJ_NORM_CONV4);;
CONJ_NORM_TAC = - : tactic
Run time: 0.0s
\end{verbatim}\end{session}

\noindent This is illustrated by:

\begin{session}\begin{verbatim}
#g "^ex1 ==> ^ex1 /\ ^ex1_norm";;
"A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D ==>
 (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\ A /\ B /\ C /\ D"

() : void
Run time: 0.1s

#e CONJ_NORM_TAC;;
OK..
"A /\ B /\ C /\ D ==> A /\ B /\ C /\ D"

() : void
Run time: 0.3s
Intermediate theorems generated: 110
\end{verbatim}\end{session}

\noindent To show how much faster the optimized version is, here is
the last step repeated with the first version of the tool. The \ML\
function \ml{b} backs up to the last goal.

\begin{session}\begin{verbatim}
#b();;
"A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D ==>
 (A /\ (B /\ C /\ A) /\ (C /\ A /\ D) /\ D) /\ A /\ B /\ C /\ D"

() : void
Run time: 0.1s
\end{verbatim}\end{session}

\noindent Expanding with the slow tactic:

\begin{session}\begin{verbatim}
#e(CONV_TAC CONJ_NORM_CONV);;
OK..
"A /\ B /\ C /\ D ==> A /\ B /\ C /\ D"

() : void
Run time: 3.5s
Garbage collection time: 1.0s
Intermediate theorems generated: 1932
\end{verbatim}\end{session}

\noindent it is 10 times slower and generates almost 20 times as many
primitive inference steps!


Here is the complete \ML\ program for the optimized normalizer.

\begin{hol}\begin{verbatim}
   letrec insert ord x l =
    if null l 
     then [x]
    if ord(x,hd l)
     then x.l
     else hd l.(insert ord x (tl l));;

   letrec sort ord l =
    if null l
     then []
     else insert ord (hd l) (sort ord (tl l));;
\end{verbatim}\end{hol}

\begin{hol}\begin{verbatim}
   letrec PROVE_CONJ ths tm =
    (uncurry CONJ ((PROVE_CONJ ths # PROVE_CONJ ths) (dest_conj tm))) ?
    find (\th. concl th = tm) ths;;

   let CONJ_EQ t1 t2 =
    let imp1 = DISCH t1 (PROVE_CONJ (CONJUNCTS(ASSUME t1)) t2)
    and imp2 = DISCH t2 (PROVE_CONJ (CONJUNCTS(ASSUME t2)) t1) 
    in IMP_ANTISYM_RULE imp1 imp2;;
\end{verbatim}\end{hol}

\begin{hol}\begin{verbatim}
   let CONJ_NORM_CONV t =
    if is_conj t
     then CONJ_EQ t (list_mk_conj(sort $<< (setify(conjuncts t))))
     else fail;;
\end{verbatim}\end{hol}

\begin{hol}\begin{verbatim}
   let MK_CONJ th1 th2 = MK_COMB(AP_TERM "$/\" th1, th2);;

   letrec MK_CONJL l =
    if null l     then fail
    if null(tl l) then hd l
                  else MK_CONJ (hd l) (MK_CONJL(tl l));;
\end{verbatim}\end{hol}

\begin{hol}\begin{verbatim}
   letrec CONJ_DEPTH_CONV c tm =
    if is_conj tm 
     then (c THENC (MK_CONJL o map (CONJ_DEPTH_CONV c) o conjuncts)) tm
    if is_comb tm
     then (let rator,rand = dest_comb tm in
            MK_COMB (CONJ_DEPTH_CONV c rator, CONJ_DEPTH_CONV c rand))
    if is_abs tm 
     then (let bv,body = dest_abs tm in
            let bodyth = CONJ_DEPTH_CONV c body in
            MK_ABS (GEN bv bodyth))
     else (REFL tm);;
\end{verbatim}\end{hol}

\begin{hol}\begin{verbatim}
   let CONJ_NORM_TAC = CONV_TAC (CONJ_DEPTH_CONV CONJ_NORM_CONV);;
\end{verbatim}\end{hol}


Although the optimized implementation is much more efficient, it uses
less general methods. An advantage of the simple implementation based
on rewriting is that essentially the same algorithm can be used to
normalize terms built out of any associative, commutative and
idenpotent operation. The two exercises that follow (whose solutions are not
supplied) suggest that the reader try to extract general principles from the
conjunction normalizer and use these to implement generic tools.

\subsection{Exercise 1}

Implement a normalizer for any associative and commutative operator.

\begin{hol}\begin{verbatim}
   AC_CANON_CONV : thm # thm -> conv
\end{verbatim}\end{hol}

\noindent The two theorem arguments should be the
associative and commutative laws for the operator. For example:

\begin{hol}\begin{verbatim}
   AC_CANON_CONV(ASSOC,SYM1)
\end{verbatim}\end{hol}

\noindent would be a canonicalizer for conjunctions.
Use the `brute force' rewriting method described at the beginning of this chapter.

\subsection{Exercise 2}


Implement an optimized canonicalizer:

\begin{hol}\begin{verbatim}
   FAST_AC_CANON_CONV : thm # thm -> conv \end{verbatim}\end{hol}
\noindent This should use tuned rewriting (\eg\ a generalization of
\ml{CONJ\_DEPTH\_CONV}) and be as fast as possible. Try to think up
tricks to minimise the amount of general matching and to make every
inference count.