File: tutorial.toc

package info (click to toggle)
hol88 2.02.19940316-15
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,928 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 7,118; makefile: 6,075; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (73 lines) | stat: -rw-r--r-- 5,783 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
\contentsline {chapter}{\numberline {1}Getting and Installing HOL}{1}
\contentsline {section}{\numberline {1.1}Getting HOL}{1}
\contentsline {section}{\numberline {1.2}The {\ptt info-hol} mailing list}{1}
\contentsline {section}{\numberline {1.3}Installing HOL}{2}
\contentsline {section}{\numberline {1.4}Building HOL from sources}{5}
\contentsline {subsection}{\numberline {1.4.1}Steps to make HOL under Unix}{6}
\contentsline {section}{\numberline {1.5}Other HOL users}{7}
\contentsline {section}{\numberline {1.6}HOL performance}{7}
\contentsline {section}{\numberline {1.7}The HOL licence}{7}
\contentsline {section}{\numberline {1.8}The REFERENCE browser}{8}
\contentsline {chapter}{\numberline {2}Introduction to ML}{11}
\contentsline {section}{\numberline {2.1}How to interact with ML}{11}
\contentsline {chapter}{\numberline {3}The HOL Logic}{15}
\contentsline {section}{\numberline {3.1}Overview of higher order logic}{15}
\contentsline {section}{\numberline {3.2}Terms}{17}
\contentsline {section}{\numberline {3.3}Theories}{19}
\contentsline {chapter}{\numberline {4}Introduction to Proof with HOL}{27}
\contentsline {section}{\numberline {4.1}Forward proof}{28}
\contentsline {subsection}{\numberline {4.1.1}Derived rules}{30}
\contentsline {section}{\numberline {4.2}Rewriting}{32}
\contentsline {section}{\numberline {4.3}Tautologies}{34}
\contentsline {chapter}{\numberline {5}Goal Oriented Proof: Tactics and Tacticals}{37}
\contentsline {section}{\numberline {5.1}Using tactics to prove theorems}{41}
\contentsline {section}{\numberline {5.2}Tacticals}{44}
\contentsline {subsection}{\numberline {5.2.1}\ptt THENL : tactic -> tactic list -> tactic}{44}
\contentsline {subsection}{\numberline {5.2.2}\ptt THEN : tactic -> tactic -> tactic}{45}
\contentsline {subsection}{\numberline {5.2.3}\ptt ORELSE : tactic -> tactic -> tactic}{46}
\contentsline {subsection}{\numberline {5.2.4}\ptt REPEAT : tactic -> tactic}{46}
\contentsline {section}{\numberline {5.3}Some tactics built into HOL}{47}
\contentsline {subsection}{\numberline {5.3.1}\ptt REWRITE\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}TAC : thm list -> tactic}{47}
\contentsline {subsection}{\numberline {5.3.2}\ptt CONJ\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}TAC : tactic}{48}
\contentsline {subsection}{\numberline {5.3.3}\ptt EQ\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}TAC : tactic}{48}
\contentsline {subsection}{\numberline {5.3.4}\ptt DISCH\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}TAC : tactic}{48}
\contentsline {subsection}{\numberline {5.3.5}\ptt GEN\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}TAC : tactic}{48}
\contentsline {subsection}{\numberline {5.3.6}\ptt IMP\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}RES\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}TAC : tactic}{49}
\contentsline {subsection}{\numberline {5.3.7}\ptt STRIP\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}TAC : tactic}{49}
\contentsline {subsection}{\numberline {5.3.8}\ptt SUBST\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}TAC : thm list -> thm}{49}
\contentsline {subsection}{\numberline {5.3.9}\ptt ACCEPT\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}TAC : thm -> tactic}{50}
\contentsline {subsection}{\numberline {5.3.10}\ptt ALL\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}TAC : tactic}{50}
\contentsline {subsection}{\numberline {5.3.11}\ptt NO\unhbox \voidb@x \kern .06em \vbox {\hrule width.3em}TAC : tactic}{50}
\contentsline {chapter}{\numberline {6}Example: a simple parity checker}{51}
\contentsline {section}{\numberline {6.1}Introduction}{51}
\contentsline {section}{\numberline {6.2}Specification}{52}
\contentsline {section}{\numberline {6.3}Implementation}{55}
\contentsline {section}{\numberline {6.4}Verification}{58}
\contentsline {section}{\numberline {6.5}Exercises}{63}
\contentsline {subsection}{\numberline {6.5.1}Exercise 1}{63}
\contentsline {subsection}{\numberline {6.5.2}Exercise 2}{64}
\contentsline {chapter}{\numberline {7}How to program a proof tool}{65}
\contentsline {section}{\numberline {7.1}A simple implementation}{65}
\contentsline {section}{\numberline {7.2}A more efficient implementation}{72}
\contentsline {section}{\numberline {7.3}An even more efficient implementation}{74}
\contentsline {section}{\numberline {7.4}Further optimizations}{79}
\contentsline {section}{\numberline {7.5}Normalizing all subterms}{81}
\contentsline {subsection}{\numberline {7.5.1}Exercise 1}{85}
\contentsline {subsection}{\numberline {7.5.2}Exercise 2}{86}
\contentsline {chapter}{\numberline {8}Example: the Binomial Theorem}{87}
\contentsline {section}{\numberline {8.1}Pascal's Triangle and the Binomial Theorem}{87}
\contentsline {section}{\numberline {8.2}The Binomial Coefficients}{89}
\contentsline {section}{\numberline {8.3}Monoids, Groups and Commutative Rings}{90}
\contentsline {subsection}{\numberline {8.3.1}Associativity and Commutativity}{90}
\contentsline {subsection}{\numberline {8.3.2}Monoids}{93}
\contentsline {subsection}{\numberline {8.3.3}Groups}{94}
\contentsline {subsection}{\numberline {8.3.4}Rings}{95}
\contentsline {section}{\numberline {8.4}Powers, Reductions, Ranges and Sums}{97}
\contentsline {subsection}{\numberline {8.4.1}Scalar powers in a monoid}{97}
\contentsline {subsection}{\numberline {8.4.2}Reduction in a monoid}{97}
\contentsline {subsection}{\numberline {8.4.3}Subranges of the natural numbers}{98}
\contentsline {subsection}{\numberline {8.4.4}$\Sigma $-notation}{98}
\contentsline {section}{\numberline {8.5}The Binomial Theorem for a Commutative Ring}{99}
\contentsline {section}{\numberline {8.6}The Binomial Theorem for Integers}{100}
\contentsline {section}{\numberline {8.7}Principal lemmas}{101}
\contentsline {chapter}{References}{105}