1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% FILE: odd_even.ml %
% EDITOR: Paul Curzon %
% DATE: July 1991 %
% DESCRIPTION : Odd and Even %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%********************************* HISTORY ********************************%
% %
% %
% Author: Wim Ploegaerts (ploegaer@imec.be) %
% %
% Date: Fri Feb 8 1991 %
% %
% Organization: Imec vzw. %
% Kapeldreef 75 %
% 3001 Leuven - Belgium %
% %
%****************************************************************************%
% %
% Rewritten by PC 14/8/92 to take account of ODD and EVEN definitions %
% placed in main system by JRH. The definitions ODD_NUM and EVEN_NUM are %
% now called ODD and EVEN, respectively. Replicated theorems have been %
% removed from the library (causing name changes). The names of others %
% have been changed for consistency with the system theorems %
% %
% The theorem name changes are: %
% %
% EVEN_NUM --> EVEN_EXISTS %
% NUM_EVEN_MULT --> EVEN_IMPL_MULT %
% NUM_EVEN_ODD_PLUS_CASES --> EVEN_ODD_PLUS_CASES %
% NUM_EVEN_ODD_SUC --> EVEN_ODD_SUC %
% NUM_EVEN_OR_ODD --> EVEN_OR_ODD %
% NUM_MULT_EVEN --> MULT_EVEN %
% NUM_MULT_ODD --> MULT_ODD %
% NUM_NOT_EVEN_AND_ODD --> EVEN_AND_ODD %
% NUM_NOT_EVEN_NOT_ODD --> EVEN_ODD / ODD_EVEN %
% (conjunct split and GSYM'd) %
% NUM_NOT_EVEN_ODD_SUC_EVEN_ODD --> NOT_EVEN_ODD_SUC_EVEN_ODD %
% NUM_ODD_MULT --> ODD_IMPL_MULT %
% ODD_NUM --> ODD_EXISTS %
% %
%****************************************************************************%
% %
% PC 21/4/93 %
% Removed dependencies on several external files/theories %
% %
%****************************************************************************%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% DEPENDANCIES : %
% %
% %
%****************************************************************************%
system `rm -f odd_even.th`;;
new_theory `odd_even`;;
%<--------------------------------------------------------------------------->%
let EVEN_ODD_0 = prove_thm (
`EVEN_ODD_0`,
"(EVEN 0) /\ ~(ODD 0)",
REWRITE_TAC [ODD;EVEN]
);;
%<--------------------------------------------------------------------------->%
%
|- !n. (~EVEN(SUC n) = EVEN n) /\ (~ODD(SUC n) = ODD n)
%
let NOT_EVEN_ODD_SUC_EVEN_ODD = prove_thm (
`NOT_EVEN_ODD_SUC_EVEN_ODD`,
"!n. (~EVEN(SUC n) = EVEN n) /\ (~ODD(SUC n) = ODD n)",
REWRITE_TAC [ODD;EVEN]
);;
%<--------------------------------------------------------------------------->%
let EVEN_ODD_SUC = prove_thm (
`EVEN_ODD_SUC`,
"!n. (EVEN(SUC n) = ODD n) /\ (ODD(SUC n) = EVEN n)",
REWRITE_TAC [ODD;EVEN;GSYM ODD_EVEN;GSYM EVEN_ODD]
);;
%<--------------------------------------------------------------------------->%
let EVEN_ODD_PLUS_CASES = prove_thm (
`EVEN_ODD_PLUS_CASES`,
"!n m . (((ODD n) /\ (ODD m)) ==> (EVEN (n + m))) /\
(((ODD n) /\ (EVEN m)) ==> (ODD (n + m))) /\
(((EVEN n) /\ (EVEN m)) ==> (EVEN (n + m)))",
REPEAT STRIP_TAC THEN
REWRITE_TAC [EVEN_ADD;ODD_ADD] THEN
ASM_REWRITE_TAC [GSYM EVEN_ODD] THEN
ASM_REWRITE_TAC [EVEN_ODD]
);;
%<--------------------------------------------------------------------------->%
let EVEN_IMPL_MULT = prove_thm (
`EVEN_IMPL_MULT`,
"! n m . (EVEN n) \/ (EVEN m) ==> (EVEN (n * m))",
REWRITE_TAC [EVEN_MULT]
);;
%<--------------------------------------------------------------------------->%
let ODD_IMPL_MULT = prove_thm (
`ODD_IMPL_MULT`,
"! n m . (ODD n) /\ (ODD m) ==> (ODD (n * m))",
REWRITE_TAC [ODD_MULT]
);;
%<--------------------------------------------------------------------------->%
%
MULT_ODD = |- !n m. ODD(n * m) ==> ODD n /\ ODD m
%
let MULT_ODD = prove_thm (
`MULT_ODD`,
"!n m. ODD(n * m) ==> ODD n /\ ODD m",
REWRITE_TAC [ODD_MULT]);;
%<--------------------------------------------------------------------------->%
%
MULT_EVEN =
|- !n m. EVEN(n * m) ==> EVEN n \/ EVEN m
%
let MULT_EVEN = prove_thm (
`MULT_EVEN`,
"!n m. EVEN(n * m) ==> EVEN n \/ EVEN m",
REWRITE_TAC [EVEN_MULT]);;
close_theory();;
|