1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
% --------------------------------------------------------------------- %
% Copyright (c) Jim Grundy 1992 %
% All rights reserved %
% %
% Jim Grundy, hereafter referred to as `the Author', retains the %
% copyright and all other legal rights to the Software contained in %
% this file, hereafter referred to as `the Software'. %
% %
% The Software is made available free of charge on an `as is' basis. %
% No guarantee, either express or implied, of maintenance, reliability, %
% merchantability or suitability for any purpose is made by the Author. %
% %
% The user is granted the right to make personal or internal use %
% of the Software provided that both: %
% 1. The Software is not used for commercial gain. %
% 2. The user shall not hold the Author liable for any consequences %
% arising from use of the Software. %
% %
% The user is granted the right to further distribute the Software %
% provided that both: %
% 1. The Software and this statement of rights is not modified. %
% 2. The Software does not form part or the whole of a system %
% distributed for commercial gain. %
% %
% The user is granted the right to modify the Software for personal or %
% internal use provided that all of the following conditions are %
% observed: %
% 1. The user does not distribute the modified software. %
% 2. The modified software is not used for commercial gain. %
% 3. The Author retains all rights to the modified software. %
% %
% Anyone seeking a licence to use this software for commercial purposes %
% is invited to contact the Author. %
% --------------------------------------------------------------------- %
%============================================================================%
% CONTENTS: miscelaneous HOL utility functions %
%============================================================================%
%$Id: hol_ext.ml,v 3.1 1993/12/07 14:15:19 jg Exp $%
% goal_frees gl = the set of variables which occur free in gl. %
let goal_frees (as, cn) = (freesl as) @ (frees cn);;
% (term_mem tm tms) = tm mem tms. %
let term_mem tm tms = exists (\t. aconv t tm) tms;;
% (term_subset l1 l2) = (!x. (x mem l1) ==> (x mem l2)) %
let term_subset (l1 : term list) (l2 : term list) =
forall (\t. exists (aconv t) l2) l1;;
% (term_setify tl) = the subset of tl with all the distinct terms. %
letrec term_setify =
fun [] . []
| (h.t) . h.(term_setify (filter (\a.not (aconv h a)) t));;
% (term_intersect l1 l2) = l1 intersection l2. %
let term_intersect l1 l2 =
term_setify (filter (\t. exists (aconv t) l2) l1);;
% (term_union l1 l2) = l1 union l2. %
let term_union l1 l2 = term_setify (l1 @ l2);;
% better_thm t1 t2 = true, iff t1 t2 share the same conclusion and t1's %
% hyptheses are a subset of those of t2. %
let better_thm t1 t2 = (aconv (concl t1) (concl t2)) &
(term_subset (hyp t1) (hyp t2));;
% better_goal c1 c2 = true, iff c1 c2 share the same conclusion and c1's %
% hypotheses are a subset of those of c2. %
let better_goal c1 c2 = (aconv (snd c1) (snd c2)) &
(term_subset (fst c1) (fst c2));;
% (thm_subset l1 l2) = (!x. (x mem l1) ==> (x mem l2)) %
let thm_subset (l1 : thm list) (l2 : thm list) =
forall (\t1. exists (\t2. better_thm t2 t1) l2) l1;;
% Check to see if two theorem sets are equal. %
let thm_set_equal l1 l2 = (thm_subset l1 l2) & (thm_subset l2 l1);;
% (goal_subset l1 l2) = (!x. (x mem l1) ==> (x mem l2)) %
let goal_subset (l1 : goal list) (l2 : goal list) =
forall (\c1. exists (\c2. better_goal c2 c1) l2) l1;;
% Check to see if two goal sets are equal. %
let goal_set_equal l1 l2 = (goal_subset l1 l2) & (goal_subset l2 l1);;
% Crush out all the redundant theorems in a set. %
letrec thm_setify = fun [] . []
| (h.t). if (exists (\u.better_thm u h) t) then
thm_setify t
else
h.(thm_setify
(filter (\u.not (better_thm h u)) t));;
% Crush out all the redundant conjectures in a set. %
letrec goal_setify = fun [] . []
| (h.t). if (exists (\u.better_goal u h) t) then
goal_setify t
else
h.(goal_setify
(filter (\u.not (better_goal h u)) t));;
% is_fun t = true, iff t is a function. %
let is_fun tm =
(not is_vartype (type_of tm)) &
(let (name, _) = dest_type (type_of tm) in
name = `fun`);;
% dom f = the domain of f %
let dom fn =
let (name, ty._) = dest_type (type_of fn) in
if name = `fun` then
ty
else
failwith `dom`;;
% ran f = the range of f %
let ran fn =
let (name, _.ty._) = dest_type (type_of fn) in
if name = `fun` then
ty
else
failwith `ran`;;
% (is_trueimp t) = true, iff t = "t ==> u". %
let is_trueimp t = (is_imp t) & (not (is_neg t));;
% (is_pmi t) = true, iff t = "t <== u". %
let is_pmi t = (is_comb t) &
(is_comb (rator t)) &
((rator (rator t)) = "<==");;
% (dest_pmi "a ==> b") = ("a", "b") %
let dest_pmi t =
if is_pmi t then
(rand (rator t), rand t)
else
failwith `dest_pmi`;;
% IMP_PMI_CONV "A ==> B" = (|- (A ==> B) = (B <== A)) %
let IMP_PMI_CONV tm =
let (a,b) = dest_imp tm in
SYM (SPECL [b;a] PMI_DEF);;
% (|- t ==> u) %
% -------------- IMP_PMI %
% (|- u <== t) %
let IMP_PMI = CONV_RULE IMP_PMI_CONV;;
% PMI_IMP_CONV "A <== B" = (|- (A <== B) = (B ==> A)) %
let PMI_IMP_CONV tm =
let (a,b) = dest_pmi tm in
SPECL [a;b] PMI_DEF;;
% (|- u <== t) %
% -------------- PMI_IMP %
% (|- t ==> u) %
let PMI_IMP = CONV_RULE PMI_IMP_CONV;;
% %
% -------------- IMP_REFL "t" %
% (|- t ==> t) %
let IMP_REFL = DISCH_ALL o ASSUME;;
% %
% -------------- PMI_REFL "t" %
% (|- t <== t) %
let PMI_REFL = IMP_PMI o IMP_REFL;;
% (|- t <== u /\ u <== v) %
% ------------------------- %
% (|- t <== v) %
let PMI_TRANS t1 t2 = IMP_PMI (IMP_TRANS (PMI_IMP t2) (PMI_IMP t1));;
% A |- t1 ==> t2 %
% -------------------------- EXISTS_PMI "x" [where x is not free in A] %
% A |- (?x.t1) ==> (?x.t2) %
let EXISTS_PMI x th = IMP_PMI (EXISTS_IMP x (PMI_IMP th));;
% Smashes a theorem into lots of little theorems. %
% SMASH is based on CONJUNCTS, but as well as smashing %
% (H |- A1 /\ A2) into [(H |- A1); (H |- H2)], %
% SMASH also smashes %
% (H |- ~(A1 \/ A2) into [(H |- ~A1); (H |- ~A2)] %
% and %
% (H |- ~(A ==> B) into [(H |- A); (H |- ~B)] %
% and %
% (H |- ~(A <== B) into [(H |- ~A); (H |- B)] %
% and %
% (H |- A => B | F) into [(H |- A); (H |- B)] %
begin_section smash_section;;
let DNEG_THM = CONJUNCT1 NOT_CLAUSES;;
let NOT_DISJ_THM = GENL ["t1:bool"; "t2:bool"]
(CONJUNCT2 (SPEC_ALL DE_MORGAN_THM));;
let NOT_IMP_THM = prove ("!t1 t2. ~(t1 ==> t2) = t1 /\ ~t2",
(REWRITE_TAC [IMP_DISJ_THM; NOT_DISJ_THM]));;
let NOT_PMI_THM = prove("!t1 t2. ~(t1 <== t2) = ~t1 /\ t2",
(REPEAT STRIP_TAC) THEN
(BOOL_CASES_TAC "t1:bool") THEN
(REWRITE_TAC [PMI_DEF]));;
let COND_F_THM = prove ("!t1 t2. (t1 => t2 | F) = (t1 /\ t2)",
(REPEAT STRIP_TAC) THEN
(BOOL_CASES_TAC "t1:bool") THEN
(REWRITE_TAC [COND_CLAUSES]));;
let SMASH =
letrec ((BREAK : thm -> thm list), (TWEAK : thm -> thm list)) =
(
(\t:thm. flat (map TWEAK (CONJUNCTS t)))
,
(\t:thm.
let c = concl t in
let negc = is_neg c in
if (negc & (is_neg (rand c))) then
BREAK (EQ_MP (SPEC (rand (rand c)) DNEG_THM) t)
else if (negc & (is_disj (rand c))) then
let th = SPECL [rand (rator (rand c));
rand (rand c)]
NOT_DISJ_THM
in
BREAK (EQ_MP th t)
else if (negc & (is_imp (rand c))) then
let th = SPECL [rand (rator (rand c));
rand (rand c)]
NOT_IMP_THM
in
BREAK (EQ_MP th t)
else if (negc & (is_pmi (rand c))) then
let th = SPECL [rand (rator (rand c));
rand (rand c)]
NOT_PMI_THM
in
BREAK (EQ_MP th t)
else if ((is_cond c) & (rand c = "F")) then
let th = SPECL [rand (rator (rator c));
rand (rator c)]
COND_F_THM
in
BREAK (EQ_MP th t)
else
[t])
) in
BREAK;;
SMASH;;
end_section smash_section;;
let SMASH = it;;
% smash breaks a term into lots of little terms. %
% smash is to SMASH as conjuncts is to CONJUNCTS. %
let smash (t : term) = map concl (SMASH (ASSUME t));;
% (H1 ?- t) (H2 ?- u) %
% ----------------------- prove_hyp %
% (H1 u (H2 - {t}) ?- u) %
let prove_hyp (H1, t:term) (H2, u:term) =
(term_setify (filter (\h. not (aconv h t)) (H1 @ H2)), u);;
let true_tm = "T"
and false_tm = "F"
and imp_tm = "==>"
and pmi_tm = "<=="
and equiv_tm = "=:bool->bool->bool";;
|