1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% FILE: add.ml %
% EDITOR: Paul Curzon %
% DATE: July 1991 %
% DESCRIPTION : Theorems about addition %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%********************************* HISTORY ********************************%
% %
% This file is based on the theories of %
% %
% Mike Benjamin %
% Rachel Cardell-Oliver %
% Paul Curzon %
% Elsa L Gunter %
% Philippe Leveilley %
% Wim Ploegaerts %
% %
%****************************************************************************%
% PC 12/8/92 %
% LESS_EQ_ADD2 %
% Moved to main system by JRH %
% Variable names changed %
% Equality swapped round %
% Name changed to LESS_EQUAL_ADD %
% Now |- !m n. m <= n ==> (?p. n = m + p) %
%****************************************************************************%
% %
% PC 21/4/93 %
% Removed dependencies on several external files/theories %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%****************************************************************************%
% %
% DEPENDANCIES : %
% %
% suc for theorems about SUC %
% num_convs for num conversions %
% %
%****************************************************************************%
system `rm -f add.th`;;
new_theory `add`;;
new_parent `suc`;;
% PC 22-4-92 These are no longer used%
%loadf `tools`;;%
%autoload_defs_and_thms `ineq`;;%
let autoload_defs_and_thms thy =
map (\name. autoload_theory(`definition`,thy,name))
(map fst (definitions thy));
map (\name. autoload_theory(`theorem`,thy,name))
(map fst (theorems thy)) in
autoload_defs_and_thms `suc`;;
loadf `num_convs`;;
%<-------------------------------------------------------------------------->%
%<PL>%
let LESS_LESS_EQ =
prove_thm (`LESS_LESS_EQ`,
"!a b. (a < b) = ((a + 1) <= b)",
REWRITE_TAC [SYM (SPEC_ALL ADD1); LESS_EQ]);;
%<-------------------------------------------------------------------------->%
%<PL>%
let ADD_SUC_0 =
save_thm (`ADD_SUC_0`,
(CONV_RULE (DEPTH_CONV num_CONV))
(REWRITE_RULE [SPECL ["m:num";"1"] ADD_SYM] ADD1));;
%<-------------------------------------------------------------------------->%
%<PL>%
let LESS_EQ_MONO_ADD_EQ0 =
save_thm (`LESS_EQ_MONO_ADD_EQ0`,
GEN_ALL (SYM (SUBS [SPECL ["m:num";"p:num"] ADD_SYM;
SPECL ["n:num";"p:num"] ADD_SYM]
(SPEC_ALL LESS_EQ_MONO_ADD_EQ))));;
%<-------------------------------------------------------------------------->%
%<PL>%
let LESS_EQ_MONO_ADD_EQ1 =
save_thm (`LESS_EQ_MONO_ADD_EQ1`,
GEN_ALL (REWRITE_RULE [ADD]
(SPECL ["m:num";"0:num";"p:num"]
LESS_EQ_MONO_ADD_EQ)));;
%<-------------------------------------------------------------------------->%
%<PL>%
let LESS_EQ_ADD1 =
save_thm (`LESS_EQ_ADD1`,
GEN_ALL (REWRITE_RULE [ADD;ZERO_LESS_EQ]
(SPECL ["0:num";"n:num";"p:num"]
LESS_EQ_MONO_ADD_EQ)));;
%<-------------------------------------------------------------------------->%
%<PL>%
let ADD_SYM_ASSOC =
prove_thm (`ADD_SYM_ASSOC`,
"! a b c. a + (b + c) = b + (a + c)",
REPEAT GEN_TAC THEN
REWRITE_TAC [ADD_ASSOC] THEN
SUBST_TAC [SPECL ["a:num";"b:num"] ADD_SYM] THEN
REWRITE_TAC []);;
%<-------------------------------------------------------------------------->%
%<PL>%
let LESS_EQ_SPLIT =
save_thm (`LESS_EQ_SPLIT`,
GEN_ALL(
let asm_thm = ASSUME "(m + n) <= p"
in
DISCH_ALL
(CONJ
(MP (SPECL ["n:num";"m+n";"p:num"] LESS_EQ_TRANS)
(CONJ (SUBS [SPECL ["n:num";"m:num"] ADD_SYM]
(SPECL ["n:num";"m:num"] LESS_EQ_ADD))
asm_thm))
(MP (SPECL ["m:num";"m+n";"p:num"] LESS_EQ_TRANS)
(CONJ (SPEC_ALL LESS_EQ_ADD) asm_thm)))));;
%============================================================================%
% %
% inequalities in assumptions %
% %
%============================================================================%
%<ELG>%
let ADDL_GREATER = prove_thm (`ADDL_GREATER`,
"!m n p.m<n==>m<(p+n)",
(GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN DISCH_TAC THEN
(ASM_REWRITE_TAC (CONJUNCTS ADD_CLAUSES)) THEN
RES_TAC THEN
(ASM_REWRITE_TAC[(UNDISCH_ALL(SPECL ["m:num";"(p+n)"] LESS_SUC))])));;
%ADDL_GREATER = |- !m:num n:num p:num. m < n ==> m < (p + n)%
%<-------------------------------------------------------------------------->%
%<ELG>%
let ADDL_GREATER_EQ = prove_thm (`ADDL_GREATER_EQ`,
"!m n p. m <= n ==> m <= p+n",
((REPEAT GEN_TAC) THEN DISCH_TAC THEN
(ASSUME_TAC (REWRITE_RULE [(CONJUNCT1(CONJUNCT2 ADD_CLAUSES))]
(SPECL ["m:num";"0";"n:num";"p:num"] LESS_EQ_LESS_EQ_MONO))) THEN
(ASSUME_TAC (REWRITE_RULE [(SPECL ["m:num";"n:num"] NOT_LESS)]
(SPEC "p:num" NOT_LESS_0))) THEN RES_TAC THEN
(SUBST_TAC [(SPECL ["p:num";"n:num"] ADD_SYM)]) THEN
(FIRST_ASSUM ACCEPT_TAC)));;
%ADDL_GREATER_EQ = |- !m:num n:num p:num. m <= n ==> m <= (p + n)%
%<-------------------------------------------------------------------------->%
%<ELG>%
let ADDR_GREATER = save_thm(`ADDR_GREATER`,
PURE_ONCE_REWRITE_RULE[ADD_SYM]ADDL_GREATER);;
%ADDR_GREATER = |- !m:num n:num p:num. m < n ==> m < (n + p)%
%<-------------------------------------------------------------------------->%
%<ELG>%
let ADDR_GREATER_EQ = save_thm(`ADDR_GREATER_EQ`,
PURE_ONCE_REWRITE_RULE[ADD_SYM]ADDL_GREATER_EQ);;
%ADDR_GREATER_EQ = |- !m:num n:num p:num. m <= n ==> m <= (n + p)%
%<-------------------------------------------------------------------------->%
%<WP>%
let LESS_LESS_MONO = prove_thm (`LESS_LESS_MONO`,
"!m n p q . ((m < p) /\ (n < q)) ==> ((m + n) < (p + q))",
REPEAT GEN_TAC THEN
DISCH_THEN \t .
let [t1;t2] = CONJUNCTS t in
ASSUME_TAC (CONV_RULE (NUM_LESS_PLUS_CONV "q:num") t1) THEN
ASSUME_TAC
(SPEC "m:num"
(GEN_ALL
(CONV_RULE ((NUM_LESS_PLUS_CONV "r:num") THENC
(ONCE_DEPTH_CONV (REWR_CONV ADD_SYM))) t2)))
THEN
IMP_RES_TAC LESS_TRANS
);;
%<WP>%
let LESS_LESS_EQ_MONO = prove_thm (
`LESS_LESS_EQ_MONO`,
"(!m n p q . ((m < p) /\ (n <= q)) ==> ((m + n) < (p + q))) /\
(!m n p q . ((m <= p) /\ (n < q)) ==> ((m + n) < (p + q)))",
REWRITE_TAC [LESS_OR_EQ;DE_MORGAN_THM] THEN REPEAT STRIP_TAC THEN
IMP_RES_TAC LESS_LESS_MONO THEN
FIRST_ASSUM \t. (SUBST_TAC [t] ? NO_TAC) THEN
((REWRITE_TAC [LESS_MONO_ADD_EQ] THEN
FIRST_ASSUM ACCEPT_TAC) ORELSE
(ONCE_REWRITE_TAC [ADD_SYM] THEN
REWRITE_TAC [LESS_MONO_ADD_EQ] THEN
FIRST_ASSUM ACCEPT_TAC))
);;
%<-------------------------------------------------------------------------->%
%<WP>%
let ADD_EQ_LESS_IMP_LESS = prove_thm (
`ADD_EQ_LESS_IMP_LESS`,
" !n m k l . ((k + m = l + n) /\ (k < l)) ==> (n < m)",
REPEAT GEN_TAC THEN
ASM_CASES_TAC "n < m" THEN
POP_ASSUM \t .
REWRITE_TAC [t] THEN
DISCH_THEN \thm .
let [t1;t2] = CONJUNCTS thm in
MP_TAC
(MATCH_MP (CONJUNCT1 LESS_LESS_EQ_MONO)
(CONJ t2 (REWRITE_RULE [NOT_LESS] t))) THEN
REWRITE_TAC [t1;LESS_REFL]
);;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% AUTHOR: Paul Curzon %
% DATE: June 1991 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ********************************************************************** %
let LESS_ADD_ASSOC = save_thm(`LESS_ADD_ASSOC`,
(GEN_ALL (REWRITE_RULE
[SYM (SPEC "d:num" (SPEC "c:num" (SPEC "b:num" ADD_ASSOC)))]
(SPEC "d:num" (SPEC "b+c" (SPEC "a:num" ADDR_GREATER))))));;
% LESS_ADD_ASSOC |- !a b c d. a < (b + c) ==> a < (b + (c + d)) %
% *************************************************************************** %
% |- !m n p. p >= (m + n) ==> p >= m /\ p >= n %
let GREATER_EQ_SPLIT = save_thm(`GREATER_EQ_SPLIT`,
REWRITE_RULE [GSYM GREATER_EQ] LESS_EQ_SPLIT);;
% ************************************************************************* %
let LESS_TRANS_ADD = prove_thm(`LESS_TRANS_ADD`,
"!m n p q.
(m < n + p) /\ (p < q) ==> (m < n + q)",
(REPEAT STRIP_TAC) THEN
(IMP_RES_TAC LESS_MONO_ADD) THEN
(REWRITE_TAC[
MATCH_MP (SPECL["m:num";"n+p"; "n+q"]LESS_TRANS)
(CONJ (ASSUME "m < n + p")
(ONCE_REWRITE_RULE[ADD_SYM]
(SPEC "n:num" (ASSUME "!p'. (p + p') < (q + p')")) ))]));;
% (FILTER_IMP_RES_TAC %
% "!p'. (p + p') < (q + p')" LESS_MONO_ADD) THEN%
% (POP_TAC (SPEC "n:num")) THEN%
% (POP_TAC (ONCE_REWRITE_RULE[ADD_SYM])) THEN%
% (IMP_RES_TAC %
% (SPECL["m:num";"n+p"; "n+q"]LESS_TRANS)));;%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% AUTHOR: Mike Benjamin %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PC 12/8/92 %
% Moved to main system by JRH %
% Variable names changed %
% Equality swapped round %
% Name changed to LESS_EQUAL_ADD %
% Now |- !m n. m <= n ==> (?p. n = m + p) %
% ***************************************************************************
* *
* If a number is less than or equal to another then another number *
* can be added to make them equal. *
* *
* LESS_EQ_ADD2 = |- !a b. a <= b ==> (?n. a + n = b) *
* *
**************************************************************************%
%let LESS_EQ_ADD2 = prove_thm (`LESS_EQ_ADD2`,%
%"! (a:num) (b:num). (a <= b) ==> ? (n:num). a+n=b",%
%INDUCT_TAC%
%THENL [%
%GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC "b:num" THEN REWRITE_TAC [ADD_CLAUSES];%
%GEN_TAC THEN REWRITE_TAC [SYM_RULE LESS_EQ;%
% ADD_CLAUSES;ADD1;%
% SYM_RULE ADD_ASSOC;%
% SYM_RULE LESS_ADD_1]]);;%
%****************************************************************************%
% %
% AUTHOR : Rachel Cardell-Oliver %
% DATE : 1990 %
% %
%****************************************************************************%
let ADD_GREATER_EQ =
prove_thm(
`ADD_GREATER_EQ`,
"!m n. (m+n) >= m",
ASM_REWRITE_TAC[GREATER_OR_EQ;GREATER] THEN
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
ASM_REWRITE_TAC[(SYM (SPEC_ALL LESS_OR_EQ));LESS_EQ_ADD] );;
let ADD_MONO_LESS = prove_thm(`ADD_MONO_LESS`,
"!m n p. (m+p) < (m+n) = (p<n)",
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC [ADD_SYM] THEN
ONCE_REWRITE_TAC [LESS_MONO_ADD_EQ] THEN
REWRITE_TAC[] );;
% see also LESS_EQ_MONO_ADD_EQ0 %
% Moved to main system by RJB on 92.09.28 %
%let ADD_MONO_LESS_EQ = prove_thm(`ADD_MONO_LESS_EQ`,%
% "!m n p. (m+n)<=(m+p) = (n<=p)",%
% ONCE_REWRITE_TAC [ADD_SYM] THEN%
% REWRITE_TAC[LESS_EQ_MONO_ADD_EQ]);;%
%not_1_even --> NOT_1_TWICE PC%
let NOT_1_TWICE =
prove_thm(
`NOT_1_TWICE`,
"!n:num. ~(1 = n+n )" ,
INDUCT_TAC THENL
[ REWRITE_TAC[ADD_CLAUSES;SUC_0;SUC_ID] ;
REWRITE_TAC[ADD;SUC_0;INV_SUC_EQ;ADD_CLAUSES] THEN
ASSUME_TAC (SPEC "n+n" LESS_0) THEN
IMP_RES_TAC LESS_NOT_EQ ]);;
let SUM_LESS = prove_thm( `SUM_LESS`,
"!m n p. (m+n)<p ==> ( m<p /\ n<p )",
REPEAT STRIP_TAC THENL
[ ASSUME_TAC (SPEC_ALL LESS_EQ_ADD) THEN
IMP_RES_TAC LESS_EQ_LESS_TRANS ;
ASSUME_TAC (SPEC "m:num" (SPEC "n:num" LESS_EQ_ADD)) THEN
POP_ASSUM( ASSUME_TAC o (ONCE_REWRITE_RULE[ADD_SYM]) ) THEN
IMP_RES_TAC LESS_EQ_LESS_TRANS ]);;
let NOT_LESS_IMP_LESS_EQ_ADD1 =prove_thm(
`NOT_LESS_IMP_LESS_EQ_ADD1` ,
"!a:num. !b:num. ~a<b ==> b<=(a+1)" ,
REWRITE_TAC [NOT_LESS; SYM( SPEC_ALL ADD1)] THEN
REPEAT STRIP_TAC THEN
ASSUME_TAC (SPEC "a:num" LESS_SUC_REFL) THEN
IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
IMP_RES_TAC LESS_EQ_TRANS );;
let NOT_ADD_LESS = prove_thm(`NOT_ADD_LESS`,
"!m n. ~((m+n)<n)",
REWRITE_TAC[NOT_LESS;ONCE_REWRITE_RULE[ADD_SYM]LESS_EQ_ADD] );;
let ADD_EQ_LESS_EQ = prove_thm(`ADD_EQ_LESS_EQ`,
"!m n p. ((m+n)=p) ==> (m<=p)",
REPEAT STRIP_TAC THEN POP_ASSUM(ASSUME_TAC o SYM) THEN
ASM_REWRITE_TAC[LESS_EQ_ADD] );;
let SUC_LESS_N_LESS = prove_thm(`SUC_LESS_N_LESS`,
"!m n.(m+1) < n ==> m < n",
REPEAT STRIP_TAC THEN
ASSUME_TAC(SPECL ["m:num"] (REWRITE_RULE[ADD1]LESS_SUC_REFL)) THEN
IMP_RES_TAC LESS_TRANS );;
%< ------------------------------------------------------------------- >%
%< An extra theorem by PC >%
let LESS_ADD1 = prove_thm(`LESS_ADD1`,
"!a . a < (a + 1)",
(REWRITE_TAC[SPECL["m:num"; "0"] LESS_ADD_SUC; SUC_0]));;
close_theory();;
|