1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
|
% ===================================================================== %
% LIBRARY: sets %
% FILE: mk_sets.ml %
% DESCRIPTION: a simple theory of sets %
% %
% AUTHOR: Philippe Leveilley %
% DATE: June 9, 1989 %
% %
% REVISED: Tom Melham (extensively revised and extended) %
% DATE: August 1990 %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Create the new theory. %
% --------------------------------------------------------------------- %
new_theory `sets`;;
% ===================================================================== %
% Type definition for (*)set. %
% %
% Sets are represented by predicates of type *->bool. The empty set is %
% is represented by the abstraction \x.F. A set is represented by its %
% characteristic function. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Theorem stating that the representing type is non empty. %
% --------------------------------------------------------------------- %
let EXISTENCE_THM =
TAC_PROOF(([],"?s:*->bool. (\p.T) s"),
EXISTS_TAC "p:*->bool" THEN
CONV_TAC BETA_CONV THEN
ACCEPT_TAC TRUTH);;
% --------------------------------------------------------------------- %
% Now, make the type definition. %
% --------------------------------------------------------------------- %
let set_TY_DEF =
new_type_definition(`set`,"\p:*->bool.T", EXISTENCE_THM);;
% --------------------------------------------------------------------- %
% Define (*)set <-> (*->bool) bijections %
% --------------------------------------------------------------------- %
let set_ISO_DEF =
define_new_type_bijections `set_ISO_DEF` `SPEC` `CHF` set_TY_DEF;;
% --------------------------------------------------------------------- %
% Prove that CHF is one-to-one. %
% --------------------------------------------------------------------- %
let CHF_11 = REWRITE_RULE [] (prove_rep_fn_one_one set_ISO_DEF);;
% --------------------------------------------------------------------- %
% Remove the lambda in set_ISO_DEF %
% --------------------------------------------------------------------- %
let set_ISO_DEF = REWRITE_RULE [] set_ISO_DEF;;
% ===================================================================== %
% Membership. %
% ===================================================================== %
let IN_DEF =
new_infix_definition (`IN_DEF`, "$IN (x:*) (s:(*)set) = CHF s x");;
% --------------------------------------------------------------------- %
% Axiom of specification: x IN {y | P y} iff P x %
% --------------------------------------------------------------------- %
let SPECIFICATION =
prove_thm
(`SPECIFICATION`,
"!(P:*->bool) x. x IN (SPEC P) = P x",
REWRITE_TAC [IN_DEF; set_ISO_DEF]);;
% --------------------------------------------------------------------- %
% Axiom of extension: (s = t) iff !x. x IN s = x in t %
% --------------------------------------------------------------------- %
let EXTENSION = prove_thm
(`EXTENSION`,
"!s t. (s=t) = (!x:*. x IN s = x IN t)",
REPEAT GEN_TAC THEN
REWRITE_TAC [IN_DEF;SYM (FUN_EQ_CONV "f:*->** = g");CHF_11]);;
let NOT_EQUAL_SETS =
prove_thm
(`NOT_EQUAL_SETS`,
"!s:(*)set. !t. ~(s = t) = ?x. x IN t = ~x IN s",
PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
REPEAT STRIP_TAC THEN EQ_TAC THENL
[DISCH_THEN (STRIP_THM_THEN MP_TAC) THEN
ASM_CASES_TAC "(x:*) IN s" THEN ASM_REWRITE_TAC [] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[];
STRIP_TAC THEN EXISTS_TAC "x:*" THEN
ASM_CASES_TAC "(x:*) IN s" THEN ASM_REWRITE_TAC []]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let NUM_SET_WOP =
prove_thm
(`NUM_SET_WOP`,
"!s. (?n. n IN s) = ?n. n IN s /\ (!m. m IN s ==> n <= m)",
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[let th = BETA_RULE (ISPEC "\n:num. n IN s" WOP) in
IMP_RES_THEN (X_CHOOSE_THEN "N:num" STRIP_ASSUME_TAC) th THEN
EXISTS_TAC "N:num" THEN CONJ_TAC THENL
[FIRST_ASSUM ACCEPT_TAC;
GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN
ASM_REWRITE_TAC [GSYM NOT_LESS]];
EXISTS_TAC "n:num" THEN FIRST_ASSUM ACCEPT_TAC]);;
% ===================================================================== %
% Generalized set specification. %
% ===================================================================== %
let GSPEC_DEF =
new_definition
(`GSPEC_DEF`,
"GSPEC f = SPEC(\y:*. ?x:**. (y,T) = f x)");;
% --------------------------------------------------------------------- %
% generalized axiom of specification. %
% --------------------------------------------------------------------- %
let GSPECIFICATION =
prove_thm
(`GSPECIFICATION`,
"!f. !v:*. v IN (GSPEC f) = ?x:**. v,T = f x",
REPEAT GEN_TAC THEN
REWRITE_TAC [GSPEC_DEF;SPECIFICATION] THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REFL_TAC);;
% --------------------------------------------------------------------- %
% load generalized specification code. %
% --------------------------------------------------------------------- %
loadt `gspec.ml`;;
% --------------------------------------------------------------------- %
% activate generalized specification parser/pretty-printer. %
% --------------------------------------------------------------------- %
define_set_abstraction_syntax `GSPEC`;;
set_flag(`print_set`,true);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let lemma =
TAC_PROOF
(([], "!s x. x IN s ==> !f:*->**. (f x) IN {f x | x IN s}"),
REPEAT STRIP_TAC THEN CONV_TAC SET_SPEC_CONV THEN
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[]);;
let SET_MINIMUM =
prove_thm
(`SET_MINIMUM`,
"!s:(*)set. !M.
(?x. x IN s) = ?x. x IN s /\ !y. y IN s ==> M x <= M y",
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[IMP_RES_THEN (ASSUME_TAC o ISPEC "M:*->num") lemma THEN
let th = SET_SPEC_CONV "(n:num) IN {M x | (x:*) IN s}" in
IMP_RES_THEN (STRIP_ASSUME_TAC o REWRITE_RULE [th]) NUM_SET_WOP THEN
EXISTS_TAC "x':*" THEN CONJ_TAC THENL
[FIRST_ASSUM ACCEPT_TAC;
FIRST_ASSUM (SUBST_ALL_TAC o SYM) THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC "y:*" THEN CONJ_TAC THENL
[REFL_TAC; FIRST_ASSUM ACCEPT_TAC]];
EXISTS_TAC "x:*" THEN FIRST_ASSUM ACCEPT_TAC]);;
% ===================================================================== %
% The empty set %
% ===================================================================== %
let EMPTY_DEF = new_definition
(`EMPTY_DEF`, "EMPTY = SPEC(\x:*.F)");;
let NOT_IN_EMPTY =
prove_thm
(`NOT_IN_EMPTY`,
"!x:*.~(x IN EMPTY)",
PURE_REWRITE_TAC [EMPTY_DEF;SPECIFICATION] THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC);;
let MEMBER_NOT_EMPTY =
prove_thm
(`MEMBER_NOT_EMPTY`,
"!s:(*)set. (?x. x IN s) = ~(s = EMPTY)",
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
REWRITE_TAC [NOT_CLAUSES]);;
% ===================================================================== %
% The set of everything %
% ===================================================================== %
let UNIV_DEF = new_definition
(`UNIV_DEF`,"UNIV = SPEC(\x:*.T)");;
let IN_UNIV =
prove_thm
(`IN_UNIV`,
"!x:*. x IN UNIV",
GEN_TAC THEN PURE_REWRITE_TAC [UNIV_DEF;SPECIFICATION] THEN
CONV_TAC BETA_CONV THEN ACCEPT_TAC TRUTH);;
let UNIV_NOT_EMPTY =
prove_thm
(`UNIV_NOT_EMPTY`,
"~(UNIV:(*)set = EMPTY)",
REWRITE_TAC [EXTENSION;IN_UNIV;NOT_IN_EMPTY]);;
let EMPTY_NOT_UNIV =
prove_thm
(`EMPTY_NOT_UNIV`,
"~(EMPTY = (UNIV:(*)set))",
REWRITE_TAC [EXTENSION;IN_UNIV;NOT_IN_EMPTY]);;
let EQ_UNIV =
prove_thm
(`EQ_UNIV`,
"(!x:*. x IN s) = (s = UNIV)",
REWRITE_TAC [EXTENSION;IN_UNIV]);;
% ===================================================================== %
% Set inclusion. %
% ===================================================================== %
let SUBSET_DEF = new_infix_definition
(`SUBSET_DEF`, "SUBSET s t = !x:*. x IN s ==> x IN t");;
let SUBSET_TRANS = prove_thm
(`SUBSET_TRANS`,
"!(s:(*)set) t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u",
REWRITE_TAC [SUBSET_DEF] THEN
REPEAT STRIP_TAC THEN
REPEAT (FIRST_ASSUM MATCH_MP_TAC) THEN
FIRST_ASSUM ACCEPT_TAC);;
let SUBSET_REFL = prove_thm
(`SUBSET_REFL`,
"!(s:(*)set). s SUBSET s",
REWRITE_TAC[SUBSET_DEF]);;
let SUBSET_ANTISYM = prove_thm
(`SUBSET_ANTISYM`,
"!(s:(*)set) t. (s SUBSET t) /\ (t SUBSET s) ==> (s = t)",
REWRITE_TAC [SUBSET_DEF; EXTENSION] THEN
REPEAT STRIP_TAC THEN
EQ_TAC THEN
FIRST_ASSUM MATCH_ACCEPT_TAC);;
let EMPTY_SUBSET =
prove_thm
(`EMPTY_SUBSET`,
"!s:(*)set. EMPTY SUBSET s",
REWRITE_TAC [SUBSET_DEF;NOT_IN_EMPTY]);;
let SUBSET_EMPTY =
prove_thm
(`SUBSET_EMPTY`,
"!s:(*)set. s SUBSET EMPTY = (s = EMPTY)",
PURE_REWRITE_TAC [SUBSET_DEF;NOT_IN_EMPTY] THEN
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY]);;
let SUBSET_UNIV =
prove_thm
(`SUBSET_UNIV`,
"!s:(*)set. s SUBSET UNIV",
REWRITE_TAC [SUBSET_DEF;IN_UNIV]);;
let UNIV_SUBSET =
prove_thm
(`UNIV_SUBSET`,
"!s:(*)set. UNIV SUBSET s = (s = UNIV)",
REWRITE_TAC [SUBSET_DEF;IN_UNIV;EXTENSION]);;
% ===================================================================== %
% Proper subset. %
% ===================================================================== %
let PSUBSET_DEF =
new_infix_definition
(`PSUBSET_DEF`, "PSUBSET (s:(*)set) t = (s SUBSET t /\ ~(s = t))");;
let PSUBSET_TRANS =
prove_thm
(`PSUBSET_TRANS`,
"!s:(*)set. !t u. (s PSUBSET t /\ t PSUBSET u) ==> (s PSUBSET u)",
PURE_ONCE_REWRITE_TAC [PSUBSET_DEF] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
[IMP_RES_TAC SUBSET_TRANS;
DISCH_THEN SUBST_ALL_TAC THEN
IMP_RES_TAC SUBSET_ANTISYM THEN
RES_TAC]);;
let PSUBSET_IRREFL =
prove_thm
(`PSUBSET_IRREFL`,
"!s:(*)set. ~(s PSUBSET s)",
REWRITE_TAC [PSUBSET_DEF;SUBSET_REFL]);;
let NOT_PSUBSET_EMPTY =
prove_thm
(`NOT_PSUBSET_EMPTY`,
"!s:(*)set. ~(s PSUBSET EMPTY)",
REWRITE_TAC [PSUBSET_DEF;SUBSET_EMPTY;NOT_AND]);;
let NOT_UNIV_PSUBSET =
prove_thm
(`NOT_UNIV_PSUBSET`,
"!s:(*)set. ~(UNIV PSUBSET s)",
REWRITE_TAC [PSUBSET_DEF;UNIV_SUBSET;DE_MORGAN_THM] THEN
GEN_TAC THEN CONV_TAC (RAND_CONV SYM_CONV) THEN
PURE_ONCE_REWRITE_TAC [DISJ_SYM] THEN
MATCH_ACCEPT_TAC EXCLUDED_MIDDLE);;
let PSUBSET_UNIV =
prove_thm
(`PSUBSET_UNIV`,
"!s:(*)set. (s PSUBSET UNIV) = ?x:*. ~(x IN s)",
REWRITE_TAC [PSUBSET_DEF;SUBSET_UNIV;EXTENSION;IN_UNIV] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN GEN_TAC THEN REFL_TAC);;
% ===================================================================== %
% Union %
% ===================================================================== %
let UNION_DEF = new_infix_definition
(`UNION_DEF`, "UNION s t = {x:* | x IN s \/ x IN t}");;
let IN_UNION = prove_thm
(`IN_UNION`,
"!s t (x:*). x IN (s UNION t) = x IN s \/ x IN t",
PURE_ONCE_REWRITE_TAC [UNION_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
REPEAT GEN_TAC THEN REFL_TAC);;
let UNION_ASSOC = prove_thm
(`UNION_ASSOC`,
"!(s:(*)set) t u. (s UNION t) UNION u = s UNION (t UNION u)",
REWRITE_TAC [EXTENSION; IN_UNION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
ASM_REWRITE_TAC[]);;
let UNION_IDEMPOT = prove_thm
(`UNION_IDEMPOT`,
"!(s:(*)set). s UNION s = s",
REWRITE_TAC[EXTENSION; IN_UNION]);;
let UNION_COMM = prove_thm
(`UNION_COMM`,
"!(s:(*)set) t. s UNION t = t UNION s",
REWRITE_TAC[EXTENSION; IN_UNION] THEN
REPEAT GEN_TAC THEN MATCH_ACCEPT_TAC DISJ_SYM);;
let SUBSET_UNION =
prove_thm
(`SUBSET_UNION`,
"(!s:(*)set. !t. s SUBSET (s UNION t)) /\
(!s:(*)set. !t. s SUBSET (t UNION s))",
PURE_REWRITE_TAC [SUBSET_DEF;IN_UNION] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;
let SUBSET_UNION_ABSORPTION =
prove_thm
(`SUBSET_UNION_ABSORPTION`,
"!s:(*)set. !t. s SUBSET t = (s UNION t = t)",
REWRITE_TAC [SUBSET_DEF;EXTENSION;IN_UNION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[RES_TAC;ASM_REWRITE_TAC[];RES_TAC]);;
let UNION_EMPTY =
prove_thm
(`UNION_EMPTY`,
"(!s:(*)set. EMPTY UNION s = s) /\
(!s:(*)set. s UNION EMPTY = s)",
REWRITE_TAC [IN_UNION;EXTENSION;NOT_IN_EMPTY]);;
let UNION_UNIV =
prove_thm
(`UNION_UNIV`,
"(!s:(*)set. UNIV UNION s = UNIV) /\
(!s:(*)set. s UNION UNIV = UNIV)",
REWRITE_TAC [IN_UNION;EXTENSION;IN_UNIV]);;
let EMPTY_UNION =
prove_thm
(`EMPTY_UNION`,
"!s:(*)set. !t. (s UNION t = EMPTY) = ((s = EMPTY) /\ (t = EMPTY))",
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_UNION;DE_MORGAN_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN RES_TAC);;
% ===================================================================== %
% Intersection %
% ===================================================================== %
let INTER_DEF = new_infix_definition
(`INTER_DEF`,
"INTER s t = {x:* | x IN s /\ x IN t}");;
let IN_INTER = prove_thm
(`IN_INTER`,
"!s t (x:*). x IN (s INTER t) = x IN s /\ x IN t",
PURE_ONCE_REWRITE_TAC [INTER_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
REPEAT GEN_TAC THEN REFL_TAC);;
let INTER_ASSOC = prove_thm
(`INTER_ASSOC`,
"!(s:(*)set) t u. (s INTER t) INTER u = s INTER (t INTER u)",
REWRITE_TAC [EXTENSION; IN_INTER; CONJ_ASSOC]);;
let INTER_IDEMPOT = prove_thm
(`INTER_IDEMPOT`,
"!(s:(*)set). s INTER s = s",
REWRITE_TAC[EXTENSION; IN_INTER]);;
let INTER_COMM = prove_thm
(`INTER_COMM`,
"!(s:(*)set) t. s INTER t = t INTER s",
REWRITE_TAC[EXTENSION; IN_INTER] THEN
REPEAT GEN_TAC THEN
MATCH_ACCEPT_TAC CONJ_SYM);;
let INTER_SUBSET =
prove_thm
(`INTER_SUBSET`,
"(!s:(*)set. !t. (s INTER t) SUBSET s) /\
(!s:(*)set. !t. (t INTER s) SUBSET s)",
PURE_REWRITE_TAC [SUBSET_DEF;IN_INTER] THEN
REPEAT STRIP_TAC);;
let SUBSET_INTER_ABSORPTION =
prove_thm
(`SUBSET_INTER_ABSORPTION`,
"!s:(*)set. !t. s SUBSET t = (s INTER t = s)",
REWRITE_TAC [SUBSET_DEF;EXTENSION;IN_INTER] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[FIRST_ASSUM ACCEPT_TAC; RES_TAC; RES_TAC]);;
let INTER_EMPTY =
prove_thm
(`INTER_EMPTY`,
"(!s:(*)set. EMPTY INTER s = EMPTY) /\
(!s:(*)set. s INTER EMPTY = EMPTY)",
REWRITE_TAC [IN_INTER;EXTENSION;NOT_IN_EMPTY]);;
let INTER_UNIV =
prove_thm
(`INTER_UNIV`,
"(!s:(*)set. UNIV INTER s = s) /\
(!s:(*)set. s INTER UNIV = s)",
REWRITE_TAC [IN_INTER;EXTENSION;IN_UNIV]);;
% ===================================================================== %
% Distributivity %
% ===================================================================== %
let UNION_OVER_INTER = prove_thm
(`UNION_OVER_INTER`,
"!s:(*)set. !t u.
s INTER (t UNION u) = (s INTER t) UNION (s INTER u)",
REWRITE_TAC [EXTENSION;IN_INTER;IN_UNION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
ASM_REWRITE_TAC[]);;
let INTER_OVER_UNION = prove_thm
(`INTER_OVER_UNION`,
"!s:(*)set. !t u.
s UNION (t INTER u) = (s UNION t) INTER (s UNION u)",
REWRITE_TAC [EXTENSION;IN_INTER;IN_UNION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
ASM_REWRITE_TAC[]);;
% ===================================================================== %
% Disjoint sets. %
% ===================================================================== %
let DISJOINT_DEF =
new_definition
(`DISJOINT_DEF`, "DISJOINT (s:(*)set) t = ((s INTER t) = EMPTY)");;
let IN_DISJOINT =
prove_thm
(`IN_DISJOINT`,
"!s:(*)set. !t. DISJOINT s t = ~(?x. x IN s /\ x IN t)",
REWRITE_TAC [DISJOINT_DEF;EXTENSION;IN_INTER;NOT_IN_EMPTY] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
REPEAT GEN_TAC THEN REFL_TAC);;
let DISJOINT_SYM =
prove_thm
(`DISJOINT_SYM`,
"!s:(*)set. !t. DISJOINT s t = DISJOINT t s",
PURE_ONCE_REWRITE_TAC [DISJOINT_DEF] THEN REPEAT GEN_TAC THEN
SUBST1_TAC (SPECL ["s:(*)set";"t:(*)set"] INTER_COMM) THEN REFL_TAC);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let DISJOINT_EMPTY =
prove_thm
(`DISJOINT_EMPTY`,
"!s:(*)set. DISJOINT EMPTY s /\ DISJOINT s EMPTY",
REWRITE_TAC [DISJOINT_DEF;INTER_EMPTY]);;
let DISJOINT_EMPTY_REFL =
prove_thm
(`DISJOINT_EMPTY_REFL`,
"!s:(*)set. (s = EMPTY) = (DISJOINT s s)",
REWRITE_TAC [DISJOINT_DEF;INTER_IDEMPOT]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let DISJOINT_UNION =
prove_thm
(`DISJOINT_UNION`,
"!s:(*)set. !t u. DISJOINT (s UNION t) u = DISJOINT s u /\ DISJOINT t u",
REWRITE_TAC [IN_DISJOINT;IN_UNION] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
CONV_TAC (ONCE_DEPTH_CONV AND_FORALL_CONV) THEN
REWRITE_TAC [DE_MORGAN_THM;RIGHT_AND_OVER_OR] THEN
REPEAT GEN_TAC THEN EQ_TAC THEN
DISCH_THEN (\th. GEN_TAC THEN STRIP_ASSUME_TAC (SPEC "x:*" th)) THEN
ASM_REWRITE_TAC []);;
% ===================================================================== %
% Set difference %
% ===================================================================== %
let DIFF_DEF = new_infix_definition
(`DIFF_DEF`,
"DIFF s t = {x:* | x IN s /\ ~ x IN t}");;
let IN_DIFF = prove_thm
(`IN_DIFF`,
"!(s:(*)set) t x. x IN (s DIFF t) = x IN s /\ ~x IN t",
REPEAT GEN_TAC THEN
PURE_ONCE_REWRITE_TAC [DIFF_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
REFL_TAC);;
let DIFF_EMPTY =
prove_thm
(`DIFF_EMPTY`,
"!s:(*)set. s DIFF EMPTY = s",
GEN_TAC THEN
REWRITE_TAC [NOT_IN_EMPTY;IN_DIFF;EXTENSION]);;
let EMPTY_DIFF =
prove_thm
(`EMPTY_DIFF`,
"!s:(*)set. EMPTY DIFF s = EMPTY",
GEN_TAC THEN
REWRITE_TAC [NOT_IN_EMPTY;IN_DIFF;EXTENSION]);;
let DIFF_UNIV =
prove_thm
(`DIFF_UNIV`,
"!s:(*)set. s DIFF UNIV = EMPTY",
GEN_TAC THEN
REWRITE_TAC [NOT_IN_EMPTY;IN_DIFF;IN_UNIV;EXTENSION]);;
let DIFF_DIFF =
prove_thm
(`DIFF_DIFF`,
"!s:(*)set. !t. (s DIFF t) DIFF t = s DIFF t",
REWRITE_TAC [EXTENSION;IN_DIFF;SYM(SPEC_ALL CONJ_ASSOC)]);;
let DIFF_EQ_EMPTY =
prove_thm
(`DIFF_EQ_EMPTY`,
"!s:(*)set. s DIFF s = EMPTY",
REWRITE_TAC [EXTENSION;IN_DIFF;NOT_IN_EMPTY;DE_MORGAN_THM] THEN
PURE_ONCE_REWRITE_TAC [DISJ_SYM] THEN
REWRITE_TAC [EXCLUDED_MIDDLE]);;
% ===================================================================== %
% The insertion function. %
% ===================================================================== %
let INSERT_DEF =
new_infix_definition
(`INSERT_DEF`, "INSERT (x:*) s = {y | (y = x) \/ y IN s}");;
% --------------------------------------------------------------------- %
% Set up the {x1,...,xn} notation. %
% --------------------------------------------------------------------- %
define_finite_set_syntax(`EMPTY`,`INSERT`);;
% --------------------------------------------------------------------- %
% Theorems about INSERT. %
% --------------------------------------------------------------------- %
let IN_INSERT =
prove_thm
(`IN_INSERT`,
"!x:*. !y s. x IN (y INSERT s) = ((x=y) \/ x IN s)",
PURE_ONCE_REWRITE_TAC [INSERT_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
REPEAT GEN_TAC THEN REFL_TAC);;
let COMPONENT =
prove_thm
(`COMPONENT`,
"!x:*. !s. x IN (x INSERT s)",
REWRITE_TAC [IN_INSERT]);;
let SET_CASES =
prove_thm
(`SET_CASES`,
"!s:(*)set. (s = EMPTY) \/ ?x:*. ?t. ((s = x INSERT t) /\ ~x IN t)",
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY] THEN GEN_TAC THEN
DISJ_CASES_THEN MP_TAC (SPEC "?x:*. x IN s" EXCLUDED_MIDDLE) THENL
[STRIP_TAC THEN DISJ2_TAC THEN
MAP_EVERY EXISTS_TAC ["x:*";"{y:* | y IN s /\ ~(y = x)}"] THEN
REWRITE_TAC [IN_INSERT] THEN
CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
ASM_REWRITE_TAC [] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
ASM_REWRITE_TAC[EXCLUDED_MIDDLE];
CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
STRIP_TAC THEN DISJ1_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;
let DECOMPOSITION =
prove_thm
(`DECOMPOSITION`,
"!s:(*)set. !x. x IN s = ?t. (s = x INSERT t) /\ ~x IN t",
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN EXISTS_TAC "{y:* | y IN s /\ ~(y = x)}" THEN
ASM_REWRITE_TAC [EXTENSION;IN_INSERT] THEN
CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
REWRITE_TAC [] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
ASM_REWRITE_TAC [EXCLUDED_MIDDLE];
STRIP_TAC THEN ASM_REWRITE_TAC [IN_INSERT]]);;
let ABSORPTION =
prove_thm
(`ABSORPTION`,
"!x:*. !s. (x IN s) = (x INSERT s = s)",
REWRITE_TAC [EXTENSION;IN_INSERT] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
ASM_REWRITE_TAC [] THEN
FIRST_ASSUM (\th g. PURE_ONCE_REWRITE_TAC [SYM(SPEC_ALL th)] g) THEN
DISJ1_TAC THEN REFL_TAC);;
let INSERT_INSERT =
prove_thm
(`INSERT_INSERT`,
"!x:*. !s. x INSERT (x INSERT s) = x INSERT s",
REWRITE_TAC [IN_INSERT;EXTENSION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
ASM_REWRITE_TAC[]);;
let INSERT_COMM =
prove_thm
(`INSERT_COMM`,
"!x:*. !y s. x INSERT (y INSERT s) = y INSERT (x INSERT s)",
REWRITE_TAC [IN_INSERT;EXTENSION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
ASM_REWRITE_TAC[]);;
let INSERT_UNIV =
prove_thm
(`INSERT_UNIV`,
"!x:*. x INSERT UNIV = UNIV",
REWRITE_TAC [EXTENSION;IN_INSERT;IN_UNIV]);;
let NOT_INSERT_EMPTY =
prove_thm
(`NOT_INSERT_EMPTY`,
"!x:*. !s. ~(x INSERT s = EMPTY)",
REWRITE_TAC [EXTENSION;IN_INSERT;NOT_IN_EMPTY;IN_UNION] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
REPEAT GEN_TAC THEN EXISTS_TAC "x:*" THEN
REWRITE_TAC []);;
let NOT_EMPTY_INSERT =
prove_thm
(`NOT_EMPTY_INSERT`,
"!x:*. !s. ~(EMPTY = x INSERT s)",
REWRITE_TAC [EXTENSION;IN_INSERT;NOT_IN_EMPTY;IN_UNION] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
REPEAT GEN_TAC THEN EXISTS_TAC "x:*" THEN
REWRITE_TAC []);;
let INSERT_UNION =
prove_thm
(`INSERT_UNION`,
"!x:*. !s t.
(x INSERT s) UNION t = (x IN t => s UNION t | x INSERT (s UNION t))",
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC [EXTENSION;IN_UNION;IN_INSERT] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC []);;
let INSERT_UNION_EQ =
prove_thm
(`INSERT_UNION_EQ`,
"!x:*. !s t. (x INSERT s) UNION t = x INSERT (s UNION t)",
REPEAT GEN_TAC THEN
REWRITE_TAC [EXTENSION;IN_UNION;IN_INSERT;DISJ_ASSOC]);;
let INSERT_INTER =
prove_thm
(`INSERT_INTER`,
"!x:*. !s t.
(x INSERT s) INTER t = (x IN t => x INSERT (s INTER t) | s INTER t)",
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC [EXTENSION;IN_INTER;IN_INSERT] THEN
GEN_TAC THEN EQ_TAC THENL
[STRIP_TAC THEN ASM_REWRITE_TAC [];
STRIP_TAC THEN ASM_REWRITE_TAC [];
PURE_ONCE_REWRITE_TAC [CONJ_SYM] THEN
DISCH_THEN (CONJUNCTS_THEN MP_TAC) THEN
STRIP_TAC THEN ASM_REWRITE_TAC [];
STRIP_TAC THEN ASM_REWRITE_TAC []]);;
let DISJOINT_INSERT =
prove_thm
(`DISJOINT_INSERT`,
"!(x:*) s t. DISJOINT (x INSERT s) t = (DISJOINT s t) /\ ~(x IN t)",
REWRITE_TAC [IN_DISJOINT;IN_INSERT] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
REWRITE_TAC [DE_MORGAN_THM] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[(let v = genvar ":*" in let GTAC = X_GEN_TAC v in
DISCH_THEN (\th. CONJ_TAC THENL [GTAC;ALL_TAC] THEN MP_TAC th) THENL
[DISCH_THEN (STRIP_ASSUME_TAC o SPEC v) THEN ASM_REWRITE_TAC [];
DISCH_THEN (MP_TAC o SPEC "x:*") THEN REWRITE_TAC[]]);
REPEAT STRIP_TAC THEN ASM_CASES_TAC "x':* = x" THENL
[ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]]]);;
let INSERT_SUBSET =
prove_thm
(`INSERT_SUBSET`,
"!x:*. !s t. (x INSERT s) SUBSET t = (x IN t /\ s SUBSET t)",
REWRITE_TAC [IN_INSERT;SUBSET_DEF] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[FIRST_ASSUM MATCH_MP_TAC THEN DISJ1_TAC THEN REFL_TAC;
FIRST_ASSUM MATCH_MP_TAC THEN DISJ2_TAC THEN FIRST_ASSUM ACCEPT_TAC;
ASM_REWRITE_TAC [];
RES_TAC]);;
let SUBSET_INSERT =
prove_thm
(`SUBSET_INSERT`,
"!x:*. !s. ~(x IN s) ==> !t. s SUBSET (x INSERT t) = s SUBSET t",
PURE_REWRITE_TAC [SUBSET_DEF;IN_INSERT] THEN
REPEAT STRIP_TAC THEN EQ_TAC THENL
[REPEAT STRIP_TAC THEN
let tac th g = SUBST_ALL_TAC th g ? STRIP_ASSUME_TAC th g in
RES_THEN (STRIP_THM_THEN tac) THEN RES_TAC;
REPEAT STRIP_TAC THEN DISJ2_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM ACCEPT_TAC]);;
let INSERT_DIFF =
prove_thm
(`INSERT_DIFF`,
"!s t. !x:*. (x INSERT s) DIFF t =
(x IN t => s DIFF t | (x INSERT (s DIFF t)))",
REPEAT GEN_TAC THEN COND_CASES_TAC THENL
[ASM_REWRITE_TAC [EXTENSION;IN_DIFF;IN_INSERT] THEN
GEN_TAC THEN EQ_TAC THENL
[STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM (\th g. SUBST_ALL_TAC th g) THEN RES_TAC;
STRIP_TAC THEN ASM_REWRITE_TAC[]];
ASM_REWRITE_TAC [EXTENSION;IN_DIFF;IN_INSERT] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC [] THENL
[FIRST_ASSUM (\th g. SUBST_ALL_TAC th g) THEN RES_TAC;RES_TAC]]);;
% ===================================================================== %
% Removal of an element %
% ===================================================================== %
let DELETE_DEF =
new_infix_definition
(`DELETE_DEF`, "DELETE s (x:*) = s DIFF {x}");;
let IN_DELETE =
prove_thm
(`IN_DELETE`,
"!s. !x:*. !y. x IN (s DELETE y) = (x IN s /\ ~(x = y))",
PURE_ONCE_REWRITE_TAC [DELETE_DEF] THEN
REWRITE_TAC [IN_DIFF;IN_INSERT;NOT_IN_EMPTY]);;
let DELETE_NON_ELEMENT =
prove_thm
(`DELETE_NON_ELEMENT`,
"!x:*. !s. ~x IN s = ((s DELETE x) = s)",
PURE_REWRITE_TAC [EXTENSION;IN_DELETE] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[FIRST_ASSUM ACCEPT_TAC;
FIRST_ASSUM (\th g. SUBST_ALL_TAC th g ? NO_TAC g) THEN RES_TAC;
RES_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REFL_TAC]);;
let IN_DELETE_EQ =
prove_thm
(`IN_DELETE_EQ`,
"!s x. !x':*.
(x IN s = x' IN s) = (x IN (s DELETE x') = x' IN (s DELETE x))",
REPEAT GEN_TAC THEN ASM_CASES_TAC "x:* = x'" THENL
[ASM_REWRITE_TAC [];
FIRST_ASSUM (ASSUME_TAC o NOT_EQ_SYM) THEN
ASM_REWRITE_TAC [IN_DELETE]]);;
let EMPTY_DELETE =
prove_thm
(`EMPTY_DELETE`,
"!x:*. EMPTY DELETE x = EMPTY",
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_DELETE]);;
let DELETE_DELETE =
prove_thm
(`DELETE_DELETE`,
"!x:*. !s. (s DELETE x) DELETE x = s DELETE x",
REWRITE_TAC [EXTENSION;IN_DELETE;SYM(SPEC_ALL CONJ_ASSOC)]);;
let DELETE_COMM =
prove_thm
(`DELETE_COMM`,
"!x:*. !y. !s. (s DELETE x) DELETE y = (s DELETE y) DELETE x",
PURE_REWRITE_TAC [EXTENSION;IN_DELETE;CONJ_ASSOC] THEN
REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
REPEAT CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC);;
let DELETE_SUBSET =
prove_thm
(`DELETE_SUBSET`,
"!x:*. !s. (s DELETE x) SUBSET s",
PURE_REWRITE_TAC [SUBSET_DEF;IN_DELETE] THEN
REPEAT STRIP_TAC);;
let SUBSET_DELETE =
prove_thm
(`SUBSET_DELETE`,
"!x:*. !s t. s SUBSET (t DELETE x) = (~(x IN s) /\ (s SUBSET t))",
REWRITE_TAC [SUBSET_DEF;IN_DELETE;EXTENSION] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[REPEAT STRIP_TAC THENL
[ASSUME_TAC (REFL "x:*") THEN RES_TAC; RES_TAC];
REPEAT STRIP_TAC THENL
[RES_TAC; FIRST_ASSUM (\th g. SUBST_ALL_TAC th g) THEN RES_TAC]]);;
let SUBSET_INSERT_DELETE =
prove_thm
(`SUBSET_INSERT_DELETE`,
"!x:*. !s t. s SUBSET (x INSERT t) = ((s DELETE x) SUBSET t)",
REPEAT GEN_TAC THEN
REWRITE_TAC [SUBSET_DEF;IN_INSERT;IN_DELETE] THEN
EQ_TAC THEN REPEAT STRIP_TAC THENL
[RES_TAC THEN RES_TAC;
ASM_CASES_TAC "x':* = x" THEN
ASM_REWRITE_TAC[] THEN RES_TAC]);;
let DIFF_INSERT =
prove_thm
(`DIFF_INSERT`,
"!s t. !x:*. s DIFF (x INSERT t) = (s DELETE x) DIFF t",
PURE_REWRITE_TAC [EXTENSION;IN_DIFF;IN_INSERT;IN_DELETE] THEN
REWRITE_TAC [DE_MORGAN_THM;CONJ_ASSOC]);;
let PSUBSET_INSERT_SUBSET =
prove_thm
(`PSUBSET_INSERT_SUBSET`,
"!s t. s PSUBSET t = ?x:*. ~(x IN s) /\ (x INSERT s) SUBSET t",
PURE_REWRITE_TAC [PSUBSET_DEF;NOT_EQUAL_SETS] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[ASM_CASES_TAC "(x:*) IN s" THENL
[ASM_CASES_TAC "(x:*) IN t" THENL
[RES_TAC; IMP_RES_TAC SUBSET_DEF THEN RES_TAC];
EXISTS_TAC "x:*" THEN RES_TAC THEN
ASM_REWRITE_TAC [INSERT_SUBSET]];
IMP_RES_TAC INSERT_SUBSET;
IMP_RES_TAC INSERT_SUBSET THEN
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[]]);;
let lemma =
TAC_PROOF(([], "~(a:bool = b) = (b = ~a)"),
BOOL_CASES_TAC "b:bool" THEN REWRITE_TAC[]);;
let PSUBSET_MEMBER =
prove_thm
(`PSUBSET_MEMBER`,
"!s:(*)set. !t. s PSUBSET t = (s SUBSET t /\ ?y. y IN t /\ ~y IN s)",
REPEAT GEN_TAC THEN PURE_ONCE_REWRITE_TAC [PSUBSET_DEF] THEN
PURE_ONCE_REWRITE_TAC [EXTENSION;SUBSET_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
PURE_ONCE_REWRITE_TAC [lemma] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[RES_TAC;
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [] THEN
ASM_CASES_TAC "(x:*) IN s" THENL
[RES_TAC THEN RES_TAC;FIRST_ASSUM ACCEPT_TAC];
RES_TAC;
EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[]]);;
let DELETE_INSERT =
prove_thm
(`DELETE_INSERT`,
"!x:*. !y s.
(x INSERT s) DELETE y = ((x=y) => s DELETE y | x INSERT (s DELETE y))",
REWRITE_TAC [EXTENSION;IN_DELETE;IN_INSERT] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN (STRIP_THM_THEN MP_TAC) THEN DISCH_TAC THEN
let tac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
DISCH_THEN (STRIP_THM_THEN tac) THENL
[ASM_REWRITE_TAC [IN_INSERT];
COND_CASES_TAC THEN ASM_REWRITE_TAC [IN_DELETE;IN_INSERT]];
COND_CASES_TAC THEN ASM_REWRITE_TAC [IN_DELETE;IN_INSERT] THENL
[STRIP_TAC THEN ASM_REWRITE_TAC [];
STRIP_TAC THEN ASM_REWRITE_TAC []]]);;
let INSERT_DELETE =
prove_thm
(`INSERT_DELETE`,
"!x:*. !s. x IN s ==> (x INSERT (s DELETE x) = s)",
PURE_REWRITE_TAC [EXTENSION;IN_INSERT;IN_DELETE] THEN
REPEAT GEN_TAC THEN DISCH_THEN (\th. GEN_TAC THEN MP_TAC th) THEN
ASM_CASES_TAC "x':* = x" THEN ASM_REWRITE_TAC[]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let DELETE_INTER =
prove_thm
(`DELETE_INTER`,
"!s t. !x:*. (s DELETE x) INTER t = (s INTER t) DELETE x",
PURE_ONCE_REWRITE_TAC [EXTENSION] THEN REPEAT GEN_TAC THEN
REWRITE_TAC [IN_INTER;IN_DELETE] THEN
EQ_TAC THEN REPEAT STRIP_TAC THEN
FIRST [FIRST_ASSUM ACCEPT_TAC;RES_TAC]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let DISJOINT_DELETE_SYM =
prove_thm
(`DISJOINT_DELETE_SYM`,
"!s t. !x:*. DISJOINT (s DELETE x) t = DISJOINT (t DELETE x) s",
REWRITE_TAC [DISJOINT_DEF;EXTENSION;NOT_IN_EMPTY] THEN
REWRITE_TAC [IN_INTER;IN_DELETE;DE_MORGAN_THM] THEN
REPEAT GEN_TAC THEN EQ_TAC THEN
let X = "X:*" in
DISCH_THEN (\th. X_GEN_TAC X THEN STRIP_ASSUME_TAC (SPEC X th)) THEN
ASM_REWRITE_TAC []);;
% ===================================================================== %
% Choice %
% ===================================================================== %
let CHOICE_EXISTS =
TAC_PROOF
(([], "?CHOICE. !s:(*)set. ~(s = EMPTY) ==> (CHOICE s) IN s"),
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY] THEN
EXISTS_TAC "\s. @x:*. x IN s" THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
CONV_TAC (ONCE_DEPTH_CONV SELECT_CONV) THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
REWRITE_TAC []);;
let CHOICE_DEF =
new_specification `CHOICE_DEF` [`constant`,`CHOICE`] CHOICE_EXISTS;;
% ===================================================================== %
% The REST of a set after removing a chosen element. %
% ===================================================================== %
let REST_DEF =
new_definition
(`REST_DEF`, "REST (s:(*)set) = s DELETE (CHOICE s)");;
let CHOICE_NOT_IN_REST =
prove_thm
(`CHOICE_NOT_IN_REST`,
"!s:(*)set. ~(CHOICE s) IN (REST s)",
REWRITE_TAC [IN_DELETE;REST_DEF]);;
let CHOICE_INSERT_REST =
prove_thm
(`CHOICE_INSERT_REST`,
"!s:(*)set. ~(s = EMPTY) ==> (((CHOICE s) INSERT (REST s)) = s)",
REPEAT GEN_TAC THEN STRIP_TAC THEN
REWRITE_TAC [EXTENSION;IN_INSERT;REST_DEF;IN_DELETE] THEN
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL
[IMP_RES_TAC CHOICE_DEF THEN ASM_REWRITE_TAC [];
ASM_REWRITE_TAC [EXCLUDED_MIDDLE]]);;
let REST_SUBSET =
prove_thm
(`REST_SUBSET`,
"!s:(*)set. (REST s) SUBSET s",
REWRITE_TAC [SUBSET_DEF;REST_DEF;IN_DELETE] THEN REPEAT STRIP_TAC);;
let lemma =
TAC_PROOF(([], "(P /\ Q = P) = (P ==> Q)"),
BOOL_CASES_TAC "P:bool" THEN REWRITE_TAC[]);;
let REST_PSUBSET =
prove_thm
(`REST_PSUBSET`,
"!s:(*)set. ~(s = EMPTY) ==> (REST s) PSUBSET s",
REWRITE_TAC [PSUBSET_DEF;REST_SUBSET] THEN
GEN_TAC THEN STRIP_TAC THEN
REWRITE_TAC [EXTENSION;REST_DEF;IN_DELETE] THEN
CONV_TAC NOT_FORALL_CONV THEN
REWRITE_TAC [DE_MORGAN_THM;lemma;NOT_IMP] THEN
EXISTS_TAC "CHOICE (s:(*)set)" THEN
IMP_RES_TAC CHOICE_DEF THEN
ASM_REWRITE_TAC []);;
% ===================================================================== %
% Singleton set. %
% ===================================================================== %
let SING_DEF =
new_definition
(`SING_DEF`, "SING s = ?x:*. s = {x}");;
let SING =
prove_thm
(`SING`,
"!x:*. SING {x}",
PURE_ONCE_REWRITE_TAC [SING_DEF] THEN
GEN_TAC THEN EXISTS_TAC "x:*" THEN REFL_TAC);;
let IN_SING =
prove_thm
(`IN_SING`,
"!x y. x IN {y:*} = (x = y)",
REWRITE_TAC [IN_INSERT;NOT_IN_EMPTY]);;
let NOT_SING_EMPTY =
prove_thm
(`NOT_SING_EMPTY`,
"!x:*. ~({x} = EMPTY)",
REWRITE_TAC [EXTENSION;IN_SING;NOT_IN_EMPTY] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
GEN_TAC THEN EXISTS_TAC "x:*" THEN REWRITE_TAC[]);;
let NOT_EMPTY_SING =
prove_thm
(`NOT_EMPTY_SING`,
"!x:*. ~(EMPTY = {x})",
REWRITE_TAC [EXTENSION;IN_SING;NOT_IN_EMPTY] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
GEN_TAC THEN EXISTS_TAC "x:*" THEN REWRITE_TAC[]);;
let EQUAL_SING =
prove_thm
(`EQUAL_SING`,
"!x:*. !y. ({x} = {y}) = (x = y)",
REWRITE_TAC [EXTENSION;IN_SING] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN (\th. REWRITE_TAC [SYM(SPEC_ALL th)]);
DISCH_THEN SUBST1_TAC THEN GEN_TAC THEN REFL_TAC]);;
let DISJOINT_SING_EMPTY =
prove_thm
(`DISJOINT_SING_EMPTY`,
"!x:*. DISJOINT {x} EMPTY",
REWRITE_TAC [DISJOINT_DEF;INTER_EMPTY]);;
let INSERT_SING_UNION =
prove_thm
(`INSERT_SING_UNION`,
"!s. !x:*. x INSERT s = {x} UNION s",
REWRITE_TAC [EXTENSION;IN_INSERT;IN_UNION;NOT_IN_EMPTY]);;
let SING_DELETE =
prove_thm
(`SING_DELETE`,
"!x:*. {x} DELETE x = EMPTY",
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_DELETE;IN_INSERT] THEN
PURE_ONCE_REWRITE_TAC [CONJ_SYM] THEN
REWRITE_TAC [DE_MORGAN_THM;EXCLUDED_MIDDLE]);;
let DELETE_EQ_SING =
prove_thm
(`DELETE_EQ_SING`,
"!s. !x:*. (x IN s) ==> ((s DELETE x = EMPTY) = (s = {x}))",
PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
REWRITE_TAC [NOT_IN_EMPTY;DE_MORGAN_THM;IN_INSERT;IN_DELETE] THEN
REPEAT STRIP_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN GEN_TAC THEN
FIRST_ASSUM (\th g. STRIP_ASSUME_TAC (SPEC "x':*" th) g) THEN
ASM_REWRITE_TAC [] THEN DISCH_THEN SUBST_ALL_TAC THEN RES_TAC;
let th = PURE_ONCE_REWRITE_RULE [DISJ_SYM] EXCLUDED_MIDDLE in
DISCH_TAC THEN GEN_TAC THEN ASM_REWRITE_TAC [th]]);;
let CHOICE_SING =
prove_thm
(`CHOICE_SING`,
"!x:*. CHOICE {x} = x",
GEN_TAC THEN
MP_TAC (MATCH_MP CHOICE_DEF (SPEC "x:*" NOT_SING_EMPTY)) THEN
REWRITE_TAC [IN_SING]);;
let REST_SING =
prove_thm
(`REST_SING`,
"!x:*. REST {x} = EMPTY",
REWRITE_TAC [CHOICE_SING;REST_DEF;SING_DELETE]);;
let SING_IFF_EMPTY_REST =
prove_thm
(`SING_IFF_EMPTY_REST`,
"!s:(*)set. SING s = ~(s = EMPTY) /\ (REST s = EMPTY)",
PURE_ONCE_REWRITE_TAC [SING_DEF] THEN
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL
[ASM_REWRITE_TAC [REST_SING] THEN
REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_INSERT] THEN
CONV_TAC NOT_FORALL_CONV THEN
EXISTS_TAC "x:*" THEN REWRITE_TAC [];
EXISTS_TAC "CHOICE s:*" THEN
IMP_RES_THEN (SUBST1_TAC o SYM) CHOICE_INSERT_REST THEN
ASM_REWRITE_TAC [EXTENSION;IN_SING;CHOICE_SING]]);;
% ===================================================================== %
% The image of a function on a set. %
% ===================================================================== %
let IMAGE_DEF =
new_definition
(`IMAGE_DEF`, "IMAGE (f:*->**) s = {f x | x IN s}");;
let IN_IMAGE =
prove_thm
(`IN_IMAGE`,
"!y:**. !s f. (y IN (IMAGE f s)) = ?x:*. (y = f x) /\ x IN s",
PURE_ONCE_REWRITE_TAC [IMAGE_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
REPEAT GEN_TAC THEN REFL_TAC);;
let IMAGE_IN =
prove_thm
(`IMAGE_IN`,
"!x s. (x IN s) ==> !(f:*->**). f x IN (IMAGE f s)",
PURE_ONCE_REWRITE_TAC [IN_IMAGE] THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC "x:*" THEN
CONJ_TAC THENL [REFL_TAC; FIRST_ASSUM ACCEPT_TAC]);;
let IMAGE_EMPTY =
prove_thm
(`IMAGE_EMPTY`,
"!f:*->**. IMAGE f EMPTY = EMPTY",
REWRITE_TAC[EXTENSION;IN_IMAGE;NOT_IN_EMPTY]);;
let IMAGE_ID =
prove_thm
(`IMAGE_ID`,
"!s:* set. IMAGE (\x:*.x) s = s",
REWRITE_TAC [EXTENSION;IN_IMAGE] THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[ALL_TAC;EXISTS_TAC "x:*"] THEN
ASM_REWRITE_TAC []);;
let IMAGE_COMPOSE =
prove_thm
(`IMAGE_COMPOSE`,
"!f:**->***. !g:*->**. !s. IMAGE (f o g) s = IMAGE f (IMAGE g s)",
PURE_REWRITE_TAC [EXTENSION;IN_IMAGE;o_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[EXISTS_TAC "g (x':*):**" THEN
CONJ_TAC THENL [ALL_TAC;EXISTS_TAC "x':*"] THEN
ASM_REWRITE_TAC [];
EXISTS_TAC "x'':*" THEN ASM_REWRITE_TAC[]]);;
let IMAGE_INSERT =
prove_thm
(`IMAGE_INSERT`,
"!(f:*->**) x s. IMAGE f (x INSERT s) = f x INSERT (IMAGE f s)",
PURE_REWRITE_TAC [EXTENSION;IN_INSERT;IN_IMAGE] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[ALL_TAC;DISJ2_TAC THEN EXISTS_TAC "x'':*";
EXISTS_TAC "x:*";EXISTS_TAC "x'':*"] THEN
ASM_REWRITE_TAC[]);;
let IMAGE_EQ_EMPTY =
prove_thm
(`IMAGE_EQ_EMPTY`,
"!s. !f:*->**. ((IMAGE f s) = EMPTY) = (s = EMPTY)",
GEN_TAC THEN
STRIP_ASSUME_TAC (SPEC "s:(*)set" SET_CASES) THEN
ASM_REWRITE_TAC [IMAGE_EMPTY;IMAGE_INSERT;NOT_INSERT_EMPTY]);;
let IMAGE_DELETE =
prove_thm
(`IMAGE_DELETE`,
"!(f:*->**) x s. ~(x IN s) ==> (IMAGE f (s DELETE x) = (IMAGE f s))",
REPEAT GEN_TAC THEN STRIP_TAC THEN
PURE_REWRITE_TAC [EXTENSION;IN_DELETE;IN_IMAGE] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
EXISTS_TAC "x'':*" THEN ASM_REWRITE_TAC [] THEN
DISCH_THEN SUBST_ALL_TAC THEN RES_TAC);;
let IMAGE_UNION =
prove_thm
(`IMAGE_UNION`,
"!(f:*->**) s t. IMAGE f (s UNION t) = (IMAGE f s) UNION (IMAGE f t)",
PURE_REWRITE_TAC [EXTENSION;IN_UNION;IN_IMAGE] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[DISJ1_TAC;DISJ2_TAC;ALL_TAC;ALL_TAC] THEN
EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []);;
let IMAGE_SUBSET =
prove_thm
(`IMAGE_SUBSET`,
"!s t. (s SUBSET t) ==> !f:*->**. (IMAGE f s) SUBSET (IMAGE f t)",
PURE_REWRITE_TAC [SUBSET_DEF;IN_IMAGE] THEN
REPEAT STRIP_TAC THEN RES_TAC THEN
EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []);;
let IMAGE_INTER =
prove_thm
(`IMAGE_INTER`,
"!(f:*->**) s t. IMAGE f (s INTER t) SUBSET (IMAGE f s INTER IMAGE f t)",
REPEAT GEN_TAC THEN
REWRITE_TAC [SUBSET_DEF;IN_IMAGE;IN_INTER] THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC "x':*" THEN
CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC);;
% ===================================================================== %
% Injective functions on a set. %
% ===================================================================== %
let INJ_DEF =
new_definition
(`INJ_DEF`,
"INJ (f:*->**) s t =
(!x. x IN s ==> (f x) IN t) /\
(!x y. (x IN s /\ y IN s) ==> (f x = f y) ==> (x = y))");;
let INJ_ID =
prove_thm
(`INJ_ID`,
"!s. INJ (\x:*.x) s s",
PURE_ONCE_REWRITE_TAC [INJ_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC);;
let INJ_COMPOSE =
prove_thm
(`INJ_COMPOSE`,
"!f:*->**. !g:**->***.
!s t u. (INJ f s t /\ INJ g t u) ==> INJ (g o f) s u",
PURE_REWRITE_TAC [INJ_DEF;o_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[FIRST_ASSUM MATCH_MP_TAC THEN RES_TAC;
RES_TAC THEN RES_TAC]);;
let INJ_EMPTY =
prove_thm
(`INJ_EMPTY`,
"!f:*->**. (!s. INJ f {} s) /\ (!s. INJ f s {} = (s = {}))",
REWRITE_TAC [INJ_DEF;NOT_IN_EMPTY;EXTENSION] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN RES_TAC);;
% ===================================================================== %
% Surjective functions on a set. %
% ===================================================================== %
let SURJ_DEF =
new_definition
(`SURJ_DEF`,
"SURJ (f:*->**) s t =
(!x. x IN s ==> (f x) IN t) /\
(!x. (x IN t) ==> ?y. y IN s /\ (f y = x))");;
let SURJ_ID =
prove_thm
(`SURJ_ID`,
"!s. SURJ (\x:*.x) s s",
PURE_ONCE_REWRITE_TAC [SURJ_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC "x':*" THEN
ASM_REWRITE_TAC []);;
let SURJ_COMPOSE =
prove_thm
(`SURJ_COMPOSE`,
"!f:*->**. !g:**->***.
!s t u. (SURJ f s t /\ SURJ g t u) ==> SURJ (g o f) s u",
PURE_REWRITE_TAC [SURJ_DEF;o_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[FIRST_ASSUM MATCH_MP_TAC THEN RES_TAC;
RES_TAC THEN RES_TAC THEN
EXISTS_TAC "y'':*" THEN
ASM_REWRITE_TAC []]);;
let SURJ_EMPTY =
prove_thm
(`SURJ_EMPTY`,
"!f:*->**. (!s. SURJ f {} s = (s = {})) /\ (!s. SURJ f s {} = (s = {}))",
REWRITE_TAC [SURJ_DEF;NOT_IN_EMPTY;EXTENSION]);;
let IMAGE_SURJ =
prove_thm
(`IMAGE_SURJ`,
"!f:*->**. !s t. SURJ f s t = ((IMAGE f s) = t)",
PURE_REWRITE_TAC [SURJ_DEF;EXTENSION;IN_IMAGE] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[RES_TAC THEN ASM_REWRITE_TAC [];
MAP_EVERY PURE_ONCE_REWRITE_TAC [[CONJ_SYM];[EQ_SYM_EQ]] THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC];
DISCH_THEN (ASSUME_TAC o CONV_RULE (ONCE_DEPTH_CONV SYM_CONV)) THEN
ASM_REWRITE_TAC [] THEN REPEAT STRIP_TAC THENL
[EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [];
EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []]]);;
% ===================================================================== %
% Bijective functions on a set. %
% ===================================================================== %
let BIJ_DEF =
new_definition
(`BIJ_DEF`,
"BIJ (f:*->**) s t = INJ f s t /\ SURJ f s t");;
let BIJ_ID =
prove_thm
(`BIJ_ID`,
"!s. BIJ (\x:*.x) s s",
REWRITE_TAC [BIJ_DEF;INJ_ID;SURJ_ID]);;
let BIJ_EMPTY =
prove_thm
(`BIJ_EMPTY`,
"!f:*->**. (!s. BIJ f {} s = (s = {})) /\ (!s. BIJ f s {} = (s = {}))",
REWRITE_TAC [BIJ_DEF;INJ_EMPTY;SURJ_EMPTY]);;
let BIJ_COMPOSE =
prove_thm
(`BIJ_COMPOSE`,
"!f:*->**. !g:**->***.
!s t u. (BIJ f s t /\ BIJ g t u) ==> BIJ (g o f) s u",
PURE_REWRITE_TAC [BIJ_DEF] THEN
REPEAT STRIP_TAC THENL
[IMP_RES_TAC INJ_COMPOSE;IMP_RES_TAC SURJ_COMPOSE]);;
% ===================================================================== %
% Left and right inverses. %
% ===================================================================== %
let lemma1 =
TAC_PROOF
(([], "!f:*->**. !s.
(!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)) =
(!y. y IN s ==> !x.((x IN s /\ (f x = f y))=(y IN s /\ (x = y))))"),
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
RES_TAC THEN ASM_REWRITE_TAC []);;
let lemma2 =
TAC_PROOF
(([],
"!f:*->**. !s. ?g. !t. INJ f s t ==> !x:*. x IN s ==> (g(f x) = x)"),
REPEAT GEN_TAC THEN PURE_REWRITE_TAC [INJ_DEF;lemma1] THEN
EXISTS_TAC "\y:**. @x:*. x IN s /\ (f x = y)" THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN (RES_THEN \th. REWRITE_TAC [th]) THEN
ASM_REWRITE_TAC [] THEN CONV_TAC SELECT_CONV THEN
EXISTS_TAC "x:*" THEN REFL_TAC);;
% --------------------------------------------------------------------- %
% LINV_DEF: %
% |- !f s t. INJ f s t ==> (!x. x IN s ==> (LINV f s(f x) = x)) %
% --------------------------------------------------------------------- %
let LINV_DEF =
let th1 = CONV_RULE (ONCE_DEPTH_CONV RIGHT_IMP_EXISTS_CONV) lemma2 in
let th2 = CONV_RULE SKOLEM_CONV th1 in
new_specification `LINV_DEF` [`constant`,`LINV`] th2;;
let lemma3 =
TAC_PROOF
(([],
"!f:*->**. !s. ?g. !t. SURJ f s t ==> !x:**. x IN t ==> (f(g x) = x)"),
REPEAT GEN_TAC THEN PURE_REWRITE_TAC [SURJ_DEF] THEN
EXISTS_TAC "\y:**. @x:*. x IN s /\ (f x = y)" THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
(\(A,g).
let tm = mk_conj("^(rand(lhs g)) IN s",g) in
SUBGOAL_THEN tm (\th. ACCEPT_TAC(CONJUNCT2 th))(A,g)) THEN
CONV_TAC SELECT_CONV THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM ACCEPT_TAC);;
% --------------------------------------------------------------------- %
% RINV_DEF: %
% |- !f s t. SURJ f s t ==> (!x. x IN t ==> (f(RINV f s x) = x)) %
% --------------------------------------------------------------------- %
let RINV_DEF =
let th1 = CONV_RULE (ONCE_DEPTH_CONV RIGHT_IMP_EXISTS_CONV) lemma3 in
let th2 = CONV_RULE SKOLEM_CONV th1 in
new_specification `RINV_DEF` [`constant`,`RINV`] th2;;
% ===================================================================== %
% Finiteness %
% ===================================================================== %
let FINITE_DEF =
new_definition
(`FINITE_DEF`,
"!s:(*)set.
FINITE s =
!P. (P EMPTY /\ (!s. P s ==> !e. P (e INSERT s))) ==> P s");;
let FINITE_EMPTY =
prove_thm
(`FINITE_EMPTY`,
"FINITE (EMPTY:(*)set)",
PURE_ONCE_REWRITE_TAC [FINITE_DEF] THEN
REPEAT STRIP_TAC);;
let FINITE_INSERT =
TAC_PROOF
(([], "!s. FINITE s ==> !x:*. FINITE (x INSERT s)"),
PURE_ONCE_REWRITE_TAC [FINITE_DEF] THEN
REPEAT STRIP_TAC THEN SPEC_TAC ("x:*","x:*") THEN
REPEAT (FIRST_ASSUM MATCH_MP_TAC) THEN
CONJ_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC);;
let SIMPLE_FINITE_INDUCT =
TAC_PROOF
(([], "!P. P EMPTY /\ (!s. P s ==> (!e:*. P(e INSERT s)))
==>
!s. FINITE s ==> P s"),
GEN_TAC THEN STRIP_TAC THEN
PURE_ONCE_REWRITE_TAC [FINITE_DEF] THEN
GEN_TAC THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC []);;
let lemma =
let tac = ASM_CASES_TAC "P:bool" THEN ASM_REWRITE_TAC[] in
let lem = TAC_PROOF(([],"(P ==> P /\ Q) = (P ==> Q)"), tac) in
let th1 = SPEC "\s:(*)set. FINITE s /\ P s" SIMPLE_FINITE_INDUCT in
REWRITE_RULE [lem;FINITE_EMPTY] (BETA_RULE th1);;
let FINITE_INDUCT =
prove_thm
(`FINITE_INDUCT`,
"!P. P EMPTY /\ (!s. FINITE s /\ P s ==> (!e. ~e IN s ==> P(e INSERT s)))
==>
!s:(*)set. FINITE s ==> P s",
GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC lemma THEN
ASM_REWRITE_TAC [] THEN
REPEAT STRIP_TAC THENL
[IMP_RES_THEN MATCH_ACCEPT_TAC FINITE_INSERT;
ASM_CASES_TAC "(e:*) IN s" THENL
[IMP_RES_THEN SUBST1_TAC ABSORPTION; RES_TAC] THEN
ASM_REWRITE_TAC []]);;
% --------------------------------------------------------------------- %
% Load the set induction tactic in... uncompiled. %
% --------------------------------------------------------------------- %
loadt `set_ind`;;
let FINITE_DELETE =
TAC_PROOF
(([], "!s. FINITE s ==> (!x:*. FINITE(s DELETE x))"),
SET_INDUCT_TAC THENL
[REWRITE_TAC [EMPTY_DELETE;FINITE_EMPTY];
PURE_ONCE_REWRITE_TAC [DELETE_INSERT] THEN
REPEAT STRIP_TAC THEN
COND_CASES_TAC THENL
[FIRST_ASSUM MATCH_ACCEPT_TAC;
FIRST_ASSUM (\th g. ASSUME_TAC (SPEC "x:*" th) g) THEN
IMP_RES_TAC FINITE_INSERT THEN
FIRST_ASSUM MATCH_ACCEPT_TAC]]);;
let INSERT_FINITE =
TAC_PROOF
(([], "!x:*. !s. FINITE(x INSERT s) ==> FINITE s"),
REPEAT GEN_TAC THEN ASM_CASES_TAC "(x:*) IN s" THENL
[IMP_RES_TAC ABSORPTION THEN ASM_REWRITE_TAC [];
DISCH_THEN (MP_TAC o SPEC "x:*" o MATCH_MP FINITE_DELETE) THEN
REWRITE_TAC [DELETE_INSERT] THEN
IMP_RES_TAC DELETE_NON_ELEMENT THEN ASM_REWRITE_TAC[]]);;
let FINITE_INSERT =
prove_thm
(`FINITE_INSERT`,
"!x:*. !s. FINITE(x INSERT s) = FINITE s",
REPEAT GEN_TAC THEN EQ_TAC THENL
[MATCH_ACCEPT_TAC INSERT_FINITE;
DISCH_THEN (MATCH_ACCEPT_TAC o MATCH_MP FINITE_INSERT)]);;
let DELETE_FINITE =
TAC_PROOF
(([], "!x:*. !s. FINITE (s DELETE x) ==> FINITE s"),
REPEAT GEN_TAC THEN ASM_CASES_TAC "(x:*) IN s" THEN
DISCH_TAC THENL
[IMP_RES_THEN (SUBST1_TAC o SYM) INSERT_DELETE THEN
ASM_REWRITE_TAC [FINITE_INSERT];
IMP_RES_THEN (SUBST1_TAC o SYM) DELETE_NON_ELEMENT THEN
FIRST_ASSUM ACCEPT_TAC]);;
let FINITE_DELETE =
prove_thm
(`FINITE_DELETE`,
"!x:*. !s. FINITE(s DELETE x) = FINITE s",
REPEAT GEN_TAC THEN EQ_TAC THENL
[MATCH_ACCEPT_TAC DELETE_FINITE;
DISCH_THEN (MATCH_ACCEPT_TAC o MATCH_MP FINITE_DELETE)]);;
let UNION_FINITE =
TAC_PROOF
(([], "!s:(*)set. FINITE s ==> !t. FINITE t ==> FINITE (s UNION t)"),
SET_INDUCT_TAC THENL
[REWRITE_TAC [UNION_EMPTY];
SET_INDUCT_TAC THENL
[IMP_RES_TAC FINITE_INSERT THEN ASM_REWRITE_TAC [UNION_EMPTY];
SUBST1_TAC (SPECL ["s':(*)set";"e':*"] INSERT_SING_UNION) THEN
PURE_ONCE_REWRITE_TAC [SYM(SPEC_ALL UNION_ASSOC)] THEN
PURE_REWRITE_TAC [SPECL ["s:(*)set";"{x:*}"] UNION_COMM] THEN
PURE_REWRITE_TAC [UNION_ASSOC; SYM(SPEC_ALL INSERT_SING_UNION)] THEN
IMP_RES_THEN MATCH_ACCEPT_TAC FINITE_INSERT]]);;
let FINITE_UNION_LEMMA =
TAC_PROOF
(([], "!s:(*)set. FINITE s ==> !t. FINITE (s UNION t) ==> FINITE t"),
SET_INDUCT_TAC THENL
[REWRITE_TAC [UNION_EMPTY];
GEN_TAC THEN ASM_REWRITE_TAC [INSERT_UNION] THEN
COND_CASES_TAC THENL
[FIRST_ASSUM MATCH_ACCEPT_TAC;
DISCH_THEN (MP_TAC o MATCH_MP INSERT_FINITE) THEN
FIRST_ASSUM MATCH_ACCEPT_TAC]]);;
let FINITE_UNION =
TAC_PROOF
(([], "!s:(*)set. !t. FINITE(s UNION t) ==> (FINITE s /\ FINITE t)"),
REPEAT STRIP_TAC THEN
IMP_RES_THEN MATCH_MP_TAC FINITE_UNION_LEMMA THENL
[SUBST1_TAC (SPECL ["s:(*)set";"t:(*)set"] UNION_COMM) THEN
REWRITE_TAC [UNION_ASSOC;UNION_IDEMPOT] THEN
PURE_ONCE_REWRITE_TAC [UNION_COMM] THEN
FIRST_ASSUM ACCEPT_TAC;
ASM_REWRITE_TAC [UNION_ASSOC;UNION_IDEMPOT]]);;
let FINITE_UNION =
prove_thm
(`FINITE_UNION`,
"!s:(*)set. !t. FINITE(s UNION t) = (FINITE s /\ FINITE t)",
REPEAT STRIP_TAC THEN EQ_TAC THENL
[REPEAT STRIP_TAC THEN IMP_RES_TAC FINITE_UNION;
REPEAT STRIP_TAC THEN IMP_RES_TAC UNION_FINITE]);;
let INTER_FINITE =
prove_thm
(`INTER_FINITE`,
"!s:(*)set. FINITE s ==> !t. FINITE (s INTER t)",
SET_INDUCT_TAC THENL
[REWRITE_TAC [INTER_EMPTY;FINITE_EMPTY];
REWRITE_TAC [INSERT_INTER] THEN GEN_TAC THEN
COND_CASES_TAC THENL
[FIRST_ASSUM (\th g. ASSUME_TAC (SPEC "t:(*)set" th) g ? NO_TAC g) THEN
IMP_RES_TAC FINITE_INSERT THEN
FIRST_ASSUM MATCH_ACCEPT_TAC;
FIRST_ASSUM MATCH_ACCEPT_TAC]]);;
let SUBSET_FINITE =
prove_thm
(`SUBSET_FINITE`,
"!s:(*)set. FINITE s ==> (!t. t SUBSET s ==> FINITE t)",
SET_INDUCT_TAC THENL
[PURE_ONCE_REWRITE_TAC [SUBSET_EMPTY] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [FINITE_EMPTY];
GEN_TAC THEN ASM_CASES_TAC "(e:*) IN t" THENL
[REWRITE_TAC [SUBSET_INSERT_DELETE] THEN
STRIP_TAC THEN RES_TAC THEN IMP_RES_TAC DELETE_FINITE;
IMP_RES_TAC SUBSET_INSERT THEN ASM_REWRITE_TAC []]]);;
let PSUBSET_FINITE =
prove_thm
(`PSUBSET_FINITE`,
"!s:(*)set. FINITE s ==> (!t. t PSUBSET s ==> FINITE t)",
PURE_ONCE_REWRITE_TAC [PSUBSET_DEF] THEN
REPEAT STRIP_TAC THEN IMP_RES_TAC SUBSET_FINITE);;
let FINITE_DIFF =
prove_thm
(`FINITE_DIFF`,
"!s:(*)set. FINITE s ==> !t. FINITE(s DIFF t)",
SET_INDUCT_TAC THENL
[REWRITE_TAC [EMPTY_DIFF;FINITE_EMPTY];
ASM_REWRITE_TAC [INSERT_DIFF] THEN
GEN_TAC THEN COND_CASES_TAC THENL
[FIRST_ASSUM MATCH_ACCEPT_TAC;
FIRST_ASSUM (\th g. ASSUME_TAC (SPEC "t:(*)set" th) g) THEN
IMP_RES_THEN MATCH_ACCEPT_TAC FINITE_INSERT]]);;
let FINITE_SING =
prove_thm
(`FINITE_SING`,
"!x:*. FINITE {x}",
GEN_TAC THEN MP_TAC FINITE_EMPTY THEN
SUBST1_TAC (SYM (SPEC "x:*" SING_DELETE)) THEN
DISCH_TAC THEN IMP_RES_THEN MATCH_ACCEPT_TAC FINITE_INSERT);;
let SING_FINITE =
prove_thm
(`SING_FINITE`,
"!s:(*)set. SING s ==> FINITE s",
PURE_ONCE_REWRITE_TAC [SING_DEF] THEN
GEN_TAC THEN DISCH_THEN (STRIP_THM_THEN SUBST1_TAC) THEN
MATCH_ACCEPT_TAC FINITE_SING);;
let IMAGE_FINITE =
prove_thm
(`IMAGE_FINITE`,
"!s. FINITE s ==> !f:*->**. FINITE(IMAGE f s)",
SET_INDUCT_TAC THENL
[REWRITE_TAC [IMAGE_EMPTY;FINITE_EMPTY];
ASM_REWRITE_TAC [IMAGE_INSERT;FINITE_INSERT]]);;
% ===================================================================== %
% Cardinality %
% ===================================================================== %
% --------------------------------------------------------------------- %
% card_rel_def: defining equations for a relation "R s n", which means %
% that the finite s has cardinality n. %
% --------------------------------------------------------------------- %
let card_rel_def =
"(!s. R s 0 = (s = EMPTY)) /\
(!s n. R s (SUC n) = ?x:*. x IN s /\ R (s DELETE x) n)";;
% --------------------------------------------------------------------- %
% Prove that such a relation exists. %
% --------------------------------------------------------------------- %
let CARD_REL_EXISTS = prove_rec_fn_exists num_Axiom card_rel_def;;
% --------------------------------------------------------------------- %
% Now, prove that it doesn't matter which element we delete %
% Proof modified for Version 12 IMP_RES_THEN [TFM 91.01.23] %
% --------------------------------------------------------------------- %
let CARD_REL_DEL_LEMMA =
TAC_PROOF
((conjuncts card_rel_def,
"!n:num.!s.!x:*.
x IN s ==> R (s DELETE x) n ==> !y:*. y IN s ==> R (s DELETE y) n"),
INDUCT_TAC THENL
[REPEAT GEN_TAC THEN DISCH_TAC THEN
IMP_RES_TAC DELETE_EQ_SING THEN ASM_REWRITE_TAC [] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC [IN_SING] THEN
GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC [SING_DELETE];
ASM_REWRITE_TAC [] THEN REPEAT STRIP_TAC THEN
let th = (SPEC "y:* = x'" EXCLUDED_MIDDLE) in
DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC th THENL
[MP_TAC (SPECL ["s:(*)set";"x:*";"x':*"] IN_DELETE_EQ) THEN
ASM_REWRITE_TAC [] THEN DISCH_TAC THEN
PURE_ONCE_REWRITE_TAC [DELETE_COMM] THEN
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[];
let th = (SPEC "x:* = y" EXCLUDED_MIDDLE) in
DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC th THENL
[EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC [];
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [IN_DELETE] THEN
RES_THEN (TRY o IMP_RES_THEN ASSUME_TAC) THEN
PURE_ONCE_REWRITE_TAC [DELETE_COMM] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC [IN_DELETE] THEN
CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN FIRST_ASSUM ACCEPT_TAC]]]);;
% --------------------------------------------------------------------- %
% So "R s" specifies a unique number. %
% --------------------------------------------------------------------- %
let CARD_REL_UNIQUE =
TAC_PROOF
((conjuncts card_rel_def,
"!n:num. !s:(*)set. R s n ==> (!m. R s m ==> (n = m))"),
INDUCT_TAC THEN ASM_REWRITE_TAC [] THENL
[GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN
CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THENL
[STRIP_TAC THEN REFL_TAC; ASM_REWRITE_TAC[NOT_SUC;NOT_IN_EMPTY]];
GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THENL
[ASM_REWRITE_TAC [NOT_SUC;SYM(SPEC_ALL MEMBER_NOT_EMPTY)] THEN
EXISTS_TAC "x:*" THEN FIRST_ASSUM ACCEPT_TAC;
ASM_REWRITE_TAC [INV_SUC_EQ] THEN STRIP_TAC THEN
IMP_RES_TAC CARD_REL_DEL_LEMMA THEN RES_TAC]]);;
% --------------------------------------------------------------------- %
% Now, ?n. R s n if s is finite. %
% --------------------------------------------------------------------- %
let CARD_REL_EXISTS_LEMMA =
TAC_PROOF
((conjuncts card_rel_def, "!s:(*)set. FINITE s ==> ?n:num. R s n"),
SET_INDUCT_TAC THENL
[EXISTS_TAC "0" THEN ASM_REWRITE_TAC[];
FIRST_ASSUM (\th g. CHOOSE_THEN ASSUME_TAC th g) THEN
EXISTS_TAC "SUC n" THEN ASM_REWRITE_TAC [] THEN
EXISTS_TAC "e:*" THEN IMP_RES_TAC DELETE_NON_ELEMENT THEN
ASM_REWRITE_TAC [DELETE_INSERT;IN_INSERT]]);;
% --------------------------------------------------------------------- %
% So (@n. R s n) = m iff R s m (\s.@n.R s n defines a function) %
% Proof modified for Version 12 IMP_RES_THEN [TFM 91.01.23] %
% --------------------------------------------------------------------- %
let CARD_REL_THM =
TAC_PROOF
((conjuncts card_rel_def,
"!m s. FINITE s ==> (((@n:num. R (s:(*)set) n) = m) = R s m)"),
REPEAT STRIP_TAC THEN
IMP_RES_TAC CARD_REL_EXISTS_LEMMA THEN
EQ_TAC THENL
[DISCH_THEN (SUBST1_TAC o SYM) THEN CONV_TAC SELECT_CONV THEN
EXISTS_TAC "n:num" THEN FIRST_ASSUM MATCH_ACCEPT_TAC;
STRIP_TAC THEN
IMP_RES_THEN ASSUME_TAC CARD_REL_UNIQUE THEN
CONV_TAC SYM_CONV THEN
FIRST_ASSUM MATCH_MP_TAC THEN
CONV_TAC SELECT_CONV THEN
EXISTS_TAC "n:num" THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;
% --------------------------------------------------------------------- %
% Now, prove the existence of the required cardinality function. %
% --------------------------------------------------------------------- %
let CARD_EXISTS =
TAC_PROOF
(([]," ?CARD.
(CARD EMPTY = 0) /\
(!s. FINITE s ==>
!x:*. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s)))"),
STRIP_ASSUME_TAC CARD_REL_EXISTS THEN
EXISTS_TAC "\s:(*)set. @n:num. R s n" THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN CONJ_TAC THENL
[ASSUME_TAC FINITE_EMPTY THEN IMP_RES_TAC CARD_REL_THM THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC [];
REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
[IMP_RES_THEN SUBST1_TAC ABSORPTION THEN REFL_TAC;
IMP_RES_THEN (ASSUME_TAC o SPEC "x:*") FINITE_INSERT THEN
IMP_RES_THEN (TRY o MATCH_MP_TAC) CARD_REL_THM THEN
ASM_REWRITE_TAC [] THEN EXISTS_TAC "x:*" THEN
IMP_RES_TAC DELETE_NON_ELEMENT THEN
ASM_REWRITE_TAC [IN_INSERT;DELETE_INSERT] THEN
CONV_TAC SELECT_CONV THEN
IMP_RES_THEN (TRY o MATCH_ACCEPT_TAC) CARD_REL_EXISTS_LEMMA]]);;
% --------------------------------------------------------------------- %
% Finally, introduce the CARD function via a constant specification. %
% --------------------------------------------------------------------- %
let CARD_DEF =
new_specification `CARD_DEF` [`constant`,`CARD`] CARD_EXISTS;;
% --------------------------------------------------------------------- %
% Various cardinality results. %
% --------------------------------------------------------------------- %
let CARD_EMPTY = save_thm(`CARD_EMPTY`,CONJUNCT1 CARD_DEF);;
let CARD_INSERT = save_thm(`CARD_INSERT`,CONJUNCT2 CARD_DEF);;
let CARD_EQ_0 =
prove_thm
(`CARD_EQ_0`,
"!s:(*)set. FINITE s ==> ((CARD s = 0) = (s = EMPTY))",
SET_INDUCT_TAC THENL
[REWRITE_TAC [CARD_EMPTY];
IMP_RES_TAC CARD_INSERT THEN
ASM_REWRITE_TAC [NOT_INSERT_EMPTY;NOT_SUC]]);;
let CARD_DELETE =
prove_thm
(`CARD_DELETE`,
"!s. FINITE s ==>
!x:*. CARD(s DELETE x) = (x IN s => (CARD s) - 1 | CARD s)",
SET_INDUCT_TAC THENL
[REWRITE_TAC [EMPTY_DELETE;NOT_IN_EMPTY];
PURE_REWRITE_TAC [DELETE_INSERT;IN_INSERT] THEN
REPEAT GEN_TAC THEN ASM_CASES_TAC "x:* = e" THENL
[IMP_RES_TAC CARD_DEF THEN ASM_REWRITE_TAC [SUC_SUB1];
SUBST1_TAC (SPECL ["e:*";"x:*"] EQ_SYM_EQ) THEN
IMP_RES_THEN (ASSUME_TAC o SPEC "x:*") FINITE_DELETE THEN
IMP_RES_TAC CARD_DEF THEN ASM_REWRITE_TAC [IN_DELETE;SUC_SUB1] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC [] THEN
STRIP_ASSUME_TAC (SPEC "CARD(s:(*)set)" num_CASES) THENL
[(let tac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
REPEAT_GTCL IMP_RES_THEN tac CARD_EQ_0 THEN
IMP_RES_TAC NOT_IN_EMPTY);
ASM_REWRITE_TAC [SUC_SUB1]]]]);;
let lemma1 =
TAC_PROOF
(([], "!n m. (SUC n <= SUC m) = (n <= m)"),
REWRITE_TAC [LESS_OR_EQ;INV_SUC_EQ;LESS_MONO_EQ]);;
let lemma2 =
TAC_PROOF
(([], "!n m. (n <= SUC m) = (n <= m \/ (n = SUC m))"),
REWRITE_TAC [LESS_OR_EQ;LESS_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC[]);;
let CARD_INTER_LESS_EQ =
prove_thm
(`CARD_INTER_LESS_EQ`,
"!s:(*)set. FINITE s ==> !t. CARD (s INTER t) <= CARD s",
SET_INDUCT_TAC THENL
[REWRITE_TAC [CARD_DEF;INTER_EMPTY;LESS_EQ_REFL];
PURE_ONCE_REWRITE_TAC [INSERT_INTER] THEN
GEN_TAC THEN COND_CASES_TAC THENL
[IMP_RES_THEN (ASSUME_TAC o SPEC "t:(*)set") INTER_FINITE THEN
IMP_RES_TAC CARD_DEF THEN ASM_REWRITE_TAC [IN_INTER;lemma1];
IMP_RES_TAC CARD_DEF THEN ASM_REWRITE_TAC [lemma2]]]);;
let CARD_UNION =
prove_thm
(`CARD_UNION`,
"!s:(*)set.
FINITE s ==>
!t. FINITE t ==>
(CARD (s UNION t) + CARD (s INTER t) = CARD s + CARD t)",
SET_INDUCT_TAC THENL
[REWRITE_TAC [UNION_EMPTY;INTER_EMPTY;CARD_DEF;ADD_CLAUSES];
REPEAT STRIP_TAC THEN REWRITE_TAC [INSERT_UNION;INSERT_INTER] THEN
ASM_CASES_TAC "(e:*) IN t" THENL
[IMP_RES_THEN (ASSUME_TAC o SPEC "t:(*)set") INTER_FINITE THEN
IMP_RES_TAC CARD_DEF THEN RES_TAC THEN
ASM_REWRITE_TAC [IN_INTER;ADD_CLAUSES];
IMP_RES_TAC UNION_FINITE THEN
IMP_RES_TAC CARD_DEF THEN RES_TAC THEN
ASM_REWRITE_TAC [ADD_CLAUSES; INV_SUC_EQ; IN_UNION]]]);;
let lemma =
TAC_PROOF
(([], "!n m. (n <= SUC m) = (n <= m \/ (n = SUC m))"),
REWRITE_TAC [LESS_OR_EQ;LESS_THM] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC[]);;
let CARD_SUBSET =
prove_thm
(`CARD_SUBSET`,
"!s:(*)set. FINITE s ==> (!t. t SUBSET s ==> (CARD t <= CARD s))",
SET_INDUCT_TAC THENL
[REWRITE_TAC [SUBSET_EMPTY;CARD_EMPTY] THEN
GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC [CARD_DEF;LESS_EQ_REFL];
IMP_RES_THEN (ASSUME_TAC o SPEC "e:*") FINITE_INSERT THEN
IMP_RES_TAC CARD_INSERT THEN
ASM_REWRITE_TAC [SUBSET_INSERT_DELETE] THEN
REPEAT STRIP_TAC THEN RES_THEN MP_TAC THEN
IMP_RES_TAC SUBSET_FINITE THEN
IMP_RES_TAC DELETE_FINITE THEN
IMP_RES_TAC CARD_DELETE THEN
ASM_REWRITE_TAC [] THEN COND_CASES_TAC THENL
[(let th = SPEC "CARD (t:(*)set)" num_CASES in
REPEAT_TCL STRIP_THM_THEN SUBST_ALL_TAC th) THENL
[REWRITE_TAC [LESS_OR_EQ;LESS_0];
REWRITE_TAC [SUC_SUB1;LESS_OR_EQ;LESS_MONO_EQ;INV_SUC_EQ]];
STRIP_TAC THEN ASM_REWRITE_TAC [lemma]]]);;
let CARD_PSUBSET =
prove_thm
(`CARD_PSUBSET`,
"!s:(*)set. FINITE s ==> (!t. t PSUBSET s ==> (CARD t < CARD s))",
REPEAT STRIP_TAC THEN IMP_RES_TAC PSUBSET_DEF THEN
IMP_RES_THEN (IMP_RES_THEN MP_TAC) CARD_SUBSET THEN
PURE_ONCE_REWRITE_TAC [LESS_OR_EQ] THEN
DISCH_THEN (STRIP_THM_THEN (\th g. ACCEPT_TAC th g ? MP_TAC th g)) THEN
IMP_RES_THEN STRIP_ASSUME_TAC PSUBSET_INSERT_SUBSET THEN
IMP_RES_THEN (IMP_RES_THEN MP_TAC) CARD_SUBSET THEN
IMP_RES_TAC INSERT_SUBSET THEN
IMP_RES_TAC SUBSET_FINITE THEN
IMP_RES_TAC CARD_INSERT THEN
ASM_REWRITE_TAC [LESS_EQ] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM ACCEPT_TAC);;
let CARD_SING =
prove_thm
(`CARD_SING`,
"!x:*. CARD {x} = 1",
CONV_TAC (ONCE_DEPTH_CONV num_CONV) THEN
GEN_TAC THEN ASSUME_TAC FINITE_EMPTY THEN
IMP_RES_THEN (ASSUME_TAC o SPEC "x:*") FINITE_INSERT THEN
IMP_RES_TAC CARD_DEF THEN ASM_REWRITE_TAC [NOT_IN_EMPTY;CARD_DEF]);;
let SING_IFF_CARD1 =
prove_thm
(`SING_IFF_CARD1`,
"!s:(*)set. (SING s) = ((CARD s = 1) /\ (FINITE s))",
REWRITE_TAC [SING_DEF;num_CONV "1"] THEN
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN (CHOOSE_THEN SUBST1_TAC) THEN
CONJ_TAC THENL
[ASSUME_TAC FINITE_EMPTY THEN
IMP_RES_TAC CARD_INSERT THEN
ASM_REWRITE_TAC [CARD_EMPTY;NOT_IN_EMPTY];
REWRITE_TAC [FINITE_INSERT;FINITE_EMPTY]];
STRIP_ASSUME_TAC (SPEC "s:(*)set" SET_CASES) THENL
[ASM_REWRITE_TAC [CARD_EMPTY;NOT_EQ_SYM(SPEC_ALL NOT_SUC)];
ASM_REWRITE_TAC [FINITE_INSERT] THEN
DISCH_THEN (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
IMP_RES_TAC CARD_INSERT THEN
IMP_RES_TAC CARD_EQ_0 THEN
ASM_REWRITE_TAC [INV_SUC_EQ] THEN
DISCH_TAC THEN EXISTS_TAC "x:*" THEN
ASM_REWRITE_TAC []]]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let CARD_DIFF =
prove_thm
(`CARD_DIFF`,
"!t:(*)set. FINITE t ==>
!s:(*)set. FINITE s ==>
(CARD (s DIFF t) = (CARD s - CARD (s INTER t)))",
SET_INDUCT_TAC THEN REPEAT STRIP_TAC THENL
[REWRITE_TAC [DIFF_EMPTY;INTER_EMPTY;CARD_EMPTY;SUB_0];
PURE_ONCE_REWRITE_TAC [INTER_COMM] THEN
PURE_ONCE_REWRITE_TAC [INSERT_INTER] THEN
COND_CASES_TAC THENL
[let th = SPEC "s':(*)set" (UNDISCH (SPEC "s:(*)set" INTER_FINITE)) in
PURE_ONCE_REWRITE_TAC [MATCH_MP CARD_INSERT th] THEN
IMP_RES_THEN (ASSUME_TAC o SPEC "e:*") FINITE_DELETE THEN
IMP_RES_TAC CARD_DELETE THEN
RES_TAC THEN ASM_REWRITE_TAC [IN_INTER;DIFF_INSERT] THEN
PURE_ONCE_REWRITE_TAC [SYM (SPEC_ALL SUB_PLUS)] THEN
REWRITE_TAC [num_CONV "1";ADD_CLAUSES;DELETE_INTER] THEN
MP_TAC (SPECL ["s':(*)set";"s:(*)set";"e:*"] IN_INTER) THEN
ASM_REWRITE_TAC [DELETE_NON_ELEMENT] THEN
DISCH_THEN SUBST1_TAC THEN
SUBST1_TAC (SPECL ["s:(*)set";"s':(*)set"] INTER_COMM) THEN REFL_TAC;
IMP_RES_TAC DELETE_NON_ELEMENT THEN
PURE_ONCE_REWRITE_TAC [INTER_COMM] THEN
RES_TAC THEN ASM_REWRITE_TAC [DIFF_INSERT]]]);;
% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier) %
% --------------------------------------------------------------------- %
let LESS_CARD_DIFF =
prove_thm
(`LESS_CARD_DIFF`,
"!t:(*)set. FINITE t ==>
!s. FINITE s ==> (CARD t < CARD s) ==> (0 < CARD(s DIFF t))",
REPEAT STRIP_TAC THEN
REPEAT_GTCL IMP_RES_THEN SUBST1_TAC CARD_DIFF THEN
PURE_REWRITE_TAC [GSYM SUB_LESS_0] THEN
let th1 = UNDISCH (SPEC "s:(*)set" CARD_INTER_LESS_EQ) in
let th2 = SPEC "t:(*)set" (PURE_ONCE_REWRITE_RULE [LESS_OR_EQ] th1) in
DISJ_CASES_THEN2 ACCEPT_TAC (SUBST_ALL_TAC o SYM) th2 THEN
let th3 = SPEC "s:(*)set" (UNDISCH(SPEC "t:(*)set" CARD_INTER_LESS_EQ)) in
let th4 = PURE_ONCE_REWRITE_RULE [INTER_COMM] th3 in
IMP_RES_TAC (PURE_ONCE_REWRITE_RULE [GSYM NOT_LESS] th4));;
% ===================================================================== %
% Infiniteness %
% ===================================================================== %
let INFINITE_DEF =
new_definition (`INFINITE_DEF`, "!s:(*)set. INFINITE s = ~(FINITE s)");;
let NOT_IN_FINITE =
prove_thm
(`NOT_IN_FINITE`,
"INFINITE (UNIV:(*)set) = !s:(*)set. FINITE s ==> ?x. ~ (x IN s)",
PURE_ONCE_REWRITE_TAC [INFINITE_DEF] THEN EQ_TAC THENL
[CONV_TAC CONTRAPOS_CONV THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
REWRITE_TAC [NOT_IMP] THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
REWRITE_TAC [EQ_UNIV] THEN
CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [];
REPEAT STRIP_TAC THEN RES_THEN STRIP_ASSUME_TAC THEN
ASSUME_TAC (SPEC "x:*" IN_UNIV) THEN RES_TAC]);;
let INVERSE_LEMMA =
TAC_PROOF
(([], "!f:*->**. (!x y. (f x = f y) ==> (x = y)) ==>
((\x:**. @y:*. x = f y) o f = \x:*.x)"),
REPEAT STRIP_TAC THEN CONV_TAC FUN_EQ_CONV THEN
PURE_ONCE_REWRITE_TAC [o_THM] THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
GEN_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
CONV_TAC (SYM_CONV THENC SELECT_CONV) THEN
EXISTS_TAC "x:*" THEN REFL_TAC);;
let IMAGE_11_INFINITE =
prove_thm
(`IMAGE_11_INFINITE`,
"!f:*->**. (!x y. (f x = f y) ==> (x = y)) ==>
!s:(*)set. INFINITE s ==> INFINITE (IMAGE f s)",
GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN
CONV_TAC CONTRAPOS_CONV THEN
REWRITE_TAC [INFINITE_DEF] THEN STRIP_TAC THEN
let thm = INST_TYPE [":*",":**";":**",":*"] IMAGE_FINITE in
IMP_RES_THEN (MP_TAC o ISPEC "\x:**.@y:*.x=f y") thm THEN
REWRITE_TAC [SYM(SPEC_ALL IMAGE_COMPOSE)] THEN
IMP_RES_TAC INVERSE_LEMMA THEN
ASM_REWRITE_TAC [IMAGE_ID]);;
let INFINITE_SUBSET =
prove_thm
(`INFINITE_SUBSET`,
"!s:(*)set. INFINITE s ==> (!t. s SUBSET t ==> INFINITE t)",
PURE_ONCE_REWRITE_TAC [INFINITE_DEF] THEN
REPEAT STRIP_TAC THEN IMP_RES_TAC SUBSET_FINITE THEN RES_TAC);;
let IN_INFINITE_NOT_FINITE =
prove_thm
(`IN_INFINITE_NOT_FINITE`,
"!s t. (INFINITE s /\ FINITE t) ==> ?x:*. x IN s /\ ~x IN t",
CONV_TAC (ONCE_DEPTH_CONV CONTRAPOS_CONV) THEN
CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
PURE_ONCE_REWRITE_TAC [DE_MORGAN_THM] THEN
REWRITE_TAC [SYM(SPEC_ALL IMP_DISJ_THM)] THEN
PURE_ONCE_REWRITE_TAC [SYM(SPEC_ALL SUBSET_DEF)] THEN
PURE_ONCE_REWRITE_TAC [SYM(SPEC_ALL INFINITE_DEF)] THEN
REPEAT STRIP_TAC THEN IMP_RES_TAC INFINITE_SUBSET);;
% --------------------------------------------------------------------- %
% The next series of lemmas are used for proving that if UNIV:(*)set is %
% INFINITE then :* satisfies an axiom of infinity. %
% %
% The function g:num->(*)set defines a series of sets: %
% %
% {}, {x1}, {x1,x2}, {x1,x2,x3},... %
% %
% and one then defines an f:*->* such that f(xi)=xi+1. %
% --------------------------------------------------------------------- %
% --------------------------------------------------------------------- %
% Defining equations for g. %
% --------------------------------------------------------------------- %
let gdef =
["g 0 = ({}:(*)set)"; "!n. g(SUC n) = (@x:*.~ x IN (g n)) INSERT (g n)"];;
% --------------------------------------------------------------------- %
% Lemma: g n is finite for all n. %
% --------------------------------------------------------------------- %
let g_finite =
TAC_PROOF
((gdef, "!n:num. FINITE (g n:(*)set)"),
INDUCT_TAC THEN ASM_REWRITE_TAC[FINITE_EMPTY;FINITE_INSERT]);;
% --------------------------------------------------------------------- %
% Lemma: g n is contained in g (n+i) for all i. %
% --------------------------------------------------------------------- %
let g_subset =
TAC_PROOF
((gdef, "!n. !x:*. x IN (g n) ==> !i. x IN (g (n+i))"),
REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC [ADD_CLAUSES;IN_INSERT]);;
% --------------------------------------------------------------------- %
% Lemma: if x is in g(n) then {x} = g(n+1)-g(n) for some n. %
% --------------------------------------------------------------------- %
let lemma =
TAC_PROOF(([], "((A \/ B) /\ ~B) = (A /\ ~B)"),
BOOL_CASES_TAC "B:bool" THEN REWRITE_TAC[]);;
let g_cases =
TAC_PROOF
((gdef, "(!s. FINITE s ==> ?x:*. ~(x IN s)) ==>
!x:*. (?n. x IN (g n)) ==>
(?m. (x IN (g (SUC m))) /\ ~(x IN (g m)))"),
DISCH_TAC THEN GEN_TAC THEN
DISCH_THEN (STRIP_THM_THEN MP_TAC o CONV_RULE EXISTS_LEAST_CONV) THEN
REPEAT_TCL STRIP_THM_THEN SUBST1_TAC (SPEC "n:num" num_CASES) THEN
ASM_REWRITE_TAC [NOT_IN_EMPTY;IN_INSERT] THEN STRIP_TAC THENL
[REWRITE_TAC [lemma] THEN EXISTS_TAC "n':num" THEN
CONJ_TAC THEN TRY(FIRST_ASSUM ACCEPT_TAC) THEN
FIRST_ASSUM (\th g. SUBST1_TAC th g) THEN
CONV_TAC SELECT_CONV THEN
FIRST_ASSUM MATCH_MP_TAC THEN
MATCH_ACCEPT_TAC g_finite;
REWRITE_TAC [lemma] THEN
FIRST_ASSUM (\th g. MP_TAC (SPEC "n':num" th) g) THEN
REWRITE_TAC [LESS_SUC_REFL] THEN
DISCH_THEN IMP_RES_TAC]);;
% --------------------------------------------------------------------- %
% Lemma: @x.~(x IN {}) is an element of every g(n+1). %
% --------------------------------------------------------------------- %
let z_in_g1 =
TAC_PROOF
((gdef, "(@x:*.~x IN {}) IN (g (SUC 0))"),
ASM_REWRITE_TAC [NOT_IN_EMPTY;IN_INSERT]);;
let z_in_gn =
TAC_PROOF
((gdef, "!n:num. (@x:*.~x IN {}) IN (g (SUC n))"),
PURE_ONCE_REWRITE_TAC [ADD1] THEN
PURE_ONCE_REWRITE_TAC [ADD_SYM] THEN
MATCH_MP_TAC g_subset THEN
REWRITE_TAC [num_CONV "1";z_in_g1]);;
% --------------------------------------------------------------------- %
% Lemma: @x.~(x IN g n) is an element of g(n+1). %
% --------------------------------------------------------------------- %
let in_lemma =
TAC_PROOF
((gdef, "!n:num. (@x:*. ~(x IN (g n))) IN (g(SUC n))"),
ASM_REWRITE_TAC [IN_INSERT]);;
% --------------------------------------------------------------------- %
% Lemma: the x added to g(n+1) is not in g(n) %
% --------------------------------------------------------------------- %
let not_in_lemma =
TAC_PROOF
((gdef, "(!s. FINITE s ==> ?x:*. ~(x IN s)) ==>
!i. !n. ~(@x:*. ~(x IN (g (n+i)))) IN g n"),
DISCH_TAC THEN INDUCT_TAC THENL
[ASM_REWRITE_TAC [ADD_CLAUSES] THEN
GEN_TAC THEN CONV_TAC SELECT_CONV THEN
FIRST_ASSUM MATCH_MP_TAC THEN
MATCH_ACCEPT_TAC g_finite;
PURE_ONCE_REWRITE_TAC [ADD_CLAUSES] THEN
PURE_ONCE_REWRITE_TAC [SYM(el 3 (CONJUNCTS ADD_CLAUSES))] THEN
GEN_TAC THEN FIRST_ASSUM (\th g. MP_TAC(SPEC "SUC n" th) g) THEN
REWRITE_TAC (map ASSUME gdef) THEN
REWRITE_TAC [IN_INSERT;DE_MORGAN_THM] THEN
REPEAT STRIP_TAC THEN RES_TAC]);;
% --------------------------------------------------------------------- %
% Lemma: each value is added to a unique g(n). %
% --------------------------------------------------------------------- %
let less_lemma =
TAC_PROOF
(([], "!m n. ~(m = n) = ((m < n) \/ (n < m))"),
REPEAT GEN_TAC THEN ASM_CASES_TAC "n < m" THEN
ASM_REWRITE_TAC [] THENL
[DISCH_THEN SUBST_ALL_TAC THEN IMP_RES_TAC LESS_REFL;
IMP_RES_THEN MP_TAC NOT_LESS THEN
REWRITE_TAC [LESS_OR_EQ] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THENL
[IMP_RES_TAC LESS_NOT_EQ; MATCH_ACCEPT_TAC LESS_REFL]]);;
let gn_unique =
TAC_PROOF
((gdef, "(!s. FINITE s ==> ?x:*. ~(x IN s)) ==>
!n:num. !m. ((@x:*.~ x IN (g n)) = @x:*.~(x IN (g m))) = (n=m)"),
DISCH_TAC THEN REPEAT GEN_TAC THEN EQ_TAC THENL
[CONV_TAC CONTRAPOS_CONV THEN
REWRITE_TAC [less_lemma] THEN
DISCH_THEN (STRIP_THM_THEN MP_TAC) THEN
DISCH_THEN (STRIP_THM_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1) THEN
REWRITE_TAC [num_CONV "1";ADD_CLAUSES] THEN
REWRITE_TAC [SYM(el 3 (CONJUNCTS ADD_CLAUSES))] THEN
IMP_RES_TAC not_in_lemma THEN
DISCH_TAC THENL
[MP_TAC (SPEC "n:num" in_lemma) THEN
EVERY_ASSUM (\th g. SUBST1_TAC th g ? ALL_TAC g) THEN
DISCH_TAC THEN RES_TAC;
MP_TAC (SPEC "m:num" in_lemma) THEN
EVERY_ASSUM (\th g. SUBST1_TAC (SYM th) g ? ALL_TAC g) THEN
DISCH_TAC THEN RES_TAC];
DISCH_THEN SUBST1_TAC THEN REFL_TAC]);;
% --------------------------------------------------------------------- %
% Lemma: the value added to g(n) to get g(n+1) a unique. %
% --------------------------------------------------------------------- %
let x_unique =
TAC_PROOF
((gdef, "!n. !x. !y:*.
(~(x IN g n) /\ ~(y IN g n)) ==>
(x IN g(SUC n)) ==> (y IN g(SUC n)) ==> (x = y)"),
REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC [IN_INSERT] THEN
REPEAT (DISCH_THEN SUBST1_TAC) THEN REFL_TAC);;
% --------------------------------------------------------------------- %
% Now, show the existence of a non-onto one-one fuction. The required %
% function is denoted by fdef. The theorem cases is: %
% %
% |- (?n. x IN (g n)) \/ (!n. ~x IN (g n)) %
% %
% and is used to do case splits on the condition of the conditional %
% present in fdef. %
% --------------------------------------------------------------------- %
let fdef =
"\x:*. (?n. (x IN (g n))) =>
(@y.~(y IN (g (SUC @n. x IN g(SUC n) /\ ~ x IN (g n))))) | x";;
let cases =
let thm = GEN "x:*" (SPEC "?n:num.(x:*) IN (g n)" EXCLUDED_MIDDLE) in
CONV_RULE (ONCE_DEPTH_CONV NOT_EXISTS_CONV) thm;;
let INF_IMP_INFINITY =
TAC_PROOF
(([],"(!s. FINITE s ==> ?x:*. ~(x IN s)) ==>
(?f:*->*. (!x y. (f x = f y) ==> (x=y)) /\ ?y. !x. ~(f x = y))"),
let xcases = SPEC "x:*" cases and ycases = SPEC "y:*" cases in
let nv x = "SUC(@n. ^x IN (g(SUC n)) /\ ~^x IN (g n))" in
STRIP_ASSUME_TAC (prove_rec_fn_exists num_Axiom (list_mk_conj gdef)) THEN
STRIP_TAC THEN EXISTS_TAC fdef THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN CONJ_TAC THENL
[REPEAT GEN_TAC THEN
DISJ_CASES_THEN (\th. REWRITE_TAC[th] THEN
STRIP_ASSUME_TAC th) xcases THEN
DISJ_CASES_THEN (\th. REWRITE_TAC[th] THEN
STRIP_ASSUME_TAC th) ycases THENL
[REWRITE_TAC [UNDISCH gn_unique;INV_SUC_EQ] THEN
IMP_RES_THEN (IMP_RES_THEN(STRIP_ASSUME_TAC o SELECT_RULE)) g_cases THEN
DISCH_THEN SUBST_ALL_TAC THEN IMP_RES_TAC x_unique;
ASSUME_TAC (SPEC (nv "x:*") in_lemma) THEN
DISCH_THEN (SUBST_ALL_TAC o SYM) THEN RES_TAC;
ASSUME_TAC (SPEC (nv "y:*") in_lemma) THEN
DISCH_THEN SUBST_ALL_TAC THEN RES_TAC];
EXISTS_TAC "@x:*.~(x IN g 0)" THEN GEN_TAC THEN
DISJ_CASES_THEN (\th. REWRITE_TAC[th] THEN ASSUME_TAC th) xcases THENL
[REWRITE_TAC [UNDISCH gn_unique;NOT_SUC];
ASSUME_TAC (SPEC "n:num" z_in_gn) THEN
FIRST_ASSUM (\th g. SUBST1_TAC th g) THEN
DISCH_THEN SUBST_ALL_TAC THEN RES_TAC]]);;
% --------------------------------------------------------------------- %
% We now also prove the converse, namely that if :* satisfies an axiom %
% of infinity then UNIV:(*)set is INFINITE. %
% --------------------------------------------------------------------- %
% --------------------------------------------------------------------- %
% First, a version of the primitive recursion theorem %
% --------------------------------------------------------------------- %
let prth =
prove_rec_fn_exists num_Axiom
"(fn f x 0 = x) /\
(fn f x (SUC n) = (f:*->*)(fn f x n))";;
let prmth =
TAC_PROOF
(([], "!x:*. !f. ?fn. (fn 0 = x) /\ !n. fn (SUC n) = f(fn n)"),
REPEAT GEN_TAC THEN STRIP_ASSUME_TAC prth THEN
EXISTS_TAC "fn (f:*->*) (x:*) : num->*" THEN
ASM_REWRITE_TAC []);;
% --------------------------------------------------------------------- %
% Lemma: if f is one-to-one and not onto, there is a one-one f:num->*. %
% --------------------------------------------------------------------- %
let num_fn_thm =
TAC_PROOF
(([],"(?f:*->*. (!x y. (f x = f y) ==> (x=y)) /\ ?y. !x. ~(f x = y))
==>
(?fn:num->*. (!n m. (fn n = fn m) ==> (n=m)))"),
STRIP_TAC THEN STRIP_ASSUME_TAC (SPECL ["y:*";"f:*->*"] prmth) THEN
EXISTS_TAC "fn:num->*" THEN INDUCT_TAC THENL
[CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[];
INDUCT_TAC THEN ASM_REWRITE_TAC [INV_SUC_EQ] THEN
REPEAT STRIP_TAC THEN RES_TAC THEN RES_TAC]);;
% --------------------------------------------------------------------- %
% Lemma: every finite set of numbers has an upper bound. %
% --------------------------------------------------------------------- %
let finite_N_bounded =
TAC_PROOF
(([], "!s. FINITE s ==> ?m. !n. (n IN s) ==> n < m"),
SET_INDUCT_TAC THENL
[REWRITE_TAC [NOT_IN_EMPTY];
FIRST_ASSUM (\th g. CHOOSE_THEN ASSUME_TAC th g) THEN
EXISTS_TAC "(SUC m) + e" THEN REWRITE_TAC [IN_INSERT] THEN
REPEAT STRIP_TAC THENL
[PURE_ONCE_REWRITE_TAC [ADD_SYM] THEN ASM_REWRITE_TAC [LESS_ADD_SUC];
RES_TAC THEN IMP_RES_TAC LESS_IMP_LESS_ADD THEN
let [_;_;c1;c2] = CONJUNCTS ADD_CLAUSES in
ASM_REWRITE_TAC [c1;SYM c2]]]);;
% --------------------------------------------------------------------- %
% Lemma: UNIV:(num)set is infinite. %
% --------------------------------------------------------------------- %
let N_lemma =
TAC_PROOF
(([], "INFINITE(UNIV:(num)set)"),
REWRITE_TAC [INFINITE_DEF] THEN STRIP_TAC THEN
IMP_RES_THEN MP_TAC finite_N_bounded THEN
REWRITE_TAC [IN_UNIV] THEN
CONV_TAC NOT_EXISTS_CONV THEN GEN_TAC THEN
CONV_TAC NOT_FORALL_CONV THEN EXISTS_TAC "SUC m" THEN
REWRITE_TAC [NOT_LESS;LESS_OR_EQ;LESS_SUC_REFL]);;
% --------------------------------------------------------------------- %
% Lemma: if s is finite, f:num->* is one-one, then ?n. f(n) not in s %
% --------------------------------------------------------------------- %
let main_lemma =
TAC_PROOF
(([], "!s:(*)set. FINITE s ==>
!f:num->*. (!n m. (f n = f m) ==> (n=m)) ==> ?n. ~(f n IN s)"),
REPEAT STRIP_TAC THEN
ASSUME_TAC N_lemma THEN
IMP_RES_TAC IMAGE_11_INFINITE THEN
IMP_RES_THEN (TRY o IMP_RES_THEN MP_TAC) IN_INFINITE_NOT_FINITE THEN
REWRITE_TAC [IN_IMAGE;IN_UNIV] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC "x':num" THEN
EVERY_ASSUM (\th g. SUBST1_TAC (SYM th) g ? ALL_TAC g) THEN
FIRST_ASSUM ACCEPT_TAC);;
% --------------------------------------------------------------------- %
% Now show that we can always choose an element not in a finite set. %
% --------------------------------------------------------------------- %
let INFINITY_IMP_INF =
TAC_PROOF
(([],"(?f:*->*. (!x y. (f x = f y) ==> (x=y)) /\ ?y. !x. ~(f x = y))
==> (!s. FINITE s ==> ?x:*. ~(x IN s))"),
DISCH_THEN (STRIP_ASSUME_TAC o MATCH_MP num_fn_thm) THEN
GEN_TAC THEN STRIP_TAC THEN
IMP_RES_TAC main_lemma THEN
EXISTS_TAC "(fn:num->*) n" THEN
FIRST_ASSUM ACCEPT_TAC);;
% --------------------------------------------------------------------- %
% Finally, we can prove the desired theorem. %
% --------------------------------------------------------------------- %
let INFINITE_UNIV =
prove_thm
(`INFINITE_UNIV`,
"INFINITE (UNIV:(*)set)
=
(?f:*->*. (!x y. (f x = f y) ==> (x = y)) /\ (?y. !x. ~(f x = y)))",
PURE_ONCE_REWRITE_TAC [NOT_IN_FINITE] THEN
ACCEPT_TAC (IMP_ANTISYM_RULE INF_IMP_INFINITY INFINITY_IMP_INF));;
let FINITE_PSUBSET_INFINITE =
prove_thm
(`FINITE_PSUBSET_INFINITE`,
"!s. INFINITE (s:(*)set)
=
!t. FINITE (t:(*)set) ==> ((t SUBSET s) ==> (t PSUBSET s))",
PURE_REWRITE_TAC [INFINITE_DEF;PSUBSET_DEF] THEN
GEN_TAC THEN EQ_TAC THENL
[REPEAT STRIP_TAC THENL
[FIRST_ASSUM ACCEPT_TAC;
FIRST_ASSUM (\th g. SUBST_ALL_TAC th g ? NO_TAC g) THEN RES_TAC];
REPEAT STRIP_TAC THEN RES_TAC THEN
ASSUME_TAC (SPEC "s:(*)set" SUBSET_REFL) THEN
ASSUME_TAC (REFL "s:(*)set") THEN RES_TAC]);;
let FINITE_PSUBSET_UNIV =
prove_thm
(`FINITE_PSUBSET_UNIV`,
"INFINITE (UNIV:(*)set) = !s:(*)set. FINITE s ==> s PSUBSET UNIV",
PURE_ONCE_REWRITE_TAC [FINITE_PSUBSET_INFINITE] THEN
REWRITE_TAC [PSUBSET_DEF;SUBSET_UNIV]);;
let INFINITE_DIFF_FINITE =
prove_thm
(`INFINITE_DIFF_FINITE`,
"!s t. (INFINITE s /\ FINITE t) ==> ~(s DIFF t = ({}:(*)set))",
REPEAT GEN_TAC THEN STRIP_TAC THEN
IMP_RES_TAC IN_INFINITE_NOT_FINITE THEN
REWRITE_TAC [EXTENSION;IN_DIFF;NOT_IN_EMPTY] THEN
CONV_TAC NOT_FORALL_CONV THEN
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[]);;
let FINITE_ISO_NUM =
prove_thm
(`FINITE_ISO_NUM`,
"!s:(*)set.
FINITE s ==>
?f. (!n m. (n < CARD s /\ m < CARD s) ==> (f n = f m) ==> (n = m)) /\
(s = {f n | n < CARD s})",
SET_INDUCT_TAC THENL
[PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
REWRITE_TAC [CARD_EMPTY;NOT_LESS_0;NOT_IN_EMPTY];
FIRST_ASSUM (\th g. CHOOSE_THEN STRIP_ASSUME_TAC th g) THEN
PURE_ONCE_REWRITE_TAC [UNDISCH (SPEC "s:(*)set" CARD_INSERT)] THEN
FILTER_ASM_REWRITE_TAC is_neg [] THEN
PURE_ONCE_REWRITE_TAC [LESS_THM] THEN
EXISTS_TAC "\n. n < (CARD (s:(*)set)) => f n | (e:*)" THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN CONJ_TAC THENL
[REPEAT GEN_TAC THEN
let ttac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
DISCH_THEN (REPEAT_TCL STRIP_THM_THEN ttac) THENL
[REPEAT STRIP_TAC THEN REFL_TAC;
let is_less t = (fst(strip_comb t) = "<") ? false in
FILTER_ASM_REWRITE_TAC is_less [LESS_REFL] THEN
FIRST_ASSUM (\th g. MP_TAC (assert (is_eq o concl) th) g) THEN
PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
REPEAT STRIP_TAC THEN RES_TAC THEN RES_TAC;
let is_less t = (fst(strip_comb t) = "<") ? false in
FILTER_ASM_REWRITE_TAC is_less [LESS_REFL] THEN
FIRST_ASSUM (\th g. MP_TAC (assert (is_eq o concl) th) g) THEN
PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN
REPEAT STRIP_TAC THEN RES_TAC THEN RES_TAC;
let is_less t = (fst(strip_comb t) = "<") ? false in
FILTER_ASM_REWRITE_TAC is_less [LESS_REFL] THEN
FIRST_ASSUM MATCH_MP_TAC THEN
CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC];
FIRST_ASSUM (\th g. (MP_TAC (assert(is_eq o concl) th)) g) THEN
PURE_REWRITE_TAC [EXTENSION;IN_INSERT] THEN
CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
DISCH_THEN (\th. PURE_ONCE_REWRITE_TAC [th]) THEN
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL
[EXISTS_TAC "CARD (s:(*)set)" THEN
REWRITE_TAC [LESS_REFL] THEN FIRST_ASSUM ACCEPT_TAC;
EXISTS_TAC "n:num" THEN
FILTER_ASM_REWRITE_TAC (\t. not(lhs t) = "s:(*)set" ? true) [];
SUBST1_TAC (ASSUME "x:* = (n < CARD (s:(*)set) => f n | e)") THEN
SUBST1_TAC (ASSUME "n = CARD (s:(*)set)") THEN
REWRITE_TAC [LESS_REFL];
SUBST1_TAC (ASSUME "x:* = (n < CARD (s:(*)set) => f n | e)") THEN
DISJ2_TAC THEN EXISTS_TAC "n:num" THEN
REWRITE_TAC [ASSUME "n < CARD (s:(*)set)"]]]]);;
quit();; % Needed for Common Lisp %
|