File: mk_sets.ml

package info (click to toggle)
hol88 2.02.19940316-33
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 65,988 kB
  • ctags: 21,623
  • sloc: ml: 199,939; ansic: 9,666; sh: 7,118; makefile: 6,095; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (2453 lines) | stat: -rw-r--r-- 90,278 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
% ===================================================================== %
% LIBRARY: sets								%
% FILE:    mk_sets.ml							%
% DESCRIPTION: a simple theory of sets					%
%									% 
% AUTHOR:  Philippe Leveilley						%
% DATE:    June 9, 1989							%
%									%
% REVISED: Tom Melham (extensively revised and extended)		%
% DATE:    August 1990							%
% ===================================================================== %

% --------------------------------------------------------------------- %
% Create the new theory.						%
% --------------------------------------------------------------------- %
new_theory `sets`;;

% ===================================================================== %
% Type definition for (*)set.						%
%									%
% Sets are represented by predicates of type *->bool.  The empty set is %
% is represented by the abstraction \x.F.  A set is represented by its  %
% characteristic function. 						%
% ===================================================================== %

% --------------------------------------------------------------------- %
% Theorem stating that the representing type is non empty.		%
% --------------------------------------------------------------------- %
let EXISTENCE_THM = 
     TAC_PROOF(([],"?s:*->bool. (\p.T) s"),
               EXISTS_TAC "p:*->bool" THEN
	       CONV_TAC BETA_CONV THEN 
	       ACCEPT_TAC TRUTH);;

% --------------------------------------------------------------------- %
% Now, make the type definition.					%
% --------------------------------------------------------------------- %
let set_TY_DEF = 
    new_type_definition(`set`,"\p:*->bool.T", EXISTENCE_THM);;

% --------------------------------------------------------------------- %
% Define (*)set <-> (*->bool) bijections  				%
% --------------------------------------------------------------------- %
let set_ISO_DEF = 
    define_new_type_bijections `set_ISO_DEF` `SPEC` `CHF` set_TY_DEF;;

% --------------------------------------------------------------------- %
% Prove that CHF is one-to-one.						%
% --------------------------------------------------------------------- %
let CHF_11 = REWRITE_RULE [] (prove_rep_fn_one_one set_ISO_DEF);;

% --------------------------------------------------------------------- %
% Remove the lambda in set_ISO_DEF					%
% --------------------------------------------------------------------- %
let set_ISO_DEF = REWRITE_RULE [] set_ISO_DEF;;

% ===================================================================== %
% Membership.								%
% ===================================================================== %

let IN_DEF = 
    new_infix_definition (`IN_DEF`, "$IN (x:*) (s:(*)set) = CHF s x");;

% --------------------------------------------------------------------- %
% Axiom of specification: x IN {y | P y} iff P x			%
% --------------------------------------------------------------------- %

let SPECIFICATION =
    prove_thm
    (`SPECIFICATION`,
     "!(P:*->bool) x. x IN (SPEC P) = P x",
     REWRITE_TAC [IN_DEF; set_ISO_DEF]);;

% --------------------------------------------------------------------- %
% Axiom of extension: (s = t) iff !x. x IN s = x in t			%
% --------------------------------------------------------------------- %

let EXTENSION = prove_thm
   (`EXTENSION`,
    "!s t. (s=t) = (!x:*. x IN s = x IN t)",
    REPEAT GEN_TAC THEN
    REWRITE_TAC [IN_DEF;SYM (FUN_EQ_CONV "f:*->** = g");CHF_11]);;

let NOT_EQUAL_SETS = 
    prove_thm
    (`NOT_EQUAL_SETS`,
     "!s:(*)set. !t. ~(s = t) = ?x. x IN t = ~x IN s",
     PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     REPEAT STRIP_TAC THEN EQ_TAC THENL
     [DISCH_THEN (STRIP_THM_THEN MP_TAC) THEN
      ASM_CASES_TAC "(x:*) IN s" THEN ASM_REWRITE_TAC [] THEN
      REPEAT STRIP_TAC THEN EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[];
      STRIP_TAC THEN EXISTS_TAC "x:*" THEN 
      ASM_CASES_TAC "(x:*) IN s" THEN ASM_REWRITE_TAC []]);;

% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %

let NUM_SET_WOP =
    prove_thm
    (`NUM_SET_WOP`,
     "!s. (?n. n IN s) = ?n. n IN s /\ (!m. m IN s ==> n <= m)",
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [let th = BETA_RULE (ISPEC "\n:num. n IN s" WOP) in
      IMP_RES_THEN (X_CHOOSE_THEN "N:num" STRIP_ASSUME_TAC) th THEN
      EXISTS_TAC "N:num" THEN CONJ_TAC THENL
      [FIRST_ASSUM ACCEPT_TAC;
       GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN
       ASM_REWRITE_TAC [GSYM NOT_LESS]];
      EXISTS_TAC "n:num" THEN FIRST_ASSUM ACCEPT_TAC]);;

% ===================================================================== %
% Generalized set specification.					%
% ===================================================================== %
let GSPEC_DEF = 
    new_definition
    (`GSPEC_DEF`,
     "GSPEC f = SPEC(\y:*. ?x:**. (y,T) = f x)");;

% --------------------------------------------------------------------- %
% generalized axiom of specification.					%
% --------------------------------------------------------------------- %

let GSPECIFICATION = 
    prove_thm
    (`GSPECIFICATION`,
     "!f. !v:*. v IN (GSPEC f) = ?x:**. v,T = f x",
     REPEAT GEN_TAC THEN
     REWRITE_TAC [GSPEC_DEF;SPECIFICATION] THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REFL_TAC);;

% --------------------------------------------------------------------- %
% load generalized specification code.					%
% --------------------------------------------------------------------- %
loadt `gspec.ml`;;

% --------------------------------------------------------------------- %
% activate generalized specification parser/pretty-printer.		%
% --------------------------------------------------------------------- %
define_set_abstraction_syntax `GSPEC`;;
set_flag(`print_set`,true);;

% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %

let lemma =
    TAC_PROOF
    (([], "!s x. x IN s ==>  !f:*->**. (f x) IN {f x | x IN s}"),
     REPEAT STRIP_TAC THEN CONV_TAC SET_SPEC_CONV THEN
     EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[]);;

let SET_MINIMUM = 
    prove_thm
    (`SET_MINIMUM`,
     "!s:(*)set. !M.
      (?x. x IN s) = ?x. x IN s /\ !y. y IN s ==> M x <= M y",
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [IMP_RES_THEN (ASSUME_TAC o ISPEC "M:*->num") lemma THEN
      let th = SET_SPEC_CONV "(n:num) IN {M x | (x:*) IN s}" in
      IMP_RES_THEN (STRIP_ASSUME_TAC o REWRITE_RULE [th]) NUM_SET_WOP THEN
      EXISTS_TAC "x':*" THEN CONJ_TAC THENL
      [FIRST_ASSUM ACCEPT_TAC;
       FIRST_ASSUM (SUBST_ALL_TAC o SYM) THEN
       REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
       EXISTS_TAC "y:*" THEN CONJ_TAC THENL
       [REFL_TAC; FIRST_ASSUM ACCEPT_TAC]];
      EXISTS_TAC "x:*" THEN FIRST_ASSUM ACCEPT_TAC]);;


% ===================================================================== %
% The empty set								%
% ===================================================================== %

let EMPTY_DEF = new_definition
    (`EMPTY_DEF`, "EMPTY = SPEC(\x:*.F)");;

let NOT_IN_EMPTY = 
    prove_thm
    (`NOT_IN_EMPTY`,
     "!x:*.~(x IN EMPTY)",
     PURE_REWRITE_TAC [EMPTY_DEF;SPECIFICATION] THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC);;

let MEMBER_NOT_EMPTY = 
    prove_thm
    (`MEMBER_NOT_EMPTY`,
     "!s:(*)set. (?x. x IN s) = ~(s = EMPTY)",
     REWRITE_TAC [EXTENSION;NOT_IN_EMPTY] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     REWRITE_TAC [NOT_CLAUSES]);;

% ===================================================================== %
% The set of everything							%
% ===================================================================== %

let UNIV_DEF = new_definition
    (`UNIV_DEF`,"UNIV = SPEC(\x:*.T)");;

let IN_UNIV = 
    prove_thm
    (`IN_UNIV`,
     "!x:*. x IN UNIV",
     GEN_TAC THEN PURE_REWRITE_TAC [UNIV_DEF;SPECIFICATION] THEN
     CONV_TAC BETA_CONV THEN ACCEPT_TAC TRUTH);;

let UNIV_NOT_EMPTY = 
    prove_thm
    (`UNIV_NOT_EMPTY`,
     "~(UNIV:(*)set = EMPTY)",
     REWRITE_TAC [EXTENSION;IN_UNIV;NOT_IN_EMPTY]);;

let EMPTY_NOT_UNIV = 
    prove_thm
    (`EMPTY_NOT_UNIV`,
     "~(EMPTY = (UNIV:(*)set))",
     REWRITE_TAC [EXTENSION;IN_UNIV;NOT_IN_EMPTY]);;

let EQ_UNIV = 
    prove_thm
    (`EQ_UNIV`,
     "(!x:*. x IN s) = (s = UNIV)",
     REWRITE_TAC [EXTENSION;IN_UNIV]);;

% ===================================================================== %
% Set inclusion.							%
% ===================================================================== %

let SUBSET_DEF = new_infix_definition
    (`SUBSET_DEF`, "SUBSET s t =  !x:*. x IN s ==> x IN t");;

let SUBSET_TRANS = prove_thm
    (`SUBSET_TRANS`,
     "!(s:(*)set) t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u",
     REWRITE_TAC [SUBSET_DEF] THEN
     REPEAT STRIP_TAC THEN
     REPEAT (FIRST_ASSUM MATCH_MP_TAC) THEN
     FIRST_ASSUM ACCEPT_TAC);;

let SUBSET_REFL = prove_thm
    (`SUBSET_REFL`,
     "!(s:(*)set). s SUBSET s",
     REWRITE_TAC[SUBSET_DEF]);;

let SUBSET_ANTISYM = prove_thm
    (`SUBSET_ANTISYM`,
     "!(s:(*)set) t. (s SUBSET t) /\ (t SUBSET s) ==> (s = t)",
     REWRITE_TAC [SUBSET_DEF; EXTENSION] THEN
     REPEAT STRIP_TAC THEN
     EQ_TAC THEN 
     FIRST_ASSUM MATCH_ACCEPT_TAC);;

let EMPTY_SUBSET = 
    prove_thm
    (`EMPTY_SUBSET`,
     "!s:(*)set. EMPTY SUBSET s",
     REWRITE_TAC [SUBSET_DEF;NOT_IN_EMPTY]);;

let SUBSET_EMPTY = 
    prove_thm
    (`SUBSET_EMPTY`,
     "!s:(*)set. s SUBSET EMPTY = (s = EMPTY)",
     PURE_REWRITE_TAC [SUBSET_DEF;NOT_IN_EMPTY] THEN
     REWRITE_TAC [EXTENSION;NOT_IN_EMPTY]);;

let SUBSET_UNIV = 
    prove_thm
    (`SUBSET_UNIV`,
     "!s:(*)set. s SUBSET UNIV",
     REWRITE_TAC [SUBSET_DEF;IN_UNIV]);;

let UNIV_SUBSET = 
    prove_thm
    (`UNIV_SUBSET`,
     "!s:(*)set. UNIV SUBSET s = (s = UNIV)",
     REWRITE_TAC [SUBSET_DEF;IN_UNIV;EXTENSION]);;

% ===================================================================== %
% Proper subset.							%
% ===================================================================== %

let PSUBSET_DEF = 
    new_infix_definition
    (`PSUBSET_DEF`, "PSUBSET (s:(*)set) t = (s SUBSET t /\ ~(s = t))");;

let PSUBSET_TRANS =
    prove_thm
    (`PSUBSET_TRANS`,
     "!s:(*)set. !t u. (s PSUBSET t /\ t PSUBSET u) ==> (s PSUBSET u)",
     PURE_ONCE_REWRITE_TAC [PSUBSET_DEF] THEN
     REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
     [IMP_RES_TAC SUBSET_TRANS;
      DISCH_THEN SUBST_ALL_TAC THEN 
      IMP_RES_TAC SUBSET_ANTISYM THEN
      RES_TAC]);;

let PSUBSET_IRREFL = 
    prove_thm
    (`PSUBSET_IRREFL`,
     "!s:(*)set. ~(s PSUBSET s)",
     REWRITE_TAC [PSUBSET_DEF;SUBSET_REFL]);;

let NOT_PSUBSET_EMPTY = 
    prove_thm
    (`NOT_PSUBSET_EMPTY`,
     "!s:(*)set. ~(s PSUBSET EMPTY)",
     REWRITE_TAC [PSUBSET_DEF;SUBSET_EMPTY;NOT_AND]);;

let NOT_UNIV_PSUBSET = 
    prove_thm
    (`NOT_UNIV_PSUBSET`,
     "!s:(*)set. ~(UNIV PSUBSET s)",
     REWRITE_TAC [PSUBSET_DEF;UNIV_SUBSET;DE_MORGAN_THM] THEN
     GEN_TAC THEN CONV_TAC (RAND_CONV SYM_CONV) THEN
     PURE_ONCE_REWRITE_TAC [DISJ_SYM] THEN
     MATCH_ACCEPT_TAC EXCLUDED_MIDDLE);;

let PSUBSET_UNIV = 
    prove_thm
    (`PSUBSET_UNIV`,
     "!s:(*)set. (s PSUBSET UNIV) = ?x:*. ~(x IN s)",
     REWRITE_TAC [PSUBSET_DEF;SUBSET_UNIV;EXTENSION;IN_UNIV] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN GEN_TAC THEN REFL_TAC);;

% ===================================================================== %
% Union									%
% ===================================================================== %

let UNION_DEF = new_infix_definition
     (`UNION_DEF`, "UNION s t = {x:* | x IN s \/ x IN t}");;

let IN_UNION = prove_thm
     (`IN_UNION`,
      "!s t (x:*). x IN (s UNION t) = x IN s \/ x IN t",
      PURE_ONCE_REWRITE_TAC [UNION_DEF] THEN
      CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
      REPEAT GEN_TAC THEN REFL_TAC);;

let UNION_ASSOC = prove_thm
    (`UNION_ASSOC`,
     "!(s:(*)set) t u. (s UNION t) UNION u = s UNION (t UNION u)",
     REWRITE_TAC [EXTENSION; IN_UNION] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
     ASM_REWRITE_TAC[]);;

let UNION_IDEMPOT = prove_thm
    (`UNION_IDEMPOT`,
     "!(s:(*)set). s UNION s = s",
     REWRITE_TAC[EXTENSION; IN_UNION]);;

let UNION_COMM = prove_thm
    (`UNION_COMM`,
     "!(s:(*)set) t. s UNION t = t UNION s",
     REWRITE_TAC[EXTENSION; IN_UNION] THEN
     REPEAT GEN_TAC THEN MATCH_ACCEPT_TAC DISJ_SYM);;

let SUBSET_UNION = 
    prove_thm
    (`SUBSET_UNION`,
     "(!s:(*)set. !t. s SUBSET (s UNION t)) /\ 
      (!s:(*)set. !t. s SUBSET (t UNION s))",
     PURE_REWRITE_TAC [SUBSET_DEF;IN_UNION] THEN
     REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;

let SUBSET_UNION_ABSORPTION = 
    prove_thm
    (`SUBSET_UNION_ABSORPTION`,
     "!s:(*)set. !t. s SUBSET t = (s UNION t = t)",
     REWRITE_TAC [SUBSET_DEF;EXTENSION;IN_UNION] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [RES_TAC;ASM_REWRITE_TAC[];RES_TAC]);;

let UNION_EMPTY = 
    prove_thm
    (`UNION_EMPTY`,
     "(!s:(*)set. EMPTY UNION s = s) /\
      (!s:(*)set. s UNION EMPTY = s)",
     REWRITE_TAC [IN_UNION;EXTENSION;NOT_IN_EMPTY]);;

let UNION_UNIV = 
    prove_thm
    (`UNION_UNIV`,
     "(!s:(*)set. UNIV UNION s = UNIV) /\
      (!s:(*)set. s UNION UNIV = UNIV)",
     REWRITE_TAC [IN_UNION;EXTENSION;IN_UNIV]);;

let EMPTY_UNION = 
    prove_thm
    (`EMPTY_UNION`,
     "!s:(*)set. !t. (s UNION t = EMPTY) = ((s = EMPTY) /\ (t = EMPTY))",
     REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_UNION;DE_MORGAN_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN RES_TAC);;

% ===================================================================== %
% Intersection								%
% ===================================================================== %

let INTER_DEF = new_infix_definition
     (`INTER_DEF`,
      "INTER s t = {x:* | x IN s /\ x IN t}");;

let IN_INTER = prove_thm
     (`IN_INTER`,
      "!s t (x:*). x IN (s INTER t) = x IN s /\ x IN t",
      PURE_ONCE_REWRITE_TAC [INTER_DEF] THEN
      CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
      REPEAT GEN_TAC THEN REFL_TAC);;

let INTER_ASSOC = prove_thm
    (`INTER_ASSOC`,
     "!(s:(*)set) t u. (s INTER t) INTER u = s INTER (t INTER u)",
     REWRITE_TAC [EXTENSION; IN_INTER; CONJ_ASSOC]);;

let INTER_IDEMPOT = prove_thm
    (`INTER_IDEMPOT`,
     "!(s:(*)set). s INTER s = s",
     REWRITE_TAC[EXTENSION; IN_INTER]);;

let INTER_COMM = prove_thm
    (`INTER_COMM`,
     "!(s:(*)set) t. s INTER t = t INTER s",
     REWRITE_TAC[EXTENSION; IN_INTER] THEN
     REPEAT GEN_TAC THEN
     MATCH_ACCEPT_TAC CONJ_SYM);;

let INTER_SUBSET = 
    prove_thm
    (`INTER_SUBSET`,
     "(!s:(*)set. !t. (s INTER t) SUBSET s) /\ 
      (!s:(*)set. !t. (t INTER s) SUBSET s)",
     PURE_REWRITE_TAC [SUBSET_DEF;IN_INTER] THEN
     REPEAT STRIP_TAC);;

let SUBSET_INTER_ABSORPTION = 
    prove_thm
    (`SUBSET_INTER_ABSORPTION`,
     "!s:(*)set. !t. s SUBSET t = (s INTER t = s)",
     REWRITE_TAC [SUBSET_DEF;EXTENSION;IN_INTER] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [FIRST_ASSUM ACCEPT_TAC; RES_TAC; RES_TAC]);;

let INTER_EMPTY = 
    prove_thm
    (`INTER_EMPTY`,
     "(!s:(*)set. EMPTY INTER s = EMPTY) /\
      (!s:(*)set. s INTER EMPTY = EMPTY)",
     REWRITE_TAC [IN_INTER;EXTENSION;NOT_IN_EMPTY]);;

let INTER_UNIV = 
    prove_thm
    (`INTER_UNIV`,
     "(!s:(*)set. UNIV INTER s = s) /\
      (!s:(*)set. s INTER UNIV = s)",
     REWRITE_TAC [IN_INTER;EXTENSION;IN_UNIV]);;


% ===================================================================== %
% Distributivity							%
% ===================================================================== %

let UNION_OVER_INTER = prove_thm
   (`UNION_OVER_INTER`,
    "!s:(*)set. !t u. 
      s INTER (t UNION u) = (s INTER t) UNION (s INTER u)",
    REWRITE_TAC [EXTENSION;IN_INTER;IN_UNION] THEN
    REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN 
    ASM_REWRITE_TAC[]);;

let INTER_OVER_UNION = prove_thm
   (`INTER_OVER_UNION`,
    "!s:(*)set. !t u. 
      s UNION (t INTER u) = (s UNION t) INTER (s UNION u)",
    REWRITE_TAC [EXTENSION;IN_INTER;IN_UNION] THEN
    REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN 
    ASM_REWRITE_TAC[]);;

% ===================================================================== %
% Disjoint sets.							%
% ===================================================================== %

let DISJOINT_DEF = 
    new_definition 
    (`DISJOINT_DEF`, "DISJOINT (s:(*)set) t = ((s INTER t) = EMPTY)");;

let IN_DISJOINT = 
    prove_thm
    (`IN_DISJOINT`,
     "!s:(*)set. !t. DISJOINT s t = ~(?x. x IN s /\ x IN t)",
     REWRITE_TAC [DISJOINT_DEF;EXTENSION;IN_INTER;NOT_IN_EMPTY] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
     REPEAT GEN_TAC THEN REFL_TAC);;

let DISJOINT_SYM = 
    prove_thm
    (`DISJOINT_SYM`,
     "!s:(*)set. !t. DISJOINT s t = DISJOINT t s",
     PURE_ONCE_REWRITE_TAC [DISJOINT_DEF] THEN REPEAT GEN_TAC THEN 
     SUBST1_TAC (SPECL ["s:(*)set";"t:(*)set"] INTER_COMM) THEN REFL_TAC);;

% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let DISJOINT_EMPTY =
    prove_thm
    (`DISJOINT_EMPTY`,
     "!s:(*)set. DISJOINT EMPTY s /\ DISJOINT s EMPTY",
     REWRITE_TAC [DISJOINT_DEF;INTER_EMPTY]);;

let DISJOINT_EMPTY_REFL = 
    prove_thm
    (`DISJOINT_EMPTY_REFL`,
     "!s:(*)set. (s = EMPTY) = (DISJOINT s s)",
     REWRITE_TAC [DISJOINT_DEF;INTER_IDEMPOT]);;



% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let DISJOINT_UNION =
    prove_thm
    (`DISJOINT_UNION`,
     "!s:(*)set. !t u. DISJOINT (s UNION t) u = DISJOINT s u /\ DISJOINT t u",
     REWRITE_TAC [IN_DISJOINT;IN_UNION] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
     CONV_TAC (ONCE_DEPTH_CONV AND_FORALL_CONV) THEN
     REWRITE_TAC [DE_MORGAN_THM;RIGHT_AND_OVER_OR] THEN
     REPEAT GEN_TAC THEN EQ_TAC THEN
     DISCH_THEN (\th. GEN_TAC THEN STRIP_ASSUME_TAC (SPEC "x:*" th)) THEN
     ASM_REWRITE_TAC []);;
     
% ===================================================================== %
% Set difference							%
% ===================================================================== %
 
let DIFF_DEF = new_infix_definition
    (`DIFF_DEF`,
     "DIFF s t = {x:* | x IN s /\ ~ x IN t}");;

let IN_DIFF = prove_thm
    (`IN_DIFF`,
     "!(s:(*)set) t x. x IN (s DIFF t) = x IN s /\ ~x IN t",
     REPEAT GEN_TAC THEN
     PURE_ONCE_REWRITE_TAC [DIFF_DEF] THEN
     CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
     REFL_TAC);;

let DIFF_EMPTY = 
    prove_thm
    (`DIFF_EMPTY`,
     "!s:(*)set. s DIFF EMPTY = s",
     GEN_TAC THEN
     REWRITE_TAC [NOT_IN_EMPTY;IN_DIFF;EXTENSION]);;

let EMPTY_DIFF = 
    prove_thm
    (`EMPTY_DIFF`,
     "!s:(*)set. EMPTY DIFF s = EMPTY",
     GEN_TAC THEN
     REWRITE_TAC [NOT_IN_EMPTY;IN_DIFF;EXTENSION]);;

let DIFF_UNIV = 
    prove_thm
    (`DIFF_UNIV`,
     "!s:(*)set. s DIFF UNIV = EMPTY",
     GEN_TAC THEN
     REWRITE_TAC [NOT_IN_EMPTY;IN_DIFF;IN_UNIV;EXTENSION]);;

let DIFF_DIFF = 
    prove_thm
    (`DIFF_DIFF`,
     "!s:(*)set. !t. (s DIFF t) DIFF t = s DIFF t",
     REWRITE_TAC [EXTENSION;IN_DIFF;SYM(SPEC_ALL CONJ_ASSOC)]);;

let DIFF_EQ_EMPTY = 
    prove_thm
    (`DIFF_EQ_EMPTY`,
     "!s:(*)set. s DIFF s = EMPTY",
     REWRITE_TAC [EXTENSION;IN_DIFF;NOT_IN_EMPTY;DE_MORGAN_THM] THEN
     PURE_ONCE_REWRITE_TAC [DISJ_SYM] THEN
     REWRITE_TAC [EXCLUDED_MIDDLE]);;
     

% ===================================================================== %
% The insertion function.					        %
% ===================================================================== %

let INSERT_DEF = 
    new_infix_definition
    (`INSERT_DEF`, "INSERT (x:*) s = {y | (y = x) \/ y IN s}");;

% --------------------------------------------------------------------- %
% Set up the {x1,...,xn} notation.					%
% --------------------------------------------------------------------- %
define_finite_set_syntax(`EMPTY`,`INSERT`);;

% --------------------------------------------------------------------- %
% Theorems about INSERT.						%
% --------------------------------------------------------------------- %

let IN_INSERT = 
     prove_thm
     (`IN_INSERT`,
      "!x:*. !y s. x IN (y INSERT s) = ((x=y) \/ x IN s)",
      PURE_ONCE_REWRITE_TAC [INSERT_DEF] THEN
      CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
      REPEAT GEN_TAC THEN REFL_TAC);;

let COMPONENT = 
     prove_thm
     (`COMPONENT`,
      "!x:*. !s. x IN (x INSERT s)",
      REWRITE_TAC [IN_INSERT]);;

let SET_CASES = 
    prove_thm
    (`SET_CASES`,
     "!s:(*)set. (s = EMPTY) \/ ?x:*. ?t. ((s = x INSERT t) /\ ~x IN t)",
     REWRITE_TAC [EXTENSION;NOT_IN_EMPTY] THEN GEN_TAC THEN
     DISJ_CASES_THEN MP_TAC (SPEC "?x:*. x IN s" EXCLUDED_MIDDLE) THENL
     [STRIP_TAC THEN DISJ2_TAC THEN
      MAP_EVERY EXISTS_TAC ["x:*";"{y:* | y IN s /\ ~(y = x)}"] THEN
      REWRITE_TAC [IN_INSERT] THEN
      CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
      ASM_REWRITE_TAC [] THEN
      REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
      ASM_REWRITE_TAC[EXCLUDED_MIDDLE];
      CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
      STRIP_TAC THEN DISJ1_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;

let DECOMPOSITION = 
    prove_thm
    (`DECOMPOSITION`,
     "!s:(*)set. !x. x IN s = ?t. (s = x INSERT t) /\ ~x IN t",
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [DISCH_TAC THEN EXISTS_TAC "{y:* | y IN s /\ ~(y = x)}" THEN
      ASM_REWRITE_TAC [EXTENSION;IN_INSERT] THEN
      CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
      REWRITE_TAC [] THEN 
      REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
      ASM_REWRITE_TAC [EXCLUDED_MIDDLE];
      STRIP_TAC THEN ASM_REWRITE_TAC [IN_INSERT]]);;

let ABSORPTION =
    prove_thm
    (`ABSORPTION`,
     "!x:*. !s. (x IN s) = (x INSERT s = s)",
     REWRITE_TAC [EXTENSION;IN_INSERT] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
     ASM_REWRITE_TAC [] THEN
     FIRST_ASSUM (\th g. PURE_ONCE_REWRITE_TAC [SYM(SPEC_ALL th)] g) THEN
     DISJ1_TAC THEN REFL_TAC);;

let INSERT_INSERT = 
    prove_thm
    (`INSERT_INSERT`,
     "!x:*. !s. x INSERT (x INSERT s) = x INSERT s",
     REWRITE_TAC [IN_INSERT;EXTENSION] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN 
     ASM_REWRITE_TAC[]);;

let INSERT_COMM = 
    prove_thm
    (`INSERT_COMM`,
     "!x:*. !y s. x INSERT (y INSERT s) = y INSERT (x INSERT s)",
     REWRITE_TAC [IN_INSERT;EXTENSION] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN 
     ASM_REWRITE_TAC[]);;

let INSERT_UNIV = 
    prove_thm
    (`INSERT_UNIV`,
     "!x:*. x INSERT UNIV = UNIV",
     REWRITE_TAC [EXTENSION;IN_INSERT;IN_UNIV]);;

let NOT_INSERT_EMPTY = 
    prove_thm
    (`NOT_INSERT_EMPTY`,
     "!x:*. !s. ~(x INSERT s = EMPTY)",
     REWRITE_TAC [EXTENSION;IN_INSERT;NOT_IN_EMPTY;IN_UNION] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     REPEAT GEN_TAC THEN EXISTS_TAC "x:*" THEN 
     REWRITE_TAC []);;

let NOT_EMPTY_INSERT = 
    prove_thm
    (`NOT_EMPTY_INSERT`,
     "!x:*. !s. ~(EMPTY = x INSERT s)",
     REWRITE_TAC [EXTENSION;IN_INSERT;NOT_IN_EMPTY;IN_UNION] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     REPEAT GEN_TAC THEN EXISTS_TAC "x:*" THEN 
     REWRITE_TAC []);;

let INSERT_UNION = 
    prove_thm
    (`INSERT_UNION`,
     "!x:*. !s t. 
      (x INSERT s) UNION t = (x IN t => s UNION t | x INSERT (s UNION t))",
     REPEAT GEN_TAC THEN COND_CASES_TAC THEN
     ASM_REWRITE_TAC [EXTENSION;IN_UNION;IN_INSERT] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC []);;

let INSERT_UNION_EQ = 
    prove_thm
    (`INSERT_UNION_EQ`,
     "!x:*. !s t. (x INSERT s) UNION t = x INSERT (s UNION t)",
     REPEAT GEN_TAC THEN 
     REWRITE_TAC [EXTENSION;IN_UNION;IN_INSERT;DISJ_ASSOC]);;

let INSERT_INTER = 
    prove_thm
    (`INSERT_INTER`,
     "!x:*. !s t. 
      (x INSERT s) INTER t = (x IN t => x INSERT (s INTER t) | s INTER t)",
     REPEAT GEN_TAC THEN COND_CASES_TAC THEN 
     ASM_REWRITE_TAC [EXTENSION;IN_INTER;IN_INSERT] THEN
     GEN_TAC THEN EQ_TAC THENL
     [STRIP_TAC THEN ASM_REWRITE_TAC [];
      STRIP_TAC THEN ASM_REWRITE_TAC [];
      PURE_ONCE_REWRITE_TAC [CONJ_SYM] THEN
      DISCH_THEN (CONJUNCTS_THEN MP_TAC) THEN
      STRIP_TAC THEN ASM_REWRITE_TAC [];
      STRIP_TAC THEN ASM_REWRITE_TAC []]);;

let DISJOINT_INSERT = 
    prove_thm
    (`DISJOINT_INSERT`,
     "!(x:*) s t. DISJOINT (x INSERT s) t = (DISJOINT s t) /\ ~(x IN t)",
     REWRITE_TAC [IN_DISJOINT;IN_INSERT] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
     REWRITE_TAC [DE_MORGAN_THM] THEN
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [(let v = genvar ":*" in let GTAC = X_GEN_TAC v in
       DISCH_THEN (\th. CONJ_TAC THENL [GTAC;ALL_TAC] THEN MP_TAC th) THENL
       [DISCH_THEN (STRIP_ASSUME_TAC o SPEC v) THEN ASM_REWRITE_TAC [];
        DISCH_THEN (MP_TAC o SPEC "x:*") THEN REWRITE_TAC[]]);
      REPEAT STRIP_TAC THEN ASM_CASES_TAC "x':* = x" THENL
      [ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]]]);;

let INSERT_SUBSET = 
    prove_thm
    (`INSERT_SUBSET`,
     "!x:*. !s t. (x INSERT s) SUBSET t = (x IN t /\ s SUBSET t)",
     REWRITE_TAC [IN_INSERT;SUBSET_DEF] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL 
     [FIRST_ASSUM MATCH_MP_TAC THEN DISJ1_TAC THEN REFL_TAC;
      FIRST_ASSUM MATCH_MP_TAC THEN DISJ2_TAC THEN FIRST_ASSUM ACCEPT_TAC;
      ASM_REWRITE_TAC [];
      RES_TAC]);;

let SUBSET_INSERT = 
    prove_thm
    (`SUBSET_INSERT`,
     "!x:*. !s. ~(x IN s) ==> !t. s SUBSET (x INSERT t) = s SUBSET t",
     PURE_REWRITE_TAC [SUBSET_DEF;IN_INSERT] THEN
     REPEAT STRIP_TAC THEN EQ_TAC THENL
     [REPEAT STRIP_TAC THEN
      let tac th g = SUBST_ALL_TAC th g ? STRIP_ASSUME_TAC th g in
      RES_THEN (STRIP_THM_THEN tac) THEN RES_TAC;
      REPEAT STRIP_TAC THEN DISJ2_TAC THEN
      FIRST_ASSUM MATCH_MP_TAC THEN
      FIRST_ASSUM ACCEPT_TAC]);;

let INSERT_DIFF = 
    prove_thm
    (`INSERT_DIFF`,
     "!s t. !x:*. (x INSERT s) DIFF t = 
     		  (x IN t => s DIFF t | (x INSERT (s DIFF t)))",
     REPEAT GEN_TAC THEN COND_CASES_TAC THENL
     [ASM_REWRITE_TAC [EXTENSION;IN_DIFF;IN_INSERT] THEN
      GEN_TAC THEN EQ_TAC THENL
      [STRIP_TAC THEN ASM_REWRITE_TAC[] THEN 
       FIRST_ASSUM (\th g. SUBST_ALL_TAC th g) THEN RES_TAC;
       STRIP_TAC THEN ASM_REWRITE_TAC[]];
      ASM_REWRITE_TAC [EXTENSION;IN_DIFF;IN_INSERT] THEN
      REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC [] THENL
      [FIRST_ASSUM (\th g. SUBST_ALL_TAC th g) THEN RES_TAC;RES_TAC]]);;

% ===================================================================== %
% Removal of an element							%
% ===================================================================== %

let DELETE_DEF = 
    new_infix_definition
    (`DELETE_DEF`, "DELETE s (x:*) = s DIFF {x}");;

let IN_DELETE = 
    prove_thm
    (`IN_DELETE`,
     "!s. !x:*. !y. x IN (s DELETE y) = (x IN s /\ ~(x = y))",
     PURE_ONCE_REWRITE_TAC [DELETE_DEF] THEN
     REWRITE_TAC [IN_DIFF;IN_INSERT;NOT_IN_EMPTY]);;

let DELETE_NON_ELEMENT = 
    prove_thm
    (`DELETE_NON_ELEMENT`,
     "!x:*. !s. ~x IN s = ((s DELETE x) = s)",
     PURE_REWRITE_TAC [EXTENSION;IN_DELETE] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [FIRST_ASSUM ACCEPT_TAC;
      FIRST_ASSUM (\th g. SUBST_ALL_TAC th g ? NO_TAC g) THEN RES_TAC;
      RES_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REFL_TAC]);;

let IN_DELETE_EQ = 
    prove_thm
    (`IN_DELETE_EQ`,
     "!s x. !x':*. 
      (x IN s = x' IN s) = (x IN (s DELETE x') = x' IN (s DELETE x))",
     REPEAT GEN_TAC THEN ASM_CASES_TAC "x:* = x'" THENL
     [ASM_REWRITE_TAC [];
      FIRST_ASSUM (ASSUME_TAC o NOT_EQ_SYM) THEN
      ASM_REWRITE_TAC [IN_DELETE]]);;
     
let EMPTY_DELETE = 
    prove_thm
    (`EMPTY_DELETE`,
     "!x:*. EMPTY DELETE x = EMPTY",
     REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_DELETE]);;

let DELETE_DELETE = 
    prove_thm
    (`DELETE_DELETE`,
     "!x:*. !s. (s DELETE x) DELETE x = s DELETE x",
     REWRITE_TAC [EXTENSION;IN_DELETE;SYM(SPEC_ALL CONJ_ASSOC)]);;

let DELETE_COMM = 
    prove_thm
    (`DELETE_COMM`,
     "!x:*. !y. !s. (s DELETE x) DELETE y = (s DELETE y) DELETE x",
     PURE_REWRITE_TAC [EXTENSION;IN_DELETE;CONJ_ASSOC] THEN
     REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
     REPEAT CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC);;

let DELETE_SUBSET = 
    prove_thm
    (`DELETE_SUBSET`,
     "!x:*. !s. (s DELETE x) SUBSET s",
     PURE_REWRITE_TAC [SUBSET_DEF;IN_DELETE] THEN
     REPEAT STRIP_TAC);;

let SUBSET_DELETE = 
    prove_thm
    (`SUBSET_DELETE`,
     "!x:*. !s t. s SUBSET (t DELETE x) = (~(x IN s) /\ (s SUBSET t))",
     REWRITE_TAC [SUBSET_DEF;IN_DELETE;EXTENSION] THEN
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [REPEAT STRIP_TAC THENL
      [ASSUME_TAC (REFL "x:*") THEN RES_TAC; RES_TAC];
      REPEAT STRIP_TAC THENL
      [RES_TAC; FIRST_ASSUM (\th g. SUBST_ALL_TAC th g) THEN RES_TAC]]);;

let SUBSET_INSERT_DELETE = 
    prove_thm
    (`SUBSET_INSERT_DELETE`,
     "!x:*. !s t. s SUBSET (x INSERT t) = ((s DELETE x) SUBSET t)",
     REPEAT GEN_TAC THEN 
     REWRITE_TAC [SUBSET_DEF;IN_INSERT;IN_DELETE] THEN
     EQ_TAC THEN REPEAT STRIP_TAC THENL
     [RES_TAC THEN RES_TAC;
      ASM_CASES_TAC "x':* = x" THEN
      ASM_REWRITE_TAC[] THEN RES_TAC]);;

let DIFF_INSERT = 
    prove_thm
    (`DIFF_INSERT`,
     "!s t. !x:*. s DIFF (x INSERT t) = (s DELETE x) DIFF t",
     PURE_REWRITE_TAC [EXTENSION;IN_DIFF;IN_INSERT;IN_DELETE] THEN
     REWRITE_TAC [DE_MORGAN_THM;CONJ_ASSOC]);;

let PSUBSET_INSERT_SUBSET = 
    prove_thm
    (`PSUBSET_INSERT_SUBSET`,
     "!s t. s PSUBSET t = ?x:*. ~(x IN s) /\ (x INSERT s) SUBSET t",
     PURE_REWRITE_TAC [PSUBSET_DEF;NOT_EQUAL_SETS] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [ASM_CASES_TAC "(x:*) IN s" THENL
      [ASM_CASES_TAC "(x:*) IN t" THENL
       [RES_TAC; IMP_RES_TAC SUBSET_DEF THEN RES_TAC];
       EXISTS_TAC "x:*" THEN RES_TAC THEN
       ASM_REWRITE_TAC [INSERT_SUBSET]];
      IMP_RES_TAC INSERT_SUBSET;
      IMP_RES_TAC INSERT_SUBSET THEN
      EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[]]);;
       
let lemma = 
    TAC_PROOF(([], "~(a:bool = b) = (b = ~a)"),
    BOOL_CASES_TAC "b:bool" THEN REWRITE_TAC[]);;    

let PSUBSET_MEMBER = 
    prove_thm
    (`PSUBSET_MEMBER`,
     "!s:(*)set. !t. s PSUBSET t = (s SUBSET t /\ ?y. y IN t /\ ~y IN s)",
     REPEAT GEN_TAC THEN PURE_ONCE_REWRITE_TAC [PSUBSET_DEF] THEN
     PURE_ONCE_REWRITE_TAC [EXTENSION;SUBSET_DEF] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     PURE_ONCE_REWRITE_TAC [lemma] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [RES_TAC;
      EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [] THEN
      ASM_CASES_TAC "(x:*) IN s" THENL
       [RES_TAC THEN RES_TAC;FIRST_ASSUM ACCEPT_TAC];
      RES_TAC;
      EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[]]);;

let DELETE_INSERT = 
    prove_thm
    (`DELETE_INSERT`,
     "!x:*. !y s. 
      (x INSERT s) DELETE y = ((x=y) => s DELETE y | x INSERT (s DELETE y))",
     REWRITE_TAC [EXTENSION;IN_DELETE;IN_INSERT] THEN
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [DISCH_THEN (STRIP_THM_THEN MP_TAC) THEN DISCH_TAC THEN
      let tac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
      DISCH_THEN (STRIP_THM_THEN tac) THENL
      [ASM_REWRITE_TAC [IN_INSERT];
       COND_CASES_TAC THEN ASM_REWRITE_TAC [IN_DELETE;IN_INSERT]];
      COND_CASES_TAC THEN ASM_REWRITE_TAC [IN_DELETE;IN_INSERT] THENL
      [STRIP_TAC THEN ASM_REWRITE_TAC []; 
       STRIP_TAC THEN ASM_REWRITE_TAC []]]);;

let INSERT_DELETE = 
    prove_thm
    (`INSERT_DELETE`,
     "!x:*. !s. x IN s ==> (x INSERT (s DELETE x) = s)",
     PURE_REWRITE_TAC [EXTENSION;IN_INSERT;IN_DELETE] THEN
     REPEAT GEN_TAC THEN DISCH_THEN (\th. GEN_TAC THEN MP_TAC th) THEN
     ASM_CASES_TAC "x':* = x" THEN ASM_REWRITE_TAC[]);;

% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let DELETE_INTER =
    prove_thm
    (`DELETE_INTER`,
     "!s t. !x:*. (s DELETE x) INTER t = (s INTER t) DELETE x",
     PURE_ONCE_REWRITE_TAC [EXTENSION] THEN REPEAT GEN_TAC THEN
     REWRITE_TAC [IN_INTER;IN_DELETE] THEN
     EQ_TAC THEN REPEAT STRIP_TAC THEN
     FIRST [FIRST_ASSUM ACCEPT_TAC;RES_TAC]);;


% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let DISJOINT_DELETE_SYM =
    prove_thm
    (`DISJOINT_DELETE_SYM`,
     "!s t. !x:*. DISJOINT (s DELETE x) t = DISJOINT (t DELETE x) s",
     REWRITE_TAC [DISJOINT_DEF;EXTENSION;NOT_IN_EMPTY] THEN
     REWRITE_TAC [IN_INTER;IN_DELETE;DE_MORGAN_THM] THEN
     REPEAT GEN_TAC THEN EQ_TAC THEN
     let X = "X:*" in
     DISCH_THEN (\th. X_GEN_TAC X THEN STRIP_ASSUME_TAC (SPEC X th)) THEN
     ASM_REWRITE_TAC []);;

% ===================================================================== %
% Choice								%
% ===================================================================== %

let CHOICE_EXISTS = 
    TAC_PROOF
    (([], "?CHOICE. !s:(*)set. ~(s = EMPTY) ==> (CHOICE s) IN s"),
     REWRITE_TAC [EXTENSION;NOT_IN_EMPTY] THEN
     EXISTS_TAC "\s. @x:*. x IN s" THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     CONV_TAC (ONCE_DEPTH_CONV SELECT_CONV) THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     REWRITE_TAC []);;

let CHOICE_DEF = 
    new_specification `CHOICE_DEF` [`constant`,`CHOICE`] CHOICE_EXISTS;;
     
% ===================================================================== %
% The REST of a set after removing a chosen element.			%
% ===================================================================== %

let REST_DEF = 
    new_definition
    (`REST_DEF`, "REST (s:(*)set) = s DELETE (CHOICE s)");;

let CHOICE_NOT_IN_REST = 
    prove_thm
    (`CHOICE_NOT_IN_REST`,
     "!s:(*)set. ~(CHOICE s) IN (REST s)",
     REWRITE_TAC [IN_DELETE;REST_DEF]);;

let CHOICE_INSERT_REST =
    prove_thm
    (`CHOICE_INSERT_REST`,
     "!s:(*)set. ~(s = EMPTY) ==> (((CHOICE s) INSERT (REST s)) = s)",
     REPEAT GEN_TAC THEN STRIP_TAC THEN
     REWRITE_TAC [EXTENSION;IN_INSERT;REST_DEF;IN_DELETE] THEN
     GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL
     [IMP_RES_TAC CHOICE_DEF THEN ASM_REWRITE_TAC [];
      ASM_REWRITE_TAC [EXCLUDED_MIDDLE]]);;

let REST_SUBSET = 
    prove_thm
    (`REST_SUBSET`,
     "!s:(*)set. (REST s) SUBSET s",
     REWRITE_TAC [SUBSET_DEF;REST_DEF;IN_DELETE] THEN REPEAT STRIP_TAC);;

let lemma = 
    TAC_PROOF(([], "(P /\ Q = P) = (P ==> Q)"),
    	      BOOL_CASES_TAC "P:bool" THEN REWRITE_TAC[]);;

let REST_PSUBSET = 
    prove_thm
    (`REST_PSUBSET`,
     "!s:(*)set. ~(s = EMPTY) ==> (REST s) PSUBSET s",
     REWRITE_TAC [PSUBSET_DEF;REST_SUBSET] THEN
     GEN_TAC THEN STRIP_TAC THEN
     REWRITE_TAC [EXTENSION;REST_DEF;IN_DELETE] THEN
     CONV_TAC NOT_FORALL_CONV THEN
     REWRITE_TAC [DE_MORGAN_THM;lemma;NOT_IMP] THEN
     EXISTS_TAC "CHOICE (s:(*)set)" THEN
     IMP_RES_TAC CHOICE_DEF THEN
     ASM_REWRITE_TAC []);;

% ===================================================================== %
% Singleton set.							%
% ===================================================================== %

let SING_DEF = 
    new_definition
    (`SING_DEF`, "SING s = ?x:*. s = {x}");;

let SING = 
    prove_thm
    (`SING`,
     "!x:*. SING {x}",
     PURE_ONCE_REWRITE_TAC [SING_DEF] THEN
     GEN_TAC THEN EXISTS_TAC "x:*" THEN REFL_TAC);;

let IN_SING = 
    prove_thm
    (`IN_SING`,
     "!x y. x IN {y:*} = (x = y)",
     REWRITE_TAC [IN_INSERT;NOT_IN_EMPTY]);;

let NOT_SING_EMPTY = 
    prove_thm
    (`NOT_SING_EMPTY`,
     "!x:*. ~({x} = EMPTY)",
     REWRITE_TAC [EXTENSION;IN_SING;NOT_IN_EMPTY] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     GEN_TAC THEN EXISTS_TAC "x:*" THEN REWRITE_TAC[]);;

let NOT_EMPTY_SING = 
    prove_thm
    (`NOT_EMPTY_SING`,
     "!x:*. ~(EMPTY = {x})",
     REWRITE_TAC [EXTENSION;IN_SING;NOT_IN_EMPTY] THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
     GEN_TAC THEN EXISTS_TAC "x:*" THEN REWRITE_TAC[]);;

let EQUAL_SING = 
    prove_thm
    (`EQUAL_SING`,
     "!x:*. !y. ({x} = {y}) = (x = y)",
     REWRITE_TAC [EXTENSION;IN_SING] THEN
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [DISCH_THEN (\th. REWRITE_TAC [SYM(SPEC_ALL th)]);
      DISCH_THEN SUBST1_TAC THEN GEN_TAC THEN REFL_TAC]);;

let DISJOINT_SING_EMPTY = 
    prove_thm
    (`DISJOINT_SING_EMPTY`,
     "!x:*. DISJOINT {x} EMPTY",
     REWRITE_TAC [DISJOINT_DEF;INTER_EMPTY]);;

let INSERT_SING_UNION = 
    prove_thm
    (`INSERT_SING_UNION`,
     "!s. !x:*. x INSERT s = {x} UNION s",
     REWRITE_TAC [EXTENSION;IN_INSERT;IN_UNION;NOT_IN_EMPTY]);;

let SING_DELETE = 
    prove_thm
    (`SING_DELETE`,
    "!x:*. {x} DELETE x = EMPTY",
    REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_DELETE;IN_INSERT] THEN
    PURE_ONCE_REWRITE_TAC [CONJ_SYM] THEN
    REWRITE_TAC [DE_MORGAN_THM;EXCLUDED_MIDDLE]);;

let DELETE_EQ_SING = 
    prove_thm
    (`DELETE_EQ_SING`,
     "!s. !x:*. (x IN s) ==> ((s DELETE x = EMPTY) = (s = {x}))",
     PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
     REWRITE_TAC [NOT_IN_EMPTY;DE_MORGAN_THM;IN_INSERT;IN_DELETE] THEN
     REPEAT STRIP_TAC THEN EQ_TAC THENL
     [DISCH_TAC THEN GEN_TAC THEN
      FIRST_ASSUM (\th g. STRIP_ASSUME_TAC (SPEC "x':*" th) g) THEN
      ASM_REWRITE_TAC [] THEN DISCH_THEN SUBST_ALL_TAC THEN RES_TAC;
      let th = PURE_ONCE_REWRITE_RULE [DISJ_SYM] EXCLUDED_MIDDLE in
      DISCH_TAC THEN GEN_TAC THEN ASM_REWRITE_TAC [th]]);;

let CHOICE_SING = 
    prove_thm
    (`CHOICE_SING`,
     "!x:*. CHOICE {x} = x",
     GEN_TAC THEN 
     MP_TAC (MATCH_MP CHOICE_DEF (SPEC "x:*" NOT_SING_EMPTY)) THEN
     REWRITE_TAC [IN_SING]);;

let REST_SING = 
    prove_thm
    (`REST_SING`,
     "!x:*. REST {x} = EMPTY",
     REWRITE_TAC [CHOICE_SING;REST_DEF;SING_DELETE]);;

let SING_IFF_EMPTY_REST = 
    prove_thm
    (`SING_IFF_EMPTY_REST`,
     "!s:(*)set. SING s = ~(s = EMPTY) /\ (REST s = EMPTY)",
     PURE_ONCE_REWRITE_TAC [SING_DEF] THEN
     GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL
     [ASM_REWRITE_TAC [REST_SING] THEN
      REWRITE_TAC [EXTENSION;NOT_IN_EMPTY;IN_INSERT] THEN
      CONV_TAC NOT_FORALL_CONV THEN
      EXISTS_TAC "x:*" THEN REWRITE_TAC [];
      EXISTS_TAC "CHOICE s:*" THEN
      IMP_RES_THEN (SUBST1_TAC o SYM) CHOICE_INSERT_REST THEN
      ASM_REWRITE_TAC [EXTENSION;IN_SING;CHOICE_SING]]);;


% ===================================================================== %
% The image of a function on a set.					%
% ===================================================================== %

let IMAGE_DEF =
    new_definition
    (`IMAGE_DEF`, "IMAGE (f:*->**) s = {f x | x IN s}");;

let IN_IMAGE = 
    prove_thm
    (`IN_IMAGE`,
     "!y:**. !s f. (y IN (IMAGE f s)) = ?x:*. (y = f x) /\ x IN s",
      PURE_ONCE_REWRITE_TAC [IMAGE_DEF] THEN
      CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
      REPEAT GEN_TAC THEN REFL_TAC);;

let IMAGE_IN = 
    prove_thm
    (`IMAGE_IN`,
     "!x s. (x IN s) ==> !(f:*->**). f x IN (IMAGE f s)",
     PURE_ONCE_REWRITE_TAC [IN_IMAGE] THEN
     REPEAT STRIP_TAC THEN 
     EXISTS_TAC "x:*" THEN
     CONJ_TAC THENL [REFL_TAC; FIRST_ASSUM ACCEPT_TAC]);;

let IMAGE_EMPTY =
     prove_thm
     (`IMAGE_EMPTY`,
      "!f:*->**. IMAGE f EMPTY = EMPTY",
      REWRITE_TAC[EXTENSION;IN_IMAGE;NOT_IN_EMPTY]);;

let IMAGE_ID = 
    prove_thm
    (`IMAGE_ID`,
     "!s:* set. IMAGE (\x:*.x) s = s",
     REWRITE_TAC [EXTENSION;IN_IMAGE] THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [ALL_TAC;EXISTS_TAC "x:*"] THEN
     ASM_REWRITE_TAC []);;

let IMAGE_COMPOSE = 
    prove_thm
    (`IMAGE_COMPOSE`,
     "!f:**->***. !g:*->**. !s. IMAGE (f o g) s = IMAGE f (IMAGE g s)",
     PURE_REWRITE_TAC [EXTENSION;IN_IMAGE;o_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [EXISTS_TAC "g (x':*):**" THEN
      CONJ_TAC THENL [ALL_TAC;EXISTS_TAC "x':*"] THEN
      ASM_REWRITE_TAC [];
      EXISTS_TAC "x'':*" THEN ASM_REWRITE_TAC[]]);;

let IMAGE_INSERT =
    prove_thm
    (`IMAGE_INSERT`,
     "!(f:*->**) x s. IMAGE f (x INSERT s) = f x INSERT (IMAGE f s)",
     PURE_REWRITE_TAC [EXTENSION;IN_INSERT;IN_IMAGE] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [ALL_TAC;DISJ2_TAC THEN EXISTS_TAC "x'':*";
      EXISTS_TAC "x:*";EXISTS_TAC "x'':*"] THEN
     ASM_REWRITE_TAC[]);;

let IMAGE_EQ_EMPTY =
    prove_thm
    (`IMAGE_EQ_EMPTY`,
     "!s. !f:*->**. ((IMAGE f s) = EMPTY) = (s = EMPTY)",
     GEN_TAC THEN
     STRIP_ASSUME_TAC (SPEC "s:(*)set" SET_CASES) THEN
     ASM_REWRITE_TAC [IMAGE_EMPTY;IMAGE_INSERT;NOT_INSERT_EMPTY]);;

let IMAGE_DELETE =
    prove_thm
    (`IMAGE_DELETE`,
     "!(f:*->**) x s. ~(x IN s) ==> (IMAGE f (s DELETE x) = (IMAGE f s))",
     REPEAT GEN_TAC THEN STRIP_TAC THEN
     PURE_REWRITE_TAC [EXTENSION;IN_DELETE;IN_IMAGE] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
     EXISTS_TAC "x'':*" THEN ASM_REWRITE_TAC [] THEN
     DISCH_THEN SUBST_ALL_TAC THEN RES_TAC);;

let IMAGE_UNION =
    prove_thm
    (`IMAGE_UNION`,
     "!(f:*->**) s t. IMAGE f (s UNION t) = (IMAGE f s) UNION (IMAGE f t)",
     PURE_REWRITE_TAC [EXTENSION;IN_UNION;IN_IMAGE] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [DISJ1_TAC;DISJ2_TAC;ALL_TAC;ALL_TAC] THEN
     EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []);;

let IMAGE_SUBSET = 
    prove_thm
    (`IMAGE_SUBSET`,
     "!s t. (s SUBSET t) ==> !f:*->**. (IMAGE f s) SUBSET (IMAGE f t)",
     PURE_REWRITE_TAC [SUBSET_DEF;IN_IMAGE] THEN
     REPEAT STRIP_TAC THEN RES_TAC THEN
     EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []);;

let IMAGE_INTER =
    prove_thm
    (`IMAGE_INTER`,
     "!(f:*->**) s t. IMAGE f (s INTER t) SUBSET (IMAGE f s INTER IMAGE f t)",
     REPEAT GEN_TAC THEN
     REWRITE_TAC [SUBSET_DEF;IN_IMAGE;IN_INTER] THEN
     REPEAT STRIP_TAC THEN
     EXISTS_TAC "x':*" THEN
     CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC);;

% ===================================================================== %
% Injective functions on a set.						%
% ===================================================================== %

let INJ_DEF =
    new_definition
    (`INJ_DEF`,
     "INJ (f:*->**) s t =
          (!x. x IN s ==> (f x) IN t) /\ 
          (!x y. (x IN s /\ y IN s) ==> (f x = f y) ==> (x = y))");;

let INJ_ID =
    prove_thm
    (`INJ_ID`,
     "!s. INJ (\x:*.x) s s",
     PURE_ONCE_REWRITE_TAC [INJ_DEF] THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC);;
     
let INJ_COMPOSE = 
    prove_thm
    (`INJ_COMPOSE`,
     "!f:*->**. !g:**->***.
      !s t u. (INJ f s t  /\ INJ g t u) ==> INJ (g o f) s u",
     PURE_REWRITE_TAC [INJ_DEF;o_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [FIRST_ASSUM MATCH_MP_TAC THEN RES_TAC;
      RES_TAC THEN RES_TAC]);;

let INJ_EMPTY =
    prove_thm
    (`INJ_EMPTY`,
     "!f:*->**. (!s. INJ f {} s) /\ (!s. INJ f s {} = (s = {}))",
     REWRITE_TAC [INJ_DEF;NOT_IN_EMPTY;EXTENSION] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN RES_TAC);;


% ===================================================================== %
% Surjective functions on a set.					%
% ===================================================================== %

let SURJ_DEF =
    new_definition
    (`SURJ_DEF`,
     "SURJ (f:*->**) s t =
           (!x. x IN s ==> (f x) IN t) /\ 
           (!x. (x IN t) ==> ?y. y IN s /\ (f y = x))");;

let SURJ_ID =
    prove_thm
    (`SURJ_ID`,
     "!s. SURJ (\x:*.x) s s",
     PURE_ONCE_REWRITE_TAC [SURJ_DEF] THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC THEN
     EXISTS_TAC "x':*" THEN
     ASM_REWRITE_TAC []);;

let SURJ_COMPOSE = 
    prove_thm
    (`SURJ_COMPOSE`,
     "!f:*->**. !g:**->***.
      !s t u. (SURJ f s t  /\ SURJ g t u) ==> SURJ (g o f) s u",
     PURE_REWRITE_TAC [SURJ_DEF;o_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
     [FIRST_ASSUM MATCH_MP_TAC THEN RES_TAC;
      RES_TAC THEN RES_TAC THEN
      EXISTS_TAC "y'':*" THEN
      ASM_REWRITE_TAC []]);;

let SURJ_EMPTY =
    prove_thm
    (`SURJ_EMPTY`,
     "!f:*->**. (!s. SURJ f {} s = (s = {})) /\ (!s. SURJ f s {} = (s = {}))",
     REWRITE_TAC [SURJ_DEF;NOT_IN_EMPTY;EXTENSION]);;

let IMAGE_SURJ =
    prove_thm
    (`IMAGE_SURJ`,
     "!f:*->**. !s t. SURJ f s t = ((IMAGE f s) = t)",
     PURE_REWRITE_TAC [SURJ_DEF;EXTENSION;IN_IMAGE] THEN
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
      [RES_TAC THEN ASM_REWRITE_TAC [];
       MAP_EVERY PURE_ONCE_REWRITE_TAC [[CONJ_SYM];[EQ_SYM_EQ]] THEN
       FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC];
      DISCH_THEN (ASSUME_TAC o CONV_RULE (ONCE_DEPTH_CONV SYM_CONV)) THEN
      ASM_REWRITE_TAC [] THEN REPEAT STRIP_TAC THENL
      [EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [];
       EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []]]);;

% ===================================================================== %
% Bijective functions on a set.						%
% ===================================================================== %

let BIJ_DEF =
    new_definition
    (`BIJ_DEF`,
     "BIJ (f:*->**) s t = INJ f s t /\ SURJ f s t");;

let BIJ_ID =
    prove_thm
    (`BIJ_ID`,
     "!s. BIJ (\x:*.x) s s",
     REWRITE_TAC [BIJ_DEF;INJ_ID;SURJ_ID]);;

let BIJ_EMPTY =
    prove_thm
    (`BIJ_EMPTY`,
     "!f:*->**. (!s. BIJ f {} s = (s = {})) /\ (!s. BIJ f s {} = (s = {}))",
     REWRITE_TAC [BIJ_DEF;INJ_EMPTY;SURJ_EMPTY]);;

let BIJ_COMPOSE = 
    prove_thm
    (`BIJ_COMPOSE`,
     "!f:*->**. !g:**->***.
      !s t u. (BIJ f s t  /\ BIJ g t u) ==> BIJ (g o f) s u",
     PURE_REWRITE_TAC [BIJ_DEF] THEN
     REPEAT STRIP_TAC THENL
     [IMP_RES_TAC INJ_COMPOSE;IMP_RES_TAC SURJ_COMPOSE]);;

% ===================================================================== %
% Left and right inverses.						%
% ===================================================================== %

let lemma1 =
    TAC_PROOF
    (([], "!f:*->**. !s.
           (!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)) =
           (!y. y IN s ==> !x.((x IN s /\ (f x = f y))=(y IN s /\ (x = y))))"),
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
     RES_TAC THEN ASM_REWRITE_TAC []);;

let lemma2 =
    TAC_PROOF
    (([],
      "!f:*->**. !s. ?g. !t. INJ f s t ==> !x:*. x IN s ==> (g(f x) = x)"),
     REPEAT GEN_TAC THEN PURE_REWRITE_TAC [INJ_DEF;lemma1] THEN
     EXISTS_TAC "\y:**. @x:*. x IN s /\ (f x = y)" THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC THEN (RES_THEN \th. REWRITE_TAC [th]) THEN
     ASM_REWRITE_TAC [] THEN CONV_TAC SELECT_CONV THEN
     EXISTS_TAC "x:*" THEN REFL_TAC);;

% --------------------------------------------------------------------- %
% LINV_DEF:								%
%   |- !f s t. INJ f s t ==> (!x. x IN s ==> (LINV f s(f x) = x))	%
% --------------------------------------------------------------------- %

let LINV_DEF =
    let th1 = CONV_RULE (ONCE_DEPTH_CONV RIGHT_IMP_EXISTS_CONV) lemma2 in
    let th2 = CONV_RULE SKOLEM_CONV th1 in
        new_specification `LINV_DEF` [`constant`,`LINV`] th2;;

let lemma3 = 
    TAC_PROOF
    (([],
      "!f:*->**. !s. ?g. !t. SURJ f s t ==> !x:**. x IN t ==> (f(g x) = x)"),
     REPEAT GEN_TAC THEN PURE_REWRITE_TAC [SURJ_DEF] THEN    
     EXISTS_TAC "\y:**. @x:*. x IN s /\ (f x = y)" THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC THEN
     (\(A,g).
       let tm = mk_conj("^(rand(lhs g)) IN s",g) in
       SUBGOAL_THEN tm (\th. ACCEPT_TAC(CONJUNCT2 th))(A,g)) THEN
     CONV_TAC SELECT_CONV THEN
     FIRST_ASSUM MATCH_MP_TAC THEN
     FIRST_ASSUM ACCEPT_TAC);;
     
% --------------------------------------------------------------------- %
% RINV_DEF:								%
%   |- !f s t. SURJ f s t ==> (!x. x IN t ==> (f(RINV f s x) = x))      %
% --------------------------------------------------------------------- %

let RINV_DEF =
    let th1 = CONV_RULE (ONCE_DEPTH_CONV RIGHT_IMP_EXISTS_CONV) lemma3 in
    let th2 = CONV_RULE SKOLEM_CONV th1 in
        new_specification `RINV_DEF` [`constant`,`RINV`] th2;;

% ===================================================================== %
% Finiteness								%
% ===================================================================== %

let FINITE_DEF = 
    new_definition
    (`FINITE_DEF`,
     "!s:(*)set.
      FINITE s = 
      !P. (P EMPTY /\ (!s. P s ==> !e. P (e INSERT s))) ==> P s");;

let FINITE_EMPTY = 
    prove_thm
    (`FINITE_EMPTY`,
     "FINITE (EMPTY:(*)set)",
     PURE_ONCE_REWRITE_TAC [FINITE_DEF] THEN
     REPEAT STRIP_TAC);;

let FINITE_INSERT = 
    TAC_PROOF
    (([], "!s. FINITE s ==> !x:*. FINITE (x INSERT s)"),
     PURE_ONCE_REWRITE_TAC [FINITE_DEF] THEN
     REPEAT STRIP_TAC THEN SPEC_TAC ("x:*","x:*") THEN
     REPEAT (FIRST_ASSUM MATCH_MP_TAC) THEN
     CONJ_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC);;

let SIMPLE_FINITE_INDUCT = 
    TAC_PROOF
    (([], "!P. P EMPTY /\ (!s. P s ==> (!e:*. P(e INSERT s)))
                ==>
               !s. FINITE s ==> P s"),
     GEN_TAC THEN STRIP_TAC THEN
     PURE_ONCE_REWRITE_TAC [FINITE_DEF] THEN
     GEN_TAC THEN DISCH_THEN MATCH_MP_TAC THEN
     ASM_REWRITE_TAC []);;

let lemma = 
    let tac = ASM_CASES_TAC "P:bool" THEN ASM_REWRITE_TAC[] in
    let lem = TAC_PROOF(([],"(P ==> P /\ Q) = (P ==> Q)"), tac) in
    let th1 = SPEC "\s:(*)set. FINITE s /\ P s" SIMPLE_FINITE_INDUCT in
        REWRITE_RULE [lem;FINITE_EMPTY] (BETA_RULE th1);;

let FINITE_INDUCT = 
    prove_thm
    (`FINITE_INDUCT`,
     "!P. P EMPTY /\ (!s. FINITE s /\ P s ==> (!e. ~e IN s ==> P(e INSERT s)))
         ==>
        !s:(*)set. FINITE s ==> P s",
     GEN_TAC THEN STRIP_TAC THEN
     MATCH_MP_TAC lemma THEN 
     ASM_REWRITE_TAC [] THEN
     REPEAT STRIP_TAC THENL
     [IMP_RES_THEN MATCH_ACCEPT_TAC FINITE_INSERT;
      ASM_CASES_TAC "(e:*) IN s" THENL
      [IMP_RES_THEN SUBST1_TAC ABSORPTION; RES_TAC] THEN
      ASM_REWRITE_TAC []]);;

% --------------------------------------------------------------------- %
% Load the set induction tactic in... uncompiled.			%
% --------------------------------------------------------------------- %

loadt `set_ind`;;

let FINITE_DELETE = 
    TAC_PROOF
    (([], "!s. FINITE s ==> (!x:*. FINITE(s DELETE x))"),
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [EMPTY_DELETE;FINITE_EMPTY];
      PURE_ONCE_REWRITE_TAC [DELETE_INSERT] THEN
      REPEAT STRIP_TAC THEN
      COND_CASES_TAC THENL
      [FIRST_ASSUM MATCH_ACCEPT_TAC;
       FIRST_ASSUM (\th g. ASSUME_TAC (SPEC "x:*" th) g) THEN
       IMP_RES_TAC FINITE_INSERT THEN
       FIRST_ASSUM MATCH_ACCEPT_TAC]]);;

let INSERT_FINITE = 
    TAC_PROOF
    (([], "!x:*. !s. FINITE(x INSERT s) ==> FINITE s"),
     REPEAT GEN_TAC THEN ASM_CASES_TAC "(x:*) IN s" THENL
     [IMP_RES_TAC ABSORPTION THEN ASM_REWRITE_TAC [];
      DISCH_THEN (MP_TAC o SPEC "x:*" o  MATCH_MP FINITE_DELETE) THEN
      REWRITE_TAC [DELETE_INSERT] THEN
      IMP_RES_TAC DELETE_NON_ELEMENT THEN ASM_REWRITE_TAC[]]);;

let FINITE_INSERT = 
    prove_thm
    (`FINITE_INSERT`,
     "!x:*. !s. FINITE(x INSERT s) = FINITE s",
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [MATCH_ACCEPT_TAC INSERT_FINITE; 
      DISCH_THEN (MATCH_ACCEPT_TAC o MATCH_MP FINITE_INSERT)]);;

let DELETE_FINITE = 
    TAC_PROOF
    (([], "!x:*. !s. FINITE (s DELETE x) ==> FINITE s"),
     REPEAT GEN_TAC THEN ASM_CASES_TAC "(x:*) IN s" THEN
     DISCH_TAC THENL
     [IMP_RES_THEN (SUBST1_TAC o SYM) INSERT_DELETE THEN
      ASM_REWRITE_TAC [FINITE_INSERT];
      IMP_RES_THEN (SUBST1_TAC o SYM) DELETE_NON_ELEMENT THEN
      FIRST_ASSUM ACCEPT_TAC]);;


let FINITE_DELETE = 
    prove_thm
    (`FINITE_DELETE`,
     "!x:*. !s. FINITE(s DELETE x) = FINITE s",
     REPEAT GEN_TAC THEN EQ_TAC THENL
     [MATCH_ACCEPT_TAC DELETE_FINITE; 
      DISCH_THEN (MATCH_ACCEPT_TAC o MATCH_MP FINITE_DELETE)]);;

let UNION_FINITE = 
    TAC_PROOF
    (([], "!s:(*)set. FINITE s ==> !t. FINITE t ==> FINITE (s UNION t)"),
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [UNION_EMPTY];
      SET_INDUCT_TAC THENL
      [IMP_RES_TAC FINITE_INSERT THEN ASM_REWRITE_TAC [UNION_EMPTY];
       SUBST1_TAC (SPECL ["s':(*)set";"e':*"] INSERT_SING_UNION) THEN
       PURE_ONCE_REWRITE_TAC [SYM(SPEC_ALL UNION_ASSOC)] THEN
       PURE_REWRITE_TAC [SPECL ["s:(*)set";"{x:*}"] UNION_COMM] THEN
       PURE_REWRITE_TAC [UNION_ASSOC; SYM(SPEC_ALL INSERT_SING_UNION)] THEN
       IMP_RES_THEN MATCH_ACCEPT_TAC FINITE_INSERT]]);;

let FINITE_UNION_LEMMA = 
    TAC_PROOF
    (([], "!s:(*)set. FINITE s ==> !t. FINITE (s UNION t) ==> FINITE t"),
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [UNION_EMPTY];
      GEN_TAC THEN ASM_REWRITE_TAC [INSERT_UNION] THEN
      COND_CASES_TAC THENL
      [FIRST_ASSUM MATCH_ACCEPT_TAC;
       DISCH_THEN (MP_TAC o MATCH_MP INSERT_FINITE) THEN
       FIRST_ASSUM MATCH_ACCEPT_TAC]]);;

let FINITE_UNION = 
    TAC_PROOF
    (([], "!s:(*)set. !t. FINITE(s UNION t) ==> (FINITE s /\ FINITE t)"),
     REPEAT STRIP_TAC THEN 
     IMP_RES_THEN MATCH_MP_TAC FINITE_UNION_LEMMA THENL
     [SUBST1_TAC (SPECL ["s:(*)set";"t:(*)set"] UNION_COMM) THEN
      REWRITE_TAC [UNION_ASSOC;UNION_IDEMPOT] THEN
      PURE_ONCE_REWRITE_TAC [UNION_COMM] THEN
      FIRST_ASSUM ACCEPT_TAC;
      ASM_REWRITE_TAC [UNION_ASSOC;UNION_IDEMPOT]]);;

let FINITE_UNION = 
    prove_thm
    (`FINITE_UNION`,
     "!s:(*)set. !t. FINITE(s UNION t) = (FINITE s /\ FINITE t)",
     REPEAT STRIP_TAC THEN EQ_TAC THENL
     [REPEAT STRIP_TAC THEN IMP_RES_TAC FINITE_UNION;
      REPEAT STRIP_TAC THEN IMP_RES_TAC UNION_FINITE]);;

let INTER_FINITE = 
    prove_thm
    (`INTER_FINITE`,
     "!s:(*)set. FINITE s ==> !t. FINITE (s INTER t)",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [INTER_EMPTY;FINITE_EMPTY];
      REWRITE_TAC [INSERT_INTER] THEN GEN_TAC THEN
      COND_CASES_TAC THENL
      [FIRST_ASSUM (\th g. ASSUME_TAC (SPEC "t:(*)set" th) g ? NO_TAC g) THEN
       IMP_RES_TAC FINITE_INSERT THEN
       FIRST_ASSUM MATCH_ACCEPT_TAC;
       FIRST_ASSUM MATCH_ACCEPT_TAC]]);;

let SUBSET_FINITE = 
    prove_thm
    (`SUBSET_FINITE`,
     "!s:(*)set. FINITE s ==> (!t. t SUBSET s ==> FINITE t)",
     SET_INDUCT_TAC THENL
     [PURE_ONCE_REWRITE_TAC [SUBSET_EMPTY] THEN
      REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [FINITE_EMPTY];
      GEN_TAC THEN ASM_CASES_TAC "(e:*) IN t" THENL
      [REWRITE_TAC [SUBSET_INSERT_DELETE] THEN
       STRIP_TAC THEN RES_TAC THEN IMP_RES_TAC DELETE_FINITE;
       IMP_RES_TAC SUBSET_INSERT THEN ASM_REWRITE_TAC []]]);;

let PSUBSET_FINITE = 
    prove_thm
    (`PSUBSET_FINITE`,
     "!s:(*)set. FINITE s ==> (!t. t PSUBSET s ==> FINITE t)",
     PURE_ONCE_REWRITE_TAC [PSUBSET_DEF] THEN
     REPEAT STRIP_TAC THEN IMP_RES_TAC SUBSET_FINITE);;

let FINITE_DIFF = 
    prove_thm
    (`FINITE_DIFF`,
     "!s:(*)set. FINITE s ==> !t. FINITE(s DIFF t)",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [EMPTY_DIFF;FINITE_EMPTY];
      ASM_REWRITE_TAC [INSERT_DIFF] THEN 
      GEN_TAC THEN COND_CASES_TAC THENL
      [FIRST_ASSUM MATCH_ACCEPT_TAC;
       FIRST_ASSUM (\th g. ASSUME_TAC (SPEC "t:(*)set" th) g) THEN
       IMP_RES_THEN MATCH_ACCEPT_TAC FINITE_INSERT]]);;

let FINITE_SING = 
    prove_thm
    (`FINITE_SING`,
     "!x:*. FINITE {x}",
     GEN_TAC THEN MP_TAC FINITE_EMPTY THEN
     SUBST1_TAC (SYM (SPEC "x:*" SING_DELETE)) THEN
     DISCH_TAC THEN IMP_RES_THEN MATCH_ACCEPT_TAC FINITE_INSERT);;

let SING_FINITE = 
    prove_thm
    (`SING_FINITE`,
     "!s:(*)set. SING s ==> FINITE s",
     PURE_ONCE_REWRITE_TAC [SING_DEF] THEN
     GEN_TAC THEN DISCH_THEN (STRIP_THM_THEN SUBST1_TAC) THEN
     MATCH_ACCEPT_TAC FINITE_SING);;

let IMAGE_FINITE =
    prove_thm
    (`IMAGE_FINITE`,
     "!s. FINITE s ==> !f:*->**. FINITE(IMAGE f s)",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [IMAGE_EMPTY;FINITE_EMPTY];
      ASM_REWRITE_TAC [IMAGE_INSERT;FINITE_INSERT]]);;

% ===================================================================== %
% Cardinality 								%
% ===================================================================== %

% --------------------------------------------------------------------- %
% card_rel_def: defining equations for a relation "R s n", which means  %
% that the finite s has cardinality n.					%
% --------------------------------------------------------------------- %

let card_rel_def = 
    "(!s. R s 0 = (s = EMPTY)) /\
     (!s n. R s (SUC n) = ?x:*. x IN s /\ R (s DELETE x) n)";;

% --------------------------------------------------------------------- %
% Prove that such a relation exists.					%
% --------------------------------------------------------------------- %

let CARD_REL_EXISTS =  prove_rec_fn_exists num_Axiom card_rel_def;;

% --------------------------------------------------------------------- %
% Now, prove that it doesn't matter which element we delete		%
% Proof modified for Version 12 IMP_RES_THEN		 [TFM 91.01.23]	%
% --------------------------------------------------------------------- %

let CARD_REL_DEL_LEMMA = 
    TAC_PROOF
    ((conjuncts card_rel_def,
      "!n:num.!s.!x:*. 
       x IN s ==> R (s DELETE x) n  ==> !y:*. y IN s ==> R (s DELETE y) n"),
     INDUCT_TAC THENL
     [REPEAT GEN_TAC THEN DISCH_TAC THEN
      IMP_RES_TAC DELETE_EQ_SING THEN ASM_REWRITE_TAC [] THEN 
      DISCH_THEN SUBST1_TAC THEN REWRITE_TAC [IN_SING] THEN
      GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC [SING_DELETE];
      ASM_REWRITE_TAC [] THEN REPEAT STRIP_TAC THEN
      let th = (SPEC "y:* = x'" EXCLUDED_MIDDLE) in
      DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC th THENL
      [MP_TAC (SPECL ["s:(*)set";"x:*";"x':*"] IN_DELETE_EQ) THEN
       ASM_REWRITE_TAC [] THEN DISCH_TAC THEN
       PURE_ONCE_REWRITE_TAC [DELETE_COMM] THEN
       EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[];
       let th = (SPEC "x:* = y" EXCLUDED_MIDDLE) in
       DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC th THENL
       [EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC [];
        EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC [IN_DELETE] THEN
        RES_THEN (TRY o IMP_RES_THEN ASSUME_TAC) THEN
        PURE_ONCE_REWRITE_TAC [DELETE_COMM] THEN
	FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC [IN_DELETE] THEN
	CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN FIRST_ASSUM ACCEPT_TAC]]]);;


% --------------------------------------------------------------------- %
% So "R s" specifies a unique number.					%
% --------------------------------------------------------------------- %

let CARD_REL_UNIQUE = 
    TAC_PROOF
    ((conjuncts card_rel_def,
      "!n:num. !s:(*)set. R s n ==> (!m. R s m ==> (n = m))"),
     INDUCT_TAC THEN ASM_REWRITE_TAC [] THENL
     [GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN
      CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THENL
      [STRIP_TAC THEN REFL_TAC; ASM_REWRITE_TAC[NOT_SUC;NOT_IN_EMPTY]];
      GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THENL
      [ASM_REWRITE_TAC [NOT_SUC;SYM(SPEC_ALL MEMBER_NOT_EMPTY)] THEN
       EXISTS_TAC "x:*" THEN FIRST_ASSUM ACCEPT_TAC;
       ASM_REWRITE_TAC [INV_SUC_EQ] THEN STRIP_TAC THEN 
       IMP_RES_TAC CARD_REL_DEL_LEMMA THEN RES_TAC]]);;

% --------------------------------------------------------------------- %
% Now, ?n. R s n if s is finite.					%
% --------------------------------------------------------------------- %

let CARD_REL_EXISTS_LEMMA = 
    TAC_PROOF
    ((conjuncts card_rel_def, "!s:(*)set. FINITE s ==> ?n:num. R s n"),
     SET_INDUCT_TAC THENL
     [EXISTS_TAC "0" THEN ASM_REWRITE_TAC[];
      FIRST_ASSUM (\th g. CHOOSE_THEN ASSUME_TAC th g) THEN
      EXISTS_TAC "SUC n" THEN ASM_REWRITE_TAC [] THEN
      EXISTS_TAC "e:*" THEN IMP_RES_TAC DELETE_NON_ELEMENT THEN
      ASM_REWRITE_TAC [DELETE_INSERT;IN_INSERT]]);;     

% --------------------------------------------------------------------- %
% So (@n. R s n) = m iff R s m        (\s.@n.R s n defines a function)	%
% Proof modified for Version 12 IMP_RES_THEN		 [TFM 91.01.23]	%
% --------------------------------------------------------------------- %

let CARD_REL_THM = 
    TAC_PROOF
    ((conjuncts card_rel_def, 
     "!m s. FINITE s ==> (((@n:num. R (s:(*)set) n) = m) = R s m)"),
     REPEAT STRIP_TAC THEN 
     IMP_RES_TAC CARD_REL_EXISTS_LEMMA THEN 
     EQ_TAC THENL
     [DISCH_THEN (SUBST1_TAC o SYM) THEN CONV_TAC SELECT_CONV THEN
      EXISTS_TAC "n:num" THEN FIRST_ASSUM MATCH_ACCEPT_TAC;
      STRIP_TAC THEN
      IMP_RES_THEN ASSUME_TAC CARD_REL_UNIQUE THEN
      CONV_TAC SYM_CONV THEN
      FIRST_ASSUM MATCH_MP_TAC THEN
      CONV_TAC SELECT_CONV THEN
      EXISTS_TAC "n:num" THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;

% --------------------------------------------------------------------- %
% Now, prove the existence of the required cardinality function.	%
% --------------------------------------------------------------------- %

let CARD_EXISTS = 
    TAC_PROOF
    (([]," ?CARD.
           (CARD EMPTY = 0) /\ 
           (!s. FINITE s ==> 
                !x:*. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s)))"),
     STRIP_ASSUME_TAC CARD_REL_EXISTS THEN
     EXISTS_TAC "\s:(*)set. @n:num. R s n" THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN CONJ_TAC THENL
     [ASSUME_TAC FINITE_EMPTY THEN IMP_RES_TAC CARD_REL_THM THEN
      FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC [];
      REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
      [IMP_RES_THEN SUBST1_TAC ABSORPTION THEN REFL_TAC; 
       IMP_RES_THEN (ASSUME_TAC o SPEC "x:*") FINITE_INSERT THEN
       IMP_RES_THEN (TRY o MATCH_MP_TAC) CARD_REL_THM THEN
       ASM_REWRITE_TAC [] THEN EXISTS_TAC "x:*" THEN
       IMP_RES_TAC DELETE_NON_ELEMENT THEN
       ASM_REWRITE_TAC [IN_INSERT;DELETE_INSERT] THEN
       CONV_TAC SELECT_CONV THEN
       IMP_RES_THEN (TRY o MATCH_ACCEPT_TAC) CARD_REL_EXISTS_LEMMA]]);;

% --------------------------------------------------------------------- %
% Finally, introduce the CARD function via a constant specification.	%
% --------------------------------------------------------------------- %

let CARD_DEF = 
    new_specification `CARD_DEF` [`constant`,`CARD`] CARD_EXISTS;;

% --------------------------------------------------------------------- %
% Various cardinality results.						%
% --------------------------------------------------------------------- %

let CARD_EMPTY = save_thm(`CARD_EMPTY`,CONJUNCT1 CARD_DEF);;

let CARD_INSERT = save_thm(`CARD_INSERT`,CONJUNCT2 CARD_DEF);;

let CARD_EQ_0 = 
    prove_thm
    (`CARD_EQ_0`,
     "!s:(*)set. FINITE s ==> ((CARD s = 0) = (s = EMPTY))",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [CARD_EMPTY];
      IMP_RES_TAC CARD_INSERT THEN
      ASM_REWRITE_TAC [NOT_INSERT_EMPTY;NOT_SUC]]);;
      
let CARD_DELETE = 
    prove_thm
    (`CARD_DELETE`,
     "!s. FINITE s ==> 
          !x:*. CARD(s DELETE x) = (x IN s => (CARD s) - 1 | CARD s)",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [EMPTY_DELETE;NOT_IN_EMPTY];
      PURE_REWRITE_TAC [DELETE_INSERT;IN_INSERT] THEN
      REPEAT GEN_TAC THEN ASM_CASES_TAC "x:* = e" THENL
      [IMP_RES_TAC CARD_DEF THEN ASM_REWRITE_TAC [SUC_SUB1];
       SUBST1_TAC (SPECL ["e:*";"x:*"] EQ_SYM_EQ) THEN
       IMP_RES_THEN (ASSUME_TAC o SPEC "x:*") FINITE_DELETE THEN
       IMP_RES_TAC CARD_DEF THEN ASM_REWRITE_TAC [IN_DELETE;SUC_SUB1] THEN
       COND_CASES_TAC THEN ASM_REWRITE_TAC [] THEN
       STRIP_ASSUME_TAC (SPEC "CARD(s:(*)set)" num_CASES) THENL
       [(let tac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
	 REPEAT_GTCL IMP_RES_THEN tac CARD_EQ_0 THEN
	 IMP_RES_TAC NOT_IN_EMPTY);
	 ASM_REWRITE_TAC [SUC_SUB1]]]]);;


let lemma1 = 
    TAC_PROOF
    (([], "!n m. (SUC n <= SUC m) = (n <= m)"),
     REWRITE_TAC [LESS_OR_EQ;INV_SUC_EQ;LESS_MONO_EQ]);;

let lemma2 = 
    TAC_PROOF
    (([], "!n m. (n <= SUC m) = (n <= m \/ (n = SUC m))"),
     REWRITE_TAC [LESS_OR_EQ;LESS_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC[]);;

let CARD_INTER_LESS_EQ = 
    prove_thm
    (`CARD_INTER_LESS_EQ`,
     "!s:(*)set. FINITE s ==> !t. CARD (s INTER t) <= CARD s",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [CARD_DEF;INTER_EMPTY;LESS_EQ_REFL];
      PURE_ONCE_REWRITE_TAC [INSERT_INTER] THEN
      GEN_TAC THEN COND_CASES_TAC THENL
      [IMP_RES_THEN (ASSUME_TAC o SPEC "t:(*)set") INTER_FINITE THEN
       IMP_RES_TAC CARD_DEF THEN ASM_REWRITE_TAC [IN_INTER;lemma1];
       IMP_RES_TAC CARD_DEF THEN ASM_REWRITE_TAC [lemma2]]]);;

let CARD_UNION = 
    prove_thm
    (`CARD_UNION`,
     "!s:(*)set.
       FINITE s ==>
       !t. FINITE t ==>
           (CARD (s UNION t) + CARD (s INTER t) = CARD s + CARD t)",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [UNION_EMPTY;INTER_EMPTY;CARD_DEF;ADD_CLAUSES];
      REPEAT STRIP_TAC THEN REWRITE_TAC [INSERT_UNION;INSERT_INTER] THEN 
      ASM_CASES_TAC "(e:*) IN t" THENL
      [IMP_RES_THEN (ASSUME_TAC o SPEC "t:(*)set") INTER_FINITE THEN
       IMP_RES_TAC CARD_DEF THEN RES_TAC THEN
       ASM_REWRITE_TAC [IN_INTER;ADD_CLAUSES];
       IMP_RES_TAC UNION_FINITE THEN
       IMP_RES_TAC CARD_DEF THEN RES_TAC THEN
       ASM_REWRITE_TAC [ADD_CLAUSES; INV_SUC_EQ; IN_UNION]]]);;

let lemma = 
    TAC_PROOF
    (([], "!n m. (n <= SUC m) = (n <= m \/ (n = SUC m))"),
     REWRITE_TAC [LESS_OR_EQ;LESS_THM] THEN
     REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN ASM_REWRITE_TAC[]);;

let CARD_SUBSET = 
    prove_thm
    (`CARD_SUBSET`,
     "!s:(*)set. FINITE s ==> (!t. t SUBSET s ==> (CARD t <= CARD s))",
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [SUBSET_EMPTY;CARD_EMPTY] THEN
      GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
      REWRITE_TAC [CARD_DEF;LESS_EQ_REFL];

      IMP_RES_THEN (ASSUME_TAC o SPEC "e:*") FINITE_INSERT THEN
      IMP_RES_TAC CARD_INSERT THEN
      ASM_REWRITE_TAC [SUBSET_INSERT_DELETE] THEN
      REPEAT STRIP_TAC THEN RES_THEN MP_TAC THEN
      IMP_RES_TAC SUBSET_FINITE THEN
      IMP_RES_TAC DELETE_FINITE THEN
      IMP_RES_TAC CARD_DELETE THEN
      ASM_REWRITE_TAC [] THEN COND_CASES_TAC THENL
      [(let th = SPEC "CARD (t:(*)set)" num_CASES in
        REPEAT_TCL STRIP_THM_THEN SUBST_ALL_TAC th) THENL
	[REWRITE_TAC [LESS_OR_EQ;LESS_0];
         REWRITE_TAC [SUC_SUB1;LESS_OR_EQ;LESS_MONO_EQ;INV_SUC_EQ]];
       STRIP_TAC THEN ASM_REWRITE_TAC [lemma]]]);;

let CARD_PSUBSET = 
    prove_thm
    (`CARD_PSUBSET`,
     "!s:(*)set. FINITE s ==> (!t. t PSUBSET s ==> (CARD t < CARD s))",
     REPEAT STRIP_TAC THEN IMP_RES_TAC PSUBSET_DEF THEN
     IMP_RES_THEN (IMP_RES_THEN MP_TAC) CARD_SUBSET THEN
     PURE_ONCE_REWRITE_TAC [LESS_OR_EQ] THEN 
     DISCH_THEN (STRIP_THM_THEN (\th g. ACCEPT_TAC th g ? MP_TAC th g)) THEN
     IMP_RES_THEN STRIP_ASSUME_TAC PSUBSET_INSERT_SUBSET THEN
     IMP_RES_THEN (IMP_RES_THEN MP_TAC) CARD_SUBSET THEN
     IMP_RES_TAC INSERT_SUBSET THEN 
     IMP_RES_TAC SUBSET_FINITE THEN
     IMP_RES_TAC CARD_INSERT THEN
     ASM_REWRITE_TAC [LESS_EQ] THEN
     REPEAT STRIP_TAC THEN FIRST_ASSUM ACCEPT_TAC);;

let CARD_SING = 
    prove_thm
    (`CARD_SING`,
     "!x:*. CARD {x} = 1",
     CONV_TAC (ONCE_DEPTH_CONV num_CONV) THEN
     GEN_TAC THEN ASSUME_TAC FINITE_EMPTY THEN
     IMP_RES_THEN (ASSUME_TAC o SPEC "x:*") FINITE_INSERT THEN
     IMP_RES_TAC CARD_DEF THEN ASM_REWRITE_TAC [NOT_IN_EMPTY;CARD_DEF]);;

let SING_IFF_CARD1 = 
    prove_thm
    (`SING_IFF_CARD1`,
     "!s:(*)set. (SING s) = ((CARD s = 1) /\ (FINITE s))",
     REWRITE_TAC [SING_DEF;num_CONV "1"] THEN 
     GEN_TAC THEN EQ_TAC THENL
     [DISCH_THEN (CHOOSE_THEN SUBST1_TAC) THEN
      CONJ_TAC THENL
      [ASSUME_TAC FINITE_EMPTY THEN
       IMP_RES_TAC CARD_INSERT THEN 
       ASM_REWRITE_TAC [CARD_EMPTY;NOT_IN_EMPTY];
       REWRITE_TAC [FINITE_INSERT;FINITE_EMPTY]];
      STRIP_ASSUME_TAC (SPEC "s:(*)set" SET_CASES) THENL
      [ASM_REWRITE_TAC [CARD_EMPTY;NOT_EQ_SYM(SPEC_ALL NOT_SUC)];
       ASM_REWRITE_TAC [FINITE_INSERT] THEN
       DISCH_THEN (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
       IMP_RES_TAC CARD_INSERT THEN
       IMP_RES_TAC CARD_EQ_0 THEN
       ASM_REWRITE_TAC [INV_SUC_EQ] THEN
       DISCH_TAC THEN EXISTS_TAC "x:*" THEN
       ASM_REWRITE_TAC []]]);;

% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let CARD_DIFF =
    prove_thm
    (`CARD_DIFF`,
     "!t:(*)set. FINITE t ==>
      !s:(*)set. FINITE s ==>
                 (CARD (s DIFF t) = (CARD s - CARD (s INTER t)))",
     SET_INDUCT_TAC THEN REPEAT STRIP_TAC THENL
     [REWRITE_TAC [DIFF_EMPTY;INTER_EMPTY;CARD_EMPTY;SUB_0];
      PURE_ONCE_REWRITE_TAC [INTER_COMM] THEN
      PURE_ONCE_REWRITE_TAC [INSERT_INTER] THEN
      COND_CASES_TAC THENL
      [let th = SPEC "s':(*)set" (UNDISCH (SPEC "s:(*)set" INTER_FINITE)) in
       PURE_ONCE_REWRITE_TAC [MATCH_MP CARD_INSERT th] THEN
       IMP_RES_THEN (ASSUME_TAC o SPEC "e:*") FINITE_DELETE THEN
       IMP_RES_TAC CARD_DELETE THEN
       RES_TAC THEN ASM_REWRITE_TAC [IN_INTER;DIFF_INSERT] THEN
       PURE_ONCE_REWRITE_TAC [SYM (SPEC_ALL SUB_PLUS)] THEN
       REWRITE_TAC [num_CONV "1";ADD_CLAUSES;DELETE_INTER] THEN
       MP_TAC (SPECL ["s':(*)set";"s:(*)set";"e:*"] IN_INTER) THEN
       ASM_REWRITE_TAC [DELETE_NON_ELEMENT] THEN
       DISCH_THEN SUBST1_TAC THEN
       SUBST1_TAC (SPECL ["s:(*)set";"s':(*)set"] INTER_COMM) THEN REFL_TAC;
       IMP_RES_TAC DELETE_NON_ELEMENT THEN
       PURE_ONCE_REWRITE_TAC [INTER_COMM] THEN
       RES_TAC THEN ASM_REWRITE_TAC [DIFF_INSERT]]]);;


% --------------------------------------------------------------------- %
% A theorem from homeier@org.aero.uniblab (Peter Homeier)		%
% --------------------------------------------------------------------- %
let LESS_CARD_DIFF =
    prove_thm
    (`LESS_CARD_DIFF`,
     "!t:(*)set. FINITE t ==>
      !s. FINITE s ==> (CARD t < CARD s) ==> (0 < CARD(s DIFF t))",
     REPEAT STRIP_TAC THEN
     REPEAT_GTCL IMP_RES_THEN SUBST1_TAC CARD_DIFF THEN
     PURE_REWRITE_TAC [GSYM SUB_LESS_0] THEN
     let th1 = UNDISCH (SPEC "s:(*)set" CARD_INTER_LESS_EQ) in
     let th2 = SPEC "t:(*)set" (PURE_ONCE_REWRITE_RULE [LESS_OR_EQ] th1) in
     DISJ_CASES_THEN2 ACCEPT_TAC (SUBST_ALL_TAC o SYM) th2 THEN
     let th3 = SPEC "s:(*)set" (UNDISCH(SPEC "t:(*)set" CARD_INTER_LESS_EQ)) in
     let th4 = PURE_ONCE_REWRITE_RULE [INTER_COMM] th3 in
     IMP_RES_TAC (PURE_ONCE_REWRITE_RULE [GSYM NOT_LESS] th4));;

% ===================================================================== %
% Infiniteness								%
% ===================================================================== %

let INFINITE_DEF = 
    new_definition (`INFINITE_DEF`, "!s:(*)set. INFINITE s = ~(FINITE s)");;

let NOT_IN_FINITE = 
    prove_thm
    (`NOT_IN_FINITE`,
     "INFINITE (UNIV:(*)set) = !s:(*)set. FINITE s ==> ?x. ~ (x IN s)",
     PURE_ONCE_REWRITE_TAC [INFINITE_DEF] THEN EQ_TAC THENL
     [CONV_TAC CONTRAPOS_CONV THEN
      CONV_TAC (ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
      REWRITE_TAC [NOT_IMP] THEN
      CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
      REWRITE_TAC [EQ_UNIV] THEN 
      CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN
      REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [];
      REPEAT STRIP_TAC THEN RES_THEN STRIP_ASSUME_TAC THEN
      ASSUME_TAC (SPEC "x:*" IN_UNIV) THEN RES_TAC]);;

let INVERSE_LEMMA = 
    TAC_PROOF
    (([], "!f:*->**. (!x y. (f x = f y) ==> (x = y)) ==>
                     ((\x:**. @y:*. x = f y) o f = \x:*.x)"),
     REPEAT STRIP_TAC THEN CONV_TAC FUN_EQ_CONV THEN
     PURE_ONCE_REWRITE_TAC [o_THM] THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     GEN_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
     CONV_TAC (SYM_CONV THENC SELECT_CONV) THEN
     EXISTS_TAC "x:*" THEN REFL_TAC);;

let IMAGE_11_INFINITE = 
    prove_thm
    (`IMAGE_11_INFINITE`,
     "!f:*->**. (!x y. (f x = f y) ==> (x = y)) ==>
      !s:(*)set. INFINITE s ==> INFINITE (IMAGE f s)",
     GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN
     CONV_TAC CONTRAPOS_CONV THEN
     REWRITE_TAC [INFINITE_DEF] THEN STRIP_TAC THEN 
     let thm = INST_TYPE [":*",":**";":**",":*"] IMAGE_FINITE in
     IMP_RES_THEN (MP_TAC o ISPEC "\x:**.@y:*.x=f y") thm THEN
     REWRITE_TAC [SYM(SPEC_ALL IMAGE_COMPOSE)] THEN
     IMP_RES_TAC INVERSE_LEMMA THEN
     ASM_REWRITE_TAC [IMAGE_ID]);;

let INFINITE_SUBSET = 
    prove_thm
    (`INFINITE_SUBSET`,
     "!s:(*)set. INFINITE s ==> (!t. s SUBSET t ==> INFINITE t)",
     PURE_ONCE_REWRITE_TAC [INFINITE_DEF] THEN 
     REPEAT STRIP_TAC THEN IMP_RES_TAC SUBSET_FINITE THEN RES_TAC);;

let IN_INFINITE_NOT_FINITE = 
    prove_thm
    (`IN_INFINITE_NOT_FINITE`,
     "!s t. (INFINITE s /\ FINITE t) ==> ?x:*. x IN s /\ ~x IN t",
     CONV_TAC (ONCE_DEPTH_CONV CONTRAPOS_CONV) THEN
     CONV_TAC (ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN 
     PURE_ONCE_REWRITE_TAC [DE_MORGAN_THM] THEN
     REWRITE_TAC [SYM(SPEC_ALL IMP_DISJ_THM)] THEN
     PURE_ONCE_REWRITE_TAC [SYM(SPEC_ALL SUBSET_DEF)] THEN
     PURE_ONCE_REWRITE_TAC [SYM(SPEC_ALL INFINITE_DEF)] THEN
     REPEAT STRIP_TAC THEN IMP_RES_TAC INFINITE_SUBSET);;

% --------------------------------------------------------------------- %
% The next series of lemmas are used for proving that if UNIV:(*)set is %
% INFINITE then :* satisfies an axiom of infinity.			%
%									%
% The function g:num->(*)set defines a series of sets:			%
%									%
%    {}, {x1}, {x1,x2}, {x1,x2,x3},...					%
%									%
% and one then defines an f:*->* such that f(xi)=xi+1.			%
% --------------------------------------------------------------------- %

% --------------------------------------------------------------------- %
% Defining equations for g.						%
% --------------------------------------------------------------------- %

let gdef = 
    ["g 0 = ({}:(*)set)"; "!n. g(SUC n) = (@x:*.~ x IN (g n)) INSERT (g n)"];;

% --------------------------------------------------------------------- %
% Lemma: g n is finite for all n.					%
% --------------------------------------------------------------------- %

let g_finite = 
    TAC_PROOF
    ((gdef, "!n:num. FINITE (g n:(*)set)"),
     INDUCT_TAC THEN ASM_REWRITE_TAC[FINITE_EMPTY;FINITE_INSERT]);;

% --------------------------------------------------------------------- %
% Lemma: g n is contained in g (n+i) for all i.				%
% --------------------------------------------------------------------- %

let g_subset = 
    TAC_PROOF
    ((gdef, "!n. !x:*. x IN (g n) ==> !i. x IN (g (n+i))"),
     REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN
     ASM_REWRITE_TAC [ADD_CLAUSES;IN_INSERT]);;

% --------------------------------------------------------------------- %
% Lemma: if x is in g(n) then {x} = g(n+1)-g(n) for some n.		%
% --------------------------------------------------------------------- %

let lemma = 
    TAC_PROOF(([], "((A \/ B) /\ ~B) = (A /\ ~B)"),
              BOOL_CASES_TAC "B:bool" THEN REWRITE_TAC[]);;

let g_cases = 
    TAC_PROOF
    ((gdef, "(!s. FINITE s ==> ?x:*. ~(x IN s)) ==>
    	      !x:*. (?n. x IN (g n)) ==> 
	            (?m. (x IN (g (SUC m))) /\ ~(x IN (g m)))"),
     DISCH_TAC THEN GEN_TAC THEN
     DISCH_THEN (STRIP_THM_THEN MP_TAC o CONV_RULE EXISTS_LEAST_CONV) THEN
     REPEAT_TCL STRIP_THM_THEN SUBST1_TAC (SPEC "n:num" num_CASES) THEN
     ASM_REWRITE_TAC [NOT_IN_EMPTY;IN_INSERT] THEN STRIP_TAC THENL
     [REWRITE_TAC [lemma] THEN EXISTS_TAC "n':num" THEN
      CONJ_TAC THEN TRY(FIRST_ASSUM ACCEPT_TAC) THEN
      FIRST_ASSUM (\th g. SUBST1_TAC th g) THEN
      CONV_TAC SELECT_CONV THEN
      FIRST_ASSUM MATCH_MP_TAC THEN
      MATCH_ACCEPT_TAC g_finite;
      REWRITE_TAC [lemma] THEN
      FIRST_ASSUM (\th g. MP_TAC (SPEC "n':num" th) g) THEN
      REWRITE_TAC [LESS_SUC_REFL] THEN
      DISCH_THEN IMP_RES_TAC]);;

% --------------------------------------------------------------------- %
% Lemma: @x.~(x IN {}) is an element of every g(n+1).			%
% --------------------------------------------------------------------- %

let z_in_g1 = 
    TAC_PROOF
    ((gdef, "(@x:*.~x IN {}) IN (g (SUC 0))"),
     ASM_REWRITE_TAC [NOT_IN_EMPTY;IN_INSERT]);;

let z_in_gn = 
    TAC_PROOF
    ((gdef, "!n:num. (@x:*.~x IN {}) IN (g (SUC n))"),
     PURE_ONCE_REWRITE_TAC [ADD1] THEN
     PURE_ONCE_REWRITE_TAC [ADD_SYM] THEN 
     MATCH_MP_TAC g_subset THEN
     REWRITE_TAC [num_CONV "1";z_in_g1]);;

% --------------------------------------------------------------------- %
% Lemma: @x.~(x IN g n) is an element of g(n+1).			%
% --------------------------------------------------------------------- %

let in_lemma = 
    TAC_PROOF
    ((gdef, "!n:num. (@x:*. ~(x IN (g n))) IN (g(SUC n))"),
     ASM_REWRITE_TAC [IN_INSERT]);;

% --------------------------------------------------------------------- %
% Lemma: the x added to g(n+1) is not in g(n)				%
% --------------------------------------------------------------------- %

let not_in_lemma = 
    TAC_PROOF
    ((gdef, "(!s. FINITE s ==> ?x:*. ~(x IN s)) ==>
	     !i. !n. ~(@x:*. ~(x IN (g (n+i)))) IN g n"),
     DISCH_TAC THEN INDUCT_TAC THENL
     [ASM_REWRITE_TAC [ADD_CLAUSES] THEN
      GEN_TAC THEN CONV_TAC SELECT_CONV THEN
      FIRST_ASSUM MATCH_MP_TAC THEN 
      MATCH_ACCEPT_TAC g_finite;
      PURE_ONCE_REWRITE_TAC [ADD_CLAUSES] THEN
      PURE_ONCE_REWRITE_TAC [SYM(el 3 (CONJUNCTS ADD_CLAUSES))] THEN
      GEN_TAC THEN FIRST_ASSUM (\th g. MP_TAC(SPEC "SUC n" th) g) THEN
      REWRITE_TAC (map ASSUME gdef) THEN
      REWRITE_TAC [IN_INSERT;DE_MORGAN_THM] THEN
      REPEAT STRIP_TAC THEN RES_TAC]);;

% --------------------------------------------------------------------- %
% Lemma: each value is added to a unique g(n).				%
% --------------------------------------------------------------------- %

let less_lemma = 
    TAC_PROOF
    (([], "!m n. ~(m = n) = ((m < n) \/ (n < m))"),
      REPEAT GEN_TAC THEN ASM_CASES_TAC "n < m" THEN 
      ASM_REWRITE_TAC [] THENL
      [DISCH_THEN SUBST_ALL_TAC THEN IMP_RES_TAC LESS_REFL;
       IMP_RES_THEN MP_TAC NOT_LESS THEN
       REWRITE_TAC [LESS_OR_EQ] THEN STRIP_TAC THEN
       ASM_REWRITE_TAC[] THENL
       [IMP_RES_TAC LESS_NOT_EQ; MATCH_ACCEPT_TAC LESS_REFL]]);;

let gn_unique = 
    TAC_PROOF
    ((gdef, "(!s. FINITE s ==> ?x:*. ~(x IN s)) ==>
             !n:num. !m. ((@x:*.~ x IN (g n)) = @x:*.~(x IN (g m))) = (n=m)"),
     DISCH_TAC THEN REPEAT GEN_TAC THEN EQ_TAC THENL
     [CONV_TAC CONTRAPOS_CONV THEN 
      REWRITE_TAC [less_lemma] THEN 
      DISCH_THEN (STRIP_THM_THEN MP_TAC) THEN
      DISCH_THEN (STRIP_THM_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1) THEN
      REWRITE_TAC [num_CONV "1";ADD_CLAUSES] THEN
      REWRITE_TAC [SYM(el 3 (CONJUNCTS ADD_CLAUSES))] THEN
      IMP_RES_TAC not_in_lemma THEN
      DISCH_TAC THENL
      [MP_TAC (SPEC "n:num" in_lemma) THEN
       EVERY_ASSUM (\th g. SUBST1_TAC th g ? ALL_TAC g) THEN
       DISCH_TAC THEN RES_TAC;
       MP_TAC (SPEC "m:num" in_lemma) THEN
       EVERY_ASSUM (\th g. SUBST1_TAC (SYM th) g ? ALL_TAC g) THEN
       DISCH_TAC THEN RES_TAC];
      DISCH_THEN SUBST1_TAC THEN REFL_TAC]);;

% --------------------------------------------------------------------- %
% Lemma: the value added to g(n) to get g(n+1) a unique.		%
% --------------------------------------------------------------------- %

let x_unique = 
    TAC_PROOF
    ((gdef, "!n. !x. !y:*. 
	       (~(x IN g n) /\ ~(y IN g n)) ==>
	       (x IN g(SUC n)) ==> (y IN g(SUC n)) ==> (x = y)"),
     REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC [IN_INSERT] THEN
     REPEAT (DISCH_THEN SUBST1_TAC) THEN REFL_TAC);;

% --------------------------------------------------------------------- %
% Now, show the existence of a non-onto one-one fuction.  The required	%
% function is denoted by fdef.  The theorem cases is:			%
%									%
%   |- (?n. x IN (g n)) \/ (!n. ~x IN (g n))				%
%									%
% and is used to do case splits on the condition of the conditional 	%
% present in fdef.							%
% --------------------------------------------------------------------- %

let fdef = 
    "\x:*. (?n. (x IN (g n))) => 
           (@y.~(y IN (g (SUC @n. x IN g(SUC n) /\ ~ x IN (g n))))) | x";;

let cases = 
    let thm = GEN "x:*" (SPEC "?n:num.(x:*) IN (g n)" EXCLUDED_MIDDLE) in
        CONV_RULE (ONCE_DEPTH_CONV NOT_EXISTS_CONV) thm;;


let INF_IMP_INFINITY =
    TAC_PROOF
    (([],"(!s. FINITE s ==> ?x:*. ~(x IN s)) ==>
	  (?f:*->*. (!x y. (f x = f y) ==> (x=y)) /\ ?y. !x. ~(f x = y))"),
     let xcases = SPEC "x:*" cases and ycases = SPEC "y:*" cases in
     let nv x = "SUC(@n. ^x IN (g(SUC n)) /\ ~^x IN (g n))" in
     STRIP_ASSUME_TAC (prove_rec_fn_exists num_Axiom (list_mk_conj gdef)) THEN
     STRIP_TAC THEN EXISTS_TAC fdef THEN 
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN CONJ_TAC THENL
     [REPEAT GEN_TAC THEN
      DISJ_CASES_THEN (\th. REWRITE_TAC[th] THEN
			    STRIP_ASSUME_TAC th) xcases THEN
      DISJ_CASES_THEN (\th. REWRITE_TAC[th] THEN
                            STRIP_ASSUME_TAC th) ycases THENL
      [REWRITE_TAC [UNDISCH gn_unique;INV_SUC_EQ] THEN
       IMP_RES_THEN (IMP_RES_THEN(STRIP_ASSUME_TAC o SELECT_RULE)) g_cases THEN
       DISCH_THEN SUBST_ALL_TAC THEN IMP_RES_TAC x_unique;
       ASSUME_TAC (SPEC (nv "x:*") in_lemma) THEN
       DISCH_THEN (SUBST_ALL_TAC o SYM) THEN RES_TAC;
       ASSUME_TAC (SPEC (nv "y:*") in_lemma) THEN
       DISCH_THEN SUBST_ALL_TAC THEN RES_TAC];
      EXISTS_TAC "@x:*.~(x IN g 0)" THEN GEN_TAC THEN
      DISJ_CASES_THEN (\th. REWRITE_TAC[th] THEN ASSUME_TAC th) xcases THENL
      [REWRITE_TAC [UNDISCH gn_unique;NOT_SUC];
       ASSUME_TAC (SPEC "n:num" z_in_gn) THEN 
       FIRST_ASSUM (\th g. SUBST1_TAC th g) THEN
       DISCH_THEN SUBST_ALL_TAC THEN RES_TAC]]);;

% --------------------------------------------------------------------- %
% We now also prove the converse, namely that if :* satisfies an axiom 	%
% of infinity then UNIV:(*)set is INFINITE.				%
% --------------------------------------------------------------------- %

% --------------------------------------------------------------------- %
% First, a version of the primitive recursion theorem			%
% --------------------------------------------------------------------- %

let prth = 
    prove_rec_fn_exists num_Axiom
    "(fn f x 0 = x) /\ 
     (fn f x (SUC n) = (f:*->*)(fn f x n))";;

let prmth = 
    TAC_PROOF
    (([], "!x:*. !f. ?fn. (fn 0 = x) /\ !n. fn (SUC n) = f(fn n)"),
     REPEAT GEN_TAC THEN STRIP_ASSUME_TAC prth THEN
     EXISTS_TAC "fn (f:*->*) (x:*) : num->*" THEN
     ASM_REWRITE_TAC []);;

% --------------------------------------------------------------------- %
% Lemma: if f is one-to-one and not onto, there is a one-one f:num->*.	%
% --------------------------------------------------------------------- %

let num_fn_thm = 
    TAC_PROOF
    (([],"(?f:*->*. (!x y. (f x = f y) ==> (x=y)) /\ ?y. !x. ~(f x = y))
          ==>
	  (?fn:num->*. (!n m. (fn n = fn m) ==> (n=m)))"),
     STRIP_TAC THEN STRIP_ASSUME_TAC (SPECL ["y:*";"f:*->*"] prmth) THEN
     EXISTS_TAC "fn:num->*" THEN INDUCT_TAC THENL
     [CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN 
      INDUCT_TAC THEN ASM_REWRITE_TAC[];
      INDUCT_TAC THEN ASM_REWRITE_TAC [INV_SUC_EQ] THEN
      REPEAT STRIP_TAC THEN RES_TAC THEN RES_TAC]);;

% --------------------------------------------------------------------- %
% Lemma: every finite set of numbers has an upper bound.		%
% --------------------------------------------------------------------- %

let finite_N_bounded = 
    TAC_PROOF
    (([], "!s. FINITE s ==> ?m. !n. (n IN s) ==> n < m"),
     SET_INDUCT_TAC THENL
     [REWRITE_TAC [NOT_IN_EMPTY];
      FIRST_ASSUM (\th g. CHOOSE_THEN ASSUME_TAC th g) THEN
      EXISTS_TAC "(SUC m) + e" THEN REWRITE_TAC [IN_INSERT] THEN 
      REPEAT STRIP_TAC THENL
      [PURE_ONCE_REWRITE_TAC [ADD_SYM] THEN ASM_REWRITE_TAC [LESS_ADD_SUC];
       RES_TAC THEN IMP_RES_TAC LESS_IMP_LESS_ADD THEN
       let [_;_;c1;c2] = CONJUNCTS ADD_CLAUSES in
       ASM_REWRITE_TAC [c1;SYM c2]]]);;

% --------------------------------------------------------------------- %
% Lemma: UNIV:(num)set is infinite.					%
% --------------------------------------------------------------------- %

let N_lemma = 
    TAC_PROOF
    (([], "INFINITE(UNIV:(num)set)"),
     REWRITE_TAC [INFINITE_DEF] THEN STRIP_TAC THEN
     IMP_RES_THEN MP_TAC finite_N_bounded THEN
     REWRITE_TAC [IN_UNIV] THEN 
     CONV_TAC NOT_EXISTS_CONV THEN GEN_TAC THEN
     CONV_TAC NOT_FORALL_CONV THEN EXISTS_TAC "SUC m" THEN
     REWRITE_TAC [NOT_LESS;LESS_OR_EQ;LESS_SUC_REFL]);;

% --------------------------------------------------------------------- %
% Lemma: if s is finite, f:num->* is one-one, then ?n. f(n) not in s	%
% --------------------------------------------------------------------- %

let main_lemma = 
    TAC_PROOF
    (([], "!s:(*)set. FINITE s ==> 
           !f:num->*. (!n m. (f n = f m) ==> (n=m)) ==> ?n. ~(f n IN s)"),
     REPEAT STRIP_TAC THEN
     ASSUME_TAC N_lemma THEN
     IMP_RES_TAC IMAGE_11_INFINITE THEN
     IMP_RES_THEN (TRY o IMP_RES_THEN MP_TAC) IN_INFINITE_NOT_FINITE THEN
     REWRITE_TAC [IN_IMAGE;IN_UNIV] THEN
     REPEAT STRIP_TAC THEN EXISTS_TAC "x':num" THEN
     EVERY_ASSUM (\th g. SUBST1_TAC (SYM th) g ? ALL_TAC g) THEN
     FIRST_ASSUM ACCEPT_TAC);;

% --------------------------------------------------------------------- %
% Now show that we can always choose an element not in a finite set.	%
% --------------------------------------------------------------------- %

let INFINITY_IMP_INF =
    TAC_PROOF
    (([],"(?f:*->*. (!x y. (f x = f y) ==> (x=y)) /\ ?y. !x. ~(f x = y))
          ==> (!s. FINITE s ==> ?x:*. ~(x IN s))"),
     DISCH_THEN (STRIP_ASSUME_TAC o MATCH_MP num_fn_thm) THEN
     GEN_TAC THEN STRIP_TAC THEN 
     IMP_RES_TAC main_lemma THEN
     EXISTS_TAC "(fn:num->*) n" THEN 
     FIRST_ASSUM ACCEPT_TAC);;


% --------------------------------------------------------------------- %
% Finally, we can prove the desired theorem.				%
% --------------------------------------------------------------------- %

let INFINITE_UNIV =
    prove_thm
    (`INFINITE_UNIV`,
     "INFINITE (UNIV:(*)set) 
        =
      (?f:*->*. (!x y. (f x = f y) ==> (x = y)) /\ (?y. !x. ~(f x = y)))",
     PURE_ONCE_REWRITE_TAC [NOT_IN_FINITE] THEN
     ACCEPT_TAC (IMP_ANTISYM_RULE INF_IMP_INFINITY INFINITY_IMP_INF));;

let FINITE_PSUBSET_INFINITE = 
    prove_thm
    (`FINITE_PSUBSET_INFINITE`,
     "!s. INFINITE (s:(*)set) 
           = 
          !t. FINITE (t:(*)set) ==> ((t SUBSET s) ==> (t PSUBSET s))",
     PURE_REWRITE_TAC [INFINITE_DEF;PSUBSET_DEF] THEN
     GEN_TAC THEN EQ_TAC THENL
     [REPEAT STRIP_TAC THENL
      [FIRST_ASSUM ACCEPT_TAC;
       FIRST_ASSUM (\th g. SUBST_ALL_TAC th g ? NO_TAC g) THEN RES_TAC];
      REPEAT STRIP_TAC THEN RES_TAC THEN
      ASSUME_TAC (SPEC "s:(*)set" SUBSET_REFL) THEN
      ASSUME_TAC (REFL "s:(*)set") THEN RES_TAC]);;

let FINITE_PSUBSET_UNIV = 
    prove_thm
    (`FINITE_PSUBSET_UNIV`,
     "INFINITE (UNIV:(*)set) = !s:(*)set. FINITE s ==> s PSUBSET UNIV",
     PURE_ONCE_REWRITE_TAC [FINITE_PSUBSET_INFINITE] THEN
     REWRITE_TAC [PSUBSET_DEF;SUBSET_UNIV]);;

let INFINITE_DIFF_FINITE = 
    prove_thm
    (`INFINITE_DIFF_FINITE`,
     "!s t. (INFINITE s /\ FINITE t) ==> ~(s DIFF t = ({}:(*)set))",
     REPEAT GEN_TAC THEN STRIP_TAC THEN
     IMP_RES_TAC IN_INFINITE_NOT_FINITE THEN
     REWRITE_TAC [EXTENSION;IN_DIFF;NOT_IN_EMPTY] THEN
     CONV_TAC NOT_FORALL_CONV THEN
     EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[]);;


let FINITE_ISO_NUM =
    prove_thm
    (`FINITE_ISO_NUM`,
     "!s:(*)set.
       FINITE s ==>
       ?f. (!n m. (n < CARD s /\ m < CARD s) ==> (f n = f m) ==> (n = m)) /\
           (s = {f n | n < CARD s})",
     SET_INDUCT_TAC THENL
     [PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
      CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
      REWRITE_TAC [CARD_EMPTY;NOT_LESS_0;NOT_IN_EMPTY];
      FIRST_ASSUM (\th g. CHOOSE_THEN STRIP_ASSUME_TAC th g) THEN
      PURE_ONCE_REWRITE_TAC [UNDISCH (SPEC "s:(*)set" CARD_INSERT)] THEN
      FILTER_ASM_REWRITE_TAC is_neg [] THEN
      PURE_ONCE_REWRITE_TAC [LESS_THM] THEN
      EXISTS_TAC "\n. n < (CARD (s:(*)set)) => f n | (e:*)" THEN
      CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN CONJ_TAC THENL
      [REPEAT GEN_TAC THEN
       let ttac th g = SUBST_ALL_TAC th g ? ASSUME_TAC th g in
       DISCH_THEN (REPEAT_TCL STRIP_THM_THEN ttac) THENL
       [REPEAT STRIP_TAC THEN REFL_TAC;
        let is_less t = (fst(strip_comb t) = "<") ? false in
        FILTER_ASM_REWRITE_TAC is_less [LESS_REFL] THEN
        FIRST_ASSUM (\th g. MP_TAC (assert (is_eq o concl) th) g) THEN
        PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
        CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
        REPEAT STRIP_TAC THEN RES_TAC THEN RES_TAC;
        let is_less t = (fst(strip_comb t) = "<") ? false in
        FILTER_ASM_REWRITE_TAC is_less [LESS_REFL] THEN
        FIRST_ASSUM (\th g. MP_TAC (assert (is_eq o concl) th) g) THEN
        PURE_ONCE_REWRITE_TAC [EXTENSION] THEN
        CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
        CONV_TAC (ONCE_DEPTH_CONV SYM_CONV) THEN
        REPEAT STRIP_TAC THEN RES_TAC THEN RES_TAC;
        let is_less t = (fst(strip_comb t) = "<") ? false in
        FILTER_ASM_REWRITE_TAC is_less [LESS_REFL] THEN
        FIRST_ASSUM MATCH_MP_TAC THEN
        CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC];
       FIRST_ASSUM (\th g. (MP_TAC (assert(is_eq o concl) th)) g) THEN
       PURE_REWRITE_TAC [EXTENSION;IN_INSERT] THEN
       CONV_TAC (ONCE_DEPTH_CONV SET_SPEC_CONV) THEN
       DISCH_THEN (\th. PURE_ONCE_REWRITE_TAC [th]) THEN
       GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL
       [EXISTS_TAC "CARD (s:(*)set)" THEN
        REWRITE_TAC [LESS_REFL] THEN FIRST_ASSUM ACCEPT_TAC;
        EXISTS_TAC "n:num" THEN
        FILTER_ASM_REWRITE_TAC (\t. not(lhs t) = "s:(*)set" ? true) [];
        SUBST1_TAC (ASSUME "x:* = (n < CARD (s:(*)set) => f n | e)") THEN
        SUBST1_TAC (ASSUME "n = CARD (s:(*)set)") THEN
        REWRITE_TAC [LESS_REFL];
        SUBST1_TAC (ASSUME "x:* = (n < CARD (s:(*)set) => f n | e)") THEN
        DISJ2_TAC THEN EXISTS_TAC "n:num" THEN
        REWRITE_TAC [ASSUME "n < CARD (s:(*)set)"]]]]);;


quit();; % Needed for Common Lisp %