1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
|
%=============================================================================%
% HOL 88 Version 2.1 %
% %
% FILE NAME: proof_rec.ml %
% %
% DESCRIPTION: function for recording and transforming proofs %
% %
% AUTHOR: Mike Gordon, Wai Wong %
% %
% USES FILES: hol-syn.ml %
% %
% University of Cambridge %
% Hardware Verification Group %
% Computer Laboratory %
% New Museums Site %
% Pembroke Street %
% Cambridge CB2 3QG %
% England %
% %
% COPYRIGHT: University of Edinburgh %
% COPYRIGHT: University of Cambridge %
% COPYRIGHT: INRIA %
% %
%=============================================================================%
%< --------------------------------------------------------------------------
Proof recording:
When proff recording is enabled, every inference step performed by
the system will be recorded in a list whose elements are of type step.
The low level functions for managing this feature are in the file
hol-syn.ml. They are reproduced below for easy reference.
The step list is then processed by the function MakeProof to become a
line list. This list can then be save into a disk file.
% We hide the flag and the list in local variables. Four functions are
provided for the users to control the recording of proof %
begin_section `record_proof`;;
letref steplist = [] : step list;;
letref record_proof_flag = false;;
letref suspended = false;;
let is_recording_proof (():void) = record_proof_flag;;
let record_proof b =
(if b then (steplist := [];());
record_proof_flag := b; ()) ;;
let suspend_recording () =
if record_proof_flag
then (record_proof_flag := false;
suspended := true; ());;
let resume_recording () =
if (suspended & (not record_proof_flag))
then (record_proof_flag := true;
suspended := false; ());;
let RecordStep step =
if record_proof_flag
then (steplist := (step.steplist); ());;
let get_steps (():void) = steplist;;
(record_proof,is_recording_proof,RecordStep,get_steps,
suspend_recording,resume_recording);;
end_section `record_proof`;;
let (record_proof,is_recording_proof,RecordStep,get_steps,
suspend_recording,resume_recording) = it;;
---------------------------------------------------------------------------->%
%----------------------------------------------------------------------------%
% Proof lines %
%----------------------------------------------------------------------------%
type justification =
Hypothesis
| Assume of term
| Refl of term
| Subst of (int#term)list # term # int
| BetaConv of term
| Abs of term # int
| InstType of (type#type)list # int
| Disch of term # int
| Mp of int # int
| MkComb of int # int
| MkAbs of int
| Alpha of term # term
| AddAssum of term # int
| Sym of int
| Trans of int # int
| ImpTrans of int # int
| ApTerm of term # int
| ApThm of int # term
| EqMp of int # int
| EqImpRuleR of int
| EqImpRuleL of int
| Spec of term # int
| EqtIntro of int
| Gen of term # int
| EtaConv of term
| Ext of int
| Exists of (term # term) # int
| Choose of (term # int) # int
| ImpAntisymRule of int # int
| MkExists of int
| Subs of int list # int
| SubsOccs of (int list # int) list # int
| SubstConv of (int # term) list # term # term
| Conj of int # int
| Conjunct1 of int
| Conjunct2 of int
| Disj1 of int # term
| Disj2 of term # int
| DisjCases of int # int # int
| NotIntro of int
| NotElim of int
| Contr of term # int
| Ccontr of term # int
| Inst of (term # term) list # int
| StoreDefinition of string # term
| Definition of string # string
| DefExistsRule of term
| NewAxiom of string # term
| Axiom of string # string
| Theorem of string # string
| NewConstant of string # type
| NewType of int # string
| NumConv of term;;
type line = Line of (int # thm # justification);;
%-------------------------------------------------------------------%
% MakeProof converts a step list into a line list. %
%-------------------------------------------------------------------%
let MakeProof steplst =
letref steps = rev steplst
and proof = [] : line list
and hyplist = [] : (int # thm) list
and thmlist = [] : (int # thm) list
and linecount = 1
and hypcount = 0
and thmcount = thm_count ()
in
let Pos th =
fst(rev_assoc th thmlist)
? fst(rev_assoc th hyplist)
? (hypcount := hypcount-1;
hyplist := (hypcount,th).hyplist;
hypcount)
and AddLine just th =
(proof := Line(linecount,th,just).proof;
thmlist := (linecount,th).thmlist;
linecount := linecount+1)
and AddHypLines () =
(proof := rev proof;
itlist (\(n,th) l. Line(n,th,Hypothesis).l) hyplist proof)
in
(suspend_recording ();
while not(null steps)
do ((case (hd steps) of
AssumeStep w .
AddLine (Assume w) (ASSUME w)
| ReflStep t .
AddLine (Refl t) (REFL t)
| SubstStep(thvars,w,lhsthm) .
AddLine (Subst(map (Pos # I) thvars, w, Pos lhsthm))
(SUBST thvars w lhsthm)
| BetaConvStep t .
AddLine (BetaConv t) (BETA_CONV t)
| AbsStep(x,th) .
AddLine (Abs(x,Pos th)) (ABS x th)
| InstTypeStep(inst_tylist,th) .
AddLine (InstType(inst_tylist,Pos th))
(INST_TYPE inst_tylist th)
| DischStep(w,th) .
AddLine (Disch(w,Pos th)) (DISCH w th)
| MpStep(thi,th) .
AddLine (Mp(Pos thi,Pos th)) (MP thi th)
| MkCombStep(funth,argth) .
AddLine (MkComb(Pos funth,Pos argth)) (MK_COMB(funth,argth))
| MkAbsStep th.
AddLine (MkAbs(Pos th)) (MK_ABS th)
| AlphaStep(t1,t2) .
AddLine (Alpha(t1,t2)) (ALPHA t1 t2)
| AddAssumStep(t,th) .
AddLine (AddAssum(t,Pos th)) (ADD_ASSUM t th)
| SymStep th .
AddLine (Sym(Pos th)) (SYM th)
| TransStep(th1,th2) .
AddLine (Trans(Pos th1,Pos th2)) (TRANS th1 th2)
| ImpTransStep(th1,th2) .
AddLine (ImpTrans(Pos th1,Pos th2)) (IMP_TRANS th1 th2)
| ApTermStep(tm,th) .
AddLine (ApTerm(tm,Pos th)) (AP_TERM tm th)
| ApThmStep(th,tm) .
AddLine (ApThm(Pos th,tm)) (AP_THM th tm)
| EqMpStep(th1,th2) .
AddLine (EqMp(Pos th1,Pos th2)) (EQ_MP th1 th2)
| EqImpRuleStep th .
(AddLine (EqImpRuleR(Pos th)) (fst(EQ_IMP_RULE th));
AddLine (EqImpRuleL(Pos th)) (snd(EQ_IMP_RULE th)))
| SpecStep(t,th) .
AddLine (Spec(t,Pos th)) (SPEC t th)
| EqtIntroStep th .
AddLine (EqtIntro(Pos th)) (EQT_INTRO th)
| GenStep(x,th) .
AddLine (Gen(x,Pos th)) (GEN x th)
| EtaConvStep tm .
AddLine (EtaConv tm) (ETA_CONV tm)
| ExtStep th .
AddLine (Ext(Pos th)) (EXT th)
| ExistsStep((w,t),th) .
AddLine (Exists((w,t),Pos th)) (EXISTS (w,t) th)
| ChooseStep((v,th1),th2) .
AddLine (Choose((v,Pos th1),Pos th2)) (CHOOSE (v,th1) th2)
| ImpAntisymRuleStep(th1,th2) .
AddLine (ImpAntisymRule(Pos th1,Pos th2))
(IMP_ANTISYM_RULE th1 th2)
| MkExistsStep bodyth .
AddLine (MkExists(Pos bodyth)) (MK_EXISTS bodyth)
| SubsStep(ths,th) .
AddLine (Subs(map Pos ths,Pos th)) (SUBS ths th)
| SubsOccsStep(nlths,th) .
AddLine (SubsOccs(map (I # Pos) nlths,Pos th))
(SUBS_OCCS nlths th)
| SubstConvStep(thvars,template,tm) .
AddLine (SubstConv(map (Pos # I) thvars, template, tm))
(SUBST_CONV thvars template tm)
| ConjStep(th1,th2) .
AddLine (Conj(Pos th1,Pos th2)) (CONJ th1 th2)
| Conjunct1Step th .
AddLine (Conjunct1(Pos th)) (CONJUNCT1 th)
| Conjunct2Step th .
AddLine (Conjunct2(Pos th)) (CONJUNCT2 th)
| Disj1Step(th,w) .
AddLine (Disj1(Pos th,w)) (DISJ1 th w)
| Disj2Step(w,th) .
AddLine (Disj2(w,Pos th)) (DISJ2 w th)
| DisjCasesStep(dth,ath,bth) .
AddLine (DisjCases(Pos dth,Pos ath,Pos bth))
(DISJ_CASES dth ath bth)
| NotIntroStep th .
AddLine (NotIntro(Pos th)) (NOT_INTRO th)
| NotElimStep th .
AddLine (NotElim(Pos th)) (NOT_ELIM th)
| ContrStep(w,fth) .
AddLine (Contr(w,Pos fth)) (CONTR w fth)
| CcontrStep(w,fth) .
AddLine (Ccontr(w,Pos fth)) (CCONTR w fth)
| InstStep(inst_list,th) .
AddLine (Inst(inst_list,Pos th)) (INST inst_list th)
| StoreDefinitionStep(name,t) .
AddLine (StoreDefinition(name,t)) (definition(current_theory()) name)
| DefinitionStep(thy,ax) .
AddLine (Definition(thy,ax)) (definition thy ax)
| DefExistsRuleStep tm .
AddLine (DefExistsRule tm) (DEF_EXISTS_RULE tm)
| NewAxiomStep(tk,tm) .
AddLine (NewAxiom(tk,tm)) (new_axiom(tk,tm))
| AxiomStep(thy,ax) .
AddLine (Axiom(thy,ax)) (axiom thy ax)
| TheoremStep(thy,factname) .
AddLine (Theorem(thy,factname)) (theorem thy factname)
| NewConstantStep(s,ty) .
AddLine (NewConstant(s,ty)) (TRUTH)
| NewTypeStep(arity,tok) .
AddLine (NewType(arity,tok)) (TRUTH)
| NumConvStep tm .
AddLine (NumConv tm) (num_CONV tm));
steps := tl steps);
resume_recording(); set_thm_count thmcount;
AddHypLines());;
% let ShowProof() = MakeProof (get_steps());; %
%-------------------------------------------------------------------%
% The functions below are for outputting proof lines to a disk file %
%-------------------------------------------------------------------%
begin_section `output_proof`;;
let output_strings port sl = % : (string -> string list -> void) %
do (map (\s. (write(port,s); write(port, `\L`))) sl);;
let write_pair port (fl,fr) =
\(l,r). (write(port, `{`);
(fl port l);
(fr port r);
write(port, `}`));;
let write_list port fn l =
(write(port, `[`);
(map (fn port) l);
write(port, `]`));;
letrec write_type port ty =
if (is_vartype ty)
then (write (port, (`(v `));
write(port, (dest_vartype ty));
write(port, `)`))
else (
let tyop,tyl = dest_type ty in
if null tyl
then (write (port, (`(c `));
write (port, tyop);
write (port, `)`))
else (write (port, (`(o `));
write (port, tyop);
write_list port write_type tyl;
write (port, `)`)));;
letrec write_term port tm =
let opt_delim s =
let lastchar s = (last o explode) s in
if (is_alphanum(lastchar s)) then () else write(port,` `) in
if (is_var tm)
then (let v,ty = dest_var tm in
(write(port, (`(V `));
write(port, (v)); opt_delim v;
write_type port ty;
write(port, `)`)))
else if (is_const tm)
then (let v,ty = dest_const tm in
(write(port, (`(C `));
write(port, (v)); opt_delim v;
write_type port ty;
write(port, `)`)))
else if (is_comb tm)
then (let ro,ra = dest_comb tm in
(write(port, (`(A `));
write_term port ro; write_term port ra;
write(port, `)`)))
else (let ro,ra = dest_abs tm in
(write(port, (`(L `));
write_term port ro; write_term port ra;
write(port, `)`)));;
let write_thm port thm =
(write_term port (concl thm);
write(port, `\L`));;
let write_all_thm port thm =
let asml,con = dest_thm thm in
(write(port, `(THM `);
write_list port write_term asml;
write_term port con;
write(port, `)\L`));;
let write_int port i =
(write(port, ` `);
write(port, (string_of_int i)));;
let write_just port j =
case j of
Hypothesis .
write(port, `(Hypothesis)`)
| (Assume tm) .
(write(port, `(Assume `);
write_term port tm;
write(port, `)`))
| (Refl tm) .
(write(port, `(Refl `);
write_term port tm;
write(port, `)`))
| (Subst (itl,tm,i)) .
(write(port, `(Subst `);
write_list port (\p. write_pair p (write_int,write_term)) itl;
write_term port tm;
write_int port i;
write(port, `)`))
| (BetaConv tm) .
(write(port, `(BetaConv `);
write_term port tm;
write(port, `)`))
| (Abs (tm,i)) .
(write(port, `(Abs `);
write_term port tm;
write_int port i;
write(port, `)`))
| (InstType (tyl,i)) .
(write(port, `(InstType `);
write_list port (\p. write_pair p (write_type,write_type)) tyl;
write_int port i;
write(port, `)`))
| (Disch (tm,i)) .
(write(port, `(Disch `);
write_term port tm;
write_int port i;
write(port, `)`))
| (Mp (i1,i2)) .
(write(port, `(Mp `);
write_int port i1;
write(port, ` `);
write_int port i2;
write(port, `)`))
| (MkComb (i1,i2)) .
(write(port, `(MkComb `);
write_int port i1;
write(port, ` `);
write_int port i2;
write(port, `)`))
| (MkAbs i) .
(write(port, `(MkAbs `);
write_int port i;
write(port, `)`))
| (Alpha (tm1,tm2)) .
(write(port, `(Alpha `);
write_term port tm1;
write_term port tm2;
write(port, `)`))
| (AddAssum (tm,i)) .
(write(port, `(AddAssum `);
write_term port tm;
write_int port i;
write(port, `)`))
| (Sym i) .
(write(port, `(Sym `);
write_int port i;
write(port, `)`))
| (Trans (i1,i2)) .
(write(port, `(Trans `);
write_int port i1;
write(port, ` `);
write_int port i2;
write(port, `)`))
| (ImpTrans (i1,i2)) .
(write(port, `(ImpTrans `);
write_int port i1;
write(port, ` `);
write_int port i2;
write(port, `)`))
| (ApTerm (tm,i)) .
(write(port, `(ApTerm `);
write_term port tm;
write_int port i;
write(port, `)`))
| (ApThm (i,tm)) .
(write(port, `(ApThm `);
write_int port i;
write_term port tm;
write(port, `)`))
| (EqMp (i1,i2)) .
(write(port, `(EqMp `);
write_int port i1;
write(port, ` `);
write_int port i2;
write(port, `)`))
| (EqImpRuleR i).
(write(port, `(EqImpRuleR `);
write_int port i;
write(port, `)`))
| (EqImpRuleL i).
(write(port, `(EqImpRuleL `);
write_int port i;
write(port, `)`))
| (Spec (tm,i)) .
(write(port, `(Spec `);
write_term port tm;
write_int port i;
write(port, `)`))
| (EqtIntro i) .
(write(port, `(EqtIntro `);
write_int port i;
write(port, `)`))
| (Gen (tm,i)) .
(write(port, `(Gen `);
write_term port tm;
write_int port i;
write(port, `)`))
| (EtaConv tm) .
(write(port, `(EtaConv `);
write_term port tm;
write(port, `)`))
| (Ext i) .
(write(port, `(Ext `);
write_int port i;
write(port, `)`))
| (Exists (tm,i)) .
(write(port, `(Exists `);
write_pair port (write_term,write_term) tm;
write_int port i;
write(port, `)`))
| (Choose (tmi,i)) .
(write(port, `(Choose `);
write_pair port (write_term,write_int) tmi;
write_int port i;
write(port, `)`))
| (ImpAntisymRule (i1,i2)) .
(write(port, `(ImpAntisymRule `);
write_int port i1;
write(port, ` `);
write_int port i2;
write(port, `)`))
| (MkExists i) .
(write(port, `(MkExists `);
write_int port i;
write(port, `)`))
| (Subs (il,i)) .
(write(port, `(Subs `);
write_list port write_int il;
write_int port i;
write(port, `)`))
| (SubsOccs (il,i)) .
(write(port, `(SubsOccs `);
write_list port
(\p (ill,ii). (write(p,`(`);
write_list p write_int ill;
write_int p ii;
write(p,`)`))) il;
write_int port i;
write(port, `)`))
| (SubstConv (itl, tm1, tm2)) .
(write(port, `(SubstConv `);
write_list port (\p. write_pair p (write_int,write_term)) itl;
write_term port tm1;
write_term port tm2;
write(port, `)`))
| (Conj (i1,i2)) .
(write(port, `(Conj `);
write_int port i1;
write(port, ` `);
write_int port i2;
write(port, `)`))
| (Conjunct1 i) .
(write(port, `(Conjunct1 `);
write_int port i;
write(port, `)`))
| (Conjunct2 i) .
(write(port, `(Conjunct2 `);
write_int port i;
write(port, `)`))
| (Disj1 (i,tm)) .
(write(port, `(Disj1 `);
write_int port i;
write_term port tm;
write(port, `)`))
| (Disj2 (tm,i)) .
(write(port, `(Disj2 `);
write_term port tm;
write_int port i;
write(port, `)`))
| (DisjCases (i1,i2,i3)) .
(write(port, `(DisjCases `);
write_int port i1;
write(port, ` `);
write_int port i2;
write(port, ` `);
write_int port i3;
write(port, `)`))
| (NotIntro i) .
(write(port, `(NotIntro `);
write_int port i;
write(port, `)`))
| (NotElim i) .
(write(port, `(NotElim `);
write_int port i;
write(port, `)`))
| (Contr (tm,i)) .
(write(port, `(Contr `);
write_term port tm;
write_int port i;
write(port, `)`))
| (Ccontr (tm,i)) .
(write(port, `(Ccontr `);
write_term port tm;
write_int port i;
write(port, `)`))
| (Inst (ttl,i)) .
(write(port, `(Inst `);
write_list port (\p. write_pair p (write_term,write_term)) ttl;
write_int port i;
write(port, `)`))
| (StoreDefinition (s,tm)) .
(write(port, (`(StoreDefinition `^s));
write_term port tm;
write(port, `)`))
| (Definition (s1,s2)) .
(write(port, (`(Definition `^s1^` `^s2^`)`)))
| (DefExistsRule tm) .
(write(port, (`(DefExistsRule `));
write_term port tm;
write(port, `)`))
| (NewAxiom (s,tm)) .
(write(port, (`(NewAxiom `^s));
write_term port tm;
write(port, `)`))
| (Axiom (s1,s2)) .
(write(port, (`(Axiom `^s1^` `^s2^`)`)))
| (Theorem (s1,s2)) .
(write(port, (`(Theorem `^s1^` `^s2^`)`)))
| (NewConstant (s,ty)) .
(write(port, (`(NewConstant `^s));
write_type port ty;
write(port, `)`))
| (NewType (i,s)) .
(write(port, (`(NewType `));
write_int port i;
write(port, (` `^s^`)`)))
| (NumConv tm) .
(write(port, `(NumConv `);
write_term port tm;
write(port, `)`));;
let write_line port (Line (ct, thm, just)) =
(write(port, `(LINE `);
write(port, (string_of_int ct));
write_just port just;
write(port,`\L`);
write_all_thm port thm;
write(port, `)\L\L`));;
let write_tyconst port (arity,tyname) =
(write_pair port ((\p s.write(p,s)), write_int) (tyname, arity));;
let write_sig port (cname, cty) =
(write_pair port ((\p s.write(p,s)), write_type) (cname, cty));;
let write_env ofile =
let holthy = `HOL` . (ancestors `HOL`) in
let thisthy = current_theory() in
let allthy = thisthy . (ancestors thisthy) in
let ths = subtract allthy holthy in
let tylst = flat (map types ths)
and conlst = map dest_const (flat (map constants ths)) in
(write(ofile, `(ENV `);
write(ofile, thisthy);
write_list ofile write_tyconst tylst;
write_list ofile write_sig conlst;
write(ofile, `)\L`));;
let write_thm_list port thml = write_list port write_all_thm thml;;
(write_line,write_thm_list,write_env);;
end_section `output_proof`;;
let (write_line,write_thm_list,write_env) = it;;
%-------------------------------------------------------------------%
% The functions below are the user level functions for recording %
% proofs %
%-------------------------------------------------------------------%
begin_section `proof_interface`;;
let format_version = `(VERSION PRF FORMAT 1.0 EXTENDED)\L`;;
let write_proof_add_to =
let format_name = (explode format_version) in
let read_line port =
letref ls = [] in
letref c = read port in
(if (c = `nil`) then (c := ``; ())
if not(c = `\L`) loop (ls := (c. ls); c := read port);
(ls := c.ls);
rev ls) in
let check_file fname =
let path = search_path() in
(set_search_path [``] ;
let fname' = find_file fname ?
(let ofile = openw fname in
(write(ofile, format_version);
write_env ofile;
close ofile; fname)) in
let ifile = openi fname' in
let fformat = read_line ifile in
(set_search_path path;
(fformat = format_name))) in
\file name thms prf.
if check_file file then
(let ofile = append_openw file in
(write(ofile, (`\L(PROOF `^name^`\L`));
write_thm_list ofile thms;
write(ofile, `\L[\L`);
map (write_line ofile) prf;
write(ofile, `])\L`);
close ofile))
else failwith
(`write_proof_add_to: ` ^file ^ ` not in the correct format`);;
let write_proof_to file pname thms prf =
let ofile = openw file in
(write(ofile, format_version);
write_env ofile;
write(ofile, (`(PROOF `^pname^`\L`));
write_thm_list ofile thms;
write(ofile, `\L[\L`);
map (write_line ofile) (prf);
write(ofile, `])\L`);
close ofile);;
letref proof_file_name = ``;;
letref proof_file_port = ``;;
letref proof_name = ``;;
letref proof_count = 0;;
letref current_goals = []:thm list;;
let write_last_proof =
\name thms.
(if (proof_file_port = ``) then failwith `no proof file`
else (
write(proof_file_port, (`\L(PROOF `^name^`\L`));
write_thm_list proof_file_port thms;
write(proof_file_port, `\L[\L`);
map (write_line proof_file_port) (MakeProof (get_steps()));
write(proof_file_port, `])\L`)))
?\s failwith (`write_last_proof: `^s);;
let current_proof_file (():void) = proof_file_name;;
let current_proof (():void) = proof_name;;
let close_proof_file (():void) =
(close proof_file_port;
proof_file_port := ``;
let c = system (`gzip `^ proof_file_name) in
if not(c = 0) then
tty_write(`WARNING: cannot compress proof file (gzip error `^
(string_of_int c) ^`)`)
else ();
proof_file_name := ``;
proof_count := 0; ());;
let new_proof_file name =
(if not(proof_file_name = ``) then(
close_proof_file();
failwith `a proof file is already opened`)
else(
proof_file_name := name;
proof_count := 0;
let ofile = openw proof_file_name in
(write(ofile, format_version);
write_env ofile);
proof_file_port := ofile; ()))
?\s failwith (`new_proof_file: `^s);;
let begin_proof name =
(if not(proof_name = ``) then failwith (`last proof is not saved yet`)
else (proof_name := name;
proof_count := proof_count + 1;
current_goals := [];
record_proof true; ()))
?\s failwith (`begin_proof: `^s);;
let end_proof name =
(if (proof_name = ``) then ()
else
(write_last_proof proof_name current_goals;
record_proof false;
proof_name := ``;
current_goals := []; ()))
?\s failwith (`end_proof: `^s);;
%-------------------------------------------------------------------%
% The functions below are the user level functions for recording %
% tactical proofs %
%-------------------------------------------------------------------%
let sanitise str =
let sps = explode `.;,:"!@#$^&*()|\\` in
let c' = `_` in
let san c = if (mem c sps) then c' else c in
letrec sani sl =
if (null sl) then []
else let h = san (hd sl) in (h . (sani (tl sl))) in
implode (sani (explode str));;
let TAC_PROOF (gl,tac) =
(let thm = TAC_PROOF(gl,tac) in
(current_goals := (mk_thm gl) . current_goals;
thm));;
let PROVE (tm,tac) =
(let thm = PROVE(tm,tac) in
(current_goals := (mk_thm([],tm)) . current_goals;
thm));;
let prove = \(t,tac). TAC_PROOF(([],t), tac);;
let prove_thm (name,tm,tac) =
(let thm = prove_thm(name,tm,tac) in
(current_goals := (mk_thm([],tm)) . current_goals;
thm));;
(write_proof_add_to, write_proof_to, write_last_proof,
current_proof, current_proof_file,
new_proof_file, close_proof_file, begin_proof, end_proof,
TAC_PROOF, PROVE, prove, prove_thm);;
end_section `proof_interface`;;
let (write_proof_add_to, write_proof_to, write_last_proof,
current_proof, current_proof_file,
new_proof_file, close_proof_file, begin_proof, end_proof,
TAC_PROOF, PROVE, prove, prove_thm) = it;;
|